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Abstract.  This paper is, with the permission of Stepan Moskaliuk similar to what he will put in the conference 

proceedings of the summer teaching school and workshop for Ukrainian PhD physics students as given 

in Bratislava, as of summer 2015. With his permission, this paper will be in part reproduced here for this 

journal.First of all, we restate a proof of a highly localized special case of a metric tensor uncertainty principle 

first written up by Unruh. Unruh did not use the Roberson-Walker geometry which we do, and it so happens that 

the dominant metric tensor we will be examining, is variation in
ttg . The metric tensor variations given by

rrg , g  and g are negligible, as compared to the variation
ttg . Afterwards, what is referred to 

by Barbour as emergent duration of time t  is from the Heisenberg Uncertainty principle(HUP) applied 

to 
ttg in such a way as to give, in the Planckian space-time regime a nonzero minimum non zero lower 

ground to a massive graviton, gravitonm . The lower bound to the massive graviton, is influenced by 
ttg

and kinetic energy which is in the Planckian emergent duration of time t  as ( )E V . We find from 

ttg version of the Heisenberg Uncertainty Principle (HUP), that the quantum value of the t E   

Heisenberg Uncertainty Principle (HUP) is likely not recoverable due to  1 ~ 1tt ttg g   . I.e. 

 1ttg   is consistent with non-curved space, so t E    no longer holds. This even if we take 

the stress energy tensor approximation ( , , , )iiT diag p p p    where the fluid approximation is 

used. Our treatment of the inflaton is via Handley et al, where we consider the lower mass limits of 

the graviton as due to when the inflaton is many times larger than a Potential energy, with a kinetic 

energy (KE) proportional to  3 1 4~
w

w a g T
   , with g initial degrees of freedom, and T initial 

temperature .Leading to non-zero initial entropy as stated in Appendix A. In addition we also examine 

a Ricci scalar value at the boundary between Pre Planckian to Planckian regime of space-time, setting 

the magnitude of k as approaching flat space conditions right after the Planck regime. Furthermore, 
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we have an approximation as to initial entropy production.   N ~ 37

( ) ~10initial gravitonS Finally, this 

entropy  is N, and we get an initial version of the cosmological “constant” as Appendix D which is linked 

to initial value of a graviton mass. Appendix E, is for the Riemannian- Penrose inequality, which is 

either a nonzero NLED scale factor or quantum bounce as of LQG. Note that , Appendix F gives 

conditions so that a pre Planckian kinetic energy( inflaton) value greater than Potential energy occurs, 

which is foundational to the lower bound to Graviton mass. We will in the future add more structure 

to this calculation so as to confirm via a precise calculation that the lower bound to the graviton mass, 

is about 10^-70 grams. Our lower bound is a dimensional approximation so far. We will make it exact. 

We conclude in this document with Appendix G, which is comparing our Pre Planckian space-time 

metric Heisenberg Uncertainty Principle with the generalized uncertainty principle in quantum gravity. Our 

result is different from the one given by Ali, Khali and Vagenas in that our energy fluctuation, is not 

proportional to that of processes of energy connected to Black hole physics, and we also allow for the 

possibility of Pre Planckian time. Whereas their result, (and the generalized string theory Heisenberg 

Uncertainty principle) have a more limited regime of interpolation of final results. We do come up with 

equivalent bounds to recover ~ (1)ttg small value O    and the deviation of fluctuations of 

energy, but with very specific bounds upon the parameters of Ali, Khali, and Vegenas, but this has to 

be more fully explored. Finally, we close with a comparison of what this new Metric tensor uncertainty 

principle presages as far as avoiding the Bicep 2 mistake, and the different theories of gravity, as 

reviewed in Appendix H 

Key words, Massive Gravitons, Heisenberg Uncertainty Principle (HUP), Riemannian-Penrose 

