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Abstract The homogeneity symmetry is re-examined and shown to be non-unitary.
This is motivated by the prospect that logical independence in elementary algebra,
entering quantum mathematics, will constitute the basis for a theory explaining
quantum randomness.
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1 Introduction

In classical physics, experiments of chance, such as coin-tossing and dice-throwing,
are deterministic, in the sense that, perfect knowledge of the initial conditions would
render outcomes perfectly predictable. The ‘randomness’ stems from ignorance of
physical information in the initial toss or throw.

In diametrical contrast, in the case of quantum physics, the theorems of Kocken
and Specker [7], the inequalities of John Bell [3], and experimental evidence of Alain
Aspect [1,2], all indicate that quantum randomness does not stem from any such
physical information.

As response, Tomasz Paterek et al offer explanation in mathematical informa-
tion. They demonstrate a link between quantum randomness and logical independ-
ence in (Boolean) mathematical propositions [8,9]. Logical independence refers to
the null logical connectivity that exists between mathematical propositions (in the
same language) that neither prove nor disprove one another. In experiments meas-
uring photon polarisation, Tomasz Paterek et al demonstrate statistics correlating
predictable outcomes with logically dependent mathematical propositions, and ran-
dom outcomes with propositions that are logically independent.

While those Boolean propositions do convey definitive information about quantum
randomness, any insight they offer is obscure. In order to advance a theory for
quantum randomness, understanding is needed of logical independence, inherent in
standard textbook quantum theory. A likely place to begin is elementary algebra as a
logical system – the formal version of the very familiar algebra upon which applied
mathematics and mathematical physics rest. This is the algebra of infinite fields.
Logical independence in this system is well-known to Mathematical Logic [12].

In a related article by this author [4], logical independence in elementary algebra
is discussed. Of particular interest is logical independence of the imaginary scalars,
seen in contrast to logical dependence of the rational scalars – and – the possible
prospect that these two types of logical information might pass into quantum math-
ematics.

As it happens, the passage of that logical information is blocked. It is preven-
ted by an alteration that quantum theory imposes on elementary algebra. Quantum
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mathematics can be regarded as an altered elementary algebra. Specifically, unit-
arity (or self-adjointness) is imposed axiomatically – by Postulate.

Historically, the reason for unitarity is the universal need for preserved invari-
ance of probability amplitude. And so, interpretationally, unitarity is seen as on-
tologically fundamental to all symmetries of Nature [5, p109][6, p34]. This would
indicate that unitarity should be a blanket condition covering the whole of quantum
theory – and should be regarded as axiomatic. In short, unitarity is never in absence.

This paper shows that the homogeneity symmetry, generally understood to
imply the Canonical Commutation Relation [5, p115][11, p44], is not itself unitary.

2 The basic symmetry of wave mechanics: homogeneity of space

The Canonical Commutation Relation

px− xp = −i~

embodies core algebra at the heart of wave mechanics. The professed significance
of this relation is that it represents the homogeneity of space, and that is accepted
by quantum theorists as unitary. In this paper, I re-examine and scrutinise the Ca-
nonical Relation’s derivation and establish that the homogeneity symmetry is itself
not unitary. And in consequence establish that the Canonical Commutation Rela-
tion does not, itself, faithfully represent homogeneity, but contains other (unitary)
information also.

Imposing homogeneity on a system is identical to imposing a null physical
effect, under arbitrary translation of reference frame. To formulate this arbitrary
translation, resulting in null effect, the principle we invoke is form invariance.
This is the concept, from relativity, that symmetry transformations leave (physical)
formulae fixed in form, though values may alter [10]. In the case at hand, the
relevant formula whose form is held fixed is the eigenvalue equation for position:

x |fx (x)〉 = x |fx (x)〉 . (1)

The san-serif x, here, is a label for fx whose eigenvalue is x. The variable x (curly)
is the function domain. The use of two different variables here may seem unusual
and pointless. In fact, logically they are different. x is quantified existentially but
x is quantified universally.

