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Abstract: As a powerful technique for holding relations in things, combina-

torics has experienced rapidly development in the past century, particularly,

enumeration of configurations, combinatorial design and graph theory. How-

ever, the main objective for mathematics is to bring about a quantitative

analysis for other sciences, which implies a natural question on combinatorics.

Thus, how combinatorics can contributes to other mathematical sciences, not

just in discrete mathematics, but metric mathematics and physics? After a

long time speculation, I brought the CC conjecture for advancing mathematics

by combinatorics, i.e., any mathematical science can be reconstructed from or

made by combinatorialization in my postdoctoral report for Chinese Academy

of Sciences in 2005, and then reported it at a few conferences of China. Clearly,

CC conjecture is in fact a combinatorial notion and holds by a philosophical

law, i.e., all things are inherently related, not isolated. The main purpose of

this report is to survey the roles of CC conjecture in developing mathematical

sciences with notions, such as those of its contribution to algebra, topology,

Euclidean geometry and differential geometry, non-solvable differential equa-

tions or classical mathematical systems with contradictions to mathematics,

quantum fields after it appeared 10 years ago. All of these show the importance

of combinatorics to mathematical sciences in the past and future.
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§1. Introduction

There are many techniques in combinatorics, particularly, the enumeration and

counting with graph, a visible, also an abstract model on relations of things in

the world. A graph G is a 3-tuple (V, E, I) with finite sets V, E and a mapping

I : E → V × V , and simple if it is without loops and multiple edges, denoted by

(V ; E) for convenience. All elements v in V , e in E are said respectively vertices

and edges.

A graph with given properties are particularly interested. For example, a path

Pn in a graph G is an alternating sequence of vertices and edges u1, e1, u2, e2,

· · · , en, un1, ei = (ui, ui+1) with distinct vertices for an integer n ≥ 1, and if

u1 = un+1, it is called a circuit or cycle Cn. For example, v1v2v3v4 and v1v2v3v4v1

are respective path and circuit in Fig.1. A graph G is connected if for u, v ∈ V (G),

there are paths with end vertices u and v in G.

A complete graph Kn = (Vc, Ec; Ic) is a simple graph with Vc = {v1, v2, · · · , vn},
Ec = {eij, 1 ≤ i, j ≤ n, i 6= j} and Ic(eij) = (vi, vj), or simply by a pair (V, E) with

V = {v1, v2, · · · , vn} and E = {vivj, 1 ≤ i, j ≤ n, i 6= j}.
A simple graph G = (V, E) is r-partite for an integer r ≥ 1 if it is possible to

partition V into r subsets V1, V2, · · · , Vr such that for ∀e(u, v) ∈ E, there are integers

i 6= j, 1 ≤ i, j ≤ r such that u ∈ Vi and v ∈ Vj. If there is an edge eij ∈ E for

∀vi ∈ Vi, ∀vj ∈ Vj, where 1 ≤ i, j ≤ r, i 6= j, then, G is called a complete r-partite

graph, denoted by G = K(|V1|, |V2|, · · · , |Vr|). Thus a complete graph is nothing else

but a complete 1-partite graph. For example, the bipartite graph K(4, 4) and the

complete graph K6 are shown in Fig.1.

K(4, 4) K6

Fig.1

Notice that a few edges in Fig.1 have intersections besides end vertices. Contrast

to this case, a planar graph can be realized on a Euclidean plane R
2 by letting
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points p(v) ∈ R2 for vertices v ∈ V with p(vi) 6= p(vj) if vi 6= vj , and letting curve

C(vi, vj) ⊂ R2 connecting points p(vi) and p(vj) for edges (vi, vj) ∈ E(G), such as

those shown in Fig.2.

v1 v2

v3v4

e1 e2

e3e4

e5

e6e7

e8

e9 e10

Fig.2

Generally, let E be a topological space. A graph G is said to be embeddable

into E ([32]) if there is a 1 − 1 continuous mapping f : G → E with f(p) 6= f(q)

if p 6= q for ∀p, q ∈ G, i.e., edges only intersect at vertices in E . Such embedded

graphs are called topological graphs.

There is a well-known result on embedding of graphs without loops and multiple

edges in R
n for n ≥ 3 ([32]), i.e., there always exist such an embedding of G that all

edges are straight segments in Rn, which enables us turn to characterize embeddings

of graphs on R
2 and its generalization, 2-manifolds or surfaces ([3]).

However, all these embeddings of G are established on a assumption that each

vertex of G is mapped exactly into one point of E in combinatorics for simplicity. If

we put off this assumption, what will happens? Are these resultants important for

understanding the world? The answer is certainly YES because this will enables us

to pullback more characters of things, characterize more precisely and then hold the

truly faces of things in the world.

All of us know an objective law in philosophy, namely, the integral always con-

sists of its parts and all of them are inherently related, not isolated. This idea implies

that every thing in the world is nothing else but a union of sub-things underlying a

graph embedded in space of the world.

Formally, we introduce some conceptions following.

Definition 1.1([30]-[31], [12]) Let (Σ1;R1), (Σ2;R2), · · ·, (Σm;Rm) be m math-
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ematical system, different two by two. A Smarandache multi-system Σ̃ is a union
m⋃

i=1

Σi with rules R̃ =
m⋃

i=1

Ri on Σ̃, denoted by
(
Σ̃; R̃

)
.

Definition 1.2([11]-[13]) For any integer m ≥ 1, let
(
Σ̃; R̃

)
be a Smarandache

multi-system consisting of m mathematical systems (Σ1;R1), (Σ2;R2), · · ·, (Σm;Rm).

An inherited topological structure GL
[
Σ̃; R̃

]
of
(
Σ̃; R̃

)
is a topological vertex-edge

labeled graph defined following:

V
(
GL
[
Σ̃; R̃

])
= {Σ1, Σ2, · · · , Σm},

E
(
GL
[
Σ̃; R̃

])
= {(Σi, Σj)|Σi

⋂
Σj 6= ∅, 1 ≤ i 6= j ≤ m} with labeling

L : Σi → L(Σi) = Σi and L : (Σi, Σj)→ L(Σi, Σj) = Σi

⋂
Σj

for integers 1 ≤ i 6= j ≤ m, also denoted by GL
[
Σ̃; R̃

]
for
(
Σ̃; R̃

)
.

For example, let Σ1 = {a, b, c}, Σ2 = {c, d, e}, Σ3 = {a, c, e}, Σ4 = {d, e, f}
and Ri = ∅ for integers 1 ≤ i ≤ 4, i.e., all these system are sets. Then the multi-

space
(
Σ̃; R̃

)
with Σ̃ =

4⋃
i=1

Σi = {a, b, c, d, e, f} and R̃ = ∅ underlying a topological

graph GL
[
Σ̃; R̃

]
shown in Fig.3.

Σ1 Σ2

Σ3 Σ4

{c}

{d, e}

{e}

{c, e}{a, c}

Fig.3

Combinatorially, the Smarandache multi-systems can be classified by their in-

herited topological structures, i.e., isomorphic labeled graphs following.

Definition 1.3 ([13]) Let

G1
L1 =

(
m⋃

i=1

Σ
(1)
i ;

m⋃

i=1

R(1)
i

)
and G2

L2 =

(
n⋃

i=1

Σ
(2)
i ;

n⋃

i=1

R(2)
i

)
.

be two Smarandache multi-systems underlying topological graphs G1 and G2, re-
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spectively. They are isomorphic if there is a bijection ̟ : G1
L1 → G2

L2 with

̟ :
m⋃

i=1

Σ
(1)
i →

n⋃
i=1

Σ
(2)
i and ̟ :

m⋃
i=1

R(1)
i →

n⋃
i=1

R(2)
i such that

̟|Σi

(
aR(1)

i b
)

= ̟|Σi
(a)̟|Σi

(
R(1)

i

)
̟|Σi

(b)

for ∀a, b ∈ Σ
(1)
i , 1 ≤ i ≤ m, where ̟|Σi

denotes the constraint of ̟ on (Σi,Ri).

Consequently, the previous discussion implies that

Every thing in the world is nothing else but a topological graph GL in space of

the world, and two things are similar if they are isomorphic.

After speculation over a long time, I presented the CC conjecture on mathe-

matical sciences in the final chapter of my post-doctoral report for Chines Academy

of Sciences in 2005 ([9],[10]), and then reported at The 2nd Conference on Com-

binatorics and Graph Theory of China in 2006, which is in fact an inverse of the

understand of things in the world.

CC Conjecture([9-10],[14]) Any mathematical science can be reconstructed from

or made by combinatorization.

Certainly, this conjecture is true in philosophy. It is in fact a combinatorial

notion for developing mathematical sciences following.

Notion 1.1 Finds the combinatorial structure, particularly, selects finite combi-

natorial rulers to reconstruct or make a generalizations of a classical mathematical

science.