Inequality 

i. Introduction 

     The first matter of business will be to introduce a framework of the speed of gravitons in “heavy 

gravity” . Heavy Gravity is the situation where a graviton has a small rest mass and is not a zero mass 

particle, and this existence of “heavy gravity”  is important since eventually, as illustrated by Will [1,2] 

gravitons having a small mass  could possibly be observed via their macroscopic effects upon 

astrophysical events. Secondly, our manuscript’s inquiry also will involve an upper bound to the rest 

mass of a graviton. The second aspect of the inquiry of our manuscript will be to come up with a variant 

of the Heisenberg Uncertainty principle (HUP), involving a metric tensor, as well as the Stress energy 

tensor, which will in time allow us to establish a lower bound to the mass of a graviton, preferably at 

the start of cosmological evolution. The article concludes in its last section as to why a statement by 

Mukhanov in Marcel Grossman 14, 2015, Rome, that a multiverse contribution to a new universe would 

have a causal barrier averaging of time contributions even if there were contributions from a multiverse, 

so there was only one space-time contribution is possibly indefensible. 

 We reference what was done by Will in his living reviews of relativity article as to the ‘Confrontation 

between GR and experiment”. Specifically we make use of his experimentally based formula of [1, 2], 

with gravitonv the speed of a graviton, and gravitonm the rest mass of a graviton, and gravitonE in the inertial 

rest frame given as: 
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Furthermore, using [2], if the rest mass of a graviton is very small we can make a clear statement of 
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Here, 
at is the difference in arrival time, and   

et is the difference in emission time/in the case of the 

early Universe, i.e. near the big bang, then if in the beginning of time, one has, if we assume that there 

is an average 
graviton gravitonE   ,  and  
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 2200
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          (4) 

And if one sets the mass of a graviton [3] into Eq. (1), then we have in the present era, that if we look 
at primordial time generated gravitons, that if one uses the  
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Note that the above frequency, for the graviton is for the present era, but that it starts assuming 
genesis from an initial inflationary starting point which is not a space – time singularity. 

Note this comes from a scale factor, if  55 55~10 ~10scale factorz a 

 , i.e. 55 orders of magnitude 

smaller than what would normally consider, but here note that the scale factor is not zero, so we do 
not have a space – time singularity.  



 

 

 

 

 

 

We will next discuss the implications of this point in the next section, of a non-zero smallest scale 
factor. Secondly the fact we are working with a massive graviton , as given will be given some credence 
as to when we obtain a lower bound, as will come up in our derivation of modification of the values[3] 
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The reasons for saying this set of values for the variation of the other metric components will be in the 
3rd section and it is due to the smallness of the square of the scale factor in the vicinity of Planck time 
interval.  

2. Non zero scale factor, initially and what this is telling us physically. Starting with a 
configuration from Unruh. 

Begin with the starting point of [4, 5]   

2
l p              (7) 

We will be using the approximation given by Unruh [4, 5], of a generalization we will write as 
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If we use the following, from the Roberson-Walker metric [6]. 
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Following Unruh [4, 5], write then, an uncertainty of metric tensor as, with the following inputs  

2 110 35( ) ~ 10 , ~ 10Pa t r l meters          (10) 

Then, the surviving version of Eq. (7) and Eq. (8) is, then, if ~ttT    
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This Eq. (11) is such that we can extract, up to a point the HUP principle for uncertainty in time and 
energy, with one very large caveat added, namely if we use the fluid approximation of space-time[6] 
for the stress energy tensor as given in Eq. (12) below. 

( , , , )iiT diag p p p             (12) 

Then 
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Then, Eq. (11) and Eq. (12) and Eq. (13) together yield 
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How likely is ~ (1)ttg O ? Not going to happen. Why? The homogeneity of the early universe will keep   

1tt ttg g              (15) 

In fact, we have that from Giovannini [6], that if  is a scalar function, and 2 110( ) ~10a t  , then if  

2~ ( ) 1ttg a t              (16) 

Then, there is no way that Eq. (14) is going to come close to
2

t E   .  Hence, the Mukhanov 

suggestion as will be discussed toward the end of this article, is not feasible.  Finally, we will discuss a 
lower bound to the mass of the graviton.  

 

3. How we can justifying writing very small ~ ~ ~ 0rrg g g      values.   

To begin this process, we will break it down into the following co ordinates 



 

 

 

 

 

 

In the rr,   and   coordinates, we will use the Fluid approximation, ( , , , )iiT diag p p p    [7] 

with 
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If as an example, we have negative pressure, with
rrT ,T  and T  < 0, and p  , then the only 

choice we have, then is to set ~ ~ ~ 0rrg g g     , since there is no way that p  is zero 

valued. 

