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Abstract. In 1907 Einstein used special relativity to prove that vacuum permittivity is
a function of gravity by assuming that acceleration and gravity are equivalent. Vacuum
permittivity is the scalar in Maxwell’s equations that determines the speed of light and the
strength of electrical fields. Predictably, vacuum permittivity also changes with spacetime
curvature in general relativity. When spacetime curvature changes, the wavelengths of
both photons and atomic emissions shift. In Friedmann geometry, curvature changes in
time. A photon today has a different wavelength than it did yesterday. Yesterday, an atom
emitted a photon with a different wavelength than it emits today. Considered together,
the evolution of atoms and photons reverse the interpretation of Hubble redshift. Hubble
redshift implies that the Friedmann universe is closed and collapsing. During collapse,
both atomic emissions and photons blueshift. Atomic emissions blueshift about twice
as much as photons blueshift. This means that blueshifted photons seen in a telescope
today are redder than blueshifted reference photons emitted by atoms today. With this
insight, supernovae redshift observations are fit simply using the physics of Maxwell,
Einstein, Bohr, and Friedmann from the 1920’s. There is no need to postulate dark
energy. Supernovae redshift data imply that the universe is very nearly flat and will
collapse in about 9.6 billion years. High-z redshift observations up to 11.9 suggest that
the universe is at least 2000 billion years old. This is more than a hundred times greater
than a typical star’s lifetime. It is probable that most dark matter is the residue of stellar
evolution. The changes in atoms and photons derived here confirm Schrödinger’s 1939
proof that quantum wave functions expand and contract proportionally to the radius of
a closed Friedmann universe.

1. Introduction

In 1907 Einstein [1] [2, p 252] summarized the status of special relativity and its im-
plications in the two years since its publication. At the end of this survey he concluded
with a speculative section on “The Principle of Relativity and Gravitation.” He consid-
ered an uniformly accelerated coordinate system and assumed that locally it is equivalent
to a gravitational field. Einstein concluded that Maxwell’s equations in the accelerated
coordinate system (and hence in a gravitational field) are exactly the same as they are
in the inertial coordinate systems of special relativity, except that “The principle of the
constancy of the velocity of light does not hold . . . the velocity of light in the gravitational
field is a function of place . . . ” [3] [4, p 385]

In Maxwell’s equations, vacuum permittivity is the scalar that determines the speed
of light and the strength of electrical fields. Einstein’s discovery means that both the
wavelengths of photons and the wavelengths of photons emitted by atoms change with
gravity in special relativity and with spacetime curvature in general relativity.
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In a Friedmann universe, vacuum permittivity is directly proportional to the Friedmann
radius [5] and is therefore a function of time. As the size of the universe evolves, the chang-
ing strength of the electrical force between charges shifts atomic energy levels, changing
the wavelengths of emitted light. This shift in photon emission due to the evolution of
electrical attraction in the atom is about twice as large as the evolutionary shift in photon
wavelength. The evolution of atoms and photons together reverse the interpretation of
Hubble redshift to imply that the Friedmann universe is closed and is now collapsing.

Schrödinger [6] provided another perspective on the evolution of atoms and photons.
He showed that the plane-wave eigenfunctions characteristic of flat spacetime are replaced
in the curved spacetime of the closed Friedmann universe by eigenfunctions which have
wavelengths that are directly proportional to the Friedmann radius. This means that
eigenfunctions change wavelength as the radius of the universe changes and the quantum
systems they describe do as well. In an expanding universe quantum systems expand. In
a contracting universe they contract. Photons and atoms both change with the radius of
the Friedmann universe.

Since atoms as well as photons change in time, it is necessary to rederive the connection
between measured Hubble redshifts, the Hubble constant Ho, the deceleration parameter
qo, and the distances to the sources. When this is done, modern accelerating supernovae
redshifts are beautifully fit by varying only Ho and qo. These redshift data imply that the
universe is very nearly flat (qo ≈ 1

2) and will collapse in about 9.6 billion years. High-z
redshift observations up to 11.9 suggest that the universe is at least 2000 billion years old.
This is more than a hundred times greater than a typical star’s lifetime. This makes it
likely that most dark matter is the residue of stellar evolution.