This notion appeared even in classical mathematics. For examples, Hilbert

axiom system for Euclidean geometry, complexes in algebraic topology, particularly,

2-cell embeddings of graphs on surface are essentially the combinatorization for

Euclidean geometry, topological spaces and surfaces, respectively.

Notion 1.2 Combine different mathematical sciences and establish new enveloping

theory on topological graphs, with classical theory being a special one, and this com-

binatorial process will never end until it has been done for all mathematical sciences.

A few fields can be also found in classical mathematics on this notion, for

instance the topological groups, which is in fact a multi-space of topological space

with groups, and similarly, the Lie groups, a multi-space of manifold with that of
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diffeomorphisms.

Even in the developing process of physics, the trace of Notions 1.1 and 1.2

can be also found. For examples, the many-world interpretation [2] on quantum

mechanics by Everett in 1957 is essentially a multi-space formulation of quantum

state (See also [35] for details), and the unifying of the four known forces, i.e.,

gravity, electro-magnetism, the strong and weak nuclear force into one super force

by many researchers, i.e., establish the unified field theory is nothing else but also a

following of combinatorial notion by let Lagrangian L of the unified field being a

combination of its subfields.

Even so, the CC conjecture includes more deeply thoughts for developing math-

ematics by combinatorics i.e., mathematical combinatorics which extends the field

of all existent mathematical sciences. After it was presented, more methods were

suggested for developing mathematics in last decade. The main purpose of this re-

port is to survey its contribution to algebra, topology and geometry, mathematical

analysis, particularly, non-solvable algebraic and differential equations, theoretical

physics with its producing notions in developing mathematical sciences.

All terminologies and notations used in this paper are standard. For those

not mentioned here, we follow reference [5] and [32] for topology, [3] for topological

graphs, [1] for algebraic systems, [4], [34] for differential equations and [12], [30]-[31]

for Smarandache systems.

§2. Algebraic Combinatorics

Algebraic systems, such as those of groups, rings, fields and modules are combi-

natorial themselves. However, the CC conjecture also produces notions for their

development following.

Notion 2.1 For an algebraic system (A ;O), determine its underlying topological

structure GL[A ,O] on subsystems, and then classify by graph isomorphism.

Notion 2.2 For an integer m ≥ 1, let (Σ1;R1), (Σ2;R2), · · ·, (Σm;Rm) all be

algebraic systems in Definition 1.2 and
(
G̃ ;O

)
underlying GL

[
G̃ ;O

]
with G̃ =

m⋃
i=1

Σi and O =
m⋃

i=1

Ri, i.e., an algebraic multisystem. Characterize
(
G̃;O

)
and

establish algebraic theory, i.e., combinatorial algebra on
(
G̃;O

)
.
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For example, let

〈G1; ◦1〉 =
〈
a, b|a ◦1 b = b ◦1 a, a2 = bn = 1

〉

〈G2; ◦2〉 =
〈
b, c|b ◦2 c = c ◦2 b, c5 = bn = 1

〉

〈G3; ◦3〉 =
〈
c, d|c ◦3 d = d ◦3 c, d2 = c5 = 1

〉

be groups with respective operations ◦1, ◦2 and ◦3. Then the set (G̃ ; {◦1, ◦2, ◦3}) is

an algebraic multisyatem with G̃ =
3⋃

i=1

Gi.

2.1 KL
2 -Systems

A KL
2 -system is such a multi-system consisting of exactly 2 algebraic systems under-

lying a topological graph KL
2 , including bigroups, birings, bifields and bimodules,

etc.. For example, an algebraic field (R; +, ·) is a KL
2 -system. Clearly, (R; +, ·) con-

sists of groups (R; +) and (R \ {0}; ·) underlying KL
2 such as those shown in Fig.4,

where L : V
(
KL

2

)
→ {(R; +), (R \ {0}; ·)} and L : E

(
KL

2

)
→ {R \ {0}}.

(R; +) (R \ {0}, ·)
R \ {0}

Fig.4

A generalization of field is replace R\{0} by any subset H ≤ R in Fig.4. Then a

bigroup comes into being, which was introduced by Maggu [8] for industrial systems

in 1994, and then Vasantha Kandasmy [33] further generalizes it to bialgebraic

structures.

Definition 2.3 A bigroup (biring, bifield, bimodule, · · ·) is a 2-system (G ; ◦, ·) such

that

(1) G = G1

⋃
G2;

(2) (G1; ◦) and (G2; ·) both are groups (rings, fields, modules,· · ·).

For example, let P̃ be a permutation multigroup action on Ω̃ with

P̃ = P1

⋃
P2 and Ω̃ = {1, 2, 3, 4, 5, 6, 7, 8}

⋃
{1, 2, 5, 6, 9, 10, 11, 12},

where P1 = 〈(1, 2, 3, 4), (5, 6, 7, 8)〉 and P2 = 〈(1, 5, 9, 10), (2, 6, 11, 12)〉. Clearly,

P̃ is a permutation bigroup.
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Let (G1; ◦1, ·1) and ((G2; ◦2, ·2)) be bigroups. A mapping pair (φ, ι) with φ :

G1 → G2 and ι : {◦1, ·1} → {◦2, ·2} is a homomorphism if

φ(a • b) = φ(a)ι(•)φ(b)

for ∀a, b ∈ G1 and • ∈ {◦1, ·1} provided a• b existing in (G1; ◦1, ·1). Define the image

Im(φ, ι) and kernel Ker(φ, ι) respectively by

Im(φ, ι) = { φ(g) | g ∈ G1 },
Ker(φ, ι) = { g ∈ G1| φ(g) = 1•, ∀• ∈ {◦2, ·2}},

where 1• denotes the unit of (G•; •) with G• a maximal closed subset of G on oper-

ation •.
For subsets H̃ ⊂ G̃, O ⊂ O, define (H̃ ; O) to be a submultisystem of

(
G̃;O

)

if (H̃; O) is multisystem itself, denoted by
(
H̃ ; O

)
≤
(
G̃;O

)
, and a subbigroup

(H ; ◦, ·) of (G ; ◦, ·) is normal, denoted by H ⊳ G if for ∀g ∈ G ,

g •H = H • g,

where g •H = {g • h|h ∈ H provided g • h existing} and H • g = {h • g|h ∈
H provided h • g existing} for ∀• ∈ {◦, ·}. The next result is a generalization of

isomorphism theorem of group in [33].

Theorem 2.4([11]) Let (φ, ι) : (G1; {◦1, ·1}) → (G2; {◦2, ·2}) be a homomorphism.

Then

G1/Ker(φ, ι) ≃ Im(φ, ι).

Particularly, if (G2; {◦2, ·2}) is a group (A ; ◦), we know the corollary following.

Corollary 2.5 Let (φ, ι) : (G ; {◦, ·})→ (A ; ◦) be an epimorphism. Then

G1/Ker(φ, ι) ≃ (A ; ◦).

Similarly, a bigroup (G ; ◦, ·) is distributive if

a · (b ◦ c) = a · b ◦ a · c

hold for all a, b, c ∈ G . Then, we know the following result.
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Theorem 2.6([11]) Let (G ; ◦, ·) be a distributive bigroup of order≥ 2 with G =

A1 ∪ A2 such that (A1; ◦) and (A2; ·) are groups. Then there must be A1 6= A2.

consequently, if (G ; ◦) it a non-trivial group, there are no operations · 6= ◦ on G

such that (G ; ◦, ·) is a distributive bigroup.

2.2 GL-Systems

Definition 2.2 is easily generalized also to multigroups, i.e., consisting of m groups

underlying a topological graph GL, and similarly, define conceptions of homomor-

phism, submultigroup and normal submultigroup, · · · of a multigroup without any

difficult.

For example, a normal submultigroup of (G̃ ; Õ) is such submutigroup (H̃ ; O)

that holds

g ◦ H̃ = H̃ ◦ g

for ∀g ∈ G̃ , ∀◦ ∈ O, and generalize Theorem 2.3 to the following.

Theorem 2.7([16]) Let (φ, ι) : (G̃1; Õ1)→ (G̃2; Õ2) be a homomorphism. Then

G̃1/Ker(φ, ι) ≃ Im(φ, ι).

Particularly, for the transitive of multigroup action on a set Ω̃, let P̃ be a per-

mutation multigroup action on Ω̃ with P̃ =
m⋃

i=1

Pi, Ω̃ =
m⋃

i=1

Ωi and for each integer

i, 1 ≤ i ≤ m, the permutation group Pi acts on Ωi, which is globally k-transitive for

an integer k ≥ 1 if for any two k-tuples x1, x2, · · · , xk ∈ Ωi and y1, y2, · · · , yk ∈ Ωj ,

where 1 ≤ i, j ≤ m, there are permutations π1, π2, · · · , πn such that

xπ1π2···πn

1 = y1, xπ1π2···πn

2 = yi, · · · , xπ1π2···πn

k = yk

and abbreviate the globally 1-transitive to that globally transitive of a permutation

multigroup. The following result characterizes transitive multigroup.

