

RTL Datapath Optimization Using System-level Transformations

Samaneh Ghandali1, Bijan Alizadeh1,2, Masahiro Fujita3, Zainalabedin Navabi1

1School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
2School of Computer Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

3VLSI Design and Education Center (VDEC), University of Tokyo, Tokyo, Japan
s.ghandali@ut.ac.ir, b.alizadeh@ut.ac.ir, fujita@ee.t.u-tokyo.ac.jp, navabi@ut.ac.ir

Abstract
This paper describe a system-level approach to improve the
area and delay of datapath designs that perform polynomial
computations over ܼଶ೘, which are used in many applications
such as computer graphics and digital signal processing
domains. This approach optimizes the implementation of
multivariate polynomial systems in terms of the number of
arithmetic operations by performing optimization on a
system level prior to high-level synthesis. Univariate
functional decomposition of polynomial expressions and
canonization form over ܼଶ೘ are used in this method. We use
GAUT high-level synthesis tool to generate RTL datapath
architectures for the optimized polynomials. Experimental
results on a set of benchmark applications with polynomial
expressions show that this method outperforms conventional
methods in terms of the area of the sequential datapath
architectures in speed optimization mode with an average
improvement of 25.81%, and the required clock cycles in two
modes of speed optimization and area optimization, with an
average improvement of 23.48% and 38.24%, respectively.

Keywords
High-level synthesis, system-level transformations, register
transfer level (RTL), polynomial datapath, univariate
functional decomposition, canonization form

1. Introduction
As the complexity and size of modern embedded

application is continuously increasing, designing hardware at
higher levels of abstraction for faster design adjustments and
higher simulation speed is necessary. Conventional high
level synthesis techniques are not efficient to eliminate
redundancy and common sub-expression for polynomial
datapaths over ܼଶ೘. Such polynomial functions have been
optimized manually to achieve efficient register-transfer-
level (RTL) implementation. This process can be time
consuming and error prone. Hence, developing high level
synthesis and optimization techniques to automate the design
of custom polynomial datapaths from a behavioral
description is desirable.

The Horner form of a polynomial expression is a normal
form representation using a nested format. This method
transforms the expression into a sequence of nested additions
and multiplications, which are suitable for univariate
polynomials and for sequential machine evaluation using
multiplier-accumulator units.

Another algebraic technique is based on kernel/co-kernel
computation [6], in which first, lowest cost form of given
polynomials from canonization, square-free factorization and

original forms is taken into consideration. Then common
coefficients and common cubes are extracted using the
kernel/co-kernel extraction technique from [7]. Common
sub-expressions are determined using algebraic division
technique. This method is only applicable to those
polynomials in which linear blocks exist explicitly.

In [7] and [8], a factoring method was proposed
employing kernel/co-kernel extraction with common sub-
expression elimination to reduce the size of implementation.
The approximate factorization algorithm presented in [8]
represents an arithmetic function f as a product of sub-
functions f = f1×f2×…×fn where fi is a multivariate
polynomial. However, this algorithm is able to factorize
square-free polynomials and cannot deal with a sub-function
fi with a degree higher than one.

Another algebraic method has been proposed in [3] and
then improved in [4]. The main idea is somehow similar to
algebraic division techniques used in logic synthesis. This
technique tries to decompose the original polynomial poly as
poly = p1 × p2 + p3 while p3 should be minimized. For doing
so, all possible initial values of p1 and p2 must be evaluated.
Then for each initialization it is necessary to check whether
other monomials in poly can be represented in the form p1 ×
p2. Finally, the best initialization, which constitutes the
lowest complexity p3, is chosen. The algebraic technique in
[2] improves the optimization heuristics in [3] and [4] to
extract more common sub-expressions by considering single-
variable and hidden monomials. This technique makes use of
finite ring algebra and Modular Horner Expansion Diagram
[5]. This method first reduces the original polynomials over ܼଶ೘. Then common sub-expressions are extracted based on
two heuristics. The main disadvantage of this technique is
that decompositions are started from reduced polynomials
while if the original polynomials are used more common sub-
expressions would be extracted.

The Algebraic method in [1] proposed for the first time a
kind of polynomial optimization technique based on
redundancy addition/removal. The main idea is somehow
similar to logic optimization based on redundancy
addition/removal which has been developed in logic
synthesis area. In this method, first, kernels/co-kernels of
given polynomials are extracted as good building blocks,
then a large number of vanishing polynomials over ܼଶ೘,
which are equal to 0 over ܼଶ೘, are generated as redundancy
in order to transform the given polynomials in such a way
that more common sub-expressions can be extracted. Finally,
using algebraic division common sub-expressions are
determined.

