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Abstract As opposed to the classical logic of true and false, when elementary al-
gebra is treated as a formal axiomatised system, formulae in that algebra are either
provable, disprovable or otherwise, logically independent of axioms. This logical in-
dependence is well-known to Mathematical Logic. The intention here is to cover
the subject in a way accessible to physicists. This work is part of a project research-
ing logical independence in quantum mathematics, for the purpose of advancing a
complete theory of quantum randomness.
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1 Introduction

In classical physics, experiments of chance, such as coin-tossing and dice-throwing,
are deterministic, in the sense that, perfect knowledge of the initial conditions would
render outcomes perfectly predictable. The ‘randomness’ stems from ignorance of
physical information in the initial toss or throw.

In diametrical contrast, in the case of quantum physics, the theorems of Kocken
and Specker [7], the inequalities of John Bell [3], and experimental evidence of Alain
Aspect [1,2], all indicate that quantum randomness does not stem from any such
physical information.

As response, Tomasz Paterek et al offer explanation in mathematical informa-
tion. They demonstrate a link between quantum randomness and logical independ-
ence in (Boolean) mathematical propositions [8,9]. Logical independence refers to
the null logical connectivity that exists between mathematical propositions (in the
same language) that neither prove nor disprove one another. In experiments meas-
uring photon polarisation, Paterek et al demonstrate statistics correlating predict-
able outcomes with logically dependent mathematical propositions, and random
outcomes with propositions that are logically independent.

While those Boolean propositions do convey definitive information about quantum
randomness, any insight they offer is obscure. In order to advance a full and com-
plete theory of quantum randomness, understanding is needed of logical independ-
ence, inherent in standard textbook quantum theory. A likely place to start looking
is in elementary algebra as a formal aziomatised system — the formal version of the
very familiar algebra upon which applied mathematics and mathematical physics
rest. Logical independence in this system is well-known to Mathematical Logic [12].

Any formal system comprises: a precise language, rules for writing formulae (pro-
positions) and further rules of deduction. Information is designated in two ‘strengths’:
propositions assert information that is questionable, and azioms are propositions
adopted as ‘true’.

In such a system, any two propositions are either logically dependent — in which
case, each proves, or disproves the other — or otherwise they are logically independ-
ent, in which case, neither proves, nor disproves the other. A helpful perspective on
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this is the viewpoint of Gregory Chaitin’s information-theoretic formulation [6]. In
that, logical independence is seen in terms of information content. If a proposition
contains information, not contained in some given set of axioms, then those axioms
can neither prove nor disprove the proposition.

A good (efficient) axiom-set is a selection of propositions, all logically independ-
ent of one another. An important point to note is that there is no contradiction
in a theory consisting of information whose source is some axiom-set, plus extra
information whose source is a logically independent proposition. These might typ-
ically be axioms asserting the theory’s set conditions, plus a proposition posing a
question.

Elementary algebra is the abstraction of the familiar arithmetic used to combine
numbers in the rational, real and complex number systems, through operations of
addition and multiplication. These number systems are infinite fields. I denote this
algebra — FIELDS ALGEBRA' — as distinct from any other algebra or arithmetic, such
as Peano arithmetic or the arithmetic of integers. At a fundamental level, in some
form or other, quantum theory rests on mathematical rules of FIELDS ALGEBRA.

Now, FIELDS ALGEBRA may be treated as a formal system, based on axioms
listed in Table 1. These, I denote — AXIOMS of INFINITE FIELDS (or just AXIOMS).
Essentially, these are the conventional field axioms appended with additional ax-
ioms that exclude modulo arithmetic. The point of this is that FIELDS ALGEBRA
should cover only infinite fields.

