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Abstract 
This paper describe a system-level approach to improve the 
area and delay of datapath designs that perform polynomial 
computations over ܼଶ೘, which are used in many applications 
such as computer graphics and digital signal processing 
domains. This approach optimizes the implementation of 
multivariate polynomial systems in terms of the number of 
arithmetic operations by performing optimization on a 
system level prior to high-level synthesis. Univariate 
functional decomposition of polynomial expressions and 
canonization form over ܼଶ೘ are used in this method. We use 
GAUT high-level synthesis tool to generate RTL datapath 
architectures for the optimized polynomials. Experimental 
results on a set of benchmark applications with polynomial 
expressions show that this method outperforms conventional 
methods in terms of the area of the sequential datapath 
architectures in speed optimization mode with an average 
improvement of 25.81%, and the required clock cycles in two 
modes of speed optimization and area optimization, with an 
average improvement of 23.48% and 38.24%, respectively. 

Keywords 
High-level synthesis, system-level transformations, register 
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1. Introduction 
As the complexity and size of modern embedded 

application is continuously increasing, designing hardware at 
higher levels of abstraction for faster design adjustments and 
higher simulation speed is necessary. Conventional high 
level synthesis techniques are not efficient to eliminate 
redundancy and common sub-expression for polynomial 
datapaths over ܼଶ೘. Such polynomial functions have been 
optimized manually to achieve efficient register-transfer-
level (RTL) implementation. This process can be time 
consuming and error prone. Hence, developing high level 
synthesis and optimization techniques to automate the design 
of custom polynomial datapaths from a behavioral 
description is desirable. 

The Horner form of a polynomial expression is a normal 
form representation using a nested format. This method 
transforms the expression into a sequence of nested additions 
and multiplications, which are suitable for univariate 
polynomials and for sequential machine evaluation using 
multiplier-accumulator units. 

Another algebraic technique is based on kernel/co-kernel 
computation [6], in which first, lowest cost form of given 
polynomials from canonization, square-free factorization and 

original forms is taken into consideration. Then common 
coefficients and common cubes are extracted using the 
kernel/co-kernel extraction technique from [7]. Common 
sub-expressions are determined using algebraic division 
technique. This method is only applicable to those 
polynomials in which linear blocks exist explicitly.  

In [7] and [8], a factoring method was proposed 
employing kernel/co-kernel extraction with common sub-
expression elimination to reduce the size of implementation. 
The approximate factorization algorithm presented in [8] 
represents an arithmetic function f as a product of sub-
functions f = f1×f2×…×fn where fi is a multivariate 
polynomial. However, this algorithm is able to factorize 
square-free polynomials and cannot deal with a sub-function 
fi with a degree higher than one. 

Another algebraic method has been proposed in [3] and 
then improved in [4]. The main idea is somehow similar to 
algebraic division techniques used in logic synthesis. This 
technique tries to decompose the original polynomial poly as 
poly = p1 × p2 + p3 while p3 should be minimized. For doing 
so, all possible initial values of p1 and p2 must be evaluated. 
Then for each initialization it is necessary to check whether 
other monomials in poly can be represented in the form p1 × 
p2. Finally, the best initialization, which constitutes the 
lowest complexity p3, is chosen. The algebraic technique in 
[2] improves the optimization heuristics in [3] and [4] to 
extract more common sub-expressions by considering single-
variable and hidden monomials. This technique makes use of 
finite ring algebra and Modular Horner Expansion Diagram 
[5]. This method first reduces the original polynomials over ܼଶ೘. Then common sub-expressions are extracted based on 
two heuristics. The main disadvantage of this technique is 
that decompositions are started from reduced polynomials 
while if the original polynomials are used more common sub-
expressions would be extracted. 

The Algebraic method in [1] proposed for the first time a 
kind of polynomial optimization technique based on 
redundancy addition/removal. The main idea is somehow 
similar to logic optimization based on redundancy 
addition/removal which has been developed in logic 
synthesis area. In this method, first, kernels/co-kernels of 
given polynomials are extracted as good building blocks, 
then a large number of vanishing polynomials over ܼଶ೘, 
which are equal to 0 over ܼଶ೘, are generated as redundancy 
in order to transform the given polynomials in such a way 
that more common sub-expressions can be extracted. Finally, 
using algebraic division common sub-expressions are 
determined.  

