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Abstract 

It is known that quantization of massless spin-1 particles runs into several related complications such as 

the redundancy of gauge orbits, the presence of extra degrees of freedom and the need to introduce 

“ghost” fields. The textbook interpretation of quantum gauge theory is that “ghosts” are unphysical objects 

whose function is to preserve Lorentz covariance and unitarity.  In particular, Faddeev-Popov “ghosts” 

(FPG) violate the spin-statistics theorem and are devoid of measurable properties. FPG are shown to 

decouple from the spectrum of observable states, yet it remains unclear how their presence in loop 

diagrams and their interaction with gauge fields is even possible in the absence of any physical attributes. 

The object of this work is to suggest that, at least in principle, the concept of spacetime endowed with 

minimal fractality enables a “ghost”-free formulation of quantum gauge theory. Our approach opens the 

door for a non-perturbative understanding of vacuum polarization in Quantum Electrodynamics (QED).  

Key words: Path Integral Quantization, Gauge Theory, Ghost Fields, Faddeev-Popov Method, Gauge 

Fixing, Minimal Fractal Manifold. 

1. Introduction 

Spin 1 particles are critical components of QED and non-Abelian field theory. 

Quantization of both classical electrodynamics and Yang-Mills theories is confronted by 

several related challenges due to the redundant polarizations carried by vector fields, the 

over-counting of gauge orbits and the need to reinforce Lorentz covariance and unitarity 
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through fictitious (“ghost”) fields [1-3, 6]. In particular, Fadeev-Popov “ghosts” (FPG) 

evolve within loop diagrams and interact with spin 1 fields, yet they do not contribute to 

the spectrum of observable states. While the mathematical basis for “ghost” theory is on 

solid ground, its physical interpretation is at least un-natural. A legitimate question one 

is compelled to ask is: How is it possible to evolve and couple fictitious entities to 

physical fields, the latter being either real or virtual particles? Building on our previous 

research [4], here we suggest that the concept of fractal spacetime endowed with 

minimal deviations from four-dimensionality (the so-called minimal fractal manifold, 

MFM in short) allows for a “ghost-free” formulation of quantum gauge theory. 

The paper is organized as follows: Next section surveys the array of challenges involved 

in the standard quantization of spin 1 fields. Sections 3 to 5 analyze the implications of 

placing classical electrodynamics on the MFM. Concluding remarks are detailed in the 

last section. For the sake of clarity and accessibility, the paper is presented in a 

pedagogical manner that focuses primarily on the physical content and leaves aside 

excessive mathematical details. Readers familiar with the topic may skip the next two 

sections. We caution that the framework of ideas developed here is in its infancy. 

Follow-up research is required to independently confirm, expand or refute our tentative 

conclusions.    

2. Challenges of gauge field quantization 

We begin with a brief survey of the main difficulties confronting quantization of abelian 

and non-abelian fields. The interested reader may consult [1-3, 6] for a deeper analysis 

and additional technical details. 
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2.1 Standard quantization of the electromagnetic field    

2.1.1) The classical electromagnetic Lagrangian in the absence of external sources is 

given by 

 0

1

4
L F F 

    (1) 

where the field strength is defined as 

 F A A          (2) 

Maxwell equations read 

 0 [ ( ) ] 0F A  

              (3) 

The Lagrangian (1) is invariant under the group of local gauge transformations   

 ( ) ( ) ( )A x A x x      (4) 

for any function ( )x  satisfying the commutation condition 

 ( ) ( ) [ , ] ( ) 0x x                 (6) 

As a result, the field strength (2) stays unchanged under (4), namely, 

 ( ) ( )F A A F                  (7) 

A fundamental difficulty in quantizing the Maxwell theory is that the second-differential 

operator 
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 D ( )

          (8) 

has no inverse as it annihilates any function of the form ( )x  . This implies that, for 

any given initial data, one cannot uniquely find the potential ( )A x  at later times since 

there is no way of distinguishing between ( )A x  and ( ) ( )A x x    . This defines the 

redundancy problem of gauge theory: the phase space of Maxwell’s theory is “foliated” 

by gauge orbits that are inherently over-counted.  