Collectively, the AXIOMS of INFINITE FIELDS assert a definite set of information,
deriving a definite set of theorems. I denote these — THEOREMS. Any proposition
(in the language) is either a THEOREM or is otherwise logically independent. And
so, any given formula can be regarded as a proposition in FIELDS ALGEBRA, that
may prove to be a THEOREM, or may otherwise prove to be logically independent.
Which of these is actually the case is decided in a process that compares information
in that formula against information contained in the AXIoms. In practice, that
means deriving the formula from AX10MS, to discover: that either it is a THEOREM,
or otherwise, to discover, whatever extra information is needed to complete its
derivation — that AXIOMS cannot provide.

2 Language

The material of this paper spans formal arithmetic and formulae typically seen in
mathematical physics. These do not share the same language; indeed the language
of the former is far smaller. For example, there is no definition for the symbol: 4
and many statements are needed, typified by: 4 =14 1+ 1+ 1. In the interest of
accessibility, these low-level definitions are left to intuition.

Logical connectives used are: not (=), and (A), or (V), implies (=) and if-and-
only-if (). Turnstile symbols are used: derives (F) and models (). Also used are
the quantifiers: there-exists (3) and for-all (V).

Use of Quantified formulae is crucial in the conveyance of full information. For
instance, quantifiers eliminate ambiguities suffered by ordinary equations. To illus-
trate: the equation y = 22 doesn’t express whether Vy3z (y = x2) or Va3dy (y = x2)
is intended. Yet, logically, these two are very different.

3 Examples of logic in FIELDS ALGEBRA

The propositions (1) — (5) are five examples illustrating the three distinct logical
values possible under FIELDS AXIOMS. Notice that these formulae do not assert
equality; they assert existence. Fach is a proposition asserting existence for some
instance of a variable o, complying with an equality, specifying a particular numer-
ical value.

Ja|la=3 (1)
Ja|a® =4 (2)
Ja|a? =2 (3)
Ja|a? =1 (4)
Jalat=0 (5)

1 FiELDS should not be confused with the field concept commonly used in physics.
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AXIOMS of INFINITE FIELDS

ADDITIVE GROUP

A0 VAVAda | a =+~ CLOSURE

Al Vo |a+0 =« IDENTITY 0

A2 Va3B |a+5=0 INVERSE

A3 Yavpvy | (a+B)+y=a+ (B+7) ASSOCIATIVITY

A4 VavVp |la+8=F+« COMMUTATIVITY
MULTIPLICATIVE GROUP

MO VOVAda | o= x v CLOSURE

M1 dVa|axl=«a IDENTITY 1

M2 VdalaxB=1A3#0 INVERSE

M3 VavVpVy | (ax B) xy=ax (8 x7) ASSOCIATIVITY

M4 VoV |lax f=8X%X« COMMUTATIVITY

D VavaYy | ax (B+7) = (a x B) + (a x ) DISTRIBUTIVITY
0#1; 0#1+4+1; ------ 0#1+---+1 NO MODULO ARITH

Table 1 AXIOMS of INFINITE FILEDS. These are written as sentences in first-order logic.
They comprise the standard field azioms with added axioms that exclude modulo arithmetic.
Variables: «a, 3,7, 0,1 represent objects the axiom-set acts upon. Semantic interpretations of
objects complying with AXIOMS are known as scalars. The fact FIELDS ALGEBRA is intrinsically
existential is clearly seen in the general use of the ‘there exists’ quantifier: 3.

Of the five examples, AX1I0Ms prove only (1) and (2). Proofs are given below in
this section. Also, AXIOMS prove the negation of (5); in point of fact, (5) contradicts,
and is inconsistent with AxtIoM M2. The remaining two, (4) and (3), are neither
proved nor negated, and are logically independent of AXIOMS.

Accordingly, instances of «, in (1) and (2), are numbers consistent with AXIOMS
and accepted as scalars, proved to necessarily exist; the instance of « in (5) is
inconsistent with AXIOMS and rejected as necessarily non-existent; and instances
of a in (4) and (3) are numbers consistent with Ax1oMs and accepted as scalars
whose existences are not provable, and not necessary, but possible.