In the current paper, we introduce some system-level 
techniques for transformation of the given system of 
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polynomials, which offer more common sub-expressions. 
Our optimization method reduces the complexity of 
polynomial datapaths in terms of the number of arithmetic 
operations by performing optimization on a system-level 
prior to high-level synthesis. Furthermore, in order to 
generate RTL datapath architecture for the optimized 
polynomials, we use GAUT high-level synthesis tool [12] as 
a high-level synthesis tool, although any other high level 
synthesis tools can be utilized. Our optimization method 
reduces the area and the number of clock cycles at the RTL 
datapath architectures. In this method, we use mathematics 
concept of univariate functional decomposition of 
polynomial expressions in order to obtain good building 
blocks and hence extract more common sub-expressions. 

In summary, our design flow in this paper consists of the 
following tasks:  

• System-level transformations to optimize datapath 
designs that perform polynomial computations over ܼଶ೘ 
using univariate functional decomposition and 
canonization form. 

• Univariate functional decomposition of the given 
polynomials to obtain good building blocks and extract 
suitable common sub-expressions. 

• High-level synthesis using GAUT [12] to generate 
datapath architectures for the optimized polynomials as 
sequential circuits. 

• Evaluating the performance of the proposed method and 
showing its effectiveness by comparing it with the state-
of-the-art polynomial optimization methods in the 
literature. 

The remainder of this paper is organized as follows. 
Section 2 introduces some preliminaries which are used in 
the rest of the paper. A motivational example is presented in 
section 3. Section 4 explains, in detail, our proposed 
polynomial optimization method. Section 5 evaluates the 
performance of our algorithms and presents experimental 
results that demonstrate their effectiveness. Finally, section 6 
provides our conclusion. 

 

2. Preliminaries 
This section introduces some preliminaries which are 

used in the rest of the paper. In this paper arithmetic data 
paths are modeled as polynomial functions over ܼଶ೙భ ൈܼଶ೙మ ൈ … ൈ ܼଶ೙೏  to ܼଶ೘[9]. Let ଵ݂ሺݔҧሻ,…, ௣݂ሺݔҧሻ be p given 
polynomial functions over ܼଶ೙భ ൈ ܼଶ೙మ ൈ … ൈ ܼଶ೙೏  to ܼଶ೘ 
as the specification where  ݔҧ = < x1,x2,…,xd > is a vector of d 
input variables and n1, n2, …, nd denote size of the 
corresponding variables. ܼଶ೙ represents the finite set of 
integers {0, 1, …, 2n-1}. m is the size of the output bit-vector 
f. 

Theorem 1: Let f be a polynomial function from ܼଶ೙భ ൈ … ൈ ܼଶ೙೏  to ܼଶ೘. Then according to [9], f can be 
uniquely represented in a canonical form as (1), where Yk is 
falling factorial of degree  ݇ א ܼ (ܼ denotes the ring of 
integers) and is defined as follows, 

Y0(x)=1,  Y1(x) = x,  

Y2(x)= x×(x-1), …, Yk(x)=Yk-1(x)×(x-k+1). 

aK is an integer such that 1 ≤ aK < 2m

gcd(2m, ∏ ki!d
i=1 )

, K=<k1, k2, 
…, kd> for each ki= 1, 2, …, μi, and ߤ௜ ൌ ݉݅݊ሼ2௡೔,  .ሺ2௠ሻሽܨܵ
SF(n) is the least ݇ א Գ such that n divides k!, and denotes 
Smarandache function [10]. gcd(x,y) computes the greatest 
common divisor of x and y. 

݂ ൌ ∑ ܽ௄ ௄ܻ௄ ൌ ∑ ܽ௄ ൈ ௞ܻభሺݔଵሻ ൈ … ൈ ௞ܻ೏ሺݔௗሻ௄  (1)

For example, let f = 2x5+x4+x2-2x, the canonical form of 
f over ܼଶయ  is 2x2. Note that the canonical form of a 
polynomial over ܼଶ೙భ ൈ ܼଶ೙మ ൈ … ൈ ܼଶ೙೏  to ܼଶ೘ may be 
zero. 

Definition 1: If g and h are univariate polynomials, then 
univariate polynomial f(x) = g(x) o h(x) is their functional 
composition, and (g, h) is a univariate functional 
decomposition of f, where g and h are polynomials with 
lower degree than f and are called left decomposition factor 
and right decomposition factor of f, respectively. o is the 
composition operator via computing the output of g when it 
has an argument of h(x) instead of x (i.e., f(x)=g(x) o h(x) 
=g(h(x))).  

Example 1: Let f(x)= x4+x2-3, then f(x)=g(x) o h(x) = 
(x2+x-3) o x2 is a univariate functional decomposition of f, 
where g(x) = x2+x-3 and h(x) = x2. 

