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EXTENDED BANACH
−→
G-FLOW SPACES ON DIFFERENTIAL

EQUATIONS WITH APPLICATIONS

LINFAN MAO

Abstract. Let V be a Banach space over a field F . A
−→
G -flow is a graph

−→
G embedded in a topological space S associated with an injective mappings

L : uv → L(uv) ∈ V such that L(uv) = −L(vu) for ∀(u, v) ∈ X
(
−→
G
)

holding

with conservation laws
∑

u∈NG(v)

L (vu) = 0 for ∀v ∈ V
(
−→
G
)

,

where uv denotes the semi-arc of (u, v) ∈ X
(
−→
G
)
, which is a mathematical

object for things embedded in a topological space. The main purpose of this
paper is to extend Banach spaces on topological graphs with operator actions
and show all of these extensions are also Banach space with a bijection with
a bijection between linear continuous functionals and elements, which enables
one to solve linear functional equations in such extended space, particularly,
solve algebraic, differential or integral equations on a topological graph, find
multi-space solutions on equations, for instance, the Einstein’s gravitational
equations. A few well-known results in classical mathematics are generalized
such as those of the fundamental theorem in algebra, Hilbert and Schmidt’s

result on integral equations, and the stability of such
−→
G -flow solutions with

applications to ecologically industrial systems are also discussed in this paper.

1. Introduction

Let V be a Banach space over a field F . All graphs
−→
G , denoted by (V (

−→
G), X(

−→
G))

considered in this paper are strong-connected without loops. A topological graph
−→
G is an embedding of an oriented graph

−→
G in a topological space C . All elements

in V (
−→
G ) or X(

−→
G) are respectively called vertices or arcs of

−→
G .

An arc e = (u, v) ∈ X(
−→
G) can be divided into 2 semi-arcs, i.e., initial semi-arc

uv and end semi-arc vu, such as those shown in Fig.1 following.
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Fig.1

All these semi-arcs of a topological graph
−→
G are denoted by X 1

2

(−→
G
)
.

A vector labeling
−→
GL on

−→
G is a 1− 1 mapping L :

−→
G → V such that L : uv →

L(uv) ∈ V for ∀uv ∈ X 1
2

(−→
G
)
, such as those shown in Fig.1. For all labelings

−→
GL

on
−→
G , define

−→
GL1 +

−→
GL2 =

−→
GL1+L2 and λ

−→
GL =

−→
GλL.

Then, all these vector labelings on
−→
G naturally form a vector space. Particularly,

a
−→
G-flow on

−→
G is such a labeling L : uv → V for ∀uv ∈ X 1

2

(−→
G
)

hold with

L (uv) = −L (vu) and conservation laws
∑

u∈NG(v)

L (vu) = 0

for ∀v ∈ V (
−→
G), where 0 is the zero-vector in V . For example, a conservation law

for vertex v in Fig.2 is −L(vu1)−L(vu2)−L(vu3) +L(vu4) +L(vu5) +L(vu6) = 0.---
---v

u1

u2

u3

u4

u5

u6

L(vu1)

L(vu2)

L(vu3)

L(vu4)

L(vu5)

F (vu6)

Fig.2

Clearly, if V = Z and O = {1}, then the
−→
G -flow

−→
GL is nothing else but the network

flow X(
−→
G) → Z on

−→
G .

Let
−→
GL,

−→
GL1 ,

−→
GL2 be

−→
G -flows on a topological graph

−→
G and ξ ∈ F a scalar.

It is clear that
−→
GL1 +

−→
GL2 and ξ ·

−→
GL are also

−→
G -flows, which implies that all

conservation
−→
G -flows on

−→
G also form a linear space over F with unit

−→
G0 under

operations + and ·, denoted by
−→
GV , where

−→
G0 is such a

−→
G -flow with vector 0 on

uv for (u, v) ∈ X
(−→
G
)
, denoted by O if

−→
G is clear by the paragraph..

The flow representation for graphs are first discussed in [5], and then applied
to differential operators in [6], which has shown its important role both in mathe-
matics and applied sciences. It should be noted that a conservation law naturally

determines an autonomous systems in the world. We can also find
−→
G -flows by

solving conservation equations
∑

u∈NG(v)

L (vu) = 0, v ∈ V
(−→
G
)
.
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Such a system of equations is non-solvable in general, only with
−→
G -flow solutions

such as those discussions in references [10]-[19]. Thus we can also introduce
−→
G -flows

by Smarandache multi-system ([21]-[22]). In fact, for any integer m ≥ 1 let
(
Σ̃; R̃

)

be a Smarandache multi-system consisting of m mathematical systems (Σ1;R1),

(Σ2;R2), · · · , (Σm;Rm), different two by two. A topological structure GL
[
Σ̃; R̃

]

on
(
Σ̃; R̃

)
is inherited by

V
(
GL
[
Σ̃; R̃

])
= {Σ1,Σ2, · · · ,Σm},

E
(
GL
[
Σ̃; R̃

])
= {(Σi,Σj) |Σi

⋂
Σj 6= ∅, 1 ≤ i 6= j ≤ m} with labeling

L : Σi → L (Σi) = Σi and L : (Σi,Σj) → L (Σi,Σj) = Σi

⋂
Σj

for integers 1 ≤ i 6= j ≤ m, i.e., a topological vertex-edge labeled graph. Clearly,

GL
[
Σ̃; R̃

]
is a

−→
G -flow if Σi

⋂
Σj = v ∈ V for integers 1 ≤ i, j ≤ m.