Having said this, the value of 
ttg  being non zero, will be part of how we will be looking at a lower 

bound to the graviton mass which is not zero. 

4. Lower bound to the graviton mass using Barbour’s emergent time  

In order to start this approximation, we will be using Barbour’s value of emergent time [8, 9] restricted 
to the Plank spatial interval and massive gravitons, with a massive graviton [10]  
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Initially, as postulated by Babour [8, 9], this set of masses, given in the emergent time structure could 
be for say the planetary masses of each contribution of the solar system. Our identification is to have 
an initial mass value, at the start of creation, for an individual graviton.  

If  
2 2

emergent
t t  in Eq. (11), using Eq. (11) and Eq. (18) we can arrive at the identification of  
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Key to Eq. (19) will be identification of the kinetic energy which is written as E V . This identification 
will be the key point raised in this manuscript. Note that [11 raises the distinct possibility of an initial 
state, just before the ‘big bang’ of a kinetic energy dominated ‘pre inflationary’ universe. I.e. in terms 



 

 

 

 

 

 

of an inflaton 2 ( . ~ )P E V  [7]. The key finding which is in [11] is, that, if the kinetic energy is 

dominated by the ‘inflaton’ that  

2 6. . ~ ( )~K E E V a            (20) 

This is done with the proviso that w <-1, in effect, what we are saying is that during the period of the 
‘Planckian regime’ we can seriously consider an initial density proportional to Kinetic energy, and call 
this K.E. as proportional to [7] 

 3 1 w

w a
 

            (21) 

If we are where we are in a very small Planckian regime of space-time, we could, then say write Eq. 

(21) as proportional to 4g T [7], with g initial degrees of freedom, and T the initial temperature as  

just before the onset of inflation. The question to ask, then is, what is the value of the initial degrees 

of freedom, and what is the temperature, T, at the start of expansion? For what it is worth, the starting 

supposition, is that there would then be a likelihood for an initial low temperature regime  

5. Multiverse, and answering the Mukhanov hypothesis. Influence of the Einstein spaces 

Here, the initial 55

0 ~ ~ 10initiala a  , or so and so the density in Eq. (21) at Planck time would, be 

proportional to the Planck Frequency [7] 
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This is at the instant of Planck time. We can then ask what would be an initial time contribution before 
the onset of Planck time. I.e. does Eq. (22) represent the initial value of graviton frequency?  

This value of the frequency of a graviton, which would be red shifted enormously would be in 
tandem with an initial time step of as given by [12] 
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This value for the initial time step would be probably lead to Pre Planckian time , i.e. smaller than 10^ 
-43 seconds, which then leads us to consider, what would happen if a multi verse contributed to initial 
space-time conditions as seen in Eq. (11) above. If the cosmic fluid approximation as given by Eq. (12) 
were legitimate, and one could also look at Eq. (13), then  
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But, then if one is looking at a multiverse, we first will start at the Penrose hypothesis for a cyclic 
conformal universe, starting with [13] 
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 However, in the multiverse contribution to Eq. (12) above, we would have, that  

1 1

1

1
( )uv uv

N

j j

old universe inversion
N

 



             (26) 

So, does something like this hold?  In a general sense? 
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If the fluid approximation as given in Eq. (12) and Eq. (13) hold, then Eq. (27) conceivably could be 

identifiable as linkable to. 
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If we could write, say 
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Then, if each j is the jth contribution of N “multiverse” contributions to a new single universe being 

nucleated, one could say that there was, indeed, likely an “averaging” and that the causal barrier 

which Mukhanov spoke of, as to each t , and actually to each graviton entering into the present 

universe, one could mathematically average out the results of a sum up of each of the contributions 

from each prior to a present universe, according to 
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If Eq. (30) held, then we could then write 
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Instead, we have, Eq. (28), and that it is safe to say that for each collapsing universe which might 

contribute to a re cycled universe that the following inequality is significant. 
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Hence, the absence of an averaging procedure, due to a multiverse, would then rule against a causal 

barrier, as was maintained by Mukhanov, in his discussion with the author, in Marcel Grossman 14, in 

Italy. Then the possible approximation say of  
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Would not hold, and that in itself may lead to a breakdown of the Causal barrier hypothesis of 

Mukhanov, which the author emphatically disagreed with. 