2.1.2) A related difficulty of vector field quantization lies in the number of real 

components carried by massless spin 1 operators. The electromagnetic potential ( )A x  

has four independent components, yet the photon has only two independent degrees of 

freedom called polarization states. Let us elaborate on this point with additional details. 

To examine the plane-wave solutions of Maxwell equations (3), it is customary to 

consider the momentum space representation of ( )A x  

 4

4

1
( ) ( )exp( )

(2 )
A k d xA x ik x 


    (9) 

Under the gauge transformation, the potential (9) changes as 

 ( ) ( ) ( )A k A k k k     (10) 

Field equations take the form 

 2 ( ) ( ) 0k A k k k A k

     (11) 
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and are invariant under (10). One can conveniently resolve ( )A x  into four independent 

vectors, ( , ) k , 0( , )k k  k  and 0( , )k k


 k , defined by 

 ( , ) 0k

  k  , 0 ( , ) 0  k      ( 1,2)    (12) 

Hence,  

 ( ) ( ) ( , ) ( ) ( )A k a k b k k c k k
     k   (13) 

and the field equations (11) turn into 

 2 2( ) ( , ) ( )[ ( ) ] 0kk a k b k k k k k

       ,  ( )k k > 0  (14) 

which forces the coefficient functions to vanish, namely, 

 2 ( ) 0,k a k    ( 1,2)   (13a) 

 ( ) 0b k   (13b) 

Relations (13) show that the field equations cannot fix the value of the coefficient ( )c k . 

This implies that ( )c k  can be set to zero by means of a suitable gauge transformation, 

which, in turn, means that ( )c k  has no physical meaning. One arrives at the conclusion 

that there are only two independent plane wave solutions on the light cone ( 2 0k  ) and 

two transverse polarization vectors.   

The standard solution to the gauge redundancy problem of Maxwell theory is gauge 

fixing. The method reduces the number of allowed orbits to a smaller set, where all the 
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orbits are related by smaller gauge group symmetry. Since quantum gauge theory is 

often described using the path-integral (PI) formulation, a generalization of gauge fixing 

to non-abelian fields is required to ensure internal consistency of the theory. Details on 

the Fadeev-Popov (FP) gauge fixing method are briefly examined in paragraph 2.2. 

2.1.3) Unlike the case of massive fields, the spin of a massless particle cannot be defined 

relative to its rest frame of reference. As a result, the three-dimensional rotation group 

is no longer adequate for characterizing the photon spin and it is replaced by the group 

of two-dimensional rotations around the three-momentum vector k . The existence of 

only two transverse photon polarizations hints to a violation of Lorentz invariance 

stemming from the fact that transversality is not preserved by Lorentz transformations. 

It can be shown, however, that Lorentz symmetry is restored provided that photons 

couple to conserved currents defined through 0J 

  . The existence of such currents 

is a direct consequence of gauge invariance.   

2.2 The Fadeev-Popov (FP) method  

The FP procedure consists in applying a suitable constraint to the PI description of 

gauge theory that automatically removes the ambiguity associated with the gauge 

transformation.  Consider the generating functional  

 4[ ] exp ( )Z J DA i d x L J A      (14) 

The integral measure ( )xDA dA x    spans over all possible vector potentials A  and 

necessarily includes their gauge transforms (4). Explicitly writing (4) as 
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 ( )A A x       (15) 

factors out the contribution of A  and ( )x  in (14), namely, 

 4[ ] exp ( )Z J DA i d x L J A D

        (16) 

The presence of the second integral over the arbitrary field ( )x  causes the generating 

functional to diverge due to the unaccountable many ( )x  contributing to (16). 