2. The Variation of Vacuum Permittivity in the Gravitational Field

In his study of Maxwell’s equations in an uniformly accelerated coordinate system, Ein-
stein concluded that the velocity of light in special relativity, c, is reduced to c∗, the local
coordinate velocity of light in the accelerated system. In an accelerated system correspond-
ing locally to the gravitational field of a point mass, Einstein [2, p 310] found

(1) c∗ = c
[
1 +

(
Φ/c2

)]
,

where Φ is the Newtonian gravitational potential,

(2) Φ = − kM
r
.

M is the mass of the object creating the gravitational field at a distance r. k is the
gravitational constant.

The connection between Einstein’s result, equation (1), and the strength of the electrical
field follows from the relationship of relative vacuum permittivity ε to c∗ and c,

(3) ε =
c

c∗
.
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Combining equations (1), (2), and (3) gives Einstein’s value for ε,

(4) ε (r) =
1

(1 − kM/c2r)
.

Møller [7, p 308] and Landau & Lifshitz [8, p 258] studied the effects of curved spacetime
on Maxwell’s equations. Both proved that in a static gravitational field the electromagnetic
field equations take the form of Maxwell’s phenomenological equations in a medium at rest
with

(5) ε(r) =
1
√
g00

.

gµν is the metric tensor. Einstein’s pre-general relativity result, equation (4), is the first
approximation to the exact equation (5) for the Schwarzschild metric [9] where g00 =(
1− 2 kM/c2r

)
.

Sumner [5] studied Maxwell’s equations in the closed Friedmann universe without a
cosmological constant and also found that ε varies with spacetime curvature. This may be
verified directly by calculating the coordinate speed of light c∗ for the Friedmann metric,
equation (8), and substituting in equation (3). This reproduces Sumner’s result,

(6) ε (t) = a(t).

a(t) is the radius of the closed Friedmann universe defined by equations (8) and (9).
The electrical field |E| of a charge q at a distance rq is1

(7) |E| =
1

4πεo ε (t)

|q|
rq2

.

|E| is a function not only of the distance rq from the charge q but also changes in time in
Friedmann geometry. For Schwarzschild geometry, ε(r) replaces ε(t) and E changes with
r, the distance from the gravitating source.

3. Friedmann Geometry

Friedmann [10] found a closed universe solution to Einstein’s [11] theory of general
relativity without a cosmological constant. The Friedmann universe rapidly expands from a
singularity, slowing until it reaches a maximum size before accelerating back to a singularity.

Friedmann’s solution is found by solving Einstein’s equations assuming the metric,

(8) ds2 = c2dt2 − a2(t)

[
dr2

(1− r2)
+ r2

(
dθ2 + sin2θ dφ2

)]
.

The fluid in the model is assumed to be incoherent matter, conserved in amount and
exerting negligible pressure. The solution is the cycloid shown in Figure 1,

(9) a =
α

2
(1− cosψ) c t =

α

2
(ψ − sinψ),

where α is a constant and 0 ≤ ψ ≤ 2π [12].

1SI equations use the constant flat-space vacuum permittivity εo multiplied by the relative vacuum
permittivity ε. ε is a scalar field and does not change with coordinate transformations [5].
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Figure 1. Friedmann’s solution for a closed universe.

4. Atoms and Photons

The extraordinary successes of special relativity are evidence that the curvature caused
by the earth and by the universe is very small. But spacetime is not precisely flat as
ubiquitous gravity, Hubble redshift, and careful research have shown. Flat spacetime exists
only in mathematical models. Every spacetime in nature is curved.

To understand the effects of spacetime curvature on atoms and photons, a coordinate
system that includes spacetime curvature is necessary. Since the deviations from special
relativity are small, the method used by Einstein, Møller, and Landau & Lifshitz is adopted.
Specifically, a local pseudo-Cartesian coordinate system with the local velocity of light c∗

given by general relativity is used,2

(10) ds2 =
c2

a2(t)
dt2 −

[
dr2 + r2

(
dθ2 + sin2θ dφ2

)]
.

Physics equations that are valid in flat spacetime are then used with c∗ = c/a(t) and
ε(t) = a(t) to interpret evolutionary changes in atoms and photons.

The Bohr radius ao of a hydrogen atom in its ground state at time t is3

(11) ao(t) =
4πεo ε (t) ~2

me2
.

