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Abstract  

We introduce two new Kirchhoff-law–Johnson-noise (KLJN) secure key distribution schemes which are generalizations of 
the original KLJN scheme. The first of these, the Random-Resistor (RR–) KLJN scheme, uses random resistors with values 
chosen from a quasi-continuum set. It is well-known since the creation of the KLJN concept that such a system could work in 
cryptography, because Alice and Bob can calculate the unknown resistance value from measurements, but the RR–KLJN 
system has not been addressed in prior publications since it was considered impractical. The reason for discussing it now is 
the second scheme, the Random-Resistor–Random-Temperature (RRRT–) KLJN key exchange, inspired by a recent paper of 
Vadai, Mingesz and Gingl, wherein security was shown to be maintained at non-zero power flow. In the RRRT–KLJN secure 
key exchange scheme, both the resistances and their temperatures are continuum random variables. We prove that the 
security of the RRRT–KLJN scheme can prevail at non-zero power flow, and thus the physical law guaranteeing security is 
not the Second Law of Thermodynamics but the Fluctuation–Dissipation Theorem. Alice and Bob know their own 
resistances and temperatures and can calculate the resistance and temperature values at the other end of the communication 
channel from measured voltage, current and power-flow data in the wire. However, Eve cannot determine these values 
because, for her, there are four unknown quantities while she can set up only three equations. The RRRT–KLJN scheme has 
several advantages and makes all former attacks on the KLJN scheme invalid or incomplete.  
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1. Introduction 

The Kirchhoff-law–Johnson-noise (KLJN) secure key distribution scheme [1–20] is a classical-statistical 
physical alternative to the quantum key distribution. Figure 1 depicts a binary version of the KLJN scheme and 
shows that, during a single-bit exchange, the communicating parties (Alice and Bob) connect their randomly 
chosen resistor (including its Johnson noise generator) to a wire channel. These resistors are randomly selected 
from the publicly known set RL,RH{ } , RL ≠ RH , representing the Low (L) and High (H) bit values. The Gaussian 
voltage noise generators—mimicking the Fluctuation–Dissipation Theorem and delivering band-limited white 
noise with publicly agreed bandwidth—produce enhanced thermal (Johnson) noise at a publicly agreed effective 
temperature Teff , typically Teff >>10

10K , so that the temperature of the wire can be neglected. The noises are 
statistically independent of each other and from the noise of the former bit period.  

In the case of secure bit exchange—i.e., the LH or HL bit situations for Alice and Bob—an eavesdropper 
(Eve) cannot distinguish between these two situations by measuring the noise spectra   Su ( f ) ,   Si ( f )  of voltage 
and/or current in the cable, respectively, because the LH and HL noise levels are identical (degenerated). Thus 
when Alice and Bob detect the noise spectra (or noise levels) characteristic of the LH and HL situation, they 
know that the other party has the opposite bit and that this bit is secure. Then one of them will invert the bit (it is 
publicly pre-agreed who will do this) to get the same key bit as the other party. The KLJN scheme offers 
unconditional (information theoretic) security at both ideal and slightly non-ideal (i.e., practical) conditions [3].  

To avoid a potential information leak by variations in the shape of a probability distribution, the noises are 
Gaussian [1], and it has been proven that other distributions cannot offer perfect security [17,18]. The security 
against active (invasive) attacks is provided by the robustness of classical-physical quantities, which guarantees 
that they can be continuously monitored and exchanged between Alice and Bob via authenticated 
communication. Therefore the system, and the consistency of the measured and exchanged voltage and current 
data with the known cable parameters and model, can be checked continuously and deterministically without 
destroying these data, which is totally different from the case of a quantum key distribution. 
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Fig. 1. Core of the KLJN scheme without defense circuitry [2] against active (invasive) attacks and attacks utilizing non-
idealities. The RL and RH resistors, identical pairs at Alice and Bob, represent the Low (L) and High (H) bit values. The 
corresponding noise spectra SL and SH also form identical pairs at the two ends, but they belong to independent Gaussian 
stochastic processes. Both parties have the same temperature, and thus the net power flow is zero. The LH and HL bit 
situations of Alice and Bob produce identical voltage and current noise spectra, Su and Si, in the wire, implying that they 
represent a secure bit exchange. The LL and HH bit arrangements, which occur in 50% of the cases, have singular noise 
levels in the wire, and hence they do not offer security because Eve can distinguish them. Consequently 50% of the bits must 
be discarded. This system works also with arbitrary, non-binary resistor values as an analog circuitry to exchange continuum 
information about the distribution of random resistors. 