 

3. Motivational Example 
In this section, we present an example to motivate the 

optimization technique to be presented. In order to 
demonstrate the effectiveness of the proposed method, let us 
consider the following polynomial system. 

f1(x) = x4+2x3+x2+xy3-3xy2+2xy 

f2(x) = x6+3x5+3x4+x3+x2+ x. 

This system needs 32 multiplications and 10 additions. 

After applying the factorization technique using 
MATLAB [11] to these polynomials, f1 and f2 are 
transformed to the following forms 

f1(x) = x(x3+2x2+x+y3-3y2+2y) 

f2(x) = x(x+1)(x4+2x3 +x2+ 1), 

which need 19 multiplications and 9 additions.   

By applying our proposed optimization method over ܼଶమ  
to the original polynomials, f1 is converted to the following 
form, 

h(x) = x2+x, g(x) = x2  

f1(x) = g o h + xy3-3xy2+2xy = x2 o (x2+x) + xy3-3xy2+2xy,  

because canonical form of  xy3-3xy2+2xy  over ܼଶమ is 0,  

f1(x)= x2 o (x2+x) = (x2+x)2 = h2, 

and f2 is converted as follows. 

h(x) = x2 + x, g(x) =x3 + x, 



 

(a)

 
(b)

Figure 1: (a) Datapath architecture of the polynomials, implemented using factorization, (b) Datapath architecture of the
polynomials, implemented using our proposed method  

f2(x) = g o h = (x3 + x) o (x2+x) = (x2+ x)3+ x2+x = h3+h = 
h(h2+1) = h(f1+1). 

The optimized polynomial system requires only 3 
multiplications and 2 additions. We have used GAUT as a 
high-level synthesis tool to generate datapath architectures 
for the polynomial systems. GAUT tool has been used in 
many academic projects, and its HLS algorithms for binding, 
allocation, and scheduling are well documented [12]. 

 We have used GAUT to generate datapath architectures 
for two modes; speed optimization and area optimization in 
which only one functional unit is considered for each 
operation type existed in the design. The datapath 
architecture of the polynomials, implemented using 
factorization, in the speed optimization mode is shown in 
Fig. 1(a). The datapath architecture of the polynomials, 
implemented using our proposed method is shown in Fig. 
1(b).  

The results reported by GAUT for the polynomials, 
implemented using factorization and our proposed method 
are shown in Table 1. We have used “notch” library, 
provided by GAUT, and we have set clock cycle to 20. This 
table reports area and number of the clock cycles, registers, 
multiplexers, and functional units (adder, subtracter, 
multiplier) in the datapath architectures of the factored 

polynomials and optimized polynomials using our proposed 
method, in speed optimization and area optimization modes.  

Table 1.  Gaut report for the polynomials, implemented 
using factorization, and for the polynomials, implemented 
using our proposed method, in speed optimization and area 
optimization modes. 

  Factorization Proposed 
Method 

Speed 
Optimization

Cycles 6 6 
Registers 14 4 

Muxes 160 32 

FU 
+ 4 1 
- 0 0 
× 6 1 

Area 530 91 

Area 
Optimization

Cycles 22 6 
Registers 13 4 

Muxes 320 32 

FU 
+ 1 1 
- 0 0 
× 1 1 

Area 91 91 

4. Proposed System-level Optimization Method 
We introduce some system-level techniques for 

transformation of the given system of polynomials, which 



 

offer more common sub-expressions. Our optimization 
method reduces the complexity of polynomial datapaths in 
terms of the number of arithmetic operations by performing 
optimization on a system-level prior to high-level synthesis. 
Furthermore, to generate datapath architecture for the 
optimized polynomials as sequential circuits, we use GAUT 
high-level synthesis tool. Our optimization method reduces 
area and number of clock cycles in the datapath architectures. 

In the first phase of the proposed system-level 
optimization method, each given multivariate polynomial 
f(x1,…, xd) is transformed to several univariate polynomials 
by representing  f  based on each input variable xi ሺ1 ൑ ݅ ൑݀ሻ. Then each obtained univariate polynomial is decomposed 
through univariate functional decomposition algorithm 
explained in subsection 4.1 in order to obtain good building 
blocks. In the second phase, to extract common sub-
expressions among the given polynomials, we make use of 
univariate functional decomposition algorithm unlike other 
works that utilize algebraic division technique [1][6][7]. 
Finally, among various forms of the polynomials in terms of 
the extracted common sub-expressions, the form with 
smallest number of the arithmetic operations is selected. 
These phases are explained in more details in the following 
subsections. 