The main purpose of this paper is to establish the theoretical foundation, i.e.,
extending Banach spaces, particularly, Hilbert spaces on topological graphs with
operator actions and show all of these extensions are also Banach space with a
bijection between linear continuous functionals and elements, which enables one to
solve linear functional equations in such extended space, particularly, solve algebraic
or differential equations on a topological graph, i.e., find multi-space solutions for
equations, such as those of algebraic equations, the Einstein gravitational equations
and integral equations with applications to controlling of ecologically industrial
systems. All of these discussions provide new viewpoint for mathematical elements,
i.e., mathematical combinatorics.

For terminologies and notations not mentioned in this section, we follow refer-
ences [1] for functional analysis, [3] and [7] for topological graphs, [4] for linear
spaces, [8]-[9], [21]-[22] for Smarandache multi-systems, [3], [20] and [23] for differ-
ential equations.

2.
−→
G-Flow Spaces

2.1 Existence

Definition 2.1. Let V be a Banach space. A family V of vectors v ∈ V is
conservative if ∑

v∈V

v = 0,

called a conservative family.

Let V be a Banach space over a field F with a basis {α1, α2, · · · , αdimV }. Then,
for v ∈ V there are scalars xv

1 , x
v
2 , · · · , x

v
dimV

∈ F such that

v =

dimV∑

i=1

xv
i αi.

Consequently,

∑

v∈V

dimV∑

i=1

xv
i αi =

dimV∑

i=1

(
∑

v∈V

xv
i

)
αi = 0
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implies that ∑

v∈V

xv
i = 0

for integers 1 ≤ i ≤ dimV .
Conversely, if ∑

v∈V

xv
i = 0, 1 ≤ i ≤ dimV ,

define

vi =

dimV∑

i=1

xv
i αi

and V = {vi, 1 ≤ i ≤ dimV }. Clearly,
∑
v∈V

v = 0, i.e., V is a family of conservation

vectors. Whence, if denoted by xv
i = (v, αi) for ∀v ∈ V , we therefore get a condition

on families of conservation in V following.

Theorem 2.2. Let V be a Banach space with a basis {α1, α2, · · · , αdimV }.
Then, a vector family V ⊂ V is conservation if and only if

∑

v∈V

(v, αi) = 0

for integers 1 ≤ i ≤ dimV .

For example, let V = {v1,v2,v3,v4} ⊂ R3 with

v1 = (1, 1, 1), v2 = (−1, 1, 1),

v3 = (1,−1,−1), v4 = (−1,−1,−1)

Then it is a conservation family of vectors in R3.
Clearly, a conservation flow consists of conservation families. The following result

establishes its inverse.

Theorem 2.3. A
−→
G -flow

−→
GL exists on

−→
G if and only if there are conservation

families L(v) in a Banach space V associated an index set V with

L(v) = {L(vu) ∈ V for some u ∈ V }

such that L(vu) = −L(uv) and

L(v)
⋂

(−L(u)) = L(vu) or ∅.

Proof Notice that ∑

u∈NG(v)

L(vu) = 0

for ∀v ∈ V
(−→
G
)

implies

L(vu) = −
∑

w∈NG(v)\{u}

L(vw).

Whence, if there is an index set V associated conservation families L(v) with

L(v) = {L(vu) ∈ V for some u ∈ V }
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for ∀v ∈ V such that L(vu) = −L(uv) and L(v)
⋂

(−L(u)) = L(vu) or ∅, define a

topological graph
−→
G by

V
(−→
G
)

= V and X
(−→
G
)

=
⋃

v∈V

{(v, u)|L(vu) ∈ L(v)}

with an orientation v → u on its each arcs. Then, it is clear that
−→
GL is a

−→
G -flow

by definition.

Conversely, if
−→
GL is a

−→
G -flow, let

L(v) = {L(vu) ∈ V for ∀(v, u) ∈ X
(−→
G
)
}

for ∀v ∈ V
(−→
G
)
. Then, it is also clear that L(v), v ∈ V

(−→
G
)

are conservation

families associated with an index set V = V
(−→
G
)

such that L(v, u) = −L(u, v) and

L(v)
⋂

(−L(u)) =





L(vu) if (v, u) ∈ X
(−→
G
)

∅ if (v, u) 6∈ X
(−→
G
)

by definition. �

Theorems 2.2 and 2.3 enables one to get the following result.

Corollary 2.4. There are always existing
−→
G -flows on a topological graph

−→
G with

weights λv for v ∈ V , particularly, λeαi on ∀e ∈ X
(−→
G
)

if
∣∣∣X
(−→
G
)∣∣∣ ≥

∣∣∣V
(−→
G
)∣∣∣+1.

Proof Let e = (u, v) ∈ X
(−→
G
)
. By Theorems 2.2 and 2.3, for an integer

1 ≤ i ≤ dimV , such a
−→
G -flow exists if and only if the system of linear equations

∑

u∈V
(−→

G
)
λ(v,u) = 0, v ∈ V

(−→
G
)

is solvable. However, if
∣∣∣X
(−→
G
)∣∣∣ ≥

∣∣∣V
(−→
G
)∣∣∣+ 1, such a system is indeed solvable

by linear algebra. �

2.2
−→
G -Flow Spaces

Define ∥∥∥
−→
GL
∥∥∥ =

∑

(u,v)∈X
(−→

G
)
‖L(uv)‖

for ∀
−→
GL ∈

−→
GV , where ‖L(uv)‖ is the norm of F (uv) in V . Then

(1)
∥∥∥
−→
GL
∥∥∥ ≥ 0 and

∥∥∥
−→
GL
∥∥∥ = 0 if and only if

−→
GL =

−→
G0 = O.