 

 

 

 

 

 

6. Conclusion. Considering Eq. (6) and Eq. (11) in lieu of Einstein space, and further research 

questions 

A way of solidifying the approach given here, in terms of early universe GR theory is to refer to 

Einstein spaces, via [14] as well as to make certain of the Stress energy tensor [15] as we can write it 

as a modified Einstein field equation. With, then  as a constant.  

                                                                                                                                              (34) 

Here, the term in the Left hand side of the metric tensor is a constant, so then if we write, with R also 

a constant [15]  

                                                                                              (35) 

The terms, if we use the fluid approximation given by Eq. (12) as well as the metric given in Eq. (9) will 

then tend to a constant energy term on the RHS of Eq. (35) as well as restricting i, and j, to t and t 

So as to recover, via the Einstein spaces, the seemingly heuristic argument given above. Furthermore 

when we refer to the Kinetic energy space as an inflaton where we assume that the potential energy 

is proportional to V , so as to allow us to write  2 ( . ~ )P E V  [7], we can also then utilize the 

following operator equation for the generation of an ‘inflaton field’ given by the following set of 

equations 
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In the case of the general elliptic operator K  if we are using the Fulling reference, [16] in the case of 

the above Roberson-Walker metric, with the results that the elliptic operator, in this case become,  
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Then, according to [16], if R above, in Eq. (37) is initially a constant, we will see then, if m is the 

inflation mass, that 



ij ijR g

 
2 1

8
ij ij

ij

S
T R g

gg



 
       





 

 

 

 

 

 

  

 

 

2
2

2

2 2

cos( )

cos( ( ))

t t K f

t

t t m R





  




 


   

      (38) 

Then 
1c  as an unspecified, for now constant will lead to a first approximation of a Kinetic energy 

dominated initial configuration, with details to be gleaned from [16,17,18] to give more details to the 

following equation, R here is linked to curvature of space-time, and m is an inflaton mass, connected 

with the field    cos( )t t K f  with the result that 

 2 2 2

1( ) ( )t m R c V                 (39) 

If the frequency, of say, Gravitons is of the order of Planck frequency as in Eq. (22), then this term, 

would likely dominate Eq. (39). More of the details of this will be worked out, and also candidates for 

the ( )V  will be ascertained, most likely, we will be looking the Rindler Vacuum as specified in [19] 

as well as also details of what is relevant to maintain local covariance in the initial space-time fields 

as given in [20] 

Why is a refinement of Eq. (39) necessary? 

The details of the elliptic operator K will be gleaned from [16, 17, 18] whereas the details of inflaton 
2 ( . ~ )P E V  [7] are important to get a refinement on the lower mass of the graviton as given by 

the left hand side of Eq. (24). We hope to do this in the coming year. The mass, m, in Eq. (37) for the 

inflaton, not the Graviton, so as to have links to the beginning of the expansion of the universe. We 

look to what Corda did, in [21] for guidance as to picking values of m relevant to early universe 

conditions. 

Finally, as far as Eq. (39) is concerned, there is one serious linkage issue to classical and quantum 

mechanics, which should be the bridge between classical and quantum regimes, as far as space time 

applicability. Namely, from Wald (19), if we look at first of all arbitrary operators, A and B 
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As we can anticipate, the Pre Planckian regime may the place to use classical mechanics, and then to 

bridge that to the Planckian regime, which would be quantum mechanical. Taking [19] again, this 

would lead to a sympletic structure via the following modification of the Hamilton equations of 

motion, namely we will from (19) get the following re write,  
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Then there exists a re formulation of the Poisson brackets, as seen by 
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So, then the following, for classical observables, f, and g, we could write, by [19] 
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Then, we could write, say Eq. (40) and Eq. (43) as 
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           (44) 

If so, then we can set, in the interconnection between the Planck regime, and just before the Planck 

regime, say, by setting classical variables, as given by 
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                      (45) 

Then by utilization of Eq. (44) we may be able to effect more precision in our early universe derivation, 

especially making use of derivational work, in addition as to what is given here, as to understand how 



 

 

 

 

 

 

to construct a very early universe partition function Z based upon the inter relationship between Eq. 