With form held fixed, as the reference system is displaced, variation in the po-
sition operator x determines a group relation, representing the homogeneity sym-
metry. Under arbitrarily small displacements, this group corresponds to a linear
algebra representing homogeneity locally (Lie group and Lie algebra). To main-
tain the form of (1), under translation, the basis |fx〉 is cleverly managed: while
the translation transforms the basis from |fx〉 to |f x−ε〉, a similarity transforma-
tion is also applied, chosen to revert |f x−ε〉 back to |fx〉. In this way |fx〉 is held
static. The similarity transformation is a member of the one-parameter subgroup
of the general linear group GL, S (ε) ⊂ S ∈ GL, with the transformation parameter
ε coinciding with the displacement parameter. We shall see later, that similarity
transforms can be found only for a certain class of functions f . The overall scheme
of transformations is depicted in Figure 1.

Now, in standard theory of quantum symmetries, textbook understanding is
that S (ε) is intrinsically and necessarily unitary. It is in that unitarity where the
Canonical Relation finds its unitary origins. The textbook reason for that unitarity,
and the purpose it serves, is the preserved existence of the scalar product and
invariance of probability amplitude.

And so, because its presence is thought intrinsically necessary, unitarity is im-
posed axiomatically on the theory, by Postulate. The upshot is that standard theory
imposes Hilbert space on vectors |fx〉. This imposed unitarity is added information,
extra to the information of homogeneity. In consequence, in standard theory, the
symmetry for wave mechanics is a resultant – unitary subgroup of homogeneity.

As an experiment, we proceed, in this paper, by treating unitarity as a purely
separate issue from homogeneity and allowing S (ε) it’s widest generality, so that
homogeneity is faithfully and genuinely conveyed through the theory. The experi-
ment begins with the eigenvalue equation for position (1) being rewritten, as the
eigenformula in the quantified proposition (2). From here on, all informal assump-
tions are to be shed and the Dirac notation is dropped to avoid any inference that
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vectors are intended as orthogonal, in Hilbert space, or equipped with a scalar
product; none of these is implied.

Consider the eigenformula for position operator x, eigenfunctions fx and eigen-
values x, seen from the reference frame Ox:

∀x∃x∃x∃fx | xfx (x) = xfx (x) (2)
Translation: Applying the translation first. Under translation, homogeneity de-
mands existence of an equally relevant reference frame Ox′ displaced arbitrarily
through ε. See Figure 2. The principle of relativity guarantees a formula for Ox′ of
the same form as that for Ox in (2), thus:

∀x′∃x∃x′∃f ′x | xf ′x (x′) = x′f ′x (x′) (3)
A relation for x is to be evaluated, so x is held static for all reference frames. The
translation transforms position, thus:

∀ε∀x′∃x | x 7→ x′ = x + ε (4)

and transforms the function, thus:

∀ε∀x′∀f ′x∃fx∃x | fx (x) 7→ f ′x (x′) = fx−ε (x− ε) (5)

Substituting (4) and (5) into (3) gives the translated formula:

∀x∀ε∃x∃x∃fx | xfx−ε (x− ε) = (x + ε) fx−ε (x− ε) . (6)

ψ

Figure 3 The linear
transformations S exist
only for bounded ψx.

Similarity: Now applying the similarity transforma-
tion. This involves the (one parameter) linear operator
S(ε). Such an S(ε) exists only if there exists a space
of functions ψx, that is complete, normalisable, not re-
stricted to separable1 functions, and is a subset of the
(translatable) functions fx. Logically, the act of assum-
ing such an S(ε) hypothesises that such a class of func-
tions does indeed exist. No such function space is guar-
anteed. Accordingly, the assertion of proposition (7) is
newly assumed information entering the system.

∀x∀ε∀ψx−ε∃S∃ψx | S−1
(ε)ψx (x) = ψx−ε (x− ε) . (7)

In standard theory, S(ε) is set unitary by the mathematician. Doing that restricts
the space of functions ψx to the Hilbert space L2. Here, S(ε) is a member of the one

1 Separable means countable, as are the integers, as opposed to continuous, like the reals.

x |fx〉 = x |fx〉

��

Ox→Ox′

translation // x |f x−ε〉 = (x + ε) |f x−ε〉

|fx−ε〉→|fx〉 similarity

��(
SxS−1 − ε1

)
|fx〉 = x |fx〉

(
SxS−1 − ε1

)
|fx〉 = x |fx〉oo

Figure 1 Scheme of transformations. The bottom left hand formula is the resulting group
relation.