(2)
∥∥∥
−→
GξL

∥∥∥ = ξ
∥∥∥
−→
GL
∥∥∥ for any scalar ξ.
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(3)
∥∥∥
−→
GL1 +

−→
GL2

∥∥∥ ≤
∥∥∥
−→
GL1

∥∥∥+
∥∥∥
−→
GL2

∥∥∥ because of

∥∥∥
−→
GL1 +

−→
GL2

∥∥∥ =
∑

(u,v)∈X
(−→

G
)
‖L1(u

v) + L2(u
v)‖

≤
∑

(u,v)∈X
(−→

G
)
‖L1(u

v)‖ +
∑

(u,v)∈X
(−→

G
)
‖L2(u

v)‖ =
∥∥∥
−→
GL1

∥∥∥+
∥∥∥
−→
GL2

∥∥∥ .

Whence, ‖ · ‖ is a norm on linear space
−→
GV .

Furthermore, if V is an inner space with inner product 〈·, ·〉, define
〈−→
GL1 ,

−→
GL2

〉
=

∑

(u,v)∈X
(−→

G
)
〈L1(u

v), L2(u
v)〉 .

Then we know that

(4)
〈−→
GL,

−→
GL
〉

=
∑

(u,v)∈X
(−→

G
) 〈L(uv), L(uv)〉 ≥ 0 and

〈−→
GL,

−→
GL
〉

= 0 if and only

if L(uv) = 0 for ∀(u, v) ∈ X(
−→
G), i.e.,

−→
GL = O.

(5)
〈−→
GL1 ,

−→
GL2

〉
=
〈−→
GL2 ,

−→
GL1

〉
for ∀

−→
GL1 ,

−→
GL2 ∈

−→
GV because of

〈−→
GL1 ,

−→
GL2

〉
=

∑

(u,v)∈X
(−→

G
)
〈L1(u

v), L2(u
v)〉 =

∑

(u,v)∈X
(−→

G
)
〈L2(uv), L1(uv)〉

=
∑

(u,v)∈X
(−→

G
)
〈L2(uv), L1(uv)〉 =

〈−→
GL2 ,

−→
GL1

〉

(6) For
−→
GL,

−→
GL1 ,

−→
GL2 ∈

−→
GV , there is

〈
λ
−→
GL1 + µ

−→
GL2 ,

−→
GL
〉

= λ
〈−→
GL1 ,

−→
GL
〉

+ µ
〈−→
GL2 ,

−→
GL
〉

because of〈
λ
−→
GL1 + µ

−→
GL2 ,

−→
GL
〉

=
〈−→
GλL1 +

−→
GµL2 ,

−→
GL
〉

=
∑

(u,v)∈X(
−→
G)

〈λL1(u
v) + µL2(u

v), L(uv)〉

=
∑

(u,v)∈X(
−→
G)

〈λL1(u
v), L(uv)〉 +

∑

(u,v)∈X(
−→
G)

〈µL2(u
v), L(uv)〉

=
〈−→
GλL1 ,

−→
GL
〉

+
〈−→
GµL2 ,

−→
GL
〉

= λ
〈−→
GL1 ,

−→
GL
〉

+ µ
〈−→
GL2 ,

−→
GL
〉
.

Thus,
−→
GV is an inner space also and as the usual, let

∥∥∥
−→
GL
∥∥∥ =

√〈−→
GL,

−→
GL

〉
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for
−→
GL ∈

−→
GV . Then it is a normed space. Furthermore, we know the following

result.

Theorem 2.5. For any topological graph
−→
G ,

−→
GV is a Banach space, and

furthermore, if V is a Hilbert space,
−→
GV is a Hilbert space also.

Proof As shown in the previous,
−→
GV is a linear normed space or inner space

if V is an inner space. We show that it is also complete, i.e., any Cauchy sequence

in
−→
GV is converges. In fact, let

{−→
GLn

}
be a Cauchy sequence in

−→
GV . Thus for

any number ε > 0, there always exists an integer N(ε) such that
∥∥∥
−→
GLn −

−→
GLm

∥∥∥ < ε

if n,m ≥ N(ε). By definition,

‖Ln(uv) − Lm(uv)‖ ≤
∥∥∥
−→
GLn −

−→
GLm

∥∥∥ < ε

i.e., {Ln(uv)} is also a Cauchy sequence for ∀(u, v) ∈ X
(−→
G
)
, which is converges

on in V by definition.

Let L(uv) = lim
n→∞

Ln(uv) for ∀(u, v) ∈ X
(−→
G
)
. Then it is clear that

lim
n→∞

−→
GLn =

−→
GL.

However, we are needed to show
−→
GL ∈

−→
GV . By definition,

∑

v∈NG(u)

Ln(uv) = 0

for ∀u ∈ V
(−→
G
)

and integers n ≥ 1. Let n→ ∞ on its both sides. Then

lim
n→∞




∑

v∈NG(u)

Ln(uv)


 =

∑

v∈NG(u)

lim
n→∞

Ln(uv)

=
∑

v∈NG(u)

L(uv) = 0.

Thus,
−→
GL ∈

−→
GV . �

Similarly, two conservation
−→
G -flows

−→
GL1 and

−→
GL2 are said to be orthogonal if〈−→

GL1 ,
−→
GL2

〉
= 0. The following result characterizes those of orthogonal pairs of

conservation
−→
G -flows.

Theorem 2.6. Let
−→
GL1 ,

−→
GL2 ∈

−→
GV . Then

−→
GL1 is orthogonal to

−→
GL2 if and

only if 〈L1(u
v), L2(u

v)〉 = 0 for ∀(u, v) ∈ X
(−→
G
)
.