In the cases of propositions (1) and (2), logical dependence, on AXIOMS, is es-
tablished by the fact that these propositions (syntactically) derive, directly from
AXIOMS. Likewise for the negation of (5). In contrast, however, logical independence
of (4) and (3) is not provable by direct derivation because AXIOMS do not assert
such information. In essence, that is the whole point of the discussion. What does
confirm logical independence is a proposition’s truth-table, viewed from the context
of the Soundness Theorem and its converse, the Completeness Theorem. Briefly,
Soundness says: if a formula is provable, it will be true, irrespective of whether vari-
ables are understood as rational, real or complex (or any other field). Completeness
says: if a formula is true, irrespective of how variables are understood, then it will
be provable. Hence, if there is disagreement in a truth-table, jointly, Soundness and
Completeness except an excluded middle whose formulae are neither provable nor
disprovable. This is the predicament of Proposition (4). Sections 4 and 7 explain
the detail.

Proof of (1): that Ja|a=3

VB¥y3a | a =B+ AXIOM A0 (6)
VB3a|a=p+p y~p6)  (7)
Vyda|y=6+5 any(7) (8)
Vida|la=0+08+p Subst. (8), (6) (9)
Vo |ax1l=«a AXIOM M1 (10)

B15=1 by(10)  (11)
Jola=1+1+1 Subst. (11), (9)) (12)

Substitution involving quantifiers

VBVy3da | a =B+
VB | v =B+8
= Vida| a=+8+70

In the example above, an existential quantifier
of one proposition must be matched with a
universal quantifier of the other. These are
highlighted by underlining.

Notation

v ~ B indicates swapping to different bound
variable. This is always allowed under the
quantifier, so long as all instances are swapped



A sentence is a formula where there is no oc-
currence of any variable not bound by a quan-
tifier. For example: VaV§ (a + =8+ «).

4 Steve Faulkner

Proof of (2): that 3a | a? =4

VBYy3a | o =B+ AXIOM A0 (13)
Vida|la=5+p5 vy~ B(13) (14)
Va|laxa=axa«a identity rule (15)
Voda |axa=(B+0) x (B+P) Subst. (14), (15) (16)
YaVpvVy | ax (B+7) = (a x B)+ (a x ) AXIOM D (17)
V8daaxa=Bx (B+8)+Bx (8+6) by (17), (16) (18
Vi3aaxa=(BxB) +(@ExB)+BxB+BxA  by(7),(18) (19)
Ve |axl=«a AXIOM M1 (20)
BB=1 by (20) (21)
Ja|laxa=(1x1)+(1x1)+(1x1)+(1x1) Subst.(21),(19) (22)
Jalaxa=1+1+1+1 by (20), (22) (23)

4 Soundness and Completeness

Model theory is a branch of Mathematical Logic applying to all first-order theories,
and hence to FIELDS ALGEBRA [4,5]. Our interest is in two standard theorems: the
Soundness Theorem and its converse, the Completeness Theorem, and theorems
that follow from them. These theorems formalise the link connecting the truth
(semantic information) of a formula and its provability (syntactic information).
Together, their combined action identifies an excluded middle, comprising the set of
all non-provable, non-negatable propositions — those that are logically independent
of AXIOMS.

Briefly: any given (first-order) axiom-set is modelled by particular mathematical
structures. That is to say, there are certain structures, consistent with each indi-
vidual axiom of that axiom-set. In the case of FIELDS ALGEBRA, these modelling
structures are the infinite fields. These are closed structures consisting of numbers
known as scalars. In practical terms, if a proposition is logically independent of
AXIOMS, this independence may be diagnosed by demonstrating disagreement on
whether the proposition is true — between any two models. Of relevance to quantum
theory is Proposition (4); this is true in the complex plane, but false in the real
line.

Theorem 1 The Soundness Theorem:
YES=YMMES). (24)

If structure M models axiom-set X and X derives sentence S, then every structure
M models S.