We must keep in mind that the KLJN secure information exchanger is basically an analog circuit and can 
work with arbitrary resistances because, even if the resistance values are not pre-agreed, Alice can calculate 
Bob’s resistance from the measured data [1] by using Johnson’s formula, and vice versa. For example, by using 
the measured current spectrum in the wire one obtains 

 
RB =

kTeff

Si

− RA   .          (1) 

It is important to note that Eve is also able to determine an arbitrary, non-pre-agreed (non-publicly known) 
resistor pair connected to the line by using measured voltage and current spectra [1]. The two solutions of the 
obtained second order equation provide two resistance values of the pair according to 

R1,2 =
4kTSu ± 4kTSu( )2 − 4Su3Si

2SuSi
 .        (2) 

However, Eve cannot determine which resistor is with Alice and which is with Bob, and hence the information 
exchange about the distribution of arbitrary, non-binary resistor values is secure in the original KLJN system. 

 

2. The Vadai–Mingesz–Gingl KLJN scheme 

Resistor inaccuracies in the binary KLJN scheme can remove the degeneracy of the LH and HL noise levels in 
the communication line—thus yielding non-zero information leak—as was pointed out long ago [21,22], and 
ensuing inaccuracies on the 1-%-level have been considered acceptable for practical purposes with minimal 
privacy amplification and secure bit filtering [3]. Recently, Vadai–Mingesz–Gingl (VMG) published a modified 
KLJN scheme [19] with very interesting properties in order to fully eliminate such a leak. We call this the 
VMG–KLJN system. In a subsequent article [20] they showed that the earlier temperature-compensation defense 
principle [16] against wire resistance attacks on the KLJN system can successfully be used also for the VMG–
KLJN scheme. 

We note, in passing, that the title of VMG’s paper [19] is misleading because it mentions “arbitrary” resistors 
and indicates that the “arbitrariness” of these resistors would constitute the main new result of their paper. 
However, already the original KLJN scheme had “arbitrary” resistors, but not a continuum range of resistors 
with ad hoc random choice, which the VMG–KLJN scheme also is unable to offer. The truly new aspect of the 
VMG–KLJN scheme is different, namely that Alice and Bob can have two different pairs of fixed resistors 
consisting of RAL , RAH , RBL , and RBH , which are Alice’s and Bob’s logic L and H resistances, respectively; see 
Figure 2.  
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Fig. 2. Vadai–Mingesz–Gingl KLJN scheme. The resistor pairs representing the Low (L) and High (H) bit values are 
different at Alice (A) and Bob (B), and their temperatures and the corresponding noise spectra are different too. Thus the net 
power flow is non-zero. The resistance values RAL, RAH, RBL and RBH, as well as the temperatures TAL, TAH, TBL and TBH, are 
pre-determined and thus publicly known. This protocol is not designed to work with arbitrary, non-binary resistor values in 
order to exchange continuum information about the distribution of random resistors, because the resistance values and 
temperatures are interrelated, and Alice and Bob cannot abruptly alter them without requesting a change of the temperature(s) 
at the other party.  

The VMG–KLJN scheme is binary, just as the original KLJN system, and Alice’s and Bob’s task is to find 
conditions under which the voltage and current noise spectra in the wire are identical at the HL and LH bit 
combinations, i.e., for the pairs  RAL − RBH  and  RAH − RBL . This identity cannot be accomplished with uniform 
temperatures. Starting with the temperature  TAL  of Alice’s  RAL  resistor, the other temperatures ( TAH ,  TBL  and

 TBH ) are designed so that the LH and HL bit situations produce identical voltage and current noise spectra and 
power-flow in the wire, implying that they represent a secure bit exchange. VMG found the necessary 
temperature values [19] in the following generic form:  

 

 TAH = TALF RAL,RAH ,RBL,RBH( ) ,          (3) 