Proof Clearly, if 〈L1(u
v), L2(u

v)〉 = 0 for ∀(u, v) ∈ X
(−→
G
)
, then,

〈−→
GL1 ,

−→
GL2

〉
=

∑

(u,v)∈X
(−→

G
)
〈L1(u

v), L2(u
v)〉 = 0,
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i.e.,
−→
GL1 is orthogonal to

−→
GL2 .

Conversely, if
−→
GL1 is indeed orthogonal to

−→
GL2 , then

〈−→
GL1 ,

−→
GL2

〉
=

∑

(u,v)∈X
(−→

G
)
〈L1(u

v), L2(u
v)〉 = 0

by definition. We therefore know that 〈L1(u
v), L2(u

v)〉 = 0 for ∀(u, v) ∈ X
(−→
G
)

because of 〈L1(u
v), L2(u

v)〉 ≥ 0. �

Theorem 2.7. Let V be a Hilbert space with an orthogonal decomposition
V = V⊕ V⊥ for a closed subspace V ⊂ V . Then there is a decomposition

−→
GV = Ṽ⊕ Ṽ

⊥
,

where,

Ṽ =
{−→
GL1 ∈

−→
GV

∣∣∣L1 : X
(−→
G
)
→ V

}

Ṽ
⊥

=
{−→
GL2 ∈

−→
GV

∣∣∣ L2 : X
(−→
G
)
→ V⊥

}
,

i.e., for ∀
−→
GL ∈

−→
GV , there is a uniquely decomposition

−→
GL =

−→
GL1 +

−→
GL2

with L1 : X
(−→
G
)
→ V and L2 : X

(−→
G
)
→ V⊥.

Proof By definition, L(uv) ∈ V for ∀(u, v) ∈ X
(−→
G
)
. Thus, there is a decom-

position

L(uv) = L1(u
v) + L2(u

v)

with uniquely determined L1(u
v) ∈ V but L2(u

v) ∈ V⊥.

Let
[−→
GL1

]
and

[−→
GL2

]
be two labeled graphs on

−→
G with L1 : X 1

2

(−→
G
)
→ V and

L2 : X 1
2

(−→
G
)
→ V⊥. We need to show that

[−→
GL1

]
,
[−→
GL2

]
∈
〈−→
G,V

〉
. In fact,

the conservation laws show that

∑

v∈NG(u)

L(uv) = 0, i.e.,
∑

v∈NG(u)

(L1(u
v) + L2(u

v)) = 0

for ∀u ∈ V
(−→
G
)
. Consequently,

∑

v∈NG(u)

L1(u
v) +

∑

v∈NG(u)

L2(u
v) = 0.
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Whence,

0 =

〈
∑

v∈NG(u)

L1(u
v) +

∑

v∈NG(u)

L2(u
v),

∑

v∈NG(u)

L1(u
v) +

∑

v∈NG(u)

L2(u
v)

〉

=

〈
∑

v∈NG(u)

L1(u
v),

∑

v∈NG(u)

L1(u
v)

〉
+

〈
∑

v∈NG(u)

L2(u
v),

∑

v∈NG(u)

L2(u
v)

〉

+

〈
∑

v∈NG(u)

L1(u
v),

∑

v∈NG(u)

L2(u
v)

〉
+

〈
∑

v∈NG(u)

L2(u
v),

∑

v∈NG(u)

L1(u
v)

〉

=

〈
∑

v∈NG(u)

L1(u
v),

∑

v∈NG(u)

L1(u
v)

〉
+

〈
∑

v∈NG(u)

L2(u
v),

∑

v∈NG(u)

L2(u
v)

〉

+
∑

v∈NG(u)

〈L1(u
v), L2(u

v)〉 +
∑

v∈NG(u)

〈L2(u
v), L1(u

v)〉

=

〈
∑

v∈NG(u)

L1(u
v),

∑

v∈NG(u)

L1(u
v)

〉
+

〈
∑

v∈NG(u)

L2(u
v),

∑

v∈NG(u)

L2(u
v)

〉
.

Notice that

〈
∑

v∈NG(u)

L1(u
v),

∑

v∈NG(u)

L1(u
v)

〉
≥ 0,

〈
∑

v∈NG(u)

L2(u
v),

∑

v∈NG(u)

L2(u
v)

〉
≥ 0.

We therefore get that

〈
∑

v∈NG(u)

L1(u
v),

∑

v∈NG(u)

L1(u
v)

〉
= 0,

〈
∑

v∈NG(u)

L2(u
v),

∑

v∈NG(u)

L2(u
v)

〉
= 0,

i.e.,
∑

v∈NG(u)

L1(u
v) = 0 and

∑

v∈NG(u)

L2(u
v) = 0.

Thus,
[−→
GL1

]
,
[−→
GL2

]
∈
−→
GV . This completes the proof. �

2.3 Solvable
−→
G-Flow Spaces

Let
−→
GL be a

−→
G -flow. If for ∀v ∈ V

(−→
G
)
, all flows L (vu) , u ∈ N+

G (v) \
{
u+

0

}
are

determined by equations

Fv

(
L (vu) ; L (wv) , w ∈ N−

G (v)
)

= 0

unless L(vu0), such a
−→
G -flow is called solvable, and L(vu0) the co-flow at vertex

v. For example, a solvable
−→
G -flow is shown in Fig.3.
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(1, 0)

(1, 0)

(1, 0)

(1, 0)

(0, 1)

(0, 1)(0, 1)

(0, 1)