4.1. Determining Building Blocks (Phase I) 
In this phase, each given multivariate polynomial f is 

transformed to several univariate polynomials by 
representing f based on each input variables. Then each 
obtained univariate polynomial is decomposed through 
univariate functional decomposition algorithm in order to 
obtain good building blocks. This phase is explained in the 
following steps. 

Step 1: Each given multivariate polynomial f(x1,…, xd) is 
rewritten based on each input variable xi  ሺ1 ൑ ݅ ൑ ݀ሻ as (2). ݂ ൌ ෍ ௘݂భ,..,௘೔షభ,௘೔శభ,..,௘೏ݔଵ௘భ … ௜ାଵ௘೔శభݔ௜ିଵ௘೔షభݔ … ௗ௘೏௘భ,..,௘೔షభ,௘೔శభ,...,௘೏ஹ଴ݔ (2)

where fe1,..,ei-1,ei+1,..,ed
ሺݔ௜ሻ is a univariate polynomial which 

represents the polynomial f based on the variable xi, and 
e1,...,ei-1,ei+1,...,ed are degrees of d-1 variables x1,…, xi-1, 
xi+1,…, xd in polynomial f. 

After applying this transformation to all given 
polynomials fj ሺ1 ൑ ݆ ൑  is the number of given ݌ ሻ where݌
polynomials, all obtained univariate polynomials 
fe1,..,ei-1,ei+1,..,ed

ሺݔ௜ሻ ሺ1 ൑ ݅ ൑ ݀ሻ from all fj are stored in a set 

named ݕ݈݋ܾܲݑ݈݈ܵܣ௫೔   ሺ1 ൑ ݅ ൑ ݀ሻ. 

Example 2: Suppose f1(x,y) = x6y2+5x6y+2x5y2+10x5y-
x4y2-5x4y+x3y4-x3y2-5x3y+2x2y4+2x2y2+10x2y-xy2-5xy, and 
f2(x,y) = x6y3+x4y4-2x4y3+2x4y2-2x4y+x2y3+xy4+2xy2-2xy.  

Then f1 based on the variable y is represented as  

 f1 =x6(y2+5y)+x5(2y2+10y)+x4(-y2-5y)+x3(y4-y2-5y)+x2(2y4+ 
2y2+10y)+x(-y2-5y), 

so ݕ݈݋ܾܲݑ݈݈ܵܣ௬  = { f1(y)= -y2-5y, f2(y)=2y4+2y2+10y, 
f3(y)=y4-y2-5y, f4(y)=-y2-5y, f5(y)=2y2+10y, f6(y)=y2+5y}.  

And f1 based on the variable x is represented as 

 f1 = y4(x3+2x2)+y2(x6+2x5-x4-x3+2x2-x)+y(5x6+10x5-5x4-
5x3+10x2-5x),  

so ݕ݈݋ܾܲݑ݈݈ܵܣ௫ ={f1(x)=5x6+10x5-5x4-5x3+10x2-5x, f2(x)=x6 

+2x5-x4-x3+2x2-x, f4(x)= x3+2x2}.   

f2 based on the variable y is represented as 

 f2 = x6(y3)+x4(y4-2y3+2y2-2y)+x2(y3)+x(y4+2y2-2y), 

 so ݕ݈݋ܾܲݑ݈݈ܵܣ௬ ൌ ௬ݕ݈݋ܾܲݑ݈݈ܵܣ  y3,y4-2y3+2y2-2y,y4+2y2}׫

-2y}.  

And f2  based on the variable x is represented as 

 f2 = y4(x4+x)+y3(x6-2x4+x2)+y2(2x4+2x)+y(-2x4-2x), 

 so ݕ݈݋ܾܲݑ݈݈ܵܣ௫ = ݕ݈݋ܾܲݑ݈݈ܵܣ௫  x4+x, x6-2x4+x2, 2x4} ׫

+2x, -2x4-2x}. 

Step 2: univariate functional decomposition is computed 
for each member of ݕ݈݋ܾܲݑ݈݈ܵܣ௫೔  ሺ1 ൑ ݅ ൑ ݀ሻ (i.e., 
fe1,..,ei-1,ei+1,..,ed

ሺݔ௜ሻ) by using the univariate functional 
decomposition algorithm explained in the follow. 

Univariate functional decomposition algorithm: Let g 
and h be polynomials of degrees r and s over a field. Their 
functional composition f = g o h = g(h) has degree n = r×s. 
The univariate functional decomposition problem can be 
stated as follows: given f of degree n = r×s, determine 
whether such g and h exist, and in the affirmative case, 
compute them [13]. 