 TBL = TALG RAL,RAH ,RBL,RBH( ) ,         (4) 

and 

 TBH = TALH RAL,RAH ,RBL,RBH( ) .         (5) 

The functions F, G and H are deterministic (their explicit forms are published [19] and are not reproduced here). 
Thus Alice and Bob must know not only their own set of resistors but also the resistance values at the other side, 
and Bob must also know Alice’s temperature TAL . Consequently these resistor sets and temperatures are 
deterministic, which in accordance with Kerckhoffs’s principle [23] implies that all of the parameters are known 
by Eve. (Note that “keying” these parameter values by randomly generating and disseminating them via secure 
communication, by using the formerly shared key, is of course possible, just as it is the case of the Keyed-KLJN 
scheme [5] and some quantum versions [24,25], but such enhancements to make Eve’s job more difficult are not 
the topic of the present paper).  

The LL and HH bit arrangements, which occur in 50% of the cases, have singular noise levels in the wire. 
Thus they offer no security and must be discarded, so the VMG system does not offer any speed-up of the key 
exchange. 

Concerning practical applications of the original KLJN system in “macroscopic” circuit boards or hybrid 
integrated circuits, the resistor pairs can easily be chosen with high-enough precision, and therefore the VMG 
system is not needed. However, in monolith integrated circuits and in the absence of post-processing for 
trimming of the KLJN resistors, the VMG method [19] can be handy to eliminate the information leak due to 
resistor inaccuracies [21,22]. 

It should be emphasized that VMG’s paper [19] contains a very important discovery: that unconditional 
security can be attained at non-zero power flow, i.e., at non-equilibrium conditions! Hence it is not the Second 
Law of Thermodynamics that guarantees security in their system but the Fluctuation–Dissipation Theorem, via 
the Johnson–Nyquist formula. (We note, in passing, that a similar assertion was made in the very first paper on 
the KLJN scheme [1]; this argument was later replaced by one involving the more widely known Second Law of 
Thermodynamics, which is applicable as well).  
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3. The Random-Resistor (analog) KLJN scheme 

Before we turn to our main results, we outline the Random-Resistor (RR–) KLJN scheme in Figure 3. This 
system is not binary but analog and in thermal equilibrium. The RR–KLJN scheme employs random resistors 
chosen from a quasi-continuum set of resistance values. It is well-known since the inception of the KLJN 
concept that such a system could work, because Alice and Bob can calculate the unknown resistance value from 
measurements, but this system has not been addressed in prior publications as it was considered impractical.  

 

 
Fig. 3. Random-Resistor KLJN scheme. The temperature at the two sides is the same and is a pre-defined, publicly known 
constant value; thus the net power flow is zero. The resistors at Alice (A) and Bob (B), and their corresponding voltage noise 
spectra, are continuum random variables with a new random choice made at the beginning of each KLJN period. The Low 
(L) and High (H) bit values at Alice and Bob are determined by the relative resistance values; for example, the party with the 
higher resistance has the high bit. From voltage and current measurements, Eve can estimate the two resistance values but not 
their locations, unless the resistors are identical. In the hypothetical but non-practical case when the resistance distribution is 
a continuum, and when the inaccuracies of Alice’s and Bob’s estimations are zero, then 100% of secure bit exchange is 
accomplished because the probability of choosing two identical resistances is zero. In the practical case with finite accuracy 
(finite bit exchange duration) and a quasi-continuum discrete distribution, the secure bit exchange efficiency is less than 
100%, because some of the bits must be discarded, but it is greater than 50%.  

 

4. The Random-Resistor–Random-Temperature KLJN scheme 

The important discovery by VMG [19]—that unconditional perfect security exists at non-zero power flow—is 
the feature that inspired our new Random-Resistor–Random-Temperature (RRRT–) KLJN; see Figure 4 which 
defines two new parameters, α  and β , by   RB =αRA  and   TB = βTA . Yet our new scheme is completely 
different from that of VMG because it uses really “arbitrary” (ad hoc) resistances as in the RR–KLJN scheme 
and moreover random (ad hoc) temperatures from a continuum interval. Thus the forthcoming resistance and 
temperature values are unknown even by Alice and Bob (analogously with their lack of knowledge about the 
next secure key bit), except for the ranges of values. Consequently, even Kerckhoffs’s principle [23] does not 
allow any information leak about resistance and temperature values, and only their continuum range is publicly 
known. This fact makes all formerly known attack types invalid in their original form and, without further 
development of them, they offer zero information gain about Eve’s keys.  
 