In the current paper, we introduce some system-level
techniques for transformation of the given system of

978-1-4799-3946-6/14/$31.00 ©2014 IEEE 309 15th Int'l Symposium on Quality Electronic Design

polynomials, which offer more common sub-expressions.
Our optimization method reduces the complexity of
polynomial datapaths in terms of the number of arithmetic
operations by performing optimization on a system-level
prior to high-level synthesis. Furthermore, in order to
generate RTL datapath architecture for the optimized
polynomials, we use GAUT high-level synthesis tool [12] as
a high-level synthesis tool, although any other high level
synthesis tools can be utilized. Our optimization method
reduces the area and the number of clock cycles at the RTL
datapath architectures. In this method, we use mathematics
concept of univariate functional decomposition of
polynomial expressions in order to obtain good building
blocks and hence extract more common sub-expressions.

In summary, our design flow in this paper consists of the
following tasks:

• System-level transformations to optimize datapath
designs that perform polynomial computations over ܼଶ೘
using univariate functional decomposition and
canonization form.

• Univariate functional decomposition of the given
polynomials to obtain good building blocks and extract
suitable common sub-expressions.

• High-level synthesis using GAUT [12] to generate
datapath architectures for the optimized polynomials as
sequential circuits.

• Evaluating the performance of the proposed method and
showing its effectiveness by comparing it with the state-
of-the-art polynomial optimization methods in the
literature.

The remainder of this paper is organized as follows.
Section 2 introduces some preliminaries which are used in
the rest of the paper. A motivational example is presented in
section 3. Section 4 explains, in detail, our proposed
polynomial optimization method. Section 5 evaluates the
performance of our algorithms and presents experimental
results that demonstrate their effectiveness. Finally, section 6
provides our conclusion.

2. Preliminaries
This section introduces some preliminaries which are

used in the rest of the paper. In this paper arithmetic data
paths are modeled as polynomial functions over ܼଶ೙భ ൈܼଶ೙మ ൈ … ൈ ܼଶ೙೏ to ܼଶ೘[9]. Let ଵ݂ሺݔҧሻ,…, ௣݂ሺݔҧሻ be p given
polynomial functions over ܼଶ೙భ ൈ ܼଶ೙మ ൈ … ൈ ܼଶ೙೏ to ܼଶ೘
as the specification where ݔҧ = < x1,x2,…,xd > is a vector of d
input variables and n1, n2, …, nd denote size of the
corresponding variables. ܼଶ೙ represents the finite set of
integers {0, 1, …, 2n-1}. m is the size of the output bit-vector
f.

Theorem 1: Let f be a polynomial function from ܼଶ೙భ ൈ … ൈ ܼଶ೙೏ to ܼଶ೘. Then according to [9], f can be
uniquely represented in a canonical form as (1), where Yk is
falling factorial of degree ݇ א ܼ (ܼ denotes the ring of
integers) and is defined as follows,

Y0(x)=1, Y1(x) = x,

Y2(x)= x×(x-1), …, Yk(x)=Yk-1(x)×(x-k+1).

aK is an integer such that 1 ≤ aK < 2m

gcd(2m, ∏ ki!d
i=1)

, K=<k1, k2,
…, kd> for each ki= 1, 2, …, μi, and ߤ௜ ൌ ݉݅݊ሼ2௡೔, .ሺ2௠ሻሽܨܵ
SF(n) is the least ݇ א Գ such that n divides k!, and denotes
Smarandache function [10]. gcd(x,y) computes the greatest
common divisor of x and y.

݂ ൌ ∑ ܽ௄ ௄ܻ௄ ൌ ∑ ܽ௄ ൈ ௞ܻభሺݔଵሻ ൈ … ൈ ௞ܻ೏ሺݔௗሻ௄ (1)

For example, let f = 2x5+x4+x2-2x, the canonical form of
f over ܼଶయ is 2x2. Note that the canonical form of a
polynomial over ܼଶ೙భ ൈ ܼଶ೙మ ൈ … ൈ ܼଶ೙೏ to ܼଶ೘ may be
zero.

Definition 1: If g and h are univariate polynomials, then
univariate polynomial f(x) = g(x) o h(x) is their functional
composition, and (g, h) is a univariate functional
decomposition of f, where g and h are polynomials with
lower degree than f and are called left decomposition factor
and right decomposition factor of f, respectively. o is the
composition operator via computing the output of g when it
has an argument of h(x) instead of x (i.e., f(x)=g(x) o h(x)
=g(h(x))).

Example 1: Let f(x)= x4+x2-3, then f(x)=g(x) o h(x) =
(x2+x-3) o x2 is a univariate functional decomposition of f,
where g(x) = x2+x-3 and h(x) = x2.

3. Motivational Example
In this section, we present an example to motivate the

optimization technique to be presented. In order to
demonstrate the effectiveness of the proposed method, let us
consider the following polynomial system.

f1(x) = x4+2x3+x2+xy3-3xy2+2xy

f2(x) = x6+3x5+3x4+x3+x2+ x.

This system needs 32 multiplications and 10 additions.

After applying the factorization technique using
MATLAB [11] to these polynomials, f1 and f2 are
transformed to the following forms

f1(x) = x(x3+2x2+x+y3-3y2+2y)

f2(x) = x(x+1)(x4+2x3 +x2+ 1),

which need 19 multiplications and 9 additions.