Theorem 2.8([17]) Let P̃ be a permutation multigroup action on Ω̃ with

P̃ =

m⋃

i=1

Pi and Ω̃ =

m⋃

i=1

Ωi,

where, each permutation group Pi transitively acts on Ωi for each integers 1 ≤ i ≤
m. Then P̃ is globally transitive on Ω̃ if and only if the graph GL

[
Ω̃
]

is connected.
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Similarly, let R̃ =
m⋃

i=1

Ri be a completed multisystem with a double operation

set O
(
R̃
)

= O1

⋃O2, where O1 = { ·i, 1 ≤ i ≤ m}, O2 = {+i, 1 ≤ i ≤ m}. If

for any integers i, 1 ≤ i ≤ m, (Ri; +i, ·i) is a ring, then R̃ is called a multiring,

denoted by
(
R̃;O1 →֒ O2

)
and (+i, ·i) a double operation for any integer i, which

is integral if for ∀a, b ∈ R̃ and an integer i, 1 ≤ i ≤ m, a ·i b = b ·i a, 1·i 6= 0+i and

a ·i b = 0+i
implies that a = 0+i

or b = 0+i
. Such a multiring

(
R̃;O1 →֒ O2

)
is

called a skew multifield or a multifield if each (R; +i, ·i) is a skew field or a field for

integers 1 ≤ i ≤ m. The next result is a generalization of finitely integral ring.

Theorem 2.9([16]) A finitely integral multiring is a multifield.

For multimodule, let O = { +i | 1 ≤ i ≤ m}, O1 = {·i|1 ≤ i ≤ m} and

O2 = {+̇i|1 ≤ i ≤ m} be operation sets, (M ;O) a commutative multigroup with

units 0+i
and (R;O1 →֒ O2) a multiring with a unit 1· for ∀· ∈ O1. A pair (M ;O)

is said to be a multimodule over (R;O1 →֒ O2) if for any integer i, 1 ≤ i ≤ m, a

binary operation ×i : R ×M → M is defined by a ×i x for a ∈ R, x ∈ M such

that the conditions following

(1) a×i (x +i y) = a×i x +i a×i y;

(2) (a+̇ib)×i x = a×i x +i b×i x;

(3) (a ·i b)×i x = a×i (b×i x);

(4) 1·i ×i x = x.

hold for ∀a, b ∈ R, ∀x, y ∈M , denoted by Mod(M (O) : R(O1 →֒ O2)). Then we

know the following result for finitely multimodules.

Theorem 2.10([16]) Let Mod(M (O) : R(O1 →֒ O2)) =
〈
Ŝ|R

〉
be a finitely

generated multimodule with Ŝ = {u1, u2, · · · , un}. Then

Mod(M (O) : R(O1 →֒ O2)) ∼= Mod(R(n) : R(O1 →֒ O2)),

where Mod(R(n) : R(O1 →֒ O2)) is a multimodule on R(n) = {(x1, x2, · · · , xn) | xi ∈
R, 1 ≤ i ≤ n} with

(x1, x2, · · · , xn) +i (y1, y2, · · · , yn) = (x1+̇iy1, x2+̇iy2, · · · , xn+̇iyn),

a×i (x1, x2, · · · , xn) = (a ·i x1, a ·i x2, · · · , a ·i xn)
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for ∀a ∈ R, integers 1 ≤ i ≤ m. Particularly, a finitely module over a commutative

ring (R; +, ·) generated by n elements is isomorphic to the module Rn over (R; +, ·).

§3. Geometrical Combinatorics

Classical geometry, such as those of Euclidean or non-Euclidean geometry, or pro-

jective geometry are not combinatorial. Whence, the CC conjecture produces com-

binatorial notions for their development further, for instance the topological space

shown in Fig.5 following.

P1 P2

P3 P4

P0

P1

⋂
P2

P2

⋂
P4

P3

⋂
P4

P1

⋂
P3

P1

⋂
P0 P2

⋂
P0

P3

⋂
P0 P4

⋂
P0

Fig.5

Notion 3.1 For a geometrical space P, determine its underlying topological struc-

ture GL[A ,O] on subspaces, for instance, n-manifolds and classify them by graph

isomorphisms.

Notion 3.2 For an integer m ≥ 1, let P1, P2, · · ·, Pm all be geometrical spaces

in Definition 1.2 and P̃ underlying GL
[
P̃

]
with P̃ =

m⋃
i=1

Pi, i.e., a geometrical

multispace. Characterize P̃ and establish geometrical theory, i.e., combinatorial

geometry on P̃.

3.1 Euclidean Spaces

Let ǫ1 = (1, 0, · · · , 0), ǫ2 = (0, 1, 0 · · · , 0), · · ·, ǫn = (0, · · · , 0, 1) be the normal basis

of a Euclidean space Rn in a general position, i.e., for two Euclidean spaces Rnµ, Rnν ,

Rnµ ∩Rnν 6= Rmin{nµ,nν}. In this case, let Xvµ
be the set of orthogonal orientations in

R
nvµ , µ ∈ Λ. Then Rnµ ∩Rnν = Xvµ

∩Xvν
, which enables us to construct topological

spaces by the combination.
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For an index set Λ, a combinatorial Euclidean space EGL(nν ; ν ∈ Λ) underlying

a connected graph GL is a topological spaces consisting of Euclidean spaces Rnν ,

ν ∈ Λ such that

V
(
GL
)

= { R
nν | ν ∈ Λ };

E
(
GL
)

= { (Rnµ , Rnν) | Rnµ ∩Rnν 6= ∅, µ, ν ∈ Λ } and labeling

L : Rnν → Rnν and L : (Rnµ, Rnν)→ Rnµ
⋂

Rnν

for (Rnµ , Rnν) ∈ E
(
GL
)
, ν, µ ∈ Λ.

Clearly, for any graph G, we are easily construct a combinatorial Euclidean

space underlying G, which induces a problem following.

Problem 3.3 Determine the dimension of a combinatorial Euclidean space consist-

ing of m Euclidean spaces Rn1, Rn2, · · · , Rnm.

Generally, the combinatorial Euclidean spaces EGL(n1, n2, · · · , nm) are not unique

and to determine dimEGL(n1, n2, · · · , nm) converts to calculate the cardinality of

|Xn1 ∪Xn2 ∪ · · · ∪Xnm
|, where Xni

is the set of orthogonal orientations in Rni for

integers 1 ≤ i ≤ m, which can be determined by the inclusion-exclusion principle,

particularly, the maximum dimension following.

Theorem 3.4([21]) dimEGL(n1, · · · , nm) ≤ 1 − m +
m∑

i=1

ni and with the equality

holds if and only if dim (Rni ∩Rnj ) = 1 for ∀ (Rni, Rnj) ∈ E
(
GL
)
, 1 ≤ i, j ≤ m.

To determine the minimum dimEGL(n1, · · · , nm) is still open. However, we know

this number for G = Km and ni = r for integers 1 ≤ i ≤ m, i.e., EKm
(r) by following

results.

Theorem 3.5([21]) For any integer r ≥ 2, let EKm
(r) be a combinatorial Euclidean

space of Rr, · · · ,Rr

︸ ︷︷ ︸
m

, and there exists an integer s, 0 ≤ s ≤ r − 1 such that

(
r + s− 1

r

)
< m ≤

(
r + s

r

)
.

Then

dimminEKm
(r) = r + s.

12



Particularly,

dimminEKm
(3) =





3, if m = 1,

4, if 2 ≤ m ≤ 4,

5, if 5 ≤ m ≤ 10,

2 + ⌈√m⌉, if m ≥ 11.

3.2 Manifolds

An n-manifold is a second countable Hausdorff space of locally Euclidean n-space

without boundary, which is in fact a combinatorial Euclidean space EGL(n). Thus,

we can further replace these Euclidean spaces by manifolds and to get topological

spaces underlying a graph, such as those shown in Fig.6.

Fig.6

Definition 3.6([22]) Let M̃ be a topological space consisting of finite manifolds Mµ,

µ ∈ Λ. An inherent graph Gin
[
M̃
]

of M̃ is such a graph with

V
(
Gin

[
M̃
])

= {Mµ, µ ∈ Λ};

E
(
Gin

[
M̃
])

= {(Mµ, Mν)i
, 1 ≤ i ≤ κµν + 1|Mµ ∩Mν 6= ∅, µ, ν ∈ Λ},

where κµν+1 is the number of arcwise connected components in Mµ∩Mν for µ, ν ∈ Λ.

Notice that Gin
[
M̃
]

is a multiple graph. If replace all multiple edges (Mµ, Mν)i
,

1 ≤ i ≤ κµν + 1 by (Mµ, Mν), such a graph is denoted by G[M̃ ], which is also an

underlying graph of M̃ .