The change in Bohr radius ao as time t changes is

(12)
ao(t1)

ao(t0)
=
ε (t1)

ε (t0)
.

2In equation (8) it is an extremely good approximation in this context to assume g11 = −a2(t), or
equivalently,

(
1 − r2

)
≈ 1. The values of r of interest are the order of the size of a hydrogen atom and its

photons. For scale, r = 1 corresponds to the “size” of the universe.
3See any standard text, e.g. Leighton [13]. In the following equations ε(t) may be replaced by a(t).
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The characteristic wavelength λe emitted by a hydrogen atom during the transition
between the principle quantum numbers n2 and n1 is

(13) λe(t) =
8 ε2o ε

2 (t)h3 c

me4

(
n21 n

2
2

n22 − n21

)
.

The change in λe(t) as t changes is

(14)
λe(t1)

λe(t0)
=
ε2 (t1)

ε2 (t0)
.

c in equation (13) comes from the defining relationship between λ and ν, λ ν = c.
Consider the Compton wavelength, λc, of a particle with mass mp,

(15) λc(t) =
h

mp c∗(t)
=
h ε (t)

mp c
.

The change in λc(t) as t changes is

(16)
λc(t1)

λc(t0)
=
ε (t1)

ε (t0)
.

The Compton wavelength of a particle is equivalent to the wavelength of a photon of the
same energy as the particle. Compton and photon wavelengths have the same t dependency
that the Bohr radius has.

The following notation is used. The wavelength of a photon λ emitted at t1 and examined
at the time of emission t1 will be written λ(t1, t1). The wavelength of a photon λ emitted
at t1 and examined at a later time t0 will be written λ(t1, t0). With this notation, the
wavelength change for a photon is

(17)
λ(t1, t1)

λ(t1, t0)
=
ε (t1)

ε (t0)
.

5. Hubble Redshift

The Hubble redshift shift equation for Friedmann geometry is derived using equation
(17) to describe the changes in photons and equation (14) to describe the changes in atomic
emissions. A photon emitted at a time t1 and observed at t0 is compared to a reference
photon emitted and observed at time t0. Equation (6), ε (t) = a(t), gives the relative
vacuum permittivity for Friedmann geometry.

From equation (17), the wavelength of the emitted photon at t1, λ(t1, t1), is related to
its wavelength at t0, λ(t1, t0), by

(18) λ(t1, t0) =
ε (t0)

ε (t1)
λ(t1, t1).

From equation (14), a photon emitted at t1, λe(t1) = λ(t1, t1), is related to one emitted
at t0, λe(t0) = λ(t0, t0), by

(19) λ(t1, t1) =
ε2 (t1)

ε2 (t0)
λ(t0, t0).



6 W. Q. SUMNER

Combining equations (6), (18), and (19) gives the change in wavelength of a photon
emitted at t1 and observed at t0,

(20)
λ(t1, t0)

λ(t0, t0)
=
ε (t1)

ε (t0)
=
a (t1)

a (t0)
.

The Hubble redshift observed, λ(t1, t0) > λ(t0, t0), implies that a (t1) > a (t0). The
closed Friedmann universe is contracting.

This reversal in interpretation of Hubble redshift from expansion to contraction is a direct
result of the different rates of change of energy for photons and atoms. In an expanding
universe, atomic emissions out redshift photons giving a relative blueshift. In a contracting
universe, atomic emissions out blueshift photons giving a relative redshift.4

6. Analyzing Hubble Redshifts

The analysis of redshift observations must be modified to include changes in atomic
emissions as well as changes in photons, beginning with the mathematical definition of
redshift.

Redshift z is traditionally defined

(21) z =
λobs(t0) − λ

λ
,

where λ is the assumed constant atomic emission and λobs(t0) is the observed wavelength of
this emission from a distant source. With the assumptions that photons evolve, λobs(t0) =
(a0/a1)λ, but that atomic emissions do not,

(22) z =
a(t0)

a(t1)
− 1.

a(t0) is the current radius and a(t1) was the radius at the time of emission.
Define a new redshift variable k as

(23) k =
λ(t1, t0) − λ(t0, t0)

λ(t0, t0)
,

where λ(t1, t0) is the wavelength observed today from a distant source and λ(t0, t0) is the
wavelength emitted today by a reference atom. Astronomers measure the redshift defined
by k. k is equivalent to

(24) k =
a(t1)

a(t0)
− 1,

using equation (20).