The pseudo code of the univariate functional 
decomposition algorithm [14], which is slightly modified in 
our method to also calculate indecomposable part of an input 
polynomial, is shown in Fig. 2. For every r and s values for 
which r×s = n, UniDec procedure in Fig. 2 with f and r as 
inputs calculates a univariate functional decomposition for f 
as (3), where f0 is indecomposable part of f.  

ሻݔ)݂ ൌ ሻݔ)݃ ל ݄ሺݔሻ ൅ ଴݂ ൌ ݃൫݄ሺݔሻ൯ ൅ ଴݂  (3) 

As explained in [14],  f, g and h are in the following 
forms, f = xrs+ars-1xrs-1+...+a0, h = xs +cs-1xs-1+...+c1x, g = 
xr+br-1xr-1+ ... +b0, respectively. In this algorithm, first, 
coefficients of h, i.e., (c1,...,cs-1), are calculated from 
coefficients of f by h_UniDec procedure (lines 4-11 in Fig. 
2). For this purpose, polynomial qk is defined as follows:  

qk = xs +cs-1xs-1+ ... + cs-k xs-k, 0 ≤ k ≤ s. 

Then q0=xs, qs= qs-1=h, and qk = qk-1+ cs-k xs-k, 1 ≤ k ≤ s.  

According to [14], we can calculate the first k+1 
coefficients of hr from coefficients of qk

r. The k+1st 
coefficient of qk

r is the coefficient of xrs-k, this agree with ars-k, 
i.e., the k+1st coefficient of f, 1 ≤ k ≤ s-1. Thus if the earlier 
coefficients cs-1,…,cs-k+1 of h are known, then cs-k can be 
determined by computing 

cs-k=
௔ೝೞషೖିௗೖ௥ ,      1 ൑ ݇ ൑ ݏ െ 1, 

where, dk is the coefficient of xrs-k in qk-1
r [14]. 

Second, from f and h, coefficients of g, i.e., (b0,...,br-1), 
are calculated by g_UniDec procedure (lines 12-16 in Fig. 2), 



 

let A[i,j] be the coefficient of  xis in hj, 0 ≤ i, j ≤ r. Then b = 
(b0,…,br-1), can be determined by solving the following 
equation: 

Ab = a, 

where a=(a0, as,…, ars) are the coefficients of f. 

Then, composition of h and g is computed by using the 
function subs, which is a function library of Maple [15] and 
computes the value of g o h. The difference between f and g 
o h is considered as indecomposable part of f and refereed as 
f0 (line 15 in Fig. 2). 

Figure 2: Univariate functional decomposition algorithm 

Example 3: Let us consider a member of ݕ݈݋ܾܲݑ݈݈ܵܣ௫ in 
example 2; f = x6 +2x5-x4-x3+2x2-x. Because n = 6, one of the 
situation that r and s >1 are r =2, s =3. So g and h are in the 
following forms. 

h = x3 + c2x2 + c1x,  g = x2 + b1x+b0. 

The steps of the univariate decomposition algorithm are as 
follows.  ݍ଴଴ ൌ 1, ଴ଵݍ ൌ ,ଷݔ ଴ଶݍ ൌ  ଺ݔ

step 1: ( k = 1) ݀ଵ ൌ ,଴ଶݍሺ݂݁݋ܿ ଺ିଵሻݔ ൌ 0, ܿଶ ൌ ሺ௔ఱିௗభሻଶ ൌ ଵ଴ݍ  1 ൌ 1, ଵଵݍ ൌ ଷݔ ൅ ,ଶݔ ଵଶݍ ൌ ଺ݔ ൅ ହݔ2 ൅  ସݔ

step 2: ( k=2 ) 

݀ଶ ൌ ,ଵଶݍሺ݂݁݋ܿ ଺ିଶሻݔ ൌ 1, ܿଵ ൌ ሺ௔రିௗమሻଶ ൌ െ1  ݍଵ଴ ൌ 1, ଵଵݍ ൌ ଷݔ ൅ ଶݔ െ ଵଶݍ  ,ݔ ൌ ଺ݔ ൅ ହݔ2 െ ସݔ െ ଷݔ2 ൅  ଶݔ

So h is obtained as h= x3 + x2 െ x. 

Then by using the coefficients of f and h, coefficients of g are 
calculated as follows. ܣ ൌ ൥1 0 00 1 െ20 0 1 ൩, ܽ ൌ ൥ 0െ11 ൩ , ܾ ൌ ൥011൩ 

So g is obtained as g = x2+x. 