13



Clearly, if m = 1, then M̃(ni, i ∈ Λ) is nothing else but exactly an n1-manifold

by definition. Even so, Notion 3.1 enables us characterizing manifolds by graphs.

The following result shows that every manifold is in fact homeomorphic to combi-

natorial Euclidean space.

Theorem 3.7([22]) Any locally compact n-manifold M with an alta A = { (Uλ; ϕλ)|
λ ∈ Λ} is a combinatorial manifold M̃ homeomorphic to a combinatorial Euclidean

space EGL(n, λ ∈ Λ) with countable graphs Gin[M ] ∼= G.

Topologically, a Euclidean space Rn is homeomorphic to an opened ball Bn(R) =

{(x1, x2, · · · , xn)|x2
1 + x2

2 + · · · + x2
n < R}. Thus, we can view a combinatorial Eu-

clidean space EG(n, λ ∈ Λ) as a graph with vertices and edges replaced by ball Bn(R)

in space, such as those shown in Fig.6, a 3-dimensional graph.

Definition 3.8 An n-dimensional graph M̃n[G] is a combinatorial ball space B̃ of

Bn, µ ∈ Λ underlying a combinatorial structure G such that

(1) V (G) is discrete consisting of Bn, i.e., ∀v ∈ V (G) is an open ball Bn
v ;

(2) M̃n[G] \ V (M̃n[G]) is a disjoint union of open subsets e1, e2, · · · , em, each

of which is homeomorphic to an open ball Bn;

(3) the boundary ei− ei of ei consists of one or two Bn and each pair (ei, ei) is

homeomorphic to the pair (B
n
, Bn);

(4) a subset A ⊂ M̃n[G] is open if and only if A ∩ ei is open for 1 ≤ i ≤ m.

Particularly, a topological graph T [G] of a graph G embedded in a topological

space P is 1-dimensional graph.

According to Theorem 3.7, an n-manifold is homeomorphic to a combinato-

rial Euclidean space, i.e., n-dimensional graph. This enables us knowing a result

following on manifolds.

Theorem 3.9([22]) Let A [M ] = { (Uλ; ϕλ) | λ ∈ Λ} be a atlas of a locally compact

n-manifold M . Then the labeled graph GL
|Λ| of M is a topological invariant on |Λ|,

i.e., if HL1

|Λ| and GL2

|Λ| are two labeled n-dimensional graphs of M , then there exists

a self-homeomorphism h : M → M such that h : HL1

|Λ| → GL2

|Λ| naturally induces an

isomorphism of graph.

14



Theorem 3.9 enables us listing manifolds by two parameters, the dimensions and

inherited graph. For example, let |Λ| = 2 and then Amin[M ] = {(U1; ϕ1), (U2; ϕ2)},
i.e., M is double covered underlying a graphs DL

0,κ12+1,0 shown in Fig.7,

U1 U2

e1

e2

e3

eκ12+1

Fig.7

For example, let U1 = R2, ϕ1 = z, U2 = (R2 \ {(0, 0)} ∪ {∞}, ϕ2 = 1/z and

κ12 = 0. Then the 2-manifold is nothing else but the Riemannian sphere.

The GL-structure on combinatorial manifold M̃ can be also applied for charac-

terizing a few topological invariants, such as those fundamental groups, for instance

the conclusion following.

Theorem 3.10([23]) For ∀(M1, M2) ∈ E
(
GL
[
M̃
])

, if M1∩M2 is simply connected,

then

π1

(
M̃
)
∼=




⊗

M∈V (G[M̃])

π1(M)



⊗

π1

(
Gin

[
M̃
])

.

Particularly, for a compact n-manifold M with charts {(Uλ, ϕλ)| ϕλ : Uλ →
Rn, λ ∈ Λ}, if Uµ ∩ Uν is simply connected for ∀µ, ν ∈ Λ, then

π1(M) ∼= π1

(
Gin[M ]

)
.

3.3 Algebraic Geometry

The topological group, particularly, Lie group is a typical example of KL
2 -systems

that of algebra with geometry. Generally, let

AX = (b1, b2, · · · , bm)T (LEq)

15



be a linear equation system with

A =




a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·
am1 am2 · · · amn




and X =




x1

x2

· · ·
xn




for integers m, n ≥ 1, and all equations in (LEq) are non-trivial, i.e., there are

no numbers λ such that (ai1, ai2, · · · , ain, bi) = λ(aj1, aj2, · · · , ajn, bj) for any integers

1 ≤ i, j ≤ m.

-
6

O
x

y

x + 2y = 2

x + 2y = −2

2x− y = −2
2x− y = 2

A

B

D

C

Fig.8

It should be noted that the geometry of a linear equation in n variables is a

plane in Rn. Whence, a linear system (LEA) is non-solvable or not dependent on

their intersection is empty or not. For example, the linear system shown in Fig.8 is

non-solvable because their intersection is empty.

Definition 3.11 For any integers 1 ≤ i, j ≤ m, i 6= j, the linear equations

ai1x1 + ai2x2 + · · ·ainxn = bi,

aj1x1 + aj2x2 + · · ·ajnxn = bj

are called parallel if there no solution x1, x2, · · · , xn hold both with the 2 equations.

Define a graph GL[LEq] on linear system (LEq) following:

V
(
GL[LEq]

)
= { the solution space Si of ith equation |1 ≤ i ≤ m},

E
(
GL[Eq]

)
= { (Si, Sj) | Si

⋂
Sj 6= ∅, 1 ≤ i, j ≤ m} and with labels

16



L : Si → Si and L : (Si, Sj)→ Si

⋂
Sj

for ∀Si ∈ V
(
GL[LEq]

)
, (Si, Sj) ∈ E

(
GL[LEq]

)
. For example, the system of equa-

tions shown in Fig.8 is 



x + 2y = 2

x + 2y = −2

2x− y = −2

2x− y = 2

and CL
4 is its underlying graph GL[LEq] shown in Fig.9.

S1

S2S3

S4B

A

C

D

Fig.9

Let Li be the ith linear equation. By definition we divide these equations

Li, 1 ≤ i ≤ m into parallel families

C1, C2, · · · , Cs

by the property that all equations in a family Ci are parallel and there are no other

equations parallel to lines in Ci for integers 1 ≤ i ≤ s. Denoted by |Ci| = ni, 1 ≤
i ≤ s. Then, we can characterize GL[LEq] following.

Theorem 3.12([24]) Let (LEq) be a linear equation system for integers m, n ≥ 1.

Then

GL[LEq] ≃ KL
n1,n2,···,ns

with n1 + n + 2 + · · · + ns = m, where Ci is the parallel family with ni = |Ci| for
integers 1 ≤ i ≤ s in (LEq) and (LEq) is non-solvable if s ≥ 2.

Notice that this result is not sufficient, i.e., even if GL[LEq] ≃ Kn1,n2,···,ns
, we

can not claim that (LEq) is solvable or not. How ever, if n = 2, we can get a

necessary and sufficient condition on non-solvable linear equations.

17



Let H be a planar graph with each edge a straight segment on R2. Its c-line

graph LC(H) is defined by

V (LC(H)) = {straight lines L = e1e2 · · · el, s ≥ 1 in H};
E(LC(H)) = {(L1, L2)| if e1

i and e2
j are adjacent in H for L1 = e1

1e
1
2 · · · e1

l , L2 =

e2
1e

2
2 · · · e2

s, l, s ≥ 1}.

Theorem 3.13([24]) A linear equation system (LEq2) is non-solvable if and only if

GL[LEq2] ≃ LC(H)), where H is a planar graph of order |H| ≥ 2 on R2 with each

edge a straight segment

Similarly, let

P1(x), P2(x), · · · , Pm(x) (ESn+1
m )

be m homogeneous polynomials in n + 1 variables with coefficients in C and each

equation Pi(x) = 0 determine a hypersurface Mi, 1 ≤ i ≤ m in R
n+1, particularly,

a curve Ci if n = 2. We introduce the parallel property following.

Definition 3.14 Let P (x), Q(x) be two complex homogenous polynomials of degree

d in n + 1 variables and I(P, Q) the set of intersection points of P (x) with Q(x).

They are said to be parallel, denoted by P ‖ Q if d ≥ 1 and there are constants

a, b, · · · , c (not all zero) such that for ∀x ∈ I(P, Q), ax1 + bx2 + · · ·+ cxn+1 = 0, i.e.,

all intersections of P (x) with Q(x) appear at a hyperplane on PnC, or d = 1 with

all intersections at the infinite xn+1 = 0. Otherwise, P (x) are not parallel to Q(x),

denoted by P 6‖ Q.