(44) and Eq. (45) so as to write up an entropy based upon, as given in [19] 

( ) lnS entropy Z E            (46) 

If this program were affected, with a first principle construction of a partition function , we may be 

able to answer if Entropy were zero in the Planck regime, or something else, which would give us more 

motivation to examine the sort of partition functions as stated in [22, 23].See appendix A as to possible 

scenarios. Here keep in mind that in the Planck regime we have nonstandard physics. Appendix A 

indicate that due to the variation we have worked out in the Planckian regime of space-time that the 

initial entropy is not zero. The consequences of this show up in this paper’s Appendix B, as to a specific 

formulation of the Ricci scalar. The consequences of Appendix A and Appendix B may be for a small 

cosmological constant, and large “ Hubble expansion” that there would be an initially large magnitude 

of cosmological pressure, even if negative, which would give credence to a non-zero cosmological 

entropy, that if large negative pressure, even in the Pre Planckian regime will lead to a large 
ttT terms 

which would show up in Eq. (1A), even if we used a partition function based upon Lattice Hamiltonians, 

as on page 135 of [26] which would usually in a lattice gauge arrangement would have considerably 

smaller contributions than 
ttT . Note the conditions of flat space, are that Eq. (B9) almost vanishes 

due to the behavior of the numerator, no matter how small 2

initiala is. The supposition is that the 

numerator becomes far smaller than 2

initiala  The initiation of conditions of flat space, is also the regime 

in which we think that non zero entropy is started, and Appendix C gives an initial estimate of what 

we think Entropy would be in the aftermath of the uncertainty relationship we have outlined in this 

article. I.e. to first order, 37

( ) ~10initial gravitonS . We finalize our treatment as of space-time fluctuations 

and geometry by considering the applications of Appendix D to graviton mass, and Appendix E to the 

Riemann-Penrose inequality for conditions as to a minimum frequency, as a consequence of 

cosmological evolution, and what it portrays as consequences for Electromagnetic fields. Appendix D 

and E give varying initial graviton masses as a starting point, with Appendix D giving a higher initial 

graviton mass than what is assumed as of today. Finally, Appendix F states a pre Planckian kinetic 

energy so the   inflaton 2 ( . ~ )P E V  [7]. This last step, so important to our development will be 

considerably refined in future document. 

We start the process of understanding the  consequences of choosing the  inflaton 2 ( . ~ )P E V 

[7] as given in part in Appendix G and Appendix H.  

The consequences of the above mentioned  appendix entries are, mainly that if we wish to avoid the 

problems given in Appendix G and  Appendix H that we really need to keep in mind the following 

 

1. Our uncertainty principle is fundamentally different from the Black hole commensurate 

uncertainty principles cited in Appendix G. They do not take into consideration the possibility 

that there may be Pre Planckian time ,which may immensely impact the fluctuations in the 

metric tensor.  



 

 

 

 

 

 

2. As an exercise, Appendix G shows that a highly restricted parameter space is required if we 

insist upon making our Pre Planckian uncertainty principle commensurate with the possibility 

that our metric Heisenberg Uncertainty principle (HUP) is in fact, giving us the flat space result 

which was brought up by Mukhanov, in Marcel Grossman 14. But it is so restrictive that we 

doubt it is actually mathematically a useful development 

3. Appendix H, gives us Eq. (H1) which is the Pre Planckian Inflaton, which is of foundational 

importance in determination of if we have general relativity or some other gravitational 

theory, i.e. the issue of if there is an additional polarization. But to do that, we have to for 

reasons given in Appendix G, choose our parameter space, wisely. It is still not clear if there is 

a connection between Black hole physics, and avoiding the catastrophe of Bicep 2. For that 

much additional experimental work has to be done. 

 

Appendix A, scenarios as to the value of entropy in the beginning of space-time nucleation  

We will be looking at inputs from page 290 of [23] so that if ~ ~ tt time PE M T t A l     
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And using Ng’s infinite quantum statistics, we have to first approximation [24, 25] 
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       (2A)  

This is due to a very small but non vanishing 
ttg with the partition functions covered by [23], and 

also due to [24,25] with 
countn a non-zero number of initial ‘particle’ or information states, about the 

Planck regime of space-time, so that the initial entropy is non zero. 