Alternatively: If a sentence is a theorem, provable under an axiom-set, then that
sentence is true for every model of that axiom-set.

Theorem 2 The Completeness Theorem:
YESEVMWMES). (25)

If structure M models axiom-set X and every structure M models sentence S, then
X derives sentence S.

Alternatively: If a sentence is true for every model of an axiom-set, then that
sentence is a theorem, provable under that axiom-set.

5 Logically Dependent S

Jointly, Theorems 1 and 2 imply the 2-way implication which is Theorem 3:

Theorem 3 Soundness And Completeness:
YESSYVMMES). (26)

If structure M models aziom-set X, then axiom-set X derives sentence S , if-and-
only-if, all structures M model sentence S.

Alternatively: A sentence is provable under an axiom-set, if-and-only-if, that sen-
tence is true for all models of that axiom-set.
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In addition, supplementary to Theorem 3, for every provable sentence S there is a
corresponding disprovable negation = S, also subject to Theorems 1 and 2, resulting
in Theorem 4, a second, but complimentary 2-way implication:

Theorem 4 Soundness And Completeness covering Negations:
YE-S&eVM(ME-S). (27)

If structure M models axiom-set X, then axiom-set X derives the negation of sen-
tence S, if-and-only-if, all structures M model the negation of S.

Alternatively: A sentence is disprovable under an azxiom-set, if-and-only-if, that
sentence is false for all models of that axiom-set.

6 Logically Independent S

And so, while Theorem 3 covers all provable sentences under axiom-set X', Theorem
4 covers the set of disprovable negations under axiom—set Y. Of special interest is
the remaining set. This is an excluded middle, not covered, either by Theorem 3
or by Theorem 4, comprising sentences that are neither provable, nor disprovable.
Happily, whereas there is no suggestion of any excluded middle in the left hand
sides of (26) and (27), the right hand sides jointly define one. This excluded middle
is the set of sentences S excluded by the right hand sides of both (26) and (27),
thus:

VMM ES)A-YM(M E=S). (28)
Now, by writing the negations of (26) and (27):

S(TFS) e VYMMES); (29)

A(TFA8) & VMM ES); (30)

we may then match (28) with its corresponding left side, so as to construct:
S(ZESHAEZE-S) e - VMWMES)A-VMME-S). (31)

This includes all sentences excluded by (26) and (27). On the left, it limits all
sentences that are neither provable nor negatable, to those on the right, that are
neither true nor false, across all structures that model the axiom-set. For theories
whose axiom-set is modelled by more than one single structure — where M; and
M are distinct, we deduce:

Theorem 5 The logically independent, excluded middle:
S(ZFESA(ZESS) & IM (M ES)ATIMy (M =-S). (32)

Axiom-set X derives neither sentence S nor its negation, if-and-only-if, there exist
structures My and My which each model axiom-set X, such that M1 models S,
and Mo models the negation of S.

Alternatively: A sentence is true for some but not all models of an axiom-set,
if-and-only-if, that sentence is logically independent of that axiom-set.

A good reference is the section on logical independence, written by Edward Stabler,
in his 1948 book. [12].

7 The action of Soundness and Completeness on fields algebra

Section 7 discusses the employment of Theorems 1 and 5, specifically applied to
FIELDS ALGEBRA. These result in Theorems 6 and 7. And these two new theorems
provide us with two practical tests — performed by inspection — telling us about a
proposition’s provability.

Propositions under test are existential propositions — those asserting existence
of variables. Tests are applied by examining the proposition’s truth-table. To illus-
trate, Table 2 lists the five truth-tables for propositions (1) to (5). The T and F
entries are answers to the question: is the proposition adjacent, in this row, True
or False for the interpretation, assigned, above the column?