Define a topological graph GL [ESn+1
m ] in Cn+1 by

V
(
GL [ESn+1

m ]
)

= {P1(x), P2(x), · · · , Pm(x)};
E
(
GL [ESn+1

m ]
)

= {(Pi(x), Pj(x))|Pi 6‖ Pj, 1 ≤ i, j ≤ m}
with a labeling

L : Pi(x)→ Pi(x), (Pi(x), Pj(x))→ I(Pi, Pj),

where 1 ≤ i 6= j ≤ m, and the topological graph of GL [ESn+1
m ] without labels is

denoted by G [ESn+1
m ]. The following result generalizes Theorem 3.12 to homogenous

polynomials.

Theorem 3.15([26]) Let n ≥ 2 be an integer. For a system (ESn+1
m ) of homogenous

18



polynomials with a parallel maximal classification C1, C2, · · · , Cl,

G[ESn+1
m ] ≤ K(C1, C2, · · · , Cl)

and with equality holds if and only if Pi ‖ Pj and Ps 6‖ Pi implies that Ps 6‖ Pj, where

K(C1, C2, · · · , Cl) denotes a complete l-partite graphs

Conversely, for any subgraph G ≤ K(C1, C2, · · · , Cl), there are systems (ESn+1
m )

of homogenous polynomials with a parallel maximal classification C1, C2, · · · , Cl such

that

G ≃ G[ESn+1
m ].

Particularly, if n = 2, i.e., an (ES3
m) system, we get the following necessary and

sufficient condition.

Theorem 3.16([26]) Let GL be a topological graph labeled with I(e) for ∀e ∈ E
(
GL
)
.

Then there is a system (ES3
m) of homogenous polynomials such that GL [ES3

m] ≃ GL

if and only if there are homogenous polynomials Pvi
(x, y, z), 1 ≤ i ≤ ρ(v) for ∀v ∈

V
(
GL
)

such that

I(e) = I




ρ(u)∏

i=1

Pui
,

ρ(v)∏

i=1

Pvi




for e = (u, v) ∈ E
(
GL
)
, where ρ(v) denotes the valency of vertex v in GL.

These GL-system of homogenous polynomials enables us to get combinatorial

manifolds, for instance, the following result appeared in [26].

Theorem 3.17 Let (ESn+1
m ) be a GL-system consisting of homogenous polyno-

mials P (x1), P (x2), · · · , P (xm) in n + 1 variables with respectively hypersurfaces

S1, S2, · · · , Sm. Then there is a combinatorial manifold M̃ in Cn+1 such that π :

M̃ → S̃ is 1− 1 with GL
[
M̃
]
≃ GL

[
S̃
]
, where, S̃ =

m⋃
i=1

Si.

Particularly, if n = 2, we can further determine the genus of surface g
(
S̃
)

by

closed formula as follows.

Theorem 3.18([26]) Let C1, C2, · · · , Cm be complex curves determined by homoge-

nous polynomials P1(x, y, z), P2(x, y, z), · · · , Pm(x, y, z) without common component,
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and let

RPi,Pj
=

deg(Pi)deg(Pj)∏

k=1

(
cij
k z − bij

k y
)eij

k , ωi,j =

deg(Pi)deg(Pj)∑

k=1

∑

e
ij
k
6=0

1

be the resultant of Pi(x, y, z), Pj(x, y, z) for 1 ≤ i 6= j ≤ m. Then there is an

orientable surface S̃ in R3 of genus

g
(
S̃
)

= β
(
G
〈
C̃
〉)

+

m∑

i=1


(deg(Pi)− 1)(deg(Pi)− 2)

2
−

∑

pi∈Sing(Ci)

δ(pi)




+
∑

1≤i6=j≤m

(ωi,j − 1) +
∑

i≥3

(−1)i
∑

Ck1

⋂
···
⋂

Cki
6=∅

[
c
(
Ck1

⋂
· · ·
⋂

Cki

)
− 1
]

with a homeomorphism ϕ : S̃ → C̃ =
m⋃

i=1

Ci. Furthermore, if C1, C2, · · · , Cm are

non-singular, then

g
(
S̃
)

= β
(
G
〈
C̃
〉)

+
m∑

i=1

(deg(Pi)− 1)(deg(Pi)− 2)

2

+
∑

1≤i6=j≤m

(ωi,j − 1) +
∑

i≥3

(−1)i
∑

Ck1

⋂
···
⋂

Cki
6=∅

[
c
(
Ck1

⋂
· · ·
⋂

Cki

)
− 1
]
,

where

δ(pi) =
1

2

(
Ipi

(
Pi,

∂Pi

∂y

)
− νφ(p

i) + |π−1(pi)|
)

is a positive integer with a ramification index νφ(p
i) for pi ∈ Sing(Ci), 1 ≤ i ≤ m.

Theorem 3.17 enables us to find interesting results in projective geometry, for

instance the following result.

Corollary 3.19 Let C1, C2, · · · , Cm be complex non-singular curves determined

by homogenous polynomials P1(x, y, z), P2(x, y, z), · · · , Pm(x, y, z) without common

component and Ci

⋂
Cj =

m⋂
i=1

Ci with

∣∣∣∣
m⋂

i=1

Ci

∣∣∣∣ = κ > 0 for integers 1 ≤ i 6= j ≤ m.

Then the genus of normalization S̃ of curves C1, C2, · · · , Cm is

g(S̃) = g(S̃) = (κ− 1)(m− 1) +
m∑

i=1

(deg(Pi)− 1)(deg(Pi)− 2)

2
.

Particularly, if C1, C2, · · · , Cm are distinct lines in P
2C with respective normal-

izations of spheres S1, S2, · · · , Sm. Then there is a normalization of surface S̃ of
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C1, C2, · · · , Cm with genus β
(
G
〈
L̃
〉)

. Furthermore, if G
〈
L̃
〉
) is a tree, then S̃ is

homeomorphic to a sphere.

3.4 Combinatorial Geometry

Furthermore, we can establish combinatorial geometry by Notion 3.2. For example,

we have 3 classical geometries, i.e., Euclidean, hyperbolic geometry and Rieman-

nian geometries for describing behaviors of objects in spaces with different axioms

following:

Euclid Geometry:

(A1) There is a straight line between any two points.

(A2) A finite straight line can produce a infinite straight line continuously.

(A3) Any point and a distance can describe a circle.

(A4) All right angles are equal to one another.

(A5) If a straight line falling on two straight lines make the interior angles

on the same side less than two right angles, then the two straight lines, if produced

indefinitely, meet on that side on which are the angles less than the two right angles.

Hyperbolic Geometry:

Axioms (A1)− (A4) and the axiom (L5) following:

(L5) there are infinitely many lines parallel to a given line passing through an

exterior point.

Riemannian Geometry:

Axioms (A1)− (A4) and the axiom (R5) following:

there is no parallel to a given line passing through an exterior point.

Then whether there is a geometry established by combining the 3 geometries, i.e.,

partially Euclidean and partially hyperbolic or Riemannian. Today, we have know

such theory really exists, called Smarandache geometry defined following.

Definition 3.20([12]) An axiom is said to be Smarandachely denied if the axiom

behaves in at least two different ways within the same space, i.e., validated and

invalided, or only invalided but in multiple distinct ways.
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A Smarandache geometry is a geometry which has at least one Smarandachely

denied axiom (1969).

L3

E

LL1

B
A

F C

D

(b)(a)

D C E

A BF G

l1

L2

Fig.10

For example, let us consider a Euclidean plane R2 and three non-collinear points

A, B and C shown in Fig.10. Define s-points as all usual Euclidean points on R2 and

s-lines any Euclidean line that passes through one and only one of points A, B and

C. Then such a geometry is a Smarandache geometry by the following observations.

Observation 1. The axiom (E1) that through any two distinct points there

exist one line passing through them is now replaced by: one s-line and no s-line.

Notice that through any two distinct s-points D, E collinear with one of A, B and

C, there is one s-line passing through them and through any two distinct s-points

F, G lying on AB or non-collinear with one of A, B and C, there is no s-line passing

through them such as those shown in Fig.10(a).

Observation 2. The axiom (E5) that through a point exterior to a given line

there is only one parallel passing through it is now replaced by two statements: one

parallel and no parallel. Let L be an s-line passes through C and D on AE, and AE

is parallel to CD in the Euclidean sense. Then there is one and only one line passing

through E which is parallel to L, but passing a point not on AE, for instance, point

F there are no lines parallel to L such as those shown in Fig.10(b).