 

Appendix B, calculation of the Ricci Tensor for a Roberson-Walker space-time, with its effect upon 

the measurement of if or not a space time, is open, closed or flat. 

We begin with Kolb and Turner [ 7] discussion of the Roberson-Walker metric, say page 49 with, if R 

is the Ricci scalar, and k the measurement of if we have a close, open, or flat universe, that if 

exp( )initiala a H t             (B1) 

Then by [7] 
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Leading to 
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If p   [7], then with a bit of algebra 
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Next, using [27], on page 47, at the boundary between Pre Planckian to Planckian space-time we will 

find 
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Then, we can obtain 

Right at the start of the Planckian era, 
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The consequences of this would be that right after the entry into Planckian space time, that there 

would be the following change of pressure 
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Then, the change in the k term would be like, say, from Pre Planckian to Planckian space time 
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This goes almost to zero if the numerator shrinks far more than the denominator, even if the initial 

scale factor is of the order of 10 ^ - 55 or so. 

Appendix C. Initial entropy, from first principles.  

We are making use of the Padmanabhan publication of [28, 29] where we will make use of  
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Then, if systemE  is for the energy of the Universe after the initiation of Eq. (11) as a bridge between 

Pre Planckian, to Planckian physics regimes we could write, then 
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The value of initial entropy, 37

( ) ~10initial gravitonS  should be contrasted with the entropy for the entire 

Universe as given in [30] below. 

Appendix D.: Information flow, Gravitons, and also upper bounds to Graviton mass 

Here we can view the possibility of considering the following, namely [31]   is extended by [32] so we can we 

make the following identification? 
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Should the N above, be related to entropy, and Eq. (8) this supposition has to be balanced against the 

following identification, namely, as given by T. Padmanabhan [28, 29] 

                         
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But should the energy in the numerator in Eq. (D2) be given as say by (C2), of Appendix C, we have 

quintessence. then there would have been quintessence, i.e. variation in the “Einstein constant” , which 

would have a large impact upon mass of the graviton, with a sharp decrease in g
being consistent with 



 

 

 

 

 

 

an evolution to the ultra-light value of the Graviton , with initial frequencies of the order of say for 

wavelength values initially the size of an atom,  
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The final value of the frequency would be of a magnitude smaller than one Hertz, so as to have value of 

the mass of the graviton would be then of the order of 10^-62 grams [10] , due to Eq.(D2) approaching 

[31] below, namely  

                                               
2

. 1Einstein Const Radius Universel                                                                 (D4) 

Leading to the upper bound of the Graviton mass of about 10^-62 grams [31, 32] in the present era 
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Eq. (D5) has a different value if the entropy / particle count is lower, as has been postulated in this 

note. But the value of Eq. (D5) becomes the Graviton mass of about 10^-62 grams [10] in the present 

era which is in line with the entropy being far larger in the present era [30]  

Appendix E.: Applying the Riemannian Penrose Inequality with applications in our 
fluctuation. 

If from Giovannini [33] we can write 

                                            2~ ( ) 1ttg a t                                                                                                     (E1)        

 Refining the inputs from Eq. (E1) means more study as to the possibility of a non-zero minimum scale 

factor [34], as well as the nature of   as specified by Giovannini [33]. We hope that this can be done 

as to give quantifiable estimates and may link the non-zero initial entropy to either Loop quantum 

gravity “quantum bounce” considerations [35] and/or other models which may presage modification 

of the sort of initial singularities of the sort given in [1]. Furthermore if the non-zero scale factor is 

correct, it may give us opportunities as to fine tune the parameters given in [34] below.  
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Where the following is possibly linkable to minimum frequencies linked to E and M fields [34], and 

possibly relic Gravitons  
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So, now we investigate the question of applicability of the Riemann Penrose inequality which is [36], 

p431, which is stated as  

Riemann Penrose Inequality: Let (M, g) be a complete, asymptotically flat 3- manifold with Non 

negative-scalar curvature, and total mass m, whose outermost horizon    has total surface area A. 