The general form resulting by applying the univariate 
functional decomposition algorithm to each member of ݕ݈݋ܾܲݑ݈݈ܵܣ௫೔  ሺ1 ൑ ݅ ൑ ݀ሻ is shown in (4). fe1,..,ei‐1,ei൅1,..,edሺݔ௜ሻ ൌ ௜ሻݔ)݃ ל  ݄ሺݔ௜ሻ ൅ ଴݂ሺݔ௜ሻ, fe1,..,ei‐1,ei൅1,..,edሺݔ௜ሻ ߳ ௫೔,   ሺ1ݕ݈݋ܾܲݑ݈݈ܵܣ ൑ ݅ ൑ ݀ሻ 

(4) 

Step 3: In the third step of the first phase of the proposed 
method, all obtained right decomposition factors ݄ሺݔ௜ሻ of all 
members of ݕ݈݋ܾܲݑ݈݈ܵܣ௫೔  are stored in a set named ݄_ݐ݁ݏ௫೔  
as good building blocks. 

Example 4: Let us consider example 2 again. By 
computing the univariate functional decomposition of all 
members of ݕ݈݋ܾܲݑ݈݈ܵܣ௫ and ݕ݈݋ܾܲݑ݈݈ܵܣ௬, ݄_ݐ݁ݏ௫ for 
variable x and ݄_ݐ݁ݏ௬ for variable y are obtained as follows. ݄_ݐ݁ݏ௫= {x3+x2-x, x2+x, x3-x, x2}, ݄_ݐ݁ݏ௬= {y2, y2-5y}.  

4.2. Common sub-expression extraction (Phase II) 
The aim of the second phase of the proposed method is to 

extract common sub-expressions between all given 
multivariate polynomials, which is equal to extract common 
sub-expressions between their equivalent univariate 
polynomials which are stored in ݕ݈݋ܾܲݑ݈݈ܵܣ௫೔ ሺ1 ൑ ݅ ൑ ݀ሻ. 

 To extract common sub-expressions we make use of 
univariate functional decomposition algorithm unlike other 
works that utilize algebraic division technique [1][6][7]. By 
considering members of ݄_ݐ݁ݏ௫೔  as good building blocks, we 
try to re-decompose all members of ݕ݈݋ܾܲݑ݈݈ܵܣ௫೔  by these 
building blocks and find common sub-expressions between 
them.  

By using g_UniDec procedure described in subsection 
4.1, each fe1,..,ei-1,ei+1,..,ed

ሺݔ௜ሻ ߳ ݕ݈݋ܾܲݑ݈݈ܵܣ௫೔  is assessed 
whether a polynomial g' can be calculated from this 
polynomial and each member of ݄_ݐ݁ݏ௫೔  as shown in (5), 

fe1,..,ei‐1,ei൅1,..,edሺݔ௜ሻ ൌ ݃Ԣ(ݔ௜ሻ ל  ݄Ԣሺݔ௜ሻ ൅ ଴݂ሖ ሺݔ௜ሻ ݄Ԣሺݔ௜ሻ א ௫೔ሺ1ݐ݁ݏ_݄ ൑ ݅ ൑ ݀ሻ  
(5) 



 

 where ݃′(ݔ௜ሻ is a new right decomposition factor of 
fe1,..,ei-1,ei+1,..,ed

, ଴݂ሖ ሺݔ௜ሻ is a new indecomposable part of 

fe1,..,ei-1,ei+1,..,ed
, and ݄Ԣሺݔ௜ሻ is a member of ݄_ݐ݁ݏ௫೔ . Please note 

that each member of ݄_ݐ݁ݏ௫೔  may be belonged to different 
members of ݕ݈݋ܾܲݑ݈݈ܵܣ௫೔ .  

To reduce cost of the corresponding hardware 
implementation of each polynomial, we make use of 
canonical representation of ଴݂ሖ ሺݔ௜ሻ over ܼଶ೙೔  to ܼଶ೘, which is 
explained in section 2, and then compare cost of the 
canonical form with the original form of ଴݂ሖ ሺݔ௜ሻ, and select 
the lower cost form. 

Example 5: Let us consider two members of ݕ݈݋ܾܲݑ݈݈ܵܣ௫ in example 2; p1= x6+2x5-x4-x3+2x2-x belonged 
to f1, and p2= x6-2x4+x2 belonged to f2. Two members of 
h_setx in example 4 are h1=x3+x2-x, and h2=x3-x which are a 
right decomposition factor of p1 and p2 respectively. By 
applying the common sub-expression phase to p1 and p2 over ܼଶయ , two obtained forms of these polynomials are as follows.  