Generally, we can construct a Smarandache geometry on smoothly combina-

torial manifolds M̃ , i.e., combinatorial geometry because it is homeomorphic to

combinatorial Euclidean space EGL (n1, n2, · · · , nm) by Definition 3.6 and Theorem

3.7. Such a theory is founded on the results for basis of tangent and cotangent

vectors following.
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Theorem 3.21([15]) For any point p ∈ M̃(n1, n2, · · · , nm) with a local chart (Up; [ϕp]),

the dimension of TpM̃(n1, n2, · · · , nm) is

dimTpM̃(n1, n2, · · · , nm) = ŝ(p) +
s(p)∑
i=1

(ni − ŝ(p))

with a basis matrix

[
∂

∂x

]

s(p)×ns(p)

=




1
s(p)

∂
∂x11 · · · 1

s(p)
∂

∂x1ŝ(p)
∂

∂x1(ŝ(p)+1) · · · ∂
∂x1n1

· · · 0
1

s(p)
∂

∂x21 · · · 1
s(p)

∂
∂x2ŝ(p)

∂
∂x2(ŝ(p)+1) · · · ∂

∂x2n2
· · · 0

· · · · · · · · · · · · · · · · · ·
1

s(p)
∂

∂xs(p)1 · · · 1
s(p)

∂
∂xs(p)ŝ(p)

∂
∂xs(p)(ŝ(p)+1) · · · · · · ∂

∂x
s(p)(ns(p)−1)

∂

∂x
s(p)ns(p)




where xil = xjl for 1 ≤ i, j ≤ s(p), 1 ≤ l ≤ ŝ(p), namely there is a smoothly

functional matrix [vij ]s(p)×ns(p)
such that for any tangent vector v at a point p of

M̃(n1, n2, · · · , nm),

v =

〈
[vij ]s(p)×ns(p)

, [
∂

∂x
]s(p)×ns(p)

〉
,

where 〈[aij ]k×l, [bts]k×l〉 =
k∑

i=1

l∑
j=1

aijbij, the inner product on matrixes.

Theorem 3.22([15]) For ∀p ∈ (M̃(n1, n2, · · · , nm); Ã) with a local chart (Up; [ϕp]),

the dimension of T ∗
p M̃(n1, n2, · · · , nm) is

dimT ∗
p M̃(n1, n2, · · · , nm) = ŝ(p) +

s(p)∑
i=1

(ni − ŝ(p))

with a basis matrix [dx]s(p)×ns(p)
=




dx11

s(p)
· · · dx1ŝ(p)

s(p)
dx1(ŝ(p)+1) · · · dx1n1 · · · 0

dx21

s(p)
· · · dx2ŝ(p)

s(p)
dx2(ŝ(p)+1) · · · dx2n2 · · · 0

· · · · · · · · · · · · · · · · · ·
dxs(p)1

s(p)
· · · dxs(p)ŝ(p)

s(p)
dxs(p)(ŝ(p)+1) · · · · · · dxs(p)ns(p)−1 dxs(p)ns(p)




where xil = xjl for 1 ≤ i, j ≤ s(p), 1 ≤ l ≤ ŝ(p), namely for any co-tangent vector d

at a point p of M̃(n1, n2, · · · , nm), there is a smoothly functional matrix [uij]s(p)×s(p)

such that,

d =
〈
[uij]s(p)×ns(p)

, [dx]s(p)×ns(p)

〉
.
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Then we can establish tensor theory with connections on smoothly combina-

torial manifolds ([15]). For example, we can establish the curvatures on smoothly

combinatorial manifolds, and get the curvature R̃ formula following.

Theorem 3.23([18]) Let M̃ be a finite combinatorial manifold, R̃ : X (M̃) ×
X (M̃)×X (M̃)×X (M̃)→ C∞(M̃) a curvature on M̃ . Then for ∀p ∈ M̃ with a

local chart (Up; [ϕp]),

R̃ = R̃(σς)(ηθ)(µν)(κλ)dxσς ⊗ dxηθ ⊗ dxµν ⊗ dxκλ,

where

R̃(σς)(ηθ)(µν)(κλ) =
1

2
(
∂2g(µν)(σς)

∂xκλ∂xηθ
+

∂2g(κλ)(ηθ)

∂xµνν∂xσς
− ∂2g(µν)(ηθ)

∂xκλ∂xσς
− ∂2g(κλ)(σς)

∂xµν∂xηθ
)

+ Γϑι
(µν)(σς)Γ

ξo

(κλ)(ηθ)g(ξo)(ϑι) − Γξo

(µν)(ηθ)Γ(κλ)(σς)ϑιg(ξo)(ϑι),

and g(µν)(κλ) = g( ∂
∂xµν , ∂

∂xκλ ).

This enables us to characterize the combination of classical fields, such as the

Einstein’s gravitational fields and other fields on combinatorial spacetimes and hold

their behaviors ( See [19]-[20] for details).

§4. Differential Equation’s Combinatorics

Let

(Eqm)





f1(x1, x2, · · · , xn+1) = 0

f2(x1, x2, · · · , xn+1) = 0

. . . . . . . . . . . . . . . . . . . . . . .

fm(x1, x2, · · · , xn+1) = 0

be a system of equations. It should be noted that the classical theory on equations

is not combinatorics. However, the solutions of an equation usually form a manifold

in the view of geometry. Thus, the CC conjecture bring us combinatorial notions

for developing equation theory similar to that of geometry further.

Notion 4.1 For a system (Eqm) of equations, solvable or non-solvable, determine

its underlying topological structure GL[Eqm] on each solution manifold and classify

them by graph isomorphisms and transformations.
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Notion 4.2 For an integer m ≥ 1, let D1, D2, · · ·, Dm be the solution manifolds

of an equation system (Eqm) in Definition 1.2 and D̃ underlying GL
[
D̃

]
with D̃ =

m⋃
i=1

Di, i.e., a combinatorial solution manifold. Characterize the system (Eqm) and

establish an equation theory, i.e., equation’s combinatorics on (Eqm).

Geometrically, let

Sfi
= {(x1, x2, · · · , xn+1)|fi(x1, x2, · · · , xn+1) = 0} ⊂ R

n+1

the solution-manifold in R
n+1 for integers 1 ≤ i ≤ m, where fi is a function hold

with conditions of the implicit function theorem for 1 ≤ i ≤ m. Then we are

easily finding criterions on the solubility of system (ESm), i.e., it is solvable or not

dependent on
m⋂

i=1

Sfi
6= ∅ or = ∅.

Whence, if the intersection is empty, i.e., (ESm) is non-solvable, there are no mean-

ings in classical theory on equations, but it is important for hold the global behaviors

of a complex thing. For such an objective, Notions 4.1 and 4.2 are helpful.

Let us begin at a linear differential equations system such as those of

Ẋ = A1X, · · · , Ẋ = AkX, · · · , Ẋ = AmX (LDES1
m)

or 



x(n) + a
[0]
11x

(n−1) + · · ·+ a
[0]
1nx = 0

x(n) + a
[0]
21x

(n−1) + · · ·+ a
[0]
2nx = 0

· · · · · · · · · · · ·
x(n) + a

[0]
m1x

(n−1) + · · ·+ a
[0]
mnx = 0

(LDEn
m)

with

Ak =




a
[k]
11 a

[k]
12 · · · a

[k]
1n

a
[k]
21 a

[k]
22 · · · a

[k]
2n

· · · · · · · · · · · ·
a

[k]
n1 a

[k]
n2 · · · a

[k]
nn




and X =




x1(t)

x2(t)

· · ·
xn(t)




where each a
[k]
ij is a real number for integers 0 ≤ k ≤ m, 1 ≤ i, j ≤ n.
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For example, let (LDE2
6) be the following linear homogeneous differential equa-

tion system




ẍ + 3ẋ + 2x = 0 (1)

ẍ + 5ẋ + 6x = 0 (2)

ẍ + 7ẋ + 12x = 0 (3)

ẍ + 9ẋ + 20x = 0 (4)

ẍ + 11ẋ + 30x = 0 (5)

ẍ + 7ẋ + 6x = 0 (6)

Certainly, it is non-solvable. However, we can easily solve equations (1)-(6) one

by one and get their solution spaces as follows:

S1 =
〈
e−t, e−2t

〉
= {C1e

−t + C2e
−2t|C1, C2 ∈ R} = {x|ẍ + 3ẋ + 2x = 0}

S2 =
〈
e−2t, e−3t

〉
= {C1e

−2t + C2e
−3t|C1, C2 ∈ R} = {x|ẍ + 5ẋ + 6x = 0}

S3 =
〈
e−3t, e−4t

〉
= {C1e

−3t + C2e
−4t|C1, C2 ∈ R} = {x|ẍ + 7ẋ + 12x = 0}

S4 =
〈
e−4t, e−5t

〉
= {C1e

−4t + C2e
−5t|C1, C2 ∈ R} = {x|ẍ + 9ẋ + 20x = 0}

S5 =
〈
e−5t, e−6t

〉
= {C1e

−5t + C2e
−6t|C1, C2 ∈ R} = {x|ẍ + 11ẋ + 30x = 0}

S6 =
〈
e−6t, e−t

〉
= {C1e

−6t + C2e
−t|C1, C2 ∈ R} = {x|ẍ + 7ẋ + 6x = 0}

Replacing each Σi by solution space Si in Definition 1.2, we get a topological

graph GL[LDE2
6 ] shown in Fig.11 on the linear homogeneous differential equation

system (LDE2
6). Thus we can solve a system of linear homogeneous differential

equations on its underlying graph GL, no matter it is solvable or not in the classical

sense.