Then 
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And the equality holds, if (M, g) is isometric to the spatial isometric spatial Schwartzshield manifold 

M of mass m outside their respective horizons. 

 

Assume that the frequency, say using the frequency of Eq.(E3) , and  
minA A of Eq.(E4) is employed. 

So then say we have, if we use dimensional analysis appropriately, that  
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Assume that we also set the input frequency as to Eq. (E3) as according to 10 37   i.e. does 
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Our supposition is that Eq. (E6) should give the same frequency as of Eq. (D3) above. So if we have in 

In doing this, this is a frequency input into Eq. (E3) above where we are safely assuming a graviton 

mass of about [10]      
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Does the following make sense? I.e. look at, when 10 37   
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We claim that if this is an initial frequency and that it is connected with relic graviton production, that 

the minimum frequency would be relevant to Eq. (E3), and may play a part as to admissible B fields 

Note, if Appendix D is used, this makes a re do of Eq. (E8) which is a way of saying that the graviton 

mass given by [10] no longer holds.  

In either case, Eq. (E8) and Eq. (E3) in some configuration may argue for implementation of work  the 

author did in reference [37]  as to relic cylindrical GW, i.e. their allowed frequency and magnitude, so 

considered.  

Appendix F: First principle treatment of pre Planckian kinetic energy so the Inflaton 
2 ( . ~ )P E V  [7] 

We give this as a plausibility argument which undoubtedly will be considerably refined, but its 

importance cannot be overstated. I.e. this is for Pre inflationary, Pre Planckian physics, so as to get a 

lower bound to the Graviton mass. To do this, we look at what [7] is saying and also we will be enlisting 

a new reference, [38], by Bojowald, and also Padmanbhan [39] as to details to put in, so as to confirm 

a dominance of Kinetic energy. Start with a Friedman equation of  
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We will treat, then the Hubble parameter, as  
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Now from Padmanabhan, [39], we can write density, in terms of flux according to 
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Then using 463 of [39], if T is temperature, here, then if N is the particle count in the flux region per 

unit time ( say Planck time), as well as using the ‘ideal gas law’ approximation, for superhot conditions 
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Next, according to [38], we can make the following substitution.  

                                                                         3p a                                                                                (F5) 

Therefore, if  
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If the scale factor is very small, say of the order of 55~ 10initiala a  , then no matter how fall the initial 

volume is, in four space ( it cancels out in the first part of the brackets), it’s easy to see then that 
2 ( . ~ )P E V  [ 7 ] 

We will in the future add more structure to this calculation so as to confirm via a precise calculation 

that the lower bound to the graviton mass, is about 10^-70 grams. This value of 10^-70 grams is an 

approximation, via dimensional analysis and will be improved, by more exact calculations.  

Appendix G: The generalized uncertainty principle in quantum gravity compared with our Heisenberg 

Uncertainty principle for a metric in Pre Planckian Space-Time 

We are looking here at what was done in [40,41] and noting that in particular that the [40] calculation 

of fluctuations in energy as given by bounds given by Black hole physics, such that , if we pick Planck’s 

constant 1  
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Compare that with our given value of  
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This should be compared with our value of equivalence between these two equations which demands 
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The collapse to a situation with ourselves recovering the standard Heisenberg Uncertainty relationship 

for fluctuations of energy is seen in, if Eq.(G1) and Eq.(G2) are both correct  having then that  
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Here, we want the situation for which we would have any time situation with the fluctuation of time, 

going to a very small number , and that the inverse  fluctuation in time going to infinity would be, 

trivially due to, if x is of Planck length, obtaining   for which .  
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It’s an  equation for  , with a vanishingly small contribution for  . I.e. we would have, to first order 

~   , i.e.  being very  small. But that in turn would require, to first order 
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This would be equivalent to, then setting  

~ (1)ttg O                                                                                                                                           (G6) 

Then by necessity, we would want to have a situation for which to have a more general situation as 

given in our document for a  
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In fact, to reconcile Eq. (G1) and Eq.(G2) in the case of recovering a  

~ (1)ttg small value O                                                                                                             (G8)  

That not only would  obey Eq.(G7) that it would likely be fairly large. 