Fig.3

A
−→
G -flow

−→
GL is linear if each L

(
vu+

)
, u+ ∈ N+

G (v) \ {u+
0 } is determined by

L
(
vu+

)
=

∑

u−∈N
−

G (v)

au−L
(
u−

v)
,

with scalars au− ∈ F for ∀v ∈ V
(−→
G
)

unless L
(
vu

+
0

)
, and is ordinary or partial

differential if L (vu) is determined by ordinary differential equations

Lv

(
d

dxi

; 1 ≤ i ≤ n

)(
L(vu+

);L
(
u−

v)
, u− ∈ N−

G (v)
)

= 0

or

Lv

(
∂

∂xi

; 1 ≤ i ≤ n

)(
L(vu+

);L
(
u−

v)
, u− ∈ N−

G (v)
)

= 0

unless L
(
vu

+
0

)
for ∀v ∈ V

(−→
G
)
, where, Lv

(
d

dxi

; 1 ≤ i ≤ n

)
, Lv

(
∂

∂xi

; 1 ≤ i ≤ n

)

denote an ordinary or partial differential operators, respectively.

Notice that for a strong-connected graph
−→
G , there must be a decomposition

−→
G =

(
m1⋃

i=1

−→
C i

)
⋃
(

m2⋃

i=1

−→
T i

)
,

where
−→
C i,

−→
T j are respectively directed circuit or path in

−→
G with m1 ≥ 1,m2 ≥ 0.

The following result depends on the structure of
−→
G .

Theorem 2.8. For a strong-connected topological graph
−→
G with decomposition

−→
G =

(
m1⋃

i=1

−→
C i

)
⋃
(

m2⋃

i=1

−→
T i

)
, m1 ≥ 1, m2 ≥ 0,

there always exist linear
−→
G -flows

−→
GL, not all flows being zero on

−→
G .

Proof For an integer 1 ≤ k ≤ m1, let
−→
C k = uk

1u
k
2 · · ·u

k
sk

and L

(
uk

i

uk
i+1

)
= vk,

where i+ 1 ≡ (mods). Similarly, for integers 1 ≤ j ≤ m2, if
−→
T j = wj

1w
j
2 · · ·w

j
t , let
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L
(
wt

j
wt

j+1

)
= 0. Clearly, the conservation law hold at ∀v ∈ V

(−→
G
)

by definition,

and each flow L

(
uk

i

uk
i+1

)
, i+ 1 ≡ (modsk) is linear determined by

L

(
uk

i

uk
i+1

)
= L

(
uk

i−1

uk
i

)
+ 0 ×

∑

j 6=i

∑

v∈N
−

Cj
(uk

i )

L
(
vuk

i

)
+

m2∑

j=1

∑

v∈N
−

Tj
(uk

i )

L
(
vuk

i

)

= vk + 0 +

m2∑

j=1

∑

v∈N
−

Tj
(uk

i )

0 = vk.

Thus,
−→
GL is a linear solvable

−→
G -flow and not all flows being zero on

−→
G . �

All
−→
G -flows constructed in Theorem 2.8 can be also replaced by vectors depen-

dent on the time t, i.e., v(t). Furthermore, if m1 ≥ 2, there is at least two circuits
−→
C ,

−→
C ′ in the decomposition of

−→
G . Let flows on

−→
C and

−→
C ′ be respectively x and

f(x, t). We then know the conservation laws hold for vertices in
−→
G , and similarly,

there are indeed flows on
−→
G determined by ordinary differential equations.

Theorem 2.9. For a strong-connected topological graph
−→
G with decomposition

−→
G =

(
m1⋃

i=1

−→
C i

)
⋃
(

m2⋃

i=1

−→
T i

)
, m1 ≥ 2, m2 ≥ 0,

there always exist ordinary differential
−→
G -flows

−→
GL, not all flows being zero on

−→
G .

For example, the
−→
G -flow shown in Fig.4 is an ordinary differential

−→
G -flow in a

vector space if ẋ = f(x, t) is solvable with x|t=t0 = x0.-
� ?6
�
- 6?v1 v2

v3v4

x

x

x

x

f(x, t)

f(x, t)f(x, t)

f(x, t)

Fig.4

Similarly, we know the existence of non-trivial partial differential
−→
G -flows. Let

x = (x1, x2, · · · , xn). If




xi = xi(t, s1, s2, · · · , sn−1)
u = u(t, s1, s2, · · · , sn−1)
pi = pi(t, s1, s2, · · · , sn−1), i = 1, 2, · · · , n
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is a solution of system

dx1

Fp1

=
dx2

Fp2

= · · · =
dxn

Fpn

=
du

n∑
i=1

piFpi

= −
dp1

Fx1 + p1Fu

= · · · = −
dpn

Fxn
+ pnFu

= dt

with initial values

{
xi0 = xi0(s1, s2, · · · , sn−1), u0 = u0(s1, s2, · · · , sn−1)
pi0 = pi0(s1, s2, · · · , sn−1), i = 1, 2, · · · , n

such that





F (x10 , x20 , · · · , xn0 , u, p10 , p20 , · · · , pn0) = 0

∂u0

∂sj

−
n∑

i=0

pi0

∂xi0

∂sj

= 0, j = 1, 2, · · · , n− 1,

then it is the solution of Cauchy problem






F (x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0
xi0 = xi0 (s1, s2, · · · , sn−1), u0 = u0(s1, s2, · · · , sn−1)
pi0 = pi0(s1, s2, · · · , sn−1), i = 1, 2, · · · , n

,

where pi =
∂u

∂xi

and Fpi
=
∂F

∂pi

for integers 1 ≤ i ≤ n.