Form 1:  

p1=(x2-x) o h2 + f0 = (x2-x) o (x3-x) +2x5+x4+x2-2x, 

canonical_form(f0) = 2x2, so p1=(x2-x) o (x3-x) +2x2 over ܼଶయ , 

p2= x2 o h2= x2 o (x3-x). 

 Form 2: 

 p1=(x2+x) o h1=(x2-x) o (x3+x2-x),  

p2=(x2+2x) o h1 + f0= (x2+2x) o (x3+x2-x) -2x5-x4-2x2+2x.  

canonical_form(f0) = -3x2, so p2= (x2+2x) o (x3+x2-x) -3x2 
over ܼଶయ .  

Therefore result of the common sub-expression extraction 
phase is various decompositions of each fe1,..,ei-1,ei+1,..,ed

based 
on the different building blocks belonged to different 
members of ݕ݈݋ܾܲݑ݈݈ܵܣ௫೔ . 
4.3. Complete system-level optimization algorithm 

The complete proposed system-level optimization 
algorithm is explained in this subsection. The pseudo-code of 
the proposed method is shown in Fig. 3. Lines 3-10 describe 
the first phase of the proposed method in which each input 
multivariate polynomial is transformed to several univariate 
polynomials which are stored in ݕ݈݋ܾܲݑ݈݈ܵܣ௫೔ ሺ1 ൑ ݅ ൑ ݀ሻ 
(lines 3-6). Then univariate functional decomposition 
algorithm in Fig. 2 is applied to these univariate polynomials 
and then all obtained right decomposition factors are stored 
in ݄_ݐ݁ݏ௫೔  as good building blocks (lines 7-10). Lines 11-16 
describe the second phase in which each member of ݕ݈݋ܾܲݑ݈݈ܵܣ௫೔  is re-decomposed by members of ݄_ݐ݁ݏ௫೔  
using g_UniDec procedure in Fig. 2 (lines 11-14), and 
common sub-expressions are determined. The canonical form 
over ܼଶ೙౟  to ܼଶ೘ is calculated for f0

'(xi) in order to reduce 
cost of the implementation (lines 15-16). Finally, to select the 
form with the smallest number of arithmetic operations, 
every new generated form of all members of ݕ݈݋ܾܲݑ݈݈ܵܣ௫೔  is 
considered to evaluate related hardware implementation by 
computing cost_func function. This function determines the 
number of arithmetic operations such as additions and 

multiplications needed for implementation of the given 
polynomials (lines 17-22). 

 

Figure 3: System-level optimization algorithm 

Example 6: Let us consider the polynomial system in 
example 2. This polynomial system originally needs 115 
multiplications and 23 additions. By applying our proposed 
method, we get an implementation with only 16 
multiplications and 10 additions as shown below.  

t1= x2,    t2= x(t1-1),    t3= t1+t2,    t4= y2, 
f1= t4

2t1(x+2) + y(y+5)t3(t3+1) ,   
f2= (t12+x)(t4(2+t4)-2y)+ yt4t2

2. 
The results reported by GAUT for the datapath architectures 
of the original and optimized polynomials as sequential 
circuits, in speed optimization mode, are shown in Table 2. 

Table 2.  GAUT report for the original and optimized 
polynomials. 
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+ - × 
Original 15 21 320 3 1 12 1028

Optimized 8 12 224 2 1 4 356 
 

5. Experimental Results 
In order to show the effectiveness of our proposed 

optimization method, we have employed different 
polynomials extracted from real embedded systems. Various 
combinations of multivariate cosine wavelet (MVCS) for 
graphic applications [7], Savitzky-Golay (SG) filters [16] and 
digital image rejection unit (DIRU) for image processing 



 

applications, Quadratic filters (Quad) for DSP applications 
[17], Phase-Shift Keying (PSK) for digital communication 
[18] have been taken into account as multi-output 
polynomials.  

Table 3.   Comparison of the datapath architectures in the 
speed optimization mode. 