By applying our proposed optimization method over ܼଶమ
to the original polynomials, f1 is converted to the following
form,

h(x) = x2+x, g(x) = x2

f1(x) = g o h + xy3-3xy2+2xy = x2 o (x2+x) + xy3-3xy2+2xy,

because canonical form of xy3-3xy2+2xy over ܼଶమ is 0,

f1(x)= x2 o (x2+x) = (x2+x)2 = h2,

and f2 is converted as follows.

h(x) = x2 + x, g(x) =x3 + x,

(a)

(b)

Figure 1: (a) Datapath architecture of the polynomials, implemented using factorization, (b) Datapath architecture of the
polynomials, implemented using our proposed method

f2(x) = g o h = (x3 + x) o (x2+x) = (x2+ x)3+ x2+x = h3+h =
h(h2+1) = h(f1+1).

The optimized polynomial system requires only 3
multiplications and 2 additions. We have used GAUT as a
high-level synthesis tool to generate datapath architectures
for the polynomial systems. GAUT tool has been used in
many academic projects, and its HLS algorithms for binding,
allocation, and scheduling are well documented [12].

 We have used GAUT to generate datapath architectures
for two modes; speed optimization and area optimization in
which only one functional unit is considered for each
operation type existed in the design. The datapath
architecture of the polynomials, implemented using
factorization, in the speed optimization mode is shown in
Fig. 1(a). The datapath architecture of the polynomials,
implemented using our proposed method is shown in Fig.
1(b).

The results reported by GAUT for the polynomials,
implemented using factorization and our proposed method
are shown in Table 1. We have used “notch” library,
provided by GAUT, and we have set clock cycle to 20. This
table reports area and number of the clock cycles, registers,
multiplexers, and functional units (adder, subtracter,
multiplier) in the datapath architectures of the factored

polynomials and optimized polynomials using our proposed
method, in speed optimization and area optimization modes.

Table 1. Gaut report for the polynomials, implemented
using factorization, and for the polynomials, implemented
using our proposed method, in speed optimization and area
optimization modes.

 Factorization Proposed
Method

Speed
Optimization

Cycles 6 6
Registers 14 4

Muxes 160 32

FU
+ 4 1
- 0 0
× 6 1

Area 530 91

Area
Optimization

Cycles 22 6
Registers 13 4

Muxes 320 32

FU
+ 1 1
- 0 0
× 1 1

Area 91 91

4. Proposed System-level Optimization Method
We introduce some system-level techniques for

transformation of the given system of polynomials, which

offer more common sub-expressions. Our optimization
method reduces the complexity of polynomial datapaths in
terms of the number of arithmetic operations by performing
optimization on a system-level prior to high-level synthesis.
Furthermore, to generate datapath architecture for the
optimized polynomials as sequential circuits, we use GAUT
high-level synthesis tool. Our optimization method reduces
area and number of clock cycles in the datapath architectures.

In the first phase of the proposed system-level
optimization method, each given multivariate polynomial
f(x1,…, xd) is transformed to several univariate polynomials
by representing f based on each input variable xi ሺ1 ൑ ݅ ൑݀ሻ. Then each obtained univariate polynomial is decomposed
through univariate functional decomposition algorithm
explained in subsection 4.1 in order to obtain good building
blocks. In the second phase, to extract common sub-
expressions among the given polynomials, we make use of
univariate functional decomposition algorithm unlike other
works that utilize algebraic division technique [1][6][7].
Finally, among various forms of the polynomials in terms of
the extracted common sub-expressions, the form with
smallest number of the arithmetic operations is selected.
These phases are explained in more details in the following
subsections.

4.1. Determining Building Blocks (Phase I)
In this phase, each given multivariate polynomial f is

transformed to several univariate polynomials by
representing f based on each input variables. Then each
obtained univariate polynomial is decomposed through
univariate functional decomposition algorithm in order to
obtain good building blocks. This phase is explained in the
following steps.

Step 1: Each given multivariate polynomial f(x1,…, xd) is
rewritten based on each input variable xi ሺ1 ൑ ݅ ൑ ݀ሻ as (2). ݂ ൌ ෍ ௘݂భ,..,௘೔షభ,௘೔శభ,..,௘೏ݔଵ௘భ … ௜ାଵ௘೔శభݔ௜ିଵ௘೔షభݔ … ௗ௘೏௘భ,..,௘೔షభ,௘೔శభ,...,௘೏ஹ଴ݔ (2)

where fe1,..,ei-1,ei+1,..,ed
ሺݔ௜ሻ is a univariate polynomial which

represents the polynomial f based on the variable xi, and
e1,...,ei-1,ei+1,...,ed are degrees of d-1 variables x1,…, xi-1,
xi+1,…, xd in polynomial f.