4The same mathematical logic applies for Schwarzschild geometry. r may be substituted for t and ε (r)
substituted for ε (t) in equation (20) to give the spectral shift that would be observed at r0 of a photon
emitted at r1.

λ(r1, r0)

λ(r0, r0)
=
ε (r1)

ε (r0)
with ε(r) =

1√
(1 − 2 kM/c2r)

.

For r0 > r1 the observed shift is red. For r1 > r0, the observed shift is blue.
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The mathematical coordinate distance r to a source is a function of the observed redshift
k of the source and the deceleration parameter qo. The following derivations are similar
to the ones made when atomic evolution is ignored and the universe is assumed to be
expanding [14], but differ because k not z describes the observed redshift and some choices
in signs are made differently when the universe is contracting [15]. It is assumed that the
observed photons were emitted after contraction began.

Setting ds = 0 in the Friedmann metric, equation (8), gives

(25) c dt =
−a(t) dr

(1 − r2)1/2
.

The source is located at the spatial coordinates (r1, 0, 0) with emission at time t1 and
the observer is at (0, 0, 0) with reception at time t0.

(26) c

∫ t0

t1

dt

a(t)
=

∫ r1

0

dr

(1 − r2)1/2
= sin−1 r1.

Substituting a(t) and dt calculated from the Friedmann solution, equation (9), gives

(27) r1 = sin(ψ0 − ψ1).

The Friedmann equation for the closed universe is [14, p 113]

(28) ȧ2 = c2
(α
a
− 1
)
.

The Hubble constant H and the deceleration parameter q are defined by

(29) H(t) =
ȧ

a
,

ä

a
= −q(t)[H(t)]2.

H is negative and q is greater than 1/2 for a closed, collapsing universe. Present day values
are denoted by Ho and qo.
α, the constant in equation (9), may be written

(30) α =
2qo

(2qo − 1)3/2
c

|Ho|
.

Solving for ψ0 and ψ1 in terms of k and q0 and substituting into equation (27) gives

r1 =
(2qo − 1)1/2

qo

[
k − (1 + k)(1 − qo)

qo

]
+

+
(1 − qo)

qo

{
1 −

[
k − (1 + k)(1 − qo)

qo

]2}1/2

.

(31)

Luminosity distance DL is related to the observed flux f and the intrinsic luminosity L
of the source by the equation

(32) f =
L

4πD2
L

.
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The flux observed can be calculated by noting that the luminosity is decreased by a
factor of a(t0)/a(t1) because of the apparent decrease of the photon’s energy and decreased
by another factor of a(t0)/a(t1) because of the changes in time in the local metric, equation
(10). The distance to the source is r1 a(t0). This gives an observed flux of

(33) f =
La

2(t0)
a2(t1)

4πr21a
2(t0)

.

Comparing equations (32) and (33) gives

(34) DL = r1 a(t0) (1 + k),

where equation (24) has been used. Combining equations (31) and (34) and noting that

(35) a(t0) =
−c
Ho

1

(2qo − 1)1/2
,

gives the desired result

DL =
−c
Ho

(1 + k)

qo

{[
k − (1 + k)(1− qo)

qo

]
+

+
(1− qo)

(2qo − 1)1/2

(
1−

[
k − (1 + k)(1− qo)

qo

]2)1/2}
.

(36)

The relationship between distance modulus (the difference between the apparent mag-
nitude m and absolute magnitude M of a celestial object) and luminosity distance, DL,
is

(37) m−M = 5 log10

(
DL

10 parsecs

)
.

The Hubble constant Ho (negative for the contracting half of the curve) and the decel-
eration parameter qo (which must be > 1

2) characterizing a closed Friedmann universe are
then varied to find best least-squared fits to Hubble redshift observations of m−M and k
using equations (36) and (37).