  
DIRU 
PSK 
Quad 

DIRU 
PSK 
SG2 

DIRU 
Quad 
SG2 

DIRU 
MVCS

SG2 
%Δ 

H
or

ne
r 

Cycles 17 17 16 16 0.00 
Registers 22 24 20 20  

Muxes 384 352 324 336  

FU 
+ 2 2 3 4  
- 1 1 0 0  
× 11 13 7 7  

Area 937 1103 605 613  

T
ec

hn
iq

ue
 in

 [6
] Cycles 12 15 17 13 13.42

Registers 19 37 21 24  
Muxes 272 368 306 304  

FU 
+ 3 3 3 4  
- 1 1 0 0  
× 6 21 7 7  

Area 530 1775 605 613  

T
ec

hn
iq

ue
 in

 [1
] Cycles 15 15 11 13 18.32

Registers 16 15 20 26  
Muxes 243 256 304 288  

FU 
+ 2 2 4 4  
- 1 1 0 0  
× 5 5 7 15  

Area 439 439 613 1277  

O
ur

 a
pp

ro
ac

h 

Cycles 13 13 11 11 27.39
Registers 17 19 20 22  

Muxes 320 336 288 272  

FU 
+ 2 2 2 3  
- 1 1 0 0  
× 4 5 7 7  

Area 356 439 597 605  
 

We have implemented the proposed method along with 
the methods in [1] and [6] in Maple [15], and then we have 
used GAUT as a high-level synthesis tool [12] to 
automatically generate datapath architectures for obtained 
polynomials. 

To generate datapath architectures based on optimized 
polynomials, we considered two modes provided by GAUT; 
speed optimization and area optimization. Table 3 illustrates 
the results obtained using our proposed method, Horner 
form, and methods in [1] and [6] for speed optimization 
mode. This table reports area and number of the clock cycles, 
registers, multiplexers, and functional units (adder, 
subtracter, multiplier) in the obtained datapath architectures. 
%Δ indicates the percent of improvement in the number of 
required clock cycles in all methods compared to the Horner 
form. The results in the table indicate that in our method 
required clock cycles are reduced by an average of 38.11%, 
20.10%, and 12.24% in comparison with the Horner form, 
the method in [6] and the method in [1] across all 
benchmarks. This reduction indicates that our goal of 
reducing critical path delay has been achieved. Furthermore, 
area is improved in our method with an average improvement 
of 25.81% in comparison with other works. 

Table 4.   Comparison of the datapath architectures in the 
area optimization mode. 

  
DIRU 
PSK 
Quad 

DIRU 
PSK 
SG2 

DIRU 
Quad 
SG2 

DIRU 
MVCS

SG2 
%Δ 

H
or

ne
r 

Cycles 72 86 68 86 0.00 
Registers 13 15 13 16  

Muxes 592 656 560 672  

FU 
+ 1 1 1 1  
- 1 1 0 0  
× 1 1 1 1  

Area 99 99 91 91  

T
ec

hn
iq

ue
 in

 [6
] Cycles 52 91 72 71 8.38 

Registers 16 27 17 22  
Muxes 672 1056 800 832  

FU 
+ 1 1 1 1  
- 1 1 0 0  
× 1 1 1 1  

Area 99 99 91 91  

T
ec

hn
iq

ue
 in

 [1
] Cycles 36 36 55 65 37.92

Registers 12 11 18 19  
Muxes 411 432 752 832  

FU 
+ 1 1 1 1  
- 1 1 0 0  
× 1 1 1 1  

Area 99 99 91 91  
O

ur
 a

pp
ro

ac
h 

Cycles 41 48 49 52 38.68
Registers 16 17 18 18  

Muxes 624 704 720 752  

FU 
+ 1 1 1 1  
- 1 1 1 1  
× 1 1 0 0  

Area 99 99 91 91  
  

In the area optimization mode, only one functional unit is 
considered for each operation type existed in the design (i.e., 
all operations with the same type should be bound to a same 
functional unit). Table 4 illustrates the results obtained using 
our proposed method, Horner form, and methods in [1] and 
[6] for area optimization mode. The results reported in the 
table indicate that our proposed method provides fewer 
required clock cycles in comparison with the Horner form, 
the method in [6] and the method in [1] with an average of 
64.73%, 49.97%, and 0.01%, respectively, across all 
benchmarks. Such improvement in the required clock cycles 
with a fixed number of functional units indicates that by 
using our method the number of operations would be fewer 
than those of other works. In other words, our proposed 
method can efficiently determine common sub-expressions. 

 

6. CONCLUSION 
In this paper we have proposed a system-level 

optimization method for the data paths implemented using a 
system of polynomials. Our method optimizes polynomials 
to reduce the complexity of polynomial datapaths in terms of 
the number of arithmetic operations over ܼଶ೘. In the 
proposed method first all given multivariate polynomials are 
transformed to several univariate polynomials. Then 
univariate functional decompositions are calculated for them 
to obtain good building blocks. To extract common sub-
expressions we make use of univariate functional 



 

decomposition algorithm. We have used GAUT high-level 
synthesis tool to generate RTL datapath architectures for the 
optimized polynomials as sequential circuits. Experimental 
results show superiority of our approach in the area and delay 
savings in contrast with the other related works. As a future 
work, we are going to utilize multivariate functional 
decomposition algorithm to extract better building blocks. 
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