After applying this transformation to all given
polynomials fj ሺ1 ൑ ݆ ൑ is the number of given ݌ ሻ where݌
polynomials, all obtained univariate polynomials
fe1,..,ei-1,ei+1,..,ed

ሺݔ௜ሻ ሺ1 ൑ ݅ ൑ ݀ሻ from all fj are stored in a set

named ݕ݈݋ܾܲݑ݈݈ܵܣ௫೔ ሺ1 ൑ ݅ ൑ ݀ሻ.

Example 2: Suppose f1(x,y) = x6y2+5x6y+2x5y2+10x5y-
x4y2-5x4y+x3y4-x3y2-5x3y+2x2y4+2x2y2+10x2y-xy2-5xy, and
f2(x,y) = x6y3+x4y4-2x4y3+2x4y2-2x4y+x2y3+xy4+2xy2-2xy.

Then f1 based on the variable y is represented as

 f1 =x6(y2+5y)+x5(2y2+10y)+x4(-y2-5y)+x3(y4-y2-5y)+x2(2y4+
2y2+10y)+x(-y2-5y),

so ݕ݈݋ܾܲݑ݈݈ܵܣ௬ = { f1(y)= -y2-5y, f2(y)=2y4+2y2+10y,
f3(y)=y4-y2-5y, f4(y)=-y2-5y, f5(y)=2y2+10y, f6(y)=y2+5y}.

And f1 based on the variable x is represented as

 f1 = y4(x3+2x2)+y2(x6+2x5-x4-x3+2x2-x)+y(5x6+10x5-5x4-
5x3+10x2-5x),

so ݕ݈݋ܾܲݑ݈݈ܵܣ௫ ={f1(x)=5x6+10x5-5x4-5x3+10x2-5x, f2(x)=x6

+2x5-x4-x3+2x2-x, f4(x)= x3+2x2}.

f2 based on the variable y is represented as

 f2 = x6(y3)+x4(y4-2y3+2y2-2y)+x2(y3)+x(y4+2y2-2y),

 so ݕ݈݋ܾܲݑ݈݈ܵܣ௬ ൌ ௬ݕ݈݋ܾܲݑ݈݈ܵܣ y3,y4-2y3+2y2-2y,y4+2y2}׫

-2y}.

And f2 based on the variable x is represented as

 f2 = y4(x4+x)+y3(x6-2x4+x2)+y2(2x4+2x)+y(-2x4-2x),

 so ݕ݈݋ܾܲݑ݈݈ܵܣ௫ = ݕ݈݋ܾܲݑ݈݈ܵܣ௫ x4+x, x6-2x4+x2, 2x4} ׫

+2x, -2x4-2x}.

Step 2: univariate functional decomposition is computed
for each member of ݕ݈݋ܾܲݑ݈݈ܵܣ௫೔ ሺ1 ൑ ݅ ൑ ݀ሻ (i.e.,
fe1,..,ei-1,ei+1,..,ed

ሺݔ௜ሻ) by using the univariate functional
decomposition algorithm explained in the follow.

Univariate functional decomposition algorithm: Let g
and h be polynomials of degrees r and s over a field. Their
functional composition f = g o h = g(h) has degree n = r×s.
The univariate functional decomposition problem can be
stated as follows: given f of degree n = r×s, determine
whether such g and h exist, and in the affirmative case,
compute them [13].

The pseudo code of the univariate functional
decomposition algorithm [14], which is slightly modified in
our method to also calculate indecomposable part of an input
polynomial, is shown in Fig. 2. For every r and s values for
which r×s = n, UniDec procedure in Fig. 2 with f and r as
inputs calculates a univariate functional decomposition for f
as (3), where f0 is indecomposable part of f.

ሻݔ)݂ ൌ ሻݔ)݃ ל ݄ሺݔሻ ൅ ଴݂ ൌ ݃൫݄ሺݔሻ൯ ൅ ଴݂ (3)

As explained in [14], f, g and h are in the following
forms, f = xrs+ars-1xrs-1+...+a0, h = xs +cs-1xs-1+...+c1x, g =
xr+br-1xr-1+ ... +b0, respectively. In this algorithm, first,
coefficients of h, i.e., (c1,...,cs-1), are calculated from
coefficients of f by h_UniDec procedure (lines 4-11 in Fig.
2). For this purpose, polynomial qk is defined as follows:

qk = xs +cs-1xs-1+ ... + cs-k xs-k, 0 ≤ k ≤ s.

Then q0=xs, qs= qs-1=h, and qk = qk-1+ cs-k xs-k, 1 ≤ k ≤ s.

According to [14], we can calculate the first k+1
coefficients of hr from coefficients of qk

r. The k+1st
coefficient of qk

r is the coefficient of xrs-k, this agree with ars-k,
i.e., the k+1st coefficient of f, 1 ≤ k ≤ s-1. Thus if the earlier
coefficients cs-1,…,cs-k+1 of h are known, then cs-k can be
determined by computing

cs-k=
௔ೝೞషೖିௗೖ௥ , 1 ൑ ݇ ൑ ݏ െ 1,

where, dk is the coefficient of xrs-k in qk-1
r [14].