7. Supernovae Redshifts

Two supernovae data sets are analyzed here, the SCPUnion2.1 compilation5 [16] and the
set from Davis et al.6 [17] which combines data from Wood-Vasey et al. [18] and Riess et
al. [19]. For the SCPUnion2.1 data the best fit was found to be Ho = −70.2 kms−1Mpc−1

and qo = 1
2 + (0.001). This fit is shown in Figure 2. The average data error is 0.223 and for

these fit parameters the standard deviation is 0.272. Although not used for fitting, three
SNe 1a (with spectroscopic evidence for classification) at redshift greater than 1.5 are also
plotted in Figure 2 [20] [21] [22].

5These data were downloaded from http://supernova.lbl.gov/Union/figures/SCPUnion2.1 mu vs z.txt
6These data were downloaded from http://braeburn.pha.jhu.edu/∼ariess/R06/Davis07 R07 WV07.dat

http://supernova.lbl.gov/Union/figures/SCPUnion2.1_mu_vs_z.txt
http://braeburn.pha.jhu.edu/~ariess/R06/Davis07_R07_WV07.dat
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Figure 2. SCPUnion2.1 supernovae redshift data. Solid line fit using the
Friedman solution with the parameters Ho = −70.2 kms−1Mpc−1 and qo =
1
2 + (0.001). Three SNe 1a at redshifts greater than 1.5 are also plotted (see
text).

Figure 3. Supernovae redshift data from Davis et al. Solid line fit using
the Friedman solution with the parameters Ho = −66.5 kms−1Mpc−1 and
qo = 1

2 + (0.001).

For the Davis et al. data set the best fit was found to be Ho = −66.5 kms−1Mpc−1 and
qo = 1

2 + (0.001). This fit is shown in Figure 3. The average data error is 0.231 and for
these fit parameters the standard deviation is 0.234.
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Figure 4. The fit parameter space for Ho and qo. The black line shows
the best fit for a given choice of Ho or qo. Percentage contours are the
differences from the best fit shown by the black dot. See text for meaning
of 11.9.

Figure 4 shows the percentage differences from best fit for other choices of Ho and qo.
For both data sets the least-squared fits are better the closer qo = 1

2 + δ is to 1
2 . δ = 0.001

is near the value where improvement in fit diminishes as δ is further reduced. No lower
limit for δ was found. Figure 5 illustrates average deviation for best fits for smaller values
of qo for each data set. Both redshift data sets imply that the universe is very nearly flat.
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Figure 5. Average deviation for best fits for smaller values of qo for each
data set. The corresponding best fit Ho for each qo is indicated on the top
axis.
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8. Minimum Age of the Universe

The age of the universe may be estimated from the magnitude-redshift data in the usual
manner [14, p 114], except one sign must be changed to reflect contraction,

(38) to =
−1

Ho

[
1

2qo − 1
+

qo

(2qo − 1)3/2
cos−1 1− qo

qo

]
.

A value for cos−1 corresponding to the fourth quadrant is assumed.
Since (2qo − 1) ≈ 0, equation (38) cannot be used directly. But equation (38) will give

an estimate for the minimum age of the universe if a maximum value for qo is known. A
maximum qo may be estimated using a maximum observed redshift, kmax, and assuming
that the light was emitted just when the universe was at its maximum size. Combining
equation (24) for k with an equation giving the maximum of the curve a(tm) in terms of
today’s parameters [23, p 483],

(39) a(tm) =
2q0

2q0 − 1
a(t0),

gives qo max,

(40) qo max =
1 + kmax
2 kmax

.

Substituting qo max andHo in equation (38) then gives a robust estimate for the minimum
age of a collapsing Friedmann universe. This is only a minimum age estimate since there
is no way of knowing whether the light was emitted when the universe was at its maximum
size.

Figure 6 illustrates the relationship of minimum age to maximum observed redshift
determined in this way for both data sets.

Ellis et al. [24] have measured redshifts in the range of 8.6 to 11.9 utilizing a new sequence
of near-infrared Wide Field Camera 3 images of the Hubble Ultra Deep Field. Table 1
presents their redshift results and minimum ages calculated usingHo = −66.5 kms−1Mpc−1

from fitting Davis et al. [17]. The open circles in Figure 4 mark the maximum value q0 can
have and still observe a redshift of 11.9. This value is q0 = 0.54.

From these redshift measurements it is likely that the universe is greater than 2000
billion years old.