〈e−t, e−2t〉 〈e−2t, e−3t〉

〈e−3t, e−4t〉

〈e−4t, e−5t〉〈e−5t, e−6t〉

〈−e6t, e−t〉

〈e−2t〉

〈e−3t〉

〈e−4t〉
〈e−5t〉

〈e−6t〉

〈e−t〉

Fig.11

Generally, we know a result on GL-solutions of linear homogenous differential

equations following.
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Theorem 4.3([25]) Every linear homogeneous differential equation system (LDES1
m)

(or (LDEn
m)) has a unique GL-solution, and for every HL labeled with linear spaces

〈
βi(t)e

αit, 1 ≤ i ≤ n
〉

on vertices such that

〈
βi(t)e

αit, 1 ≤ i ≤ n
〉⋂〈

βj(t)e
αjt, 1 ≤ j ≤ n

〉
6= ∅

if and only if there is an edge whose end vertices labeled by
〈
βi(t)e

αit, 1 ≤ i ≤ n
〉

and
〈
βj(t)e

αjt, 1 ≤ j ≤ n
〉

respectively, then there is a unique linear homogeneous

differential equation system (LDES1
m) (or (LDEn

m)) with GL-solution HL, where αi

is a ki-fold zero of the characteristic equation, k1 + k2 + · · ·+ ks = n and βi(t) is a

polynomial in t with degree≤ ki − 1.

Applying GL-solution of (LDES1
m) (or (LDEn

m)), we can classify such systems

by graph isomorphisms of graphs .

Definition 4.4 A vertex-edge labeling θ : G→ Z+ is said to be integral if θ(uv) ≤
min{θ(u), θ(v)} for ∀uv ∈ E(G), denoted by GIθ , and two integral labeled graphs

GIθ

1 and GIτ

2 are called identical if G1

ϕ≃ G2 and θ(x) = τ(ϕ(x)) for any graph

isomorphism ϕ and ∀x ∈ V (G1)
⋃

E(G1), denoted by GIθ

1 = GIτ

2 .

For example, GIθ

1 = GIτ

2 but GIθ

1 6= GIσ

3 for integral graphs shown in Fig.12.

3 4

4 3

1

2

2

1 2 2 1 1

4 2

2 4

3

3

3 3

4 4

2

GIθ

1 GIτ

2

2 2

1

1

GIσ

3

Fig.12

The following result classifies the systems (LDES1
m) and (LDEn

m) by graphs.

Theorem 4.5([25]) Let (LDES1
m), (LDES1

m)′ (or (LDEn
m), (LDEn

m)′) be two

linear homogeneous differential equation systems with integral labeled graphs H, H ′.

Then (LDES1
m)

ϕ≃ (LDES1
m)′ (or (LDEn

m)
ϕ≃ (LDEn

m)′) if and only if H = H ′.
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For partial differential equations, let




F1(x1, x2, · · · , xn, u, ux1, · · · , uxn
) = 0

F2(x1, x2, · · · , xn, u, ux1, · · · , uxn
) = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fm(x1, x2, · · · , xn, u, ux1, · · · , uxn
) = 0

(PDESm)

be such a system of first order on a function u(x1, · · · , xn, t) with continuous Fi :

Rn → Rn such that Fi(0) = 0.

Definition 4.6 The symbol of (PDESm) is determined by




F1(x1, x2, · · · , xn, u, p1, · · · , pn) = 0

F2(x1, x2, · · · , xn, u, p1, · · · , pn) = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fm(x1, x2, · · · , xn, u, p1, · · · , pn) = 0,

i.e., substitutes ux1, ux2, · · · , uxn
by p1, p2, · · · , pn in (PDESm), and it is algebraically

contradictory if its symbol is non-solvable. Otherwise, differentially contradictory.

For example, the system of partial differential equations following




(z − y)ux + (x− z)uy + (y − x)uz = 0

zux + xuy + yuz = x2 + y2 + z2 + 1

yux + zuy + xuz = x2 + y2 + z2 + 4

is algebraically contradictory because its symbol




(z − y)p1 + (x− z)p2 + (y − x)p3 = 0

zp1 + xp2 + yp3 = x2 + y2 + z2 + 1

yp1 + zp2 + xp3 = x2 + y2 + z2 + 4

is contradictory. Generally, we know a result for Cauchy problem on non-solvable

systems of partial differential equations of first order following.

Theorem 4.7([28]) A Cauchy problem on systems




F1(x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0

F2(x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fm(x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0
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of partial differential equations of first order is non-solvable with initial values





xi|xn=x0
n

= x0
i (s1, s2, · · · , sn−1)

u|xn=x0
n

= u0(s1, s2, · · · , sn−1)

pi|xn=x0
n

= p0
i (s1, s2, · · · , sn−1), i = 1, 2, · · · , n

if and only if the system

Fk(x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0, 1 ≤ k ≤ m

is algebraically contradictory, in this case, there must be an integer k0, 1 ≤ k0 ≤ m

such that

Fk0(x
0
1, x

0
2, · · · , x0

n−1, x
0
n, u0, p

0
1, p

0
2, · · · , p0

n) 6= 0

or it is differentially contradictory itself, i.e., there is an integer j0, 1 ≤ j0 ≤ n− 1

such that
∂u0

∂sj0

−
n−1∑

i=0

p0
i

∂x0
i

∂sj0

6= 0.

According to Theorem 4.7, we know conditions for uniquely GL-solution of

Cauchy problem on system of partial differential equations of first order.

Theorem 4.8([28]) A Cauchy problem on system (PDESm) of partial differential

equations of first order with initial values x
[k0]
i , u

[k]
0 , p

[k0]
i , 1 ≤ i ≤ n for the kth

equation in (PDESm), 1 ≤ k ≤ m such that

∂u
[k]
0

∂sj

−
n∑

i=0

p
[k0]
i

∂x
[k0]
i

∂sj

= 0

is uniquely GL-solvable, i.e., GL[PDES] is uniquely determined.

Applying the GL-solution of a GL-system (DESm) of differential equations, the

global stability, i.e, sum-stable or prod-stable of (DESm) can be introduced. For

example, the sum-stability of (DESm) is defined following.

Definition 4.9 Let (DESC
m) be a Cauchy problem on a system of differential equa-

tions in Rn, HL ≤ GL
[
DESC

m

]
a spanning subgraph, and u[v] the solution of the vth

equation with initial value u
[v]
0 , v ∈ V

(
HL
)
. It is sum-stable on the subgraph HL if
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for any number ε > 0 there exists, δv > 0, v ∈ V
(
HL
)

such that each GL(t)-solution

with ∣∣∣u′[v]
0 − u

[v]
0

∣∣∣ < δv, ∀v ∈ V
(
HL
)

exists for all t ≥ 0 and with the inequality

∣∣∣∣∣∣

∑

v∈V (HL)

u′[v] −
∑

v∈V (HL)

u[v]

∣∣∣∣∣∣
< ε

holds, denoted by GL[t]
H∼ GL[0] and GL[t]

Σ∼ GL[0] if HL = GL
[
DESC

m

]
. Further-

more, if there exists a number βv > 0, v ∈ V
(
HL
)

such that every GL′

[t]-solution

with ∣∣∣u′[v]
0 − u

[v]
0

∣∣∣ < βv, ∀v ∈ V
(
HL
)

satisfies

lim
t→∞

∣∣∣∣∣∣

∑

v∈V (H)

u′[v] −
∑

v∈V (HL)

u[v]

∣∣∣∣∣∣
= 0,

then the GL[t]-solution is called asymptotically stable, denoted by GL[t]
H→ GL[0] and

GL[t]
Σ→ GL[0] if HL = GL

[
DESC

m

]
.

For example, let the system (SDESC
m) be

∂u

∂t
= Hi(t, x1, · · · , xn−1, p1, · · · , pn−1)

u|t=t0 = u
[i]
0 (x1, x2, · · · , xn−1)



 1 ≤ i ≤ m

(
SDESC

m

)

and a point X
[i]
0 = (t0, x

[i]
10, · · · , x[i]

(n−1)0) with Hi(t0, x
[i]
10, · · · , x[i]

(n−1)0) = 0 for an integer

1 ≤ i ≤ m is equilibrium of the ith equation in (SDESC
m). A result on the sum-

stability of (SDESC
m) is obtained in [30] following.

Theorem 4.10([28]) Let X
[i]
0 be an equilibrium point of the ith equation in (SDESC

m)

for each integer 1 ≤ i ≤ m. If

m∑

i=1

Hi(X) > 0 and
m∑

i=1

∂Hi

∂t
≤ 0

for X 6=
m∑

i=1

X
[i]
0 , then the system (SDESC

m) is sum-stability, i.e., GL[t]
Σ∼ GL[0].
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Furthermore, if
m∑

i=1

∂Hi

∂t
< 0

for X 6=
m∑

i=1

X
[i]
0 , then GL[t]

Σ→ GL[0].