Second, from f and h, coefficients of g, i.e., (b0,...,br-1),
are calculated by g_UniDec procedure (lines 12-16 in Fig. 2),

let A[i,j] be the coefficient of xis in hj, 0 ≤ i, j ≤ r. Then b =
(b0,…,br-1), can be determined by solving the following
equation:

Ab = a,

where a=(a0, as,…, ars) are the coefficients of f.

Then, composition of h and g is computed by using the
function subs, which is a function library of Maple [15] and
computes the value of g o h. The difference between f and g
o h is considered as indecomposable part of f and refereed as
f0 (line 15 in Fig. 2).

Figure 2: Univariate functional decomposition algorithm

Example 3: Let us consider a member of ݕ݈݋ܾܲݑ݈݈ܵܣ௫ in
example 2; f = x6 +2x5-x4-x3+2x2-x. Because n = 6, one of the
situation that r and s >1 are r =2, s =3. So g and h are in the
following forms.

h = x3 + c2x2 + c1x, g = x2 + b1x+b0.

The steps of the univariate decomposition algorithm are as
follows. ݍ଴଴ ൌ 1, ଴ଵݍ ൌ ,ଷݔ ଴ଶݍ ൌ ଺ݔ

step 1: (k = 1) ݀ଵ ൌ ,଴ଶݍሺ݂݁݋ܿ ଺ିଵሻݔ ൌ 0, ܿଶ ൌ ሺ௔ఱିௗభሻଶ ൌ ଵ଴ݍ 1 ൌ 1, ଵଵݍ ൌ ଷݔ ൅ ,ଶݔ ଵଶݍ ൌ ଺ݔ ൅ ହݔ2 ൅ ସݔ

step 2: (k=2)

݀ଶ ൌ ,ଵଶݍሺ݂݁݋ܿ ଺ିଶሻݔ ൌ 1, ܿଵ ൌ ሺ௔రିௗమሻଶ ൌ െ1 ݍଵ଴ ൌ 1, ଵଵݍ ൌ ଷݔ ൅ ଶݔ െ ଵଶݍ ,ݔ ൌ ଺ݔ ൅ ହݔ2 െ ସݔ െ ଷݔ2 ൅ ଶݔ

So h is obtained as h= x3 + x2 െ x.

Then by using the coefficients of f and h, coefficients of g are
calculated as follows. ܣ ൌ ൥1 0 00 1 െ20 0 1 ൩, ܽ ൌ ൥ 0െ11 ൩ , ܾ ൌ ൥011൩

So g is obtained as g = x2+x.

The general form resulting by applying the univariate
functional decomposition algorithm to each member of ݕ݈݋ܾܲݑ݈݈ܵܣ௫೔ ሺ1 ൑ ݅ ൑ ݀ሻ is shown in (4). fe1,..,ei‐1,ei൅1,..,edሺݔ௜ሻ ൌ ௜ሻݔ)݃ ל ݄ሺݔ௜ሻ ൅ ଴݂ሺݔ௜ሻ, fe1,..,ei‐1,ei൅1,..,edሺݔ௜ሻ ߳ ௫೔, ሺ1ݕ݈݋ܾܲݑ݈݈ܵܣ ൑ ݅ ൑ ݀ሻ

(4)

Step 3: In the third step of the first phase of the proposed
method, all obtained right decomposition factors ݄ሺݔ௜ሻ of all
members of ݕ݈݋ܾܲݑ݈݈ܵܣ௫೔ are stored in a set named ݄_ݐ݁ݏ௫೔
as good building blocks.

Example 4: Let us consider example 2 again. By
computing the univariate functional decomposition of all
members of ݕ݈݋ܾܲݑ݈݈ܵܣ௫ and ݕ݈݋ܾܲݑ݈݈ܵܣ௬, ݄_ݐ݁ݏ௫ for
variable x and ݄_ݐ݁ݏ௬ for variable y are obtained as follows. ݄_ݐ݁ݏ௫= {x3+x2-x, x2+x, x3-x, x2}, ݄_ݐ݁ݏ௬= {y2, y2-5y}.

4.2. Common sub-expression extraction (Phase II)
The aim of the second phase of the proposed method is to

extract common sub-expressions between all given
multivariate polynomials, which is equal to extract common
sub-expressions between their equivalent univariate
polynomials which are stored in ݕ݈݋ܾܲݑ݈݈ܵܣ௫೔ ሺ1 ൑ ݅ ൑ ݀ሻ.

 To extract common sub-expressions we make use of
univariate functional decomposition algorithm unlike other
works that utilize algebraic division technique [1][6][7]. By
considering members of ݄_ݐ݁ݏ௫೔ as good building blocks, we
try to re-decompose all members of ݕ݈݋ܾܲݑ݈݈ܵܣ௫೔ by these
building blocks and find common sub-expressions between
them.