3.1 Security proof of the RRRT–KLJN scheme 

We analyze the protocol from Alice’s point of view, which obviously is valid for Bob too.  

• Known to Alice: her own temperature, resistance and noise spectrum, and the wire measurements of  Su ( f ) , 

 Si( f )  and power  PAB  flowing to Alice from Bob.  
• Unknown to Alice: α  and β .  
• Known to Eve: wire measurements of  Su ( f ) ,  Si( f )  and  PAB . 
• Unknown for Eve: α , β ,  TA  and  RA .  
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Fig. 4. Random-Resistor–Random-Temperature KLJN scheme. The temperatures and the resistors at Alice (A) and Bob (B), 
and their corresponding voltage noise spectra, are continuum random variables with a new random choice made at the 
beginning of each KLJN period. The Low (L) and High (H) bit values at Alice and Bob are determined by the relative 
resistance values; for example, the party with the higher resistance has the high bit. Eve cannot determine the two resistance 
values, not even their sum, as in the KLJN, VMG–KLJN and RR–KLJN cases. In the hypothetical but non-practical situation 
when the resistance distribution is a continuum and the inaccuracies of Alice’s and Bob’s estimation results are zero, 100% 
of secure bit exchange is accomplished. In the practical case with finite accuracy (finite bit exchange duration) and quasi-
continuum discrete distribution, the secure bit exchange efficiency is less than 100%, because the bits with singular noise and 
power levels must be discarded, but 100% can be approached with proper design.  

  

Alice wants to find out Bob’s unknown parameters α  and β . She can set up three equations by using the 
principles of linear operations on noise and have 

 

 
Su ( f ) = 4kTARA

αRA

RA 1+α( )
⎡

⎣
⎢

⎤

⎦
⎥

2

+αβ4kTARA
RA

RA 1+α( )
⎡

⎣
⎢

⎤

⎦
⎥

2

= 4kTARA

1+α( )2
α α + β( )  ,                (6) 

 

 
Si( f ) =

4kTARA

RA
2 1+α( )2

+ 4kTARAαβ
RA
2 1+α( )2

= 4kTA

RA

1+αβ
1+α( )2

 ,       (7) 

 

and the power flow, according to earlier work [16], is 

 

 
PAB = Δf αRARA

RA + RAα( )2
β −1( )4kTA = 4kTAΔf

α β −1( )
1+α( )2

  ,      (8) 

 

where Δf  is the noise bandwidth. Equations (6)–(8) allow us to define three new quantities, which Alice can 
calculate from her own parameters and the measured data by 

 

 
γ = Su ( f )

4kTARA

=
α α + β( )
1+α( )2

  ,         (9) 

 

 
ϕ = PAB

4kTAΔf
=
α β −1( )
1+α( )2

 ,                                      (10) 

 

and 
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δ = Si( f )RA

4kTA

= 1+αβ
1+α( )2

 .          (11) 

 

In can be shown that Equations (9) and (10) lead to a second-order equation for β , which has two solutions 
according to 

 

β1,2 =
−δ 1− 2γ( )−ϕγ ± δ 1− 2γ( ) +ϕγ⎡⎣ ⎤⎦

2
+ 4 γ −1( ) δ −ϕ( ) ϕ −γδ( )

2 γ −1( )  .    (12) 

 

In situations for which one solution is positive and the other is negative, which is unphysical, the positive result 
provides Alice with Bob’s temperature value. When both solutions are positive, an alternative second order 
equation, created from Equations (10) and (11), must be solved; the joint solution of that equation with the 
solution of Equation (12) yields the correct temperature parameter β  of Bob. Finally, knowing the correct value 
of β , any one of Equations (9)–(11) yields Bob’s resistance parameterα . 

Importantly, Eve cannot determine these values because, for her, there are four unknown quantities while she 
can set up only three equations. Thus she has infinite possibilities, provided the continuum system is unbounded, 
which is impractical. 