Following the FP method, the generating functional (16) is cast in the equivalent form 

 [ ] [ , ; ] [ ] ( [ ])Z J D F A J A G A        (17) 

where 

 4[ , ; ] exp ( )F A J dA i d x L J A       (18) 

and 

 [ ] [ ( )]G A A A x 

  

        (19) 

The FP determinant is defined as 

 
[ ]

[ ] det( )
G A

A






 


,    0   (20) 

and leads to the introduction of “ghost” and “anti-ghost” fields. In particular, the “ghost” 

part of the Lagrangian in Yang-Mills theory is given by 
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 ( )a a abc a c

g bL c c g f c A c  

      (21) 

Here, " "a  is the index of the gauge group," "g  stands for the coupling charge and " "abcf

for the structure constants. The first term is the kinetic component of the Lagrangian 

built up from the contribution of “ghosts” ( ac ) and their antiparticles ( ac ), whereas the 

second term reflects the interaction of “ghosts” with the gauge field. In Yang-Mills 

theory, “ghosts” violate the spin-statistics theorem in that they are spinless complex 

scalar fields with fermion statistics. 

3. Maxwell fields on the Minimal Fractal Manifold  

The “minimal fractal manifold” (MFM) is a concept inspired by the Renormalization 

Group program of Quantum Field Theory (QFT) and it denotes a spacetime model 

having arbitrarily small but continuous deviations from four-dimensionality ( 4 D    

<< 1) . There are reasons to believe that postulating the MFM is the only sensible way of 

asymptotically matching all consistency requirements mandated by QFT up to the low 

Terascale sector of probing energies. The underlying motivation, theoretical benefits 

and implications of the MFM for the development of QFT, in general, and the Standard 

Model of high-energy physics, in particular, are extensively discussed in [4] and 

included references.   

Consider classical electrodynamics acting on the MFM in the absence of external 

sources. To keep matters as simple as possible, we adopt below a symbolic “vector-like” 

convention for the gauge potential in which the Minkowski index is explicitly omitted, 
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that is, ( ) AA x  . In the context of low-level fractality [5], the gradient operator of A  

may be presented as  

 1 ( ) 1

1[ ( ) ]A A
x x D      (22) 

where 

 1 (1) (1) (2)

1
0

(0)ln( ) ( ) ( ) ln( )A A A A
x

D x x x x d       (23a) 

 ( ) 4 ( )x D x   , ( )x  << 1  (23b) 

in which ( )D x  stands for the locally defined spacetime dimension, asymptotically 

reaching the standard 4D    in the continuous limit  ( ) 0x  . 

The field strength (2) and Lagrangian (1) assume the symbolic expression 

 F F   ~ 1

1( )A Ax D   (24) 

 L L  ~ 2 1 2 1 2

1 1( ) ( ) ( ) ( )( )A A A Ax D x D       (25) 

Electromagnetic fields propagating in free space are plane wave solutions of Maxwell’s 

equations and are given by 

 A ~ exp[ ( )]k ri t   (26) 

where the wave vector k  and angular frequency   are related through the simple 

dispersion relation 

 kc   (27) 
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To further simplify matters, we assume that the dimensional parameter ( )x  is 

reasonably close to an uniform function, that is, ( )x  . On account of (26), the second 

term in (25) can be reasonably well approximated as 

 1

1( )A AD    ~ 2
A  (28) 

which may be directly mapped to a mass term in the Proca Lagrangian. As it is known, 

the Proca Lagrangian in free space represents the simplest generalization of Maxwell’s 

Lagrangian that explicitly breaks local gauge invariance [1, 6]. It has the form 

 
2

1

4 2
P

m
L F F A A

 

     (29) 

where “ m ” is the non-vanishing photon mass. A quick glance at (28) and (29) reveals 

that 

 
2 ( )m O   (30a) 

Following [4], (23b) represents the background polarization of spacetime induced by 

low-level fractality and may be understood as the primary source of particle masses, 

gauge charges and spins. Stated differently, the transition from smooth to low-level 

fractality near the electroweak scale turns the passive four-dimensional spacetime of 

classical and quantum physics into an active-like medium. In particular, the minimal 

fractal texture of spacetime acts as the primary source of electric charge 0( )e  according 

to [4] 

 
2

0 ( )e O    (30b) 
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Drawing from this interpretation, what appears to be an infinitesimal but non-vanishing 

photon mass stems from the residual energy encoded in the topology of the MFM. Next 

section elaborates on this result. 