By using g_UniDec procedure described in subsection
4.1, each fe1,..,ei-1,ei+1,..,ed

ሺݔ௜ሻ ߳ ݕ݈݋ܾܲݑ݈݈ܵܣ௫೔ is assessed
whether a polynomial g' can be calculated from this
polynomial and each member of ݄_ݐ݁ݏ௫೔ as shown in (5),

fe1,..,ei‐1,ei൅1,..,edሺݔ௜ሻ ൌ ݃Ԣ(ݔ௜ሻ ל ݄Ԣሺݔ௜ሻ ൅ ଴݂ሖ ሺݔ௜ሻ ݄Ԣሺݔ௜ሻ א ௫೔ሺ1ݐ݁ݏ_݄ ൑ ݅ ൑ ݀ሻ
(5)

 where ݃′(ݔ௜ሻ is a new right decomposition factor of
fe1,..,ei-1,ei+1,..,ed

, ଴݂ሖ ሺݔ௜ሻ is a new indecomposable part of

fe1,..,ei-1,ei+1,..,ed
, and ݄Ԣሺݔ௜ሻ is a member of ݄_ݐ݁ݏ௫೔ . Please note

that each member of ݄_ݐ݁ݏ௫೔ may be belonged to different
members of ݕ݈݋ܾܲݑ݈݈ܵܣ௫೔ .

To reduce cost of the corresponding hardware
implementation of each polynomial, we make use of
canonical representation of ଴݂ሖ ሺݔ௜ሻ over ܼଶ೙೔ to ܼଶ೘, which is
explained in section 2, and then compare cost of the
canonical form with the original form of ଴݂ሖ ሺݔ௜ሻ, and select
the lower cost form.

Example 5: Let us consider two members of ݕ݈݋ܾܲݑ݈݈ܵܣ௫ in example 2; p1= x6+2x5-x4-x3+2x2-x belonged
to f1, and p2= x6-2x4+x2 belonged to f2. Two members of
h_setx in example 4 are h1=x3+x2-x, and h2=x3-x which are a
right decomposition factor of p1 and p2 respectively. By
applying the common sub-expression phase to p1 and p2 over ܼଶయ , two obtained forms of these polynomials are as follows.

Form 1:

p1=(x2-x) o h2 + f0 = (x2-x) o (x3-x) +2x5+x4+x2-2x,

canonical_form(f0) = 2x2, so p1=(x2-x) o (x3-x) +2x2 over ܼଶయ ,

p2= x2 o h2= x2 o (x3-x).

 Form 2:

 p1=(x2+x) o h1=(x2-x) o (x3+x2-x),

p2=(x2+2x) o h1 + f0= (x2+2x) o (x3+x2-x) -2x5-x4-2x2+2x.

canonical_form(f0) = -3x2, so p2= (x2+2x) o (x3+x2-x) -3x2
over ܼଶయ .

Therefore result of the common sub-expression extraction
phase is various decompositions of each fe1,..,ei-1,ei+1,..,ed

based
on the different building blocks belonged to different
members of ݕ݈݋ܾܲݑ݈݈ܵܣ௫೔ .
4.3. Complete system-level optimization algorithm

The complete proposed system-level optimization
algorithm is explained in this subsection. The pseudo-code of
the proposed method is shown in Fig. 3. Lines 3-10 describe
the first phase of the proposed method in which each input
multivariate polynomial is transformed to several univariate
polynomials which are stored in ݕ݈݋ܾܲݑ݈݈ܵܣ௫೔ ሺ1 ൑ ݅ ൑ ݀ሻ
(lines 3-6). Then univariate functional decomposition
algorithm in Fig. 2 is applied to these univariate polynomials
and then all obtained right decomposition factors are stored
in ݄_ݐ݁ݏ௫೔ as good building blocks (lines 7-10). Lines 11-16
describe the second phase in which each member of ݕ݈݋ܾܲݑ݈݈ܵܣ௫೔ is re-decomposed by members of ݄_ݐ݁ݏ௫೔
using g_UniDec procedure in Fig. 2 (lines 11-14), and
common sub-expressions are determined. The canonical form
over ܼଶ೙౟ to ܼଶ೘ is calculated for f0

'(xi) in order to reduce
cost of the implementation (lines 15-16). Finally, to select the
form with the smallest number of arithmetic operations,
every new generated form of all members of ݕ݈݋ܾܲݑ݈݈ܵܣ௫೔ is
considered to evaluate related hardware implementation by
computing cost_func function. This function determines the
number of arithmetic operations such as additions and

multiplications needed for implementation of the given
polynomials (lines 17-22).

Figure 3: System-level optimization algorithm

Example 6: Let us consider the polynomial system in
example 2. This polynomial system originally needs 115
multiplications and 23 additions. By applying our proposed
method, we get an implementation with only 16
multiplications and 10 additions as shown below.

t1= x2, t2= x(t1-1), t3= t1+t2, t4= y2,
f1= t4

2t1(x+2) + y(y+5)t3(t3+1) ,
f2= (t12+x)(t4(2+t4)-2y)+ yt4t2

2.
The results reported by GAUT for the datapath architectures
of the original and optimized polynomials as sequential
circuits, in speed optimization mode, are shown in Table 2.

