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Abstract 

 We use the validity of Addition and Multiplication for a hidden variables theory. First, 

we provide an example that the two operations Addition and Multiplication do not 

commute with each other as revealed by the analyses that are performed in a finite set 

of numbers. Our discussion leads to an initial conclusion that Sum rule and Product 

rule do not commute with each other in a hidden variables theory. If we accept this 

conclusion, we do not get the Bell- Kochen -Specker paradox. In more detail, quantum 

mechanics may accept the hidden variables theory. Next, we discuss the validity of 

operators under an assumption that Sum rule and Product rule commute with each 

other. In this case, we indeed get the Bell- Kochen -Specker paradox. We got the 

non-classicality of macroscopic experimental data observed in the Stern-Gerlach 

experiment and the double-slit experiment. If we detect | ↑> and then we detect | ↓>, 

the experiments cannot accept the hidden variables theory. We considered whether we 

can assign the predetermined “hidden” result to numbers 1 and -1 as in results of 

measurements with the number of measurements finite (e.g., twice) in the experiments. 

It turned out that we cannot assign the predetermined hidden result to such results of 

measurements. The next conclusion indicates interestingly that the Stern-Gerlach 

experiment cannot accept classical mechanics. The double-slit experiment had led to the 

same situation, and they were indeed quantum mechanical phenomena. 

 

 

 

1. Introduction 

The quantum theory (cf. [1-5]) gives accurate and at times remarkably accurate 



numerical predictions. Much experimental data has explained well the quantum 

predictions for long time. 

On the other hand, the incomplete argument of Einstein, Podolsky, and Rosen (EPR) 

[6] for a hidden variable interpretation of the quantum theory has been an attractive 

topic of research [2,3]. There are two main approaches to study the hidden-variable 

interpretation of the quantum theory.  

One is the Bell-EPR theorem [7]. This theorem says that the quantum predictions 

violate the inequality following the EPR-locality condition. The EPR-locality condition 

tells that a result of measurement pertaining to one system is independent of any 

measurement performed simultaneously at a distance on another system. The 

dependency has been proved by the entanglement. However, the locality is set by in 

priori. 

The other is the no-hidden-variables theorem of Kochen and Specker (KS theorem) [8]. 

The original KS theorem says the non-existence of a real-valued function which is 

multiplicative and linear on commuting operators. In general, the quantum theory does 

not accept the KS type of hidden-variable theory. The proof of the original KS theorem 

relies on intricate geometric argument. And, the KS theorem becomes very simple form 

(see also Refs. [9-13]). 

Mermin considered the Bell-EPR theorem in a multipartite state. He derived the 

multipartite Bell inequality [14]. Greenberger, Horne, and Zeilinger discovered [15,16] 

the so-called GHZ theorem for four-partite GHZ state. The quantum predictions by 

n-partite GHZ state violate the Bell-Mermin inequality by an amount that grows 

exponentially with n. After all, several multipartite Bell inequalities were reported 

[17-25]. They also revealed that the quantum predictions violate the local 

hidden-variable theories by an amount that grows exponentially with n. 

The KS theorem was begun with research for the validity of itself by using the 

inequalities (see Refs. [26-29]). To find such inequalities to test the validity of the KS 

theorem is particularly useful for experimental investigation [30]. The KS theorem is 

related to the algebraic structure of a set of quantum operators. The KS theorem is 

independent of a quantum state under study. One of the authors derives an inequality 

[29] as tests for the validity of the KS theorem. The quantum predictions violate the 

inequality when the system is in an uncorrelated state. An uncorrelated state is defined 

in Ref. [31]. The quantum predictions by n-partite uncorrelated state violate the 

inequality by an amount that grows exponentially with n. 

We cannot assign definite value into each quantum datum. This gives the very simple 

reason why Bell-Kochen-Specker inequalities are violated in real experiments. 



Leggett-type nonlocal hidden-variable theory [32] is experimentally investigated 

[33-35]. The experiments report that the quantum theory does not accept Leggett-type 

nonlocal hidden-variable theory. These experiments are done in four-dimensional space 

(two parties) in order to study nonlocality of hidden-variable theories. 

Many researches address non-classicality of observables. And non-classicality of 

quantum state itself is not investigated at all (however see [36,37]). Non-classicality of 

macroscopic quantum datum is not investigated very well. 

In this paper, we use the validity of Addition and Multiplication for a hidden variables 

theory. First, we provide an example that the two operations Addition and 

Multiplication do not commute with each other as revealed by the analyses that are 

performed in a finite set of numbers. Our discussion leads to an initial conclusion that 

Sum rule and Product rule do not commute with each other in a hidden variables theory. 

In this case, we do not get the Bell- Kochen -Specker paradox. Next, we discuss the 

validity of operators under an assumption that Sum rule and Product rule commute 

with each other. In this case, we get the Bell- Kochen -Specker paradox. We got the 

non-classicality of macroscopic experimental data observed in the Stern-Gerlach 

experiment and the double-slit experiment. If we detect | ↑> and then we detect | ↓>, 

the experiments cannot accept the hidden variables theory. We considered whether we 

can assign the predetermined “hidden” result to numbers 1 and -1 as in results of 

measurements with the number of measurements finite (e.g., twice) in the experiments. 