For partial differential equations of second order, the solutions of Cauchy problem
on heat or wave equations





∂u

∂t
= a2

n∑

i=1

∂2u

∂x2
i

u|t=0 = ϕ (x)

,





∂2u

∂t2
= a2

n∑

i=1

∂2u

∂x2
i

u|t=0 = ϕ (x) ,
∂u

∂t

∣∣∣∣
t=0

= ψ (x)

are respectively known

u (x, t) =
1

(4πt)
n
2

∫ +∞

−∞

e−
(x1−y1)2+···+(xn−yn)2

4t ϕ(y1, · · · , yn)dy1 · · ·dyn

for heat equation and

u (x1, x2, x3, t) =
∂

∂t




1

4πa2t

∫

SM
at

ϕdS


+

1

4πa2t

∫

SM
at

ψdS

for wave equations in n = 3, where SM
at denotes the sphere centered atM (x1, x2, x3)

with radius at. Then, the result following on partial
−→
G -flows is similarly known to

that of Theorem 2.9.
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Theorem 2.10. For a strong-connected topological graph
−→
G with decomposi-

tion

−→
G =

(
m1⋃

i=1

−→
C i

)
⋃
(

m2⋃

i=1

−→
T i

)
, m1 ≥ 2, m2 ≥ 0,

there always exist partial differential
−→
G -flows

−→
GL, not all flows being zero on

−→
G .

3. Operators on
−→
G-Flow Spaces

3.1 Linear Continuous Operators

Definition 3.1. Let T ∈ O be an operator on Banach space V over a field F .

An operator T :
−→
GV →

−→
GV is bounded if

∥∥∥T
(−→
GL
)∥∥∥ ≤ ξ

∥∥∥
−→
GL
∥∥∥

for ∀
−→
GL ∈

−→
GV with a constant ξ ∈ [0,∞) and furthermore, is a contractor if

∥∥∥T
(−→
GL1

)
− T

(−→
GL2

)∥∥∥ ≤ ξ
∥∥∥
−→
GL1 −

−→
GL2)

∥∥∥

for ∀
−→
GL1 ,

−→
GL1 ∈

−→
GV with ξ ∈ [0, 1).

Theorem 3.2. Let T :
−→
GV →

−→
GV be a contractor. Then there is a uniquely

conservation G-flow
−→
GL ∈

−→
GV such that

T
(−→
GL
)

=
−→
GL.

Proof Let
−→
GL0 ∈

−→
GV be a G-flow. Define a sequence

{−→
GLn

}
by

−→
GL1 = T

(−→
GL0

)
,

−→
GL2 = T

(−→
GL1

)
= T2

(−→
GL0

)
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,
−→
GLn = T

(−→
GLn−1

)
= Tn

(−→
GL0

)
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We prove
{−→
GLn

}
is a Cauchy sequence in

−→
GV . Notice that T is a contractor.

For any integer m ≥ 1, we know that

∥∥∥
−→
GLm+1 −

−→
GLm

∥∥∥ =
∥∥∥T
(−→
GLm

)
− T

(−→
GLm−1

)∥∥∥

≤ ξ
∥∥∥
−→
GLm −

−→
GLm−1

∥∥∥ =
∥∥∥T
(−→
GLm−1

)
− T

(−→
GLm−2

)∥∥∥

≤ ξ2
∥∥∥
−→
GLm−1 −

−→
GLm−2

∥∥∥ ≤ · · · ≤ ξm
∥∥∥
−→
GL1 −

−→
GL0

∥∥∥ .
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Applying the triangle inequality, for integers m ≥ n we therefore get that
∥∥∥
−→
GLm −

−→
GLn

∥∥∥

≤
∥∥∥
−→
GLm −

−→
GLm−1

∥∥∥+ + · · ·+
∥∥∥
−→
GLn−1 −

−→
GLn

∥∥∥

≤
(
ξm + ξm−1 + · · · + ξn−1

)
×
∥∥∥
−→
GL1 −

−→
GL0

∥∥∥

=
ξn−1 − ξm

1 − ξ
×
∥∥∥
−→
GL1 −

−→
GL0

∥∥∥

≤
ξn−1

1 − ξ
×
∥∥∥
−→
GL1 −

−→
GL0

∥∥∥ for 0 < ξ < 1.

Consequently,
∥∥∥
−→
GLm −

−→
GLn

∥∥∥→ 0 if m→ ∞, n→ ∞. So the sequence
{−→
GLn

}

is a Cauchy sequence and converges to
−→
GL. Similar to the proof of Theorem 2.5,

we know it is a G-flow, i.e.,
−→
GL ∈

−→
GV . Notice that

∥∥∥
−→
GL − T

(−→
GL
)∥∥∥ ≤

∥∥∥
−→
GL −

−→
GLm

∥∥∥+
∥∥∥
−→
GLm − T

(−→
GL
)∥∥∥

≤
∥∥∥
−→
GL −

−→
GLm

∥∥∥+ ξ
∥∥∥
−→
GLm−1 −

−→
GL
∥∥∥ .

Let m → ∞. For 0 < ξ < 1, we therefore get that
∥∥∥
−→
GL − T

(−→
GL
)∥∥∥ = 0, i.e.,

T
(−→
GL
)

=
−→
GL.