Table 2. GAUT report for the original and optimized
polynomials.

C
yc

le
s

R
eg

is
te

rs

M
ux

es

FU

A
re

a

+ - ×
Original 15 21 320 3 1 12 1028

Optimized 8 12 224 2 1 4 356

5. Experimental Results
In order to show the effectiveness of our proposed

optimization method, we have employed different
polynomials extracted from real embedded systems. Various
combinations of multivariate cosine wavelet (MVCS) for
graphic applications [7], Savitzky-Golay (SG) filters [16] and
digital image rejection unit (DIRU) for image processing

applications, Quadratic filters (Quad) for DSP applications
[17], Phase-Shift Keying (PSK) for digital communication
[18] have been taken into account as multi-output
polynomials.

Table 3. Comparison of the datapath architectures in the
speed optimization mode.

DIRU
PSK
Quad

DIRU
PSK
SG2

DIRU
Quad
SG2

DIRU
MVCS

SG2
%Δ

H
or

ne
r

Cycles 17 17 16 16 0.00
Registers 22 24 20 20

Muxes 384 352 324 336

FU
+ 2 2 3 4
- 1 1 0 0
× 11 13 7 7

Area 937 1103 605 613

T
ec

hn
iq

ue
 in

 [6
] Cycles 12 15 17 13 13.42

Registers 19 37 21 24
Muxes 272 368 306 304

FU
+ 3 3 3 4
- 1 1 0 0
× 6 21 7 7

Area 530 1775 605 613

T
ec

hn
iq

ue
 in

 [1
] Cycles 15 15 11 13 18.32

Registers 16 15 20 26
Muxes 243 256 304 288

FU
+ 2 2 4 4
- 1 1 0 0
× 5 5 7 15

Area 439 439 613 1277

O
ur

 a
pp

ro
ac

h

Cycles 13 13 11 11 27.39
Registers 17 19 20 22

Muxes 320 336 288 272

FU
+ 2 2 2 3
- 1 1 0 0
× 4 5 7 7

Area 356 439 597 605

We have implemented the proposed method along with
the methods in [1] and [6] in Maple [15], and then we have
used GAUT as a high-level synthesis tool [12] to
automatically generate datapath architectures for obtained
polynomials.

To generate datapath architectures based on optimized
polynomials, we considered two modes provided by GAUT;
speed optimization and area optimization. Table 3 illustrates
the results obtained using our proposed method, Horner
form, and methods in [1] and [6] for speed optimization
mode. This table reports area and number of the clock cycles,
registers, multiplexers, and functional units (adder,
subtracter, multiplier) in the obtained datapath architectures.
%Δ indicates the percent of improvement in the number of
required clock cycles in all methods compared to the Horner
form. The results in the table indicate that in our method
required clock cycles are reduced by an average of 38.11%,
20.10%, and 12.24% in comparison with the Horner form,
the method in [6] and the method in [1] across all
benchmarks. This reduction indicates that our goal of
reducing critical path delay has been achieved. Furthermore,
area is improved in our method with an average improvement
of 25.81% in comparison with other works.

Table 4. Comparison of the datapath architectures in the
area optimization mode.

DIRU
PSK
Quad

DIRU
PSK
SG2

DIRU
Quad
SG2

DIRU
MVCS

SG2
%Δ

H
or

ne
r

Cycles 72 86 68 86 0.00
Registers 13 15 13 16

Muxes 592 656 560 672

FU
+ 1 1 1 1
- 1 1 0 0
× 1 1 1 1

Area 99 99 91 91

T
ec

hn
iq

ue
 in

 [6
] Cycles 52 91 72 71 8.38

Registers 16 27 17 22
Muxes 672 1056 800 832

FU
+ 1 1 1 1
- 1 1 0 0
× 1 1 1 1

Area 99 99 91 91

T
ec

hn
iq

ue
 in

 [1
] Cycles 36 36 55 65 37.92

Registers 12 11 18 19
Muxes 411 432 752 832

FU
+ 1 1 1 1
- 1 1 0 0
× 1 1 1 1

Area 99 99 91 91
O

ur
 a

pp
ro

ac
h

Cycles 41 48 49 52 38.68
Registers 16 17 18 18

Muxes 624 704 720 752

FU
+ 1 1 1 1
- 1 1 1 1
× 1 1 0 0

Area 99 99 91 91

In the area optimization mode, only one functional unit is
considered for each operation type existed in the design (i.e.,
all operations with the same type should be bound to a same
functional unit). Table 4 illustrates the results obtained using
our proposed method, Horner form, and methods in [1] and
[6] for area optimization mode. The results reported in the
table indicate that our proposed method provides fewer
required clock cycles in comparison with the Horner form,
the method in [6] and the method in [1] with an average of
64.73%, 49.97%, and 0.01%, respectively, across all
benchmarks. Such improvement in the required clock cycles
with a fixed number of functional units indicates that by
using our method the number of operations would be fewer
than those of other works. In other words, our proposed
method can efficiently determine common sub-expressions.