It turned out that we cannot assign the predetermined hidden result to such results of 

measurements. The next conclusion indicates interestingly that the Stern-Gerlach 

experiment cannot accept classical mechanics. The double-slit experiment had led to the 

same situation, and they were indeed quantum mechanical phenomena. 

2. The two operations Addition and Multiplication do not commute with each other 

We consider a value V which is the sum of the results of trials. Result of trials is 1 or -1. 

We assume the number of -1 is equal to the number of 1. The number of trials is 2m. We 

have 

V=2m - 2m=0.                     (2.7) 

We derive the possible value of the product 2VVV =×  of the value V. It is  

02 =V .                           (2.8) 

We assign the truth value “1” for the following proposition 

02 ≤V .                            (2.9) 

We have 

0)( max
2 =V .                       (2.10) 



The value (V=0) which is the sum of the results of the trials is given by 

∑
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We assume that the possible value of the actually measured results lr  is 1 or -1. We 

have 

mVm 22 +≤≤− .                        (2.12) 

The same value is given by 

∑
=
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m
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We only change the notation as 'll → . The possible value of the actually measured 

results 'lr  is 1 or -1. We have  

{ } { }1'|'1| 1'12112 =∧∈==∧∈ == rNllrNll mm     (2.14) 

and 

{ } { }1'|'1| 1'12112 −=∧∈=−=∧∈ == rNllrNll mm .   (2.15) 

Here { }mN m 2,...,2,12 = . By using these facts we derive a necessary condition for the 

value given in (2.11). We derive the possible value of the product 2V  of the value V 

given in (11). We have the following under the assumption that the two operations 

Addition and Multiplication commute with each other. 
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The step (2.16) to (2.17) is OK. The step (2.17) to (2.18) is valid under the assumption 

that the two operations Addition and Multiplication commute with each other. We insert 

parentheses. The step (2.18) to (2.19) is true since we have only changed the notation as 

'll → . The above inequality (2.19) is saturated since 

{ } { }1'|'1| '1212 =∧∈==∧∈ rNllrNll mm     (2.22) 

and 

{ } { }1'|'1| '1212 −=∧∈=−=∧∈ rNllrNll mm .   (2.23) 

We derive a proposition concerning the value given in (2.11) under the assumption that 

the possible value of the actually measured results is 1 or -1, that is 22 4mV ≤ . We 

derive the following proposition 

2
max

2 4)( mV = .   (2.24) 

We do not assign the truth value “1” for the two propositions (2.10) and (2.24) 

simultaneously. We are in a contradiction. Thus we have to give up the assumption that 

the two operations Addition and Multiplication commute with each other. Our 

discussion leads to an initial conclusion that Sum rule and Product rule do not commute 

with each other in a hidden variables theory. If we accept this conclusion, we do not get 

the Bell- Kochen -Specker paradox. In more detail, quantum mechanics may accept the 

hidden variables theory. In what follows, we discuss the validity of operators under an 

assumption that Sum rule and Product rule commute with each other. In this case, we 

indeed get the Bell- Kochen -Specker paradox and quantum mechanics does not accept 

the hidden variables theory, in general. 

 

3. Easy example that we cannot assign definite value into each experimental datum 

We consider a mean value V to an expected value which is the sum of data in some 

experiments. The actually measured results of trials are 1 or -1. We assume the number 

of -1 is equal to the number of 1. The number of trials is 2. Then we have 

V=-1+1=0.                    (3.1) 

First, we assign definite value into each experimental datum. In this case, we consider 

the Bell-Kochen-Specker realism. 

By using  

��, ��, ��� and ���, we can define experimental data as follows: �� = 1, �� = −1, ��� = 1 

and ��� = −1. Let us write V as follows 

� = ∑ ��
�
��� .                       (3.2) 



The possible value of the actually measured results �� is 1 or -1. The same value is 

given by 

� = ∑ ���
�
���� .                           (3.3) 

We change the notation as � → �′. The possible value of the actually measured results ��� 

is 1 or -1.  

In the following, we evaluate the maximum value of the product � × � and derive a 

necessary condition under an assumption that we assign definite value into each 

experimental datum. We have  

V×V 
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= (2) ∑�
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=4                      (3.4) 

The above inequality (3.4) is saturated since 

{ } { }1'|'1| '1212 =∧∈==∧∈ rNllrNll     (3.5) 

and 

{ } { }1'|'1| '1212 −=∧∈=−=∧∈ rNllrNll .   (3.6) 

Hear { }2,12 =N . We derive an assumption concerning the value given in (3.2) under an 

assumption that the possible value of the actually measured results is 1 or -1, that is 

(� × �)��� ≤ 4. We derive the following assumption concerning the Bell-Kochen-Specker 

realism 

(� × �)�� 
��� = 4.                             (3.7) 

Next, we derive the other maximum value of the product � × � of the value V under 

an assumption that we do not assign definite value into each experimental datum. This 

is quantum mechanical case. From V=0, we have  

(� × �)!" = 0.                                 (3.8)  

Thus, 

(� × �)!" ≤ 0.                                   (3.9) 

We have the following assumption concerning quantum mechanics 

(� × �)�� 
!"