f          (x)

Figure 2 Passive translation of a function Two reference systems, Ox and Ox′ , arbit-
rarily displaced by ε, individually act as reference systems for position of a function fx. If the
x-space is homogeneous, then regardless of the value of ε, physics concerning this function is
described by formulae whose form remains invariant, though values may change. Note: The
function and reference frames are not epistemic; fx is non-observable and Ox and Ox′ are not
observers.
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parameter subgroup of the infinite dimensional, (non-unitary) general linear group
GL (∞). This restricts ψx not to the Hilbert space L2 but to the Banach space L1.

The similarity transformation is formed, thus:

∀x∀ε∃x∃x∃ψx∃S | S(ε)xS−1
(ε)ψx (x) = (x + ε)ψx (x) .

Introducing the trivial eigenformula: ∀ψx∀x∀ε | ε1ψx (x) = εψx (x) and subtracting:

∀x∀ε∃x∃x∃ψx∃S |
(

S(ε)xS−1
(ε) − ε1

)
ψx (x) = xψx (x) . (8)

Now comparing the original position eigenformula (2) against the transformed one
(8), we deduce the group relation for similarity transformed homogeneity:

∀x∀ε∃x∃x∃ψx∃S | xψx (x) =
(

S(ε)xS−1
(ε) − ε1

)
ψx (x) . (9)

From this group relation, the commutator for the Lie algebra is now computed.
Because S(ε) is a one-parameter subgroup of GL (∞), there exists a unique linear
operator g for real parameters ε, such that:

∀S∃g | S(ε) = eεg (10)

Noting that homogeneity is totally independent of scale, an arbitrary scale factor
η is extracted, thus: ∀g∀η∃k : g = ηk, implying:

∀η∀S∃k | S(ε) = eηεk (11)
∀η∀S∃k | S−1

(ε) = S(−ε) = e−ηεk (12)

Substitution of (11) and (12) into (9) gives:

∀x∀η∃x∃ψx∃x∃k | exp (+ηεk) x exp (−ηεk)ψx (x) = [x + ε1]ψx (x)

⇒ ∀x∀η∃x∃ψx∃x∃k |
[
1 + ηεk +O

(
ε2

)]
x

[
1− ηεk +O

(
ε2

)]
ψx (x) = [x + ε1]ψx (x)

⇒ ∀x∀η∃x∃ψx∃x∃k |
[
x + ηεkx +O

(
ε2

)] [
1− ηεk +O

(
ε2

)]
ψx (x) = [x + ε1]ψx (x)

⇒ ∀x∀η∃x∃ψx∃x∃k |
[
x + ηεkx− ηεxk +O

(
ε2

)]
ψx (x) = [x + ε1]ψx (x)

⇒ ∀x∀η∃x∃ψx∃x∃k | [kx− xk]ψx (x) =
[
η−11−O (ε)

]
ψx (x)

At the limit, as ε→ 0, we have:

∀x∀η∃x∃ψx∃x∃k | [k,x]ψx (x) = η−11ψx (x) (13)

And by a similar proof, conditional on the existence of eigenfunctions χ (k), of k:

∀k∀η∃k∃χk∃x∃k | [x,k]χk (k) = η−11χk (k) . (14)

Importantly, we see (13) and (14) is ∀η, rather than the particular case of η−1 =
−i that we see in the unitary subalgebra we know as the Canonical Commutation
Relation:

[k,x] = −i1 or [p,x] = −i~1 (15)

Conclusion

The above establishes that the homogeneity symmetry is not a source of unitary
information in wave mechanics. And therefore, if the reason given is that symmetries
in Nature are ontologically unitary, for postulating that quantum theory should be
unitary or self-adjoint, then either, a different reason must be found, or the postulate
must be withdrawn.

This opens up the possibility of a logical modification to quantum theory, where
quantum theory remains a unitary theory, but, in which that unitarity (or self-
adjointness) is not axiomatically imposed by Postulate. And as a result, that modi-
fied quantum theory would allow the logical independence of the imaginary scalars,
and the logical dependence of the rational scalars, originating in elementary algebra,
to enter quantum mathematics.
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