6. CONCLUSION
In this paper we have proposed a system-level

optimization method for the data paths implemented using a
system of polynomials. Our method optimizes polynomials
to reduce the complexity of polynomial datapaths in terms of
the number of arithmetic operations over ܼଶ೘. In the
proposed method first all given multivariate polynomials are
transformed to several univariate polynomials. Then
univariate functional decompositions are calculated for them
to obtain good building blocks. To extract common sub-
expressions we make use of univariate functional

decomposition algorithm. We have used GAUT high-level
synthesis tool to generate RTL datapath architectures for the
optimized polynomials as sequential circuits. Experimental
results show superiority of our approach in the area and delay
savings in contrast with the other related works. As a future
work, we are going to utilize multivariate functional
decomposition algorithm to extract better building blocks.

References
[1] S. Ghandali, B.Alizadeh, Z. Navabi and M. Fujita,

"Polynomial Datapath Synthesis and Optimization
Based on Vanishing Polynomial over Zଶౣ and
Algebraic Techniques," 10th ACM-IEEE conference
on Formal Methods and Models for Co-Design
(MEMOCODE), 2012, pp.65-74.

[2] B. Alizadeh and M. Fujita, "Modular Datapath
Optimization and Verification Based on Modular-
HED," IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems (TCAD), vol. 29, pp.
1422-1435, 2010.

[3] B. Alizadeh and M. Fujita, "Improved heuristics for
finite word-length polynomial datapath optimization,"
ACM- IEEE International Conference on Computer-
Aided Design - Digest of Technical Papers (ICCAD),
2009, pp. 739-744.

[4] O. Sarbishei, B. Alizadeh and M. Fujita, "Polynomial
datapath optimization using partitioning and
compensation heuristics," Design Automation
Conference (DAC), 2009, pp. 931-936.

[5] B. Alizadeh and M. Fujita, "Modular-HED: A
Canonical Decision Diagram for Modular Equivalence
Verification of Polynomial Functions," fifth Workshop
on Constraints in Formal Verification (CFV), 2008,
pp. 22-40.

[6] S. Gopalakrishnan and P. Kalla,"algebraic techniques
to enhance common sub-expression elimination for
polynomial system synthesis," Design, Automation &
Test in Europe (DATE) Conference, 2009, pp. 1452 -
1457.

[7] A. Hosangadi, F. Fallah and R. Kastner, "Optimizing
polynomial expressions by algebraic factorization and
common subexpression elimination," IEEE Trans. on
Computer-Aided Design of Integrated Circuits and
Systems(TCAD), vol. 25, pp. 2012–2022, 2006.

[8] A. Hosangadi, F. Fallah, and R. Kastner, "Factoring
and eliminating commonsub expressions in polynomial
expressions," in Proc., ACM- IEEE International
Conference on Computer-Aided Design (ICCAD),
2004, pp. 169-174.

[9] Z. CHEN,"On polynomial functions from Zn1×Zn2 ×· · ·
×Znr to Zm," Discrete Math., Vol. 162, No. 1–3, pp. 67–
76, 1996.

[10] F. Smarandache, "A function in number theory,"
Analele Univ. Timisoara, Fascicle 1, vol. XVII, pp.
79–88, 1980.

[11] MATLAB version 8.2, (2013), (computer software),
The MathWorks Inc., Natick, Massachusetts.

[12] P. Coussy, et al., "GAUT: A High-Level Synthesis
Tool for DSP Applications," High-Level Synthesis:

From Algorithm to Digital Circuits, Springer, Berlin,
Germany, 2008.

[13] J. von zur Gathen, J. Gutierrez, R. Rubio, "Multivariate
Polynomial Decomposition," Applicable Algebra in
Engineering, Communication and Computing, Vol.
14, No. 1 , pp. 11-31, 2003.

[14] D. Kozen and S. Landau, "Polynomial decomposition
algorithms," J. Symbolic Computation, Vol. 7, No. 5,
pp. 445–456, 1989.

[15] Maple, 2013, http://www.maplesoft.com.
[16] J. Krumm, "Savitzky-Golay Filters for 2D Images,"

http://homepages.inf.ed.ac.uk/rf/CVonline/LOCAL_C
OPIES/KRUMMI/SavGol.htm.

[17] V. J. Mathews and G. L. Sicuranza, "Polynomial Signal
processing," Wiley-Interscience, 2000.

[18] A. Peymandoust and G. DeMicheli, "Application of
symbolic computer algebra in high-level data-flow
synthesis," IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems (TCAD), vol. 22, pp.
1154–1165, Sep. 2003.