The situation as given by L. Crowell in [41] as it is attuned to dimensional analysis, as given in  

2 Px RcT                                                                                                                                  (G9) 

Here, R is the radius of a sphere for the origins of an emitted wave, which is in turn requiring R to be 

extraordinarily small. I.e. we recover the inputs for our analysis of [40] as it applies to our document 

but only if we have extremely sharp restraints upon R, if we wish to have fidelity with Eq.(G4) and 

Eq.(G5) in the sense of recovery of the traditional Heisenberg relations. 
PT  is a Planck time interval as 

given in [41] It is extremely small, commensurate with Eq. (G9) being approximately Planck Length in 

value. 

 The problem with Eq. (G9) is that there is no provision given as to Pre Planckian length values, and 

that it is restricted, dimensionally to Planckian Length and temperature, with no clue given as to what 

happens before a Planck length. 

1. Appendix H: Considerations as to Bicep 2, the matter of scalar-tensor polarizations as an 
alternative to General relativity and alternate gravitational theories. And experimental 
tests of General relativity via interferometric methods 

Quoting from the Authors recent publication [42]  

From [43]   we have the following to consider, namely trying to determine restraints upon the nature 
of gravity, i.e. is it consistent with General relativity or do we have an alternative situation as given in 
the following quote. We hope that getting a consistent model of inflaton physics will help clarify the 
following alternatives 

Quote, in [42] of the result given in [43]  

This fact rules out the possibility of treating gravitation like other quantum theories, and precludes 
the unification of gravity with other interactions. At the present time, it is not possible to realize a 
consistent Quantum Gravity Theory which leads to the unification of gravitation with the other forces 
[17, 18]. On the other hand, one can define Extended Theories of Gravity those semi classical theories 
where the Lagrangian is modified, in respect to the standard Einstein-Hilbert gravitational 
Lagrangian, adding high-order terms in the curvature invariants (terms like R2,etc….. ) or terms with 
scalar fields non minimally coupled to geometry (terms like φ2R) [17, 18] 



 

 

 

 

 

 

End of quote from [43]  

We then will cite what is in [42] i.e. namely that our uncertainty relationship leads to inflaton physics, 
as given in the following quote. 

Quote, from [42]  

. Needless to say we will require careful analysis of the result as given in reference [42] that  
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      (H1) 

This enormous value for the inflaton, initially, needs to be examined further. It further should be 
linked to Corda’s pioneering work with ‘gravity’s breath’ ,i.e. traces of the inflaton as given by  [44, 
45] and is the justification of Eq. (H1) above. We can use this to determine what to make of the 
stochastic background of pre space time physics.   

Next, Avoiding the Bicep 2 mistake. What we can do with Eq. (H1 ) 

Following [42, 43] what we are doing is examining the stochastic regime of space-time where the 
following holds. 

quote 

Omni-directional gravitational wave background radiation could arise from fundamental processes 
in the early Universe, or from the superposition of a large number of signals with a point-like origin. 
Examples of the former include parametric amplification of gravitational vacuum fluctuations during 
the inflationary era, termination of inflation through axion decay or resonant preheating, Pre-Big 
Bang models inspired by string theory, and phase transitions in the early Universe; the observation 
of a primordial background would give access to energy scales of 10 to the 9 power, up to 10 to the 
10 power GeV, well beyond the reach of particle accelerators on Earth 

End of quote 

Needless to say though, we need above all to avoid getting many multiple stochastic signals, in what 
we process for primordial gravitational waves, and to use, instead tests to avoid getting dust signals 
which is what doomed Bicep 2, i.e. as was made very clear in [42,46,47]  

I.e. the problem is in avoiding multiple stochastic signals, and this is explained in the conclusion of [42]. 
But to obtain what is in [42] , Eq. (H1) has to be thoroughly understood, and Eq. (H1) is commensurate 
with the details as cited in Eq. (G3) to Eq.(G7) which have to be vetted experimentally. I.e. the 
uncertainty principle as cited in Eq. (H1) leads to an inflaton which will allow us to determine if a third 
Polarization exists, as in scalar-tensor gravity, or the more traditional considerations given in [42,43]  



 

 

 

 

 

 

This in turn may allow understanding if our document is commensurate with the considerations given 
in [48]  
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