9. Dark Energy, Dark Matter, Time until Collapse

The close agreement of Friedmann theory and redshift measurements makes it is unnec-
essary to postulate dark energy.

Dark matter must exist since visible matter is only a small fraction of the mass required to
close the Friedmann universe. Most dark matter is likely the end result of stellar evolution
since the universe is more than 100 times older than the lifetimes of typical stars. But
nothing in this analysis precludes other kinds of dark matter.
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Figure 6. Minimum ages of a Friedmann universe for maximum observed
redshifts. The solid line uses H0 from Davis et al. and the dotted line uses
H0 from SCPUnion2.1.

Table 1. z > 8.5 Candidates and Implied Minimum Ages for Friedmann Universes

ID RA Decl. zSED(±1σ) Age(±1σ)

109 years

UDF12-3954-6284 3:32:39.54 -27:46:28.4 11.9 +0.3
−0.5 2046 +74

−122

UDF12-4106-7304 3:32:41.06 -27:47:30.4 9.5 +0.4
−0.8 1485 +89

−173

UDF12-4265-7049 3:32:42.65 -27:47:04.9 9.5 +0.4
−0.7 1485 +89

−152

UDF12-3921-6322 3:32:39.21 -27:46:32.2 8.8 +0.4
−0.2 1333 +86

−42

UDF12-4344-6547 3:32:43.44 -27:46:54.7 8.8 +0.5
−0.5 1333 +108

−105

UDF12-3895-7114 3:32:38.95 -27:47:11.4 8.6 +0.8
−0.6 1291 +172

−125

UDF12-3947-8076 3:32:39.47 -27:48:07.6 8.6 +0.2
−0.2 1291 +42

−42

2
3 |Ho|−1 estimates the time until collapse of the Friedmann universe when qo is near 0.5.

Ho = −66.5 kms−1Mpc−1 gives 9.80 billion years. Ho = −70.1 kms−1Mpc−1 gives 9.30
billion years.
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10. Discussion

“Physics is not mathematics, and mathematics is not physics . . . mathematicians prepare
abstract reasoning that’s ready to be used if you will only have a set of axioms about the
real world . . . ” Feynman [25, p 55].

The mathematics of general relativity isn’t a physical theory until mathematical concepts
such as gµν and xµ are linked by axioms to specific laboratory methods that measure things
like distance and time. Albert Einstein took this step just as he did for special relativity by
asserting that measurements made with rigid meter sticks and balance clocks are equivalent
to the mathematical distances and times of general relativity. Assuming a rigid meter stick
is equivalent to assuming that atoms never change. Even as he did this Einstein had qualms
about this choice.

In his 1921 Nobel Lecture Einstein said:

. . . it would be logically more correct to begin with the whole of the laws and

. . . to put the unambiguous relation to the world of experience last instead
of already fulfilling it in an imperfect form for an artificially isolated part,
namely the space-time metric. We are not, however, sufficiently advanced
in our knowledge of Nature’s elementary laws to adopt this more perfect
method without going out of our depth. [26, p 483]

Einstein continued to have these misgivings his whole career. He wrote in 1949:

Is there such a thing as a natural object which incorporates the “natural-
measuring-stick” independently of its position in four-dimensional space?
The affirmation of this question made the invention of the general theory
of relativity psychologically possible; however this supposition is logically
not necessary. For the construction of the present theory of relativity the
following is essential:

(1) Physical things are described by continuous functions, field-variables
of four coordinates. As long as the topological connection is preserved,
these latter can be freely chosen.

(2) The field-variables are tensor-components; among the tensors is a
symmetrical tensor gik for the description of the gravitational field.

(3) There are physical objects, which (in the macroscopic field) measure
the invariant ds.

If (1) and (2) are accepted, (3) is plausible, but not necessary. The
construction of mathematical theory rests exclusively upon (1) and (2).

A complete theory of physics as a totality, in accordance with (1) and
(2) does not yet exist. If it did exist, there would be no room for the
supposition (3). For the objects used as tools for measurement do not
lead an independent existence alongside of the objects implicated by the
field-equations. [27, p 685]

It is intriguing that it was Einstein who discovered vacuum permittivity depends on
gravity. In 1907, there was no general relativity, no Bohr atom, and no real understanding
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of photons. When these theories were later in place, the connection provided by vacuum
permittivity between spacetime curvature and atomic structure was overlooked. Einstein
knew that the “tools for measurement do not lead an independent existence alongside of
the objects implicated by the field-equations.” What he did not know was that the solution
was already in his 1907 paper and that there was no need of “going out of our depth” to
create the more complete general relativity he wanted, where the “tools for measurement”
depend on spacetime exactly as “other objects implicated by the field-equations.”