In practical applications, the solution of the above equations will not be needed, especially when we consider 
the fact that the RRRT–KLJN system will be a digital one, similarly to case of the KLJN realizations. This 
means that the temperature and resistance data will form a quasi-continuum discrete set with resolution given by 
the bit resolution of the system. Thus instead of the calculations outline above, a bottom-up version is feasible 
and practical as a consequence of its reduced calculation need during operation. This approach involves a 
tabulation of all possible temperature and resistor settings at Alice and Bob and creating a look-up table from the 
data on Su ( f ) , Si( f )  and  PAB .  

One should note that this kind of tabulation must be done in any case in order to locate possible singular 
combinations of Su ( f ) , Si( f )  and  PAB  that could uniquely inform Eve about the resistance and temperature 
situations. For any secure bit, the measurable set of Su ( f ) , Si( f )  and  PAB  must be degenerated and thus must 
occur for at least two opposite bit situations within the statistical inaccuracy of the KLJN operation; otherwise 
Eve can extract the bit by using her own model of the system, which she can build according to the Kerckhoffs’s 
principle [23]. Those singular shared bits are insecure and must be discarded during operation whenever they 
occur.    

 

3.2 Immunity against former attacks 

The RRRT–KLJN scheme has several advantages and makes all existing and previously valid attacks invalid in 
their known form. For example, the key exchange speed is virtually doubled because, with proper design, almost 
all bit exchange period supply a secure key bit due to overlap of the noise and power levels belonging to 
different bit settings. Resistor- or temperature-inaccuracies do not matter, and they can no longer be utilized for 
Hao-type attacks [22,26]. The Bergou–Scheuer–Yariv–Kish cable resistance attack [27,28] is also invalid in its 
known form, just as is the new cable-capacitance attack by Chen et al. [29]. Finally, the new transient attack [30] 
by Gunn–Allison–Abbott does not work either because of the unknown resistances and temperatures. 

New attacks are of course possible. For example, if Eve compares the mean-square voltages at the two ends 
of the wire she gets a new equation, and then she probably has enough equations to extract information due to 
the non-zero wire resistance. An information leak will then exist, and the real question is: how large is this leak 
considering Eve’s poor statistics due to the strongly limited bit-exchange period; see related analysis elsewhere 
[3,7].  
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3.3 Some practical considerations 

A disadvantage of the RRRT–KLJN scheme is that the Kish–Granqvist temperature-compensation defense 
mechanism [16] cannot be used to nullify cable resistance effects against an as yet unknown attack type of such 
kind. A perhaps more practical version of the RRRT–KLJN scheme is the generalization of the formerly 
proposed Multiple–KLJN (MKLJN) system [5] based on a random choice of a known large set of resistors by 
introducing a random choice of temperatures from a known large set of such data. As already mentioned above, 
the known sets must be properly checked, because only choices with degenerated voltage/current/power values 
can be considered secure–not the singular values. Bit-error analysis [13,14] and error removal is still an open 
problem in the RRTT–KLJN scheme. 

  

Conclusions 

We introduced two schemes with arbitrary (ad hoc) random resistor choices and enhanced communication 
speed. The RRRT–KLJN scheme also has ad hoc random temperatures, and this makes the new scheme unique 
among the existing KLJN versions because even the sum of the resistances is secret. All former attacks are 
invalid and, as a minimum, need further developments to extract any information. 

The RRRT system also has disadvantages, and some advanced features of the enhanced KLJN schemes, such 
as the iKLJN [5], cannot be used and some of the defense features against active (invasive) attacks may need to 
be upgraded. 

Only the future can tell if the RRRT scheme remains a topic of purely academic interest or whether it will 
lead to important practical applications. Both the generation of a random (analog) resistance and a random 
temperature look technically feasible, especially since accuracy and reproducibility of the resistance values are 
unimportant. There is no reason to use the RR–KLJN scheme because the RRRT scheme needs only a minor 
expansion: controlling the mean-square amplitude of the noise voltage generators. 

It is yet an open question if the original KLJN system and its enhanced versions iKLJN, KKLJN, VMG, etc., 
or the new RRRT–KLJN scheme, is more feasible for practical applications; all of them offer unconditional 
(information theoretic) security. 
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