A problem, here, must be recognised. An in-
finite number of AXIOMS is posed to exclude
all modulo arithmetic.
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PRrROPOSITION INTERPRETATIONS
aeC a€eR a€eQ

Jala=3 T T T
Ja|laxa=4 T T T
Ja|axa=2 T T F
Ja|axa=-1 T F F
Ja|a"t=0 F F F

Table 2 Truth-tables for some existential propositions. T and F denote true and false. The
T and F entries are answers to the question: is the proposition to the left, true, for the
interpretation above? Disagreement along a row confirms independence for that proposition.

True in Q confirms dependence due to Theorem 6.

In advance of stating Theorems 6 and 7, we may say: by inspection of Table
2, the first two, and the last propositions, corresponding to (1), (2) and (5), are
logically dependent; and the third and fourth propositions, corresponding to (3)
and (4), are logically independent.

Theorem 6 Logical Dependence is demonstrated if a proposition is True
while interpreting its variables as rational.

Proof  Proof is in the following steps: 1 — 5. by inspection

1. Collectively invoke the AX10MS of Table 1, to derive each and every proposition,
S, asserting existence of all the individual rational numbers. Steps (a) — (e).
(a) The first step in this process is to derive THEOREMS that assert existence of

every positive integer, thus:

VAVyda | a =B+ AXIOM A0 (33)
VBda|a=p5+4 by (33);7 ~ (34)
Vy3a|y=8+8 by (34); 0 ~ y (35)
Voda |la=+5+p Subst. (35), (33)
V3da|la=p+B8+F+--- (36)
Ve |ax1=a« AXIOM M1 (37)

PBlo=1 by (37) (38)
Jala=1+1+14+-- Subst. (38), (36) (39)

Writing (39) in more concise language:
Jala=n forn=1,2,... (40)

(b) Now apply axiom A2 to (40), to derive existence of every negative integer.

(c) Next, apply AXIOM M2 to derive existence of the reciprocal of every non-zero
integer.

(d) Then invoke AXIOM MO to derive existence of every rational number.

(e) Finally add existence of zero to the system, by invoking AXIoMm Al.

2. By Theorem 1, The Soundness Theorem, each of these propositions S is true
in every model of AXIOMS.

3. Hence, all numbers, whose existence is asserted by these propositions, form a
set Q, subsumed by every infinite-field.

4. This set is closed and so forms a structure modelling AXIOMS.

5. By Theorem 2, The Completeness Theorem, every existential proposition S,
asserting existence in Q, is provable.

Theorem 7 Logical Independence is demonstrated if a proposition is True
while its variables are interpreted as members of one infinite-field, but False when
interpreted as members of a different infinite-field.

Proof  Sructures modelling AXIOMS are the infinite-fields. Hence, by Theorem 5,
disagreement between infinite-fields implies logical independence.
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Sentences Sentences Sentences Agreement: Propositions true
true in C true in Q T truein R in all infinite fields are logically
dependent theorems of

AXIOMS of ARITHMETIC.

Disagreement: Propositions
true in some infinite fields and
O false in some infinite fields are

Mmiddle logically independent of
AXIOMS of ARITHMETIC.
0’&0 Q\ Logically independent

proposition:
Jo (aa = 2)

O?} 7 Cé é)
Q Logically independent
proposition:
Ja (aa =-1)

Logically dependent, Agreement: Propositions false
provable theorem: in all infinite fields are logically
Jdo (aa = 4) dependent theorems of negation.

{g‘S\\é\é\ AXIOMS of ARITHMETIC

Figure 1 Truth-space for propositions (small circles) asserting existence of particular num-
bers. The innermost nesting is the set of all propositions, true (consistent with AXI0MS) in all
infinite fields. The Completeness Theorem guarantees these are logically dependent theorems.
The set to the exterior comprises propositions false (inconsistent with AX10Ms) in all infinite
fields; these are the only propositions inconsistent with AxioMs. The Completeness Theorem
guarantees these are logically dependent negations. Soundness plus Completeness Theorems
guarantee the excluded middle consists of logically independent, mathematically undecidable
propositions.