§5. Field’s Combinatorics

The modern physics characterizes particles by fields, such as those of scalar field,

Maxwell field, Weyl field, Dirac field, Yang-Mills field, Einstein gravitational field,

· · ·, etc., which are in fact spacetime in geometry, isolated but non-combinatorics.

Whence, the CC conjecture can bring us a combinatorial notion for developing field

theory further, which enables us understanding the world and discussed extensively

in the first edition of [13] in 2009, and references [18]-[20].

Notion 5.1 Characterize the geometrical structure, particularly, determine its un-

derlying topological GL[D ] of spacetime D on all fields appeared in theoretical physics.

Notice that the essence of Notion 5.1 is to characterize the geometrical spaces

of particles. Whence, it is in fact equivalent to Notion 3.1.

Notion 5.2 For an integer m ≥ 1, let D1, D2, · · ·, Dm be spacetimes in Definition

1.2 and L̃ underlying GL
[
D̃

]
with D̃ =

m⋃
i=1

Di, i.e., a combinatorial spacetime.

Select suitable Lagrangian or Hamiltonian density L̃ to determine field equation of

D̃ , hold with the principle of covariance and characterize its global behaviors.

There are indeed such fields, for instance the gravitational waves in Fig.13.

Fig.13
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A combinatorial field D̃ is a combination of fields underlying a topological graph

GL with actions between fields. For this objective, a natural way is to characterize

each field Ci, 1 ≤ i ≤ n of them by itself reference frame {x}. Whence, the principles

following are indispensable.

Action Principle of Fields. There are always exist an action
−→
A between two

fields C1 and C2 of a combinatorial field if dim(C1 ∩C2) ≥ 1, which can be found at

any point on a spatial direction in their intersection.

Thus, a combinatorial field D̃ depends its underlying graph GL
[
D̃

]
, such as

those shown in Fig.14.

C1 C2

C3 C4

Fig.14

−→
C 1
←−
C 2

−→
C 2
←−
C 3

−→
C 3
←−
C 4

−→
C 4
←−
C 1

For understanding the world by combinatorial fields, the anthropic principle,

i.e., the born of human beings is not accidental but inevitable in the world will ap-

plicable, which implies the generalized principle of covariance following.

Generalized Principle of Covariance([20]) A physics law in a combinatorial

field is invariant under all transformations on its coordinates, and all projections on

its a subfield.

Then, we can construct the Lagrangian density L̃ and find the field equations

of combinatorial field D̃ , which are divided into two cases ([13], first edition).

Case 1. Linear

In this case, the expression of the Lagrange density L
GL[D̃] is

L
GL[D̃] =

n∑

i=1

aiLDi
+

∑

(Di,Dj)∈E(GL[D̃])

bijTij ,
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where ai, bij are coupling constants determined only by experiments.

Case 2. Non-Linear

In this case, the Lagrange density L
GL[D̃] is a non-linear function on LDi

and

Tij for 1 ≤ i, j ≤ n. Let the minimum and maximum indexes j for (Mi, Mj) ∈
E
(
GL
[
D̃

])
are il and iu, respectively. Denote by

x = (x1, x2, · · ·) = (LD1 , LD2 , · · · , LDn
, T11l , · · · , T11u , · · · , T22l , · · · , ).

If L
GL[D̃] is k + 1 differentiable, k ≥ 0 by Taylor’s formula we know that

L
GL[D̃] = L

GL[D̃](0) +

n∑

i=1

[
∂L

GL[D̃]

∂xi

]

xi=0

xi +
1

2!

n∑

i,j=1

[
∂2L

GL[D̃]

∂xi∂xj

]

xi,xj=0

xixj

+ · · ·+ 1

k!

n∑

i1,i2,···,ik=1

[
∂kL

GL[D̃]

∂xi1∂xi2 · · ·∂xik

]

xij
=0,1≤j≤k

xi1xi2 · · ·xik

+R(x1, x2, · · ·),

where

lim
‖x‖→0

R(x1, x2, · · ·)
‖x‖ = 0,

and choose the first s terms

L
GL[D̃](0) +

n∑

i=1

[
∂L

GL[D̃]

∂xi

]

xi=0

xi +
1

2!

n∑

i,j=1

[
∂2L

GL[D̃]

∂xi∂xj

]

xi,xj=0

xixj

+ · · ·+ 1

k!

n∑

i1,i2,···,ik=1

[
∂kL

GL[D̃]

∂xi1∂xi2 · · ·∂xik

]

xij
=0,1≤j≤k

xi1xi2 · · ·xik

to be the asymptotic value of Lagrange density L
GL[D̃], particularly, the linear parts

L
GL[D̃](0) +

n∑

i=1

[
∂L

GL[D̃]

∂LDi

]

LDi
=0

LMi
+

∑

(Mi,Mj)∈E(GL[M̃ ])

[
∂L

GL[D̃]

∂Tij

]

Tij=0

Tij .

Notice that such a Lagrange density maybe intersects. We need to consider

Lagrange density without intersections. For example,

L
GL[D̃] =

4∑

i=1

L
2
Ci
−

4∑

i=1

L−→
C i

←−
C i+1
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for the combinatorial field shown in Fig.14.

Then, apply the Euler-Lagrange equations, i.e.,

∂µ

∂L
GL[D̃]

∂∂µφ
D̃

−
∂L

GL[D̃]

∂φ
D̃

= 0,

where φ
D̃

is the wave function of combinatorial field D̃(t), we are easily find the

equations of combinatorial field D̃ .

For example, for a combinatorial scalar field φ
D̃
, without loss of generality let

φ
D̃

=
n∑

i=1

ciφDi

L
GL[D̃] =

1

2

n∑

i=1

(∂µi
φDi

∂µiφDi
−m2

i φ
2
Di

) +
∑

(Di,Dj)∈E(GL[D̃])

bijφDi
φDj

,

i.e., linear case

L
GL[D̃] =

n∑

i=1

LDi
+

∑

(Di,Dj)∈E(GL[D̃])

bijTij

with LDi
= 1

2
(∂µi

φDi
∂µiφDi

− m2
i φ

2
Di

), Tij = φDi
φDj

, µi = µDi
and constants

bij , mi, ci for integers 1 ≤ i, j ≤ n. Then the equation of combinatorial scalar

field is

n∑

i=1

1

ci

(∂µ∂µi + m2
i )φMi

−
∑

(Mi,Mj)∈E(GL[M̃ ])

bij

(
φMj

ci

+
φMi

cj

)
= 0.

Similarly, we can determine the equations on combinatorial Maxwell field, Weyl

field, Dirac field, Yang-Mills field and Einstein gravitational field in theory. For more

such conclusions, the reader is refers to references [13], [18]-[20] in details.

Notice that the string theory even if arguing endlessly by physicist, it is in fact

a combinatorial field R4 ×R7 under supersymmetries. Recently, there is a claim on

the Theory of Everything with equations ([6], [7]) by letting the Lagrangian density

L = LEH + LEM + LW + LQCD,

where LEH, LEM , LW and LQCD are respectively the gravitational field, electro-

magnetic field, weak and strong nuclear fields. However, it is a little ambiguous

because LEH is on gravitation, a field on real bodies, but LEM , LW and LQCD
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on state field of particles, not real ones. Even so, Notions 5.1 and 5.2 produce

developing space for physics, merely with examining by experiment.

§6. Conclusions

The role of CC conjecture to mathematical sciences has been shown in previous

sections by examples of results. Actually, it is a mathematical machinery of philo-

sophical notion: there always exist universal connection between things T with a

disguise GL[T ] on connections, which enables us converting a mathematical system

with contradictions to a compatible one ([27]), and opens thoroughly new ways for

developing mathematical sciences.

However, is a topological graph an element of a mathematical system with mea-

sures, not only viewed as a geometrical figure? The answer is YES! Recently, the

author introduces
−→
G -flow in [29], i.e., an oriented graph

−→
G embedded in a topolog-

ical space S associated with an injective mappings L : (u, v) → L(u, v) ∈ V such

that L(u, v) = −L(v, u) for ∀(u, v) ∈ X
(−→

G
)

holding with conservation laws

∑

u∈NG(v)

L (v, u) = 0 for ∀v ∈ V
(−→

G
)

,

where V is a Banach space over a field F and showed all these
−→
G -flows

−→
G

V

form a

Banach space by defining
∥∥∥−→GL

∥∥∥ =
∑

(u,v)∈X

(−→
G
)
‖L(u, v)‖

for ∀−→GL ∈ −→GV

, and furthermore, Hilbert space by introducing inner product sim-

ilarly, where ‖L(u, v)‖ denotes the norm of F (uv) in V , which enables us to get
−→
G -flow solutions, i.e., combinatorial solutions on differential equations.
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