For the uniqueness, if there is an another conservationG-flow
−→
GL′

∈
−→
GV holding

with T
(−→
GL′

)
=

−→
GL, by

∥∥∥
−→
GL −

−→
GL′

∥∥∥ =
∥∥∥T
(−→
GL
)
− T

(−→
GL′

)∥∥∥ ≤ ξ
∥∥∥
−→
GL −

−→
GL′

∥∥∥ ,

it can be only happened in the case of
−→
GL =

−→
GL′

for 0 < ξ < 1. �

Definition 3.3. An operator T :
−→
GV →

−→
GV is linear if

T
(
λ
−→
GL1 + µ

−→
GL2

)
= λT

(−→
GL1

)
+ µT

(−→
GL2

)

for ∀
−→
GL1 ,

−→
GL2 ∈

−→
GV and λ, µ ∈ F , and is continuous at a

−→
G -flow

−→
GL0 if there

always exist a number δ(ε) for ∀ǫ > 0 such that
∥∥∥T
(−→
GL
)
− T

(−→
GL0

)∥∥∥ < ε if
∥∥∥
−→
GL −

−→
GL0

∥∥∥ < δ(ε).

The following result reveals the relation between conceptions of linear continuous
with that of linear bounded.

Theorem 3.4. An operator T :
−→
GV →

−→
GV is linear continuous if and only if

it is bounded.

Proof If T is bounded, then
∥∥∥T
(−→
GL
)
− T

(−→
GL0

)∥∥∥ =
∥∥∥T
(−→
GL −

−→
GL0

)∥∥∥ ≤ ξ
(−→
GL −

−→
GL0

)
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for an constant ξ ∈ [0,∞) and ∀
−→
GL,

−→
GL0 ∈

−→
GV . Whence, if

∥∥∥
−→
GL −

−→
GL0

∥∥∥ < δ(ε) with δ(ε) =
ε

ξ
, ξ 6= 0,

then there must be ∥∥∥T
(−→
GL −

−→
GL0

)∥∥∥ < ε,

i.e., T is linear continuous on
−→
GV . However, this is obvious for ξ = 0.

Now if T is linear continuous but unbounded, there exists a sequence
{−→
GLn

}
in

−→
GV such that ∥∥∥

−→
GLn

∥∥∥ ≥ n
∥∥∥
−→
GLn

∥∥∥ .
Let

−→
GL∗

n =
1

n
∥∥∥
−→
GLn

∥∥∥
×
−→
GLn .

Then
∥∥∥
−→
GL∗

n

∥∥∥ =
1

n
→ 0, i.e.,

∥∥∥T
(−→
GL∗

n

)∥∥∥→ 0 if n→ ∞. However, by definition

∥∥∥T
(−→
GL∗

n

)∥∥∥ =

∥∥∥∥∥∥
T




−→
GLn

n
∥∥∥
−→
GLn

∥∥∥




∥∥∥∥∥∥

=

∥∥∥T
(−→
GLn

)∥∥∥

n
∥∥∥
−→
GLn

∥∥∥
≥
n
∥∥∥
−→
GLn

∥∥∥

n
∥∥∥
−→
GLn

∥∥∥
= 1,

a contradiction. Thus, T must be bounded. �

The following result is a generalization of the representation theorem of Fréchet

and Riesz on linear continuous functionals, i.e., T :
−→
GV → C on

−→
G -flow space

−→
GV ,

where C is the complex field.

Theorem 3.5. Let T :
−→
GV → C be a linear continuous functional. Then there

is a unique
−→
G L̂ ∈

−→
GV such that

T
(−→
GL
)

=
〈−→
GL,

−→
G L̂
〉

for ∀
−→
GL ∈

−→
GV .

Proof Define a closed subset of
−→
GV by

N (T) =
{−→
GL ∈

−→
GV

∣∣∣T
(−→
GL
)

= 0
}

for the linear continuous functional T. If N (T) =
−→
GV , i.e., T

(−→
GL
)

= 0 for

∀
−→
GL ∈

−→
GV , choose

−→
G L̂ = O. We then easily obtain the identity

T
(−→
GL
)

=
〈−→
GL,

−→
G L̂
〉
.

Whence, we assume that N (T) 6=
−→
GV . In this case, there is an orthogonal decom-

position
−→
GV = N (T) ⊕ N

⊥(T)

with N (T) 6= {O} and N ⊥(T) 6= {O}.
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Choose a
−→
G -flow

−→
GL0 ∈ N ⊥(T) with

−→
GL0 6= O and define

−→
GL∗

=
(
T
(−→
GL
))−→

GL0 −
(
T
(−→
GL0

))−→
GL

for ∀
−→
GL ∈

−→
GV . Calculation shows that

T
(−→
GL∗

)
=
(
T
(−→
GL
))

T
(−→
GL0

)
−
(
T
(−→
GL0

))
T
(−→
GL
)

= 0,

i.e.,
−→
GL∗

∈ N (T). We therefore get that

0 =
〈−→
GL∗

,
−→
GL0

〉

=
〈(

T
(−→
GL
))−→

GL0 −
(
T
(−→
GL0

))−→
GL,

−→
GL0

〉

= T
(−→
GL
)〈−→

GL0 ,
−→
GL0

〉
− T

(−→
GL0

)〈−→
GL,

−→
GL0

〉
.

Notice that
〈−→
GL0 ,

−→
GL0

〉
=
∥∥∥
−→
GL0

∥∥∥
2

6= 0. We find that

T
(−→
GL
)

=
T
(−→
GL0

)

∥∥∥
−→
GL0

∥∥∥
2

〈−→
GL,

−→
GL0

〉
=

〈
−→
GL,

T
(−→
GL0

)

∥∥∥
−→
GL0

∥∥∥
2

−→
GL0

〉
.

Let

−→
G L̂ =

T
(−→
GL0

)

∥∥∥
−→
GL0

∥∥∥
2

−→
GL0 =

−→
GλL0 ,

where λ =
T
(−→
GL0

)

∥∥∥
−→
GL0

∥∥∥
2 . We consequently get that T

(−→
GL
)

=
〈−→
GL,

−→
G L̂
〉
.