4. Implications of arbitrarily small photon mass 

Although a non-vanishing photon mass spoils all consistency requirements mandated 

by QFT, the Proca Lagrangian can be regarded as a gauge-fixed version of the 

Stückelberg mechanism, which restores gauge invariance, unitarity and 

renormalizability [7-9]. There are several far-reaching consequences of massive 

photons, ranging from the variation of the speed of light, charge conservation, photon 

instability, the Casimir and Bohr-Aharonov effects, to some major implications in 

astrophysics and cosmology [7-9]. The laboratory upper limit on the photon mass is 

currently placed around m < 1810 eV , which draws near the theoretical limit derived 

from the uncertainty principle and the estimated age of the Universe [7-9].  

Previous paragraphs have surveyed the slew of challenges posed by masslessness of the 

photon in quantum gauge theory. Besides these, there are known theoretical difficulties 

in infrared QED caused by the continuous exchange of zero-frequency “soft” photons 

between charged particles. Likewise, the so-called bremsstrahlung graphs diverge for 

zero photon momenta, which complicate the correct estimations of cross sections and 

decay rates involved in radiation and absorption of “soft” photons [1].   

In response to these difficulties, coupling the free Maxwell field to the MFM generates 

an arbitrarily small “residual” photon polarization (30, a-b). The benefit of this scenario 
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is that it automatically removes all shortcomings related to massless photons while 

staying compatible with photon mass uncertainties derived from experiments. 

5. Vacuum polarization from the Minimal Fractal Manifold 

The photon self-energy (or the vacuum polarization) describes a QED process in which 

a background Maxwell field creates a virtual electron-positron pair ( e e  ). The virtual 

pair is short-lived and it changes the initial distribution of current and charges 

generated by the Maxwell field. In addition, because the pair is charged, it produces an 

electric dipole that polarizes the vacuum and contributes to a partial screening effect. As 

a result of vacuum polarization, at large distances, the “effective” Maxwell field is 

weaker. Photon self-energy leads to infinities that are typically removed by 

renormalization.  

In QED, the classic Coulomb potential is obtained by Fourier transforming the 

propagator 

 
3 2 2

3 2
( ) exp( )

(2 )
px

d p e e
V r i

p r
   (31) 

The virtual ( )e e   pair adds a loop correction inside the photon line which, in turn, gives 

a contribution to (31) proportional to 4e . For instance, the Uehling potential in spinor 

QED arises as a radiative effect whose closed-form expression at 1-loop is given by  

 
14 2

2

2 4

0

2 1
( ) exp( 2 )( ) 1

24 2
U

e x
V r dx mrx x

r x


     (32) 

in which “ m ” represents the mass of the charged fermion [1].  
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It follows these considerations and from (25), (30a-b) that coupling the free Maxwell 

field to the MFM leads to a term quadratic in   that mimics a “residual” photon self–

energy imparted by the fractal texture of spacetime. This self-energy contribution goes 

smoothly to zero in the continuum limit ( 0  ). 

6. Concluding remarks 

We have shown that Maxwell and Yang-Mills Lagrangians acting on the MFM pick up 

two vanishingly small contributions: a) a mass-like term in the form of “residual” 

polarization, which is linear in   and b) a vacuum polarization term in the form a 

“residual” self-energy, which is quadratic in  . Both contributions develop from the 

fractal texture of spacetime near the electroweak scale and automatically bypass the 

complications associated with quantization of gauge fields in QFT. An added value of 

this approach is that it opens the door for a non-perturbative understanding of vacuum 

polarization in QED. 

Needless to say, our treatment is entirely preliminary. Follow-up studies on this topic 

may focus on a deeper understanding of both (30, a-b) and of the implications 

associated with the residual vacuum polarization contained in the last term of (25). For 

example, one needs to properly connect the finite cross-section of pair-creation/ 

annihilation in perturbative QED (   <=> e e  ) with the nearly vanishing residual 

vacuum polarization driven by 2 . To this end, it is necessary to evaluate the closed-

form expression of 1 2

1( )AD upon appropriate normalization of x  near or above the 

electroweak scale. It is in this dynamic regime that the MFM is expected to surface [4]. 
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