In 1990 Sumner rediscovered that vacuum permittivity changes with spacetime curvature
and began exploring some of its consequences for Friedmann geometry. At that time
Sumner was unaware of Einstein’s 1907 paper and was unaware of Schrödinger’s 1939
seminal discovery that every quantum wavelength expands and contracts in proportion to
the Friedmann radius.

Schrödinger [6] argued that if spacetime is curved as general relativity demands, then its
effects on quantum processes must not be dismissed without careful investigation. Using
the equations of relativistic quantum mechanics, Schrödinger found that the plane-wave
eigenfunctions characteristic of flat spacetimes are replaced in the curved spacetime of
the closed Friedmann universe by wave functions that are not precisely flat. They have
wavelengths that are directly proportional to the Friedmann radius.

This means that every eigenfunction changes wavelength as the radius of the universe
changes. The quantum systems they describe do as well. In an expanding universe quantum
systems expand. In a contracting universe they contract. The assumption is often made
that small quantum systems are isolated and that their properties remain constant as the
Friedmann universe evolves. This assumption is incompatible with relativistic quantum
mechanics and with the curved spacetime of general relativity as Schrödinger proved [28].

These changes in quantum systems may equivalently be viewed as a logical consequence
of the fact that the energy and momentum of “isolated systems” are not conserved. Energy
and momentum change when the spacetime curvature of the universe changes. Schrödinger
wrote:

“In an expanding space all momenta decrease . . . for bodies acted on by no
other forces than gravitation . . . This simple law has an even simpler inter-
pretation in wave mechanics: all wavelengths, being inversely proportional
to the momenta, simply expand with space.”7 [30, p 58]

In a contracting space, the opposite is true. All momenta increase and all wavelengths,
being inversely proportional to the momenta, simply contract with space.

Schrödinger had a deep understanding of both wave mechanics and general relativity.
Like most physicists, Schrödinger “knew” Hubble redshift meant that the universe is ex-
panding, a hangover from the pre-relativistic interpretations of redshifts originally made by
Slipher [31] and Hubble [32] who tentatively assumed that all galactic redshifts are solely
Doppler effects. It is interesting to speculate how long it would have taken Schrödinger
to correctly interpret Hubble redshift if he had asked himself the question, “Would the

7Pauli [29, p 220] made the same observation.
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changes in atoms and photons I found change the interpretation of Hubble redshift?” A
good guess is that it would have taken Schrödinger only a few heartbeats.

Feynman was correct when he noted that “Physics is not mathematics, and mathematics
is not physics.” You do need the right “set of axioms about the real world.” Assuming
meter sticks are rigid and atoms never change is not one of them.

11. Conclusions

Einstein’s assumption that gravitational fields are equivalent to uniformly accelerating
coordinate systems led to his discovery that the coordinate speed of light and vacuum
permittivity are functions of the strength of the gravitational field and ultimately led
him to general relativity. The dependence of vacuum permittivity on local spacetime
curvature implies that the strength of electrical fields also depends on spacetime location,
influencing the sizes and the energies of both atoms and photons. This must be factored
into every interpretation of physical measurements made for every spacetime geometry. For
Friedmann geometry, a comparison of the spacetime curvature when photons were emitted
long ago to the curvature today proves that Hubble redshifts result from a Friedmann
universe that is contracting. The changes in atoms and photons derived here confirm
Schrödinger’s proof that quantum wave functions expand and contract proportionally to
the radius of a closed Friedmann universe.

The physics of Maxwell, Einstein, Bohr, and Friedmann from the 1920’s explain modern
Hubble redshift measurements. There is no need to postulate dark energy. Our universe
is finite, collapsing, and very nearly flat. It began in a big bang at least 2000 billion years
ago and will end in about 9.6 billion years. Most dark matter likely results from stellar
evolution since the age of the universe is much greater than stellar lifetimes.
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