Now if there is another
−→
G L̂′

∈
−→
GV such that T

(−→
GL
)

=
〈−→
GL,

−→
G L̂′

〉
for ∀

−→
GL ∈

−→
GV , there must be

〈−→
GL,

−→
G L̂ −

−→
G L̂′

〉
= 0 by definition. Particularly, let

−→
GL =

−→
G L̂ −

−→
G L̂′

. We know that
∥∥∥
−→
G L̂ −

−→
G L̂′

∥∥∥ =
〈−→
G L̂ −

−→
G L̂′

,
−→
G L̂ −

−→
G L̂′

〉
= 0,

which implies that
−→
G L̂ −

−→
G L̂′

= O, i.e.,
−→
G L̂ =

−→
G L̂′

. �

3.2 Differential and Integral Operators

Let V be Hilbert space consisting of measurable functions f(x1, x2, · · · , xn) on
a set

∆ = {x = (x1, x2, · · · , xn) ∈ R
n|ai ≤ xi ≤ bi, 1 ≤ i ≤ n} ,

i.e., the functional space L2[∆], with inner product

〈f (x) , g (x)〉 =

∫

∆

f(x)g(x)dx for f(x), g(x) ∈ L2[∆]
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and
−→
GV its

−→
G -extension on a topological graph

−→
G . The differential operator and

integral operators

D =

n∑

i=1

ai

∂

∂xi

and

∫

∆

,

∫

∆

on
−→
GV are respectively defined by

D
−→
GL =

−→
GDL(uv)

and

∫

∆

−→
GL =

∫

∆

K(x,y)
−→
GL[y]dy =

−→
G
∫
∆

K(x,y)L(uv)[y]dy,

∫

∆

−→
GL =

∫

∆

K(x,y)
−→
GL[y]dy =

−→
G
∫
∆

K(x,y)L(uv)[y]dy

for ∀(u, v) ∈ X
(−→
G
)
, where ai,

∂ai

∂xj

∈ C
0(∆) for integers 1 ≤ i, j ≤ n and

K(x,y) : ∆ × ∆ → C ∈ L2(∆ × ∆,C) with

∫

∆×∆

K(x,y)dxdy <∞.

Such integral operators are usually called adjoint for

∫

∆

=

∫

∆

by K (x,y) =

K (x,y). Clearly, for
−→
GL1 ,

−→
GL2 ∈

−→
GV and λ, µ ∈ F ,

D
(
λ
−→
GL1(u

v) + µ
−→
GL2(u

v)
)

= D
(−→
GλL1(u

v)+µL2(u
v)
)

=
−→
GD(λL1(u

v)+µL2(u
v))

=
−→
GD(λL1(u

v))+D(µL2(u
v)) =

−→
GD(λL1(u

v)) +
−→
GD(µL2(uv))

= D
(−→
G (λL1(uv)) +

−→
G (µL2(u

v))
)

= λD
(−→
GL1(u

v)
)

+D
(
µ
−→
GL2(u

v)
)

for ∀(u, v) ∈ X
(−→
G
)
, i.e.,

D
(
λ
−→
GL1 + µ

−→
GL2

)
= λD

−→
GL1 + µD

−→
GL2 .

Similarly, we know also that

∫

∆

(
λ
−→
GL1 + µ

−→
GL2

)
= λ

∫

∆

−→
GL1 + µ

∫

∆

−→
GL2 ,

∫

∆

(
λ
−→
GL1 + µ

−→
GL2

)
= λ

∫

∆

−→
GL1 + µ

∫

∆

−→
GL2 .

Thus, operators D,

∫

∆

and

∫

∆

are al linear on
−→
GV .
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For example, let f(t) = t, g(t) = et, K(t, τ) = t2 + τ2 for ∆ = [0, 1] and let
−→
GL

be the
−→
G -flow shown on the left in Fig.6. Then, we know that Df = 1, Dg = et,

∫ 1

0

K(t, τ)f(τ)dτ =

∫ 1

0

K(t, τ)f(τ)dτ =

∫ 1

0

(
t2 + τ2

)
τdτ =

t2

2
+

1

4
= a(t),

∫ 1

0

K(t, τ)g(τ)dτ =

∫ 1

0

K(t, τ)g(τ)dτ =

∫ 1

0

(
t2 + τ2

)
eτdτ

= (e− 1)t2 + e− 2 = b(t)

and the actions D
−→
GL,

∫

[0,1]

−→
GL and

∫

[0,1]

−→
GL are shown on the right in Fig.5.

Furthermore, we know that both of them are injections on
−→
GV .

Theorem 3.6. D :
−→
GV →

−→
GV and

∫

∆

:
−→
GV →

−→
GV .

Proof For ∀
−→
GL ∈

−→
GV , we are needed to show that D

−→
GL and

∫

∆

−→
GL ∈

−→
GV ,

i.e., the conservation laws

∑

v∈NG(u)

DL(uv) = 0 and
∑

v∈NG(u)

∫

∆

L(uv) = 0

hold with ∀v ∈ V
(−→
G
)
.

However, because of
−→
GL(uv) ∈

−→
GV , there must be

∑

v∈NG(u)

L(uv) = 0 for ∀v ∈ V
(−→
G
)
,
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we immediately know that

0 = D




∑

v∈NG(u)

L(uv)


 =

∑

v∈NG(u)

DL(uv)

and

0 =

∫

∆




∑

v∈NG(u)

L(uv)



 =
∑

v∈NG(u)

∫

∆

L(uv)

for ∀v ∈ V