8 Other examples of truth-tables.

PROPOSITION INTERPRETATIONS
aceC aeR ae€Q

Jo | = a® T T T
Ja | a = aR T T F
Ja|a=a® T F F

Table 3 Some more general examples: logical dependence of a particular, rational scalar

a®, logical independence of the real scalar aR and logical independence of the complex scalar

aC.

PROPOSITION INTERPRETATIONS

z,y€eC z,yeR =z,y€Q

Vazdy |y = 22 T T T
Vydz |y = 22 T F F

Table 4 Truth-tables concerning existence of z and y in the function y = x2.

Table 4 demonstrates logical ambiguity present in ordinary mathematical for-
mulae. Corresponding to the equation y = z2, there are different possibilities in
first-order logic: Vo3y |y = 22 and Vy3x |y = 22. The former, quantified by VaJy, is
true for the rational field and therefore, exists by THEOREM. The latter, quantified
by Vydx, has a disagreeing truth-table and therefore, is independent of AXI0MS.

In Table 5 we see validity of the finite polynomial

p(x) =a+bx+cx?

compared with that of infinite series:

exp (x) = lim 1+x+&+..,+@



Particular, rational scalars: a, b, c, x.
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In both cases, all input variables are rational. Even so, in the case of the exponential,
any rational input maps to an infinite sum that is never rational. So exp (x) is never
logically dependent. In Table 6, the rational x is replace by the quantified Vz.

PROPOSITION INTERPRETATIONS
yeC yeR yeQ

Jy| y=p(x) =a+bx+cx? T T T
Jy | y =exp(x) T T F

Table 5 Truth-tables showing the logical dependence of a finite polynomial, versus, logical
independence of an infinite series — where arguments are rational.

PROPOSITION INTERPRETATIONS
z,yeC xz,yeR z,y€Q

Vady | y=p(z) = a+ bz +cx? T T T
Vrdy | y = exp () T T F

Table 6 Truth-tables showing the logical dependence of a finite polynomial, versus, logical
independence of an infinite series — where arguments are universally quantified.

Conclusions & Discussion

The premise of this paper is that mathematical physics rests on a foundation of
elementary algebra, and in doing so, inherits the information it contains or con-
veys. The approach taken, is to treat elementary algebra as a formal axiomatised
system, in order to expose logical information that might be passed into quantum
mathematics.

As a formal axiomatised system, elementary algebra becomes a theory of exist-
ence — existence of scalars, that is. In that theory, two modes of existence occur.
There is existence, provable under the system axioms; this is logically dependent
existence. Then there is existence that is neither provable nor negatable, under
those axioms; This is logically independent existence. Rational scalars are shown
to exist logically dependent on axioms, while imaginary scalars are shown logically
independent. These findings suggest a description of quantum measureable observ-
ables that is inherently logically dependent, in contrast to, quantum probability
amplitudes, characterised by logical independence.

Together with non-existence of entities such as infinity, denied by axioms, the
two modes of existence form an existential system, constituting a 3-valued logic.
This seems most probably the missing mathematical foundation for the 3-valued
logic of Hans Reichenbach, which he showed resolves ‘causal anomalies’ of quantum
mechanics [10,11].

Ongoing research

Standard quantum theory has a further axiom, on top of Elementary Algebra, which
imposes unitarity (or self-adjointness) — by Postulate. This postulate is conflicting
information that blocks the logical independence of imaginary scalars, so destroying
the 3-valued logic.

Nevertheless, if unitary information can be shown to emerge naturally out of
quantum mathematics, without being imposed as a Physical Principle, without the
need for it being imposed by Postulate, thus rendering redundant the unitarity by
Postulate, then logical independence from elementary algebra would freely enter
quantum mathematics. And if that were to be possible — via the logical independ-
ence in Boolean propositions, used by Tomasz Paterek et al [8,9] — the prospect
would open up of finding a theoretical link, directly connecting logical independence
in Elementary Algebra, with quantum randomness.
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