= 0.                                    (3.10) 

We cannot assign the truth value ``1'' for the two assumptions (3.7) and (3.10). We are in 

the BKS contradiction. Thus we cannot assign definite value into each experimental 



datum even though the number of data is two. 

4. More general example that we cannot assign definite value into each experimental 

datum 

We consider a mean value V to an expected value which is the sum of data in some 

experiments. The actually measured results of trials are 1 or -1. We assume the number 

of -1 is equal to the number of 1. The number of trials is 2m. m=1,2,… We have 

V=2m-2m=0.         (3.11) 

First, we assign definite value into each experimental datum. Let us write the value 

(V=0) as follows 

� = ∑ ��
��
��� .              (3.12) 

We assume that the possible value of the actually measured results �� is 1 or -1.  

The same value is given by 

� = ∑ ���
��
���� .           (3.13) 

We change the notation as � → �′. The possible value of the actually measured results ��� 

is 1 or -1.  

By using these facts we derive a necessary condition for the value given in (3.12). We 

derive the maximum value of the product V×V of the value V given in (3.12). We have 

the following under an assumption that we assign definite value into each experimental 

datum: 

V×V 

=(∑ ��
��
��� ) × (∑ ���

��
���� ) 

=∑��
��� ∙ ∑ �����

��
����  

≤ ∑��
��� ∙ ∑ (��)���

����   

= ∑�
��� ∙ ∑ ((−1)� + (1)�)��

����   

= (2m) ∑��
����   

=4%�.                                      (3.14) 

The above inequality (3.14) is saturated since 

{ } { }1'|'1| '1212 =∧∈==∧∈ rNllrNll mm     (3.15) 

and 

{ } { }1'|'1| '1212 −=∧∈=−=∧∈ rNllrNll mm .   (3.16) 

Here { }mN m 2,...,2,12 = .We derive an assumption concerning the value given in (3.12) 

under an assumption that the possible value of the actually measured results is 1 or -1, 

that is (� × �)��� ≤ 4%� . We derive the maximum value concerning the 



Bell-Kochen-Specker realism 

(� × �)�� 
��� = 4%�.                            (3.17) 

Next, we derive the other maximum value of the product � × � of the value � under 

an assumption that we do not assign definite value into each experimental datum. This 

is quantum mechanical case. From V=0, we have  

(� × �)!" = 0.                 (3.18)  

Thus, 

(� × �)!" ≤ 0.                 (3.19)  

We have the following assumption concerning quantum mechanics 

(� × �)�� 
!"

= 0.                     (3.20) 

We cannot assign the truth value “1” for the two assumptions (3.17) and (3.20). We are 

in the contradiction. Thus we cannot assign definite value into each experimental 

datum. 

 

We say the following statement: 

 

● We cannot assign definite value into each experimental datum when the number of 

measurement is even and finite. 

 

Otherwise we are in the BKS contradiction. We are not in the BKS contradiction if we 

cannot assign definite value into each experimental datum when the number of 

measurement is even and finite. 

5. Conclusions 

In conclusions, we have used the validity of Addition and Multiplication for a hidden 

variables theory. First, we have provided an example that the two operations Addition 

and Multiplication do not commute with each other as revealed by the analyses that are 

performed in a finite set of numbers. Our discussion has led to an initial conclusion that 

Sum rule and Product rule do not commute with each other in a hidden variables theory. 

We do not have got the Bell- Kochen -Specker paradox if we accept the first conclusion. 

In more detail, quantum mechanics may have accepted the hidden variables theory. It 

has been not easy to contest the Bohm’s hidden variable theory which is still in a great 

debate process. We have tried to validate our point on the hidden variable theory using 

the operators: Additive and Multiplicative. It has been hoped that this article induces 

further debates on our approach and simplistic determinism.   

Next, we have discussed the validity of operators under an assumption that Sum rule 

and Product rule commute with each other. In this case, we indeed get the Bell- Kochen 



-Specker paradox. We have got the non-classicality of macroscopic experimental data 

observed in the Stern-Gerlach experiment and the double-slit experiment. If we detect 

| ↑>  and then we detect | ↓> , the experiments cannot have accepted the hidden 

variables theory. We have considered whether we can assign the predetermined “hidden” 

result to numbers 1 and -1 as in results of measurements with the number of 

measurements finite (e.g., twice) in the experiments. It has turned out that we cannot 

assign the predetermined hidden result to such results of measurements. The next 

conclusion indicates interestingly that the Stern-Gerlach experiment cannot accept 

classical mechanics. The double-slit experiment had led to the same situation, and they 

were indeed quantum mechanical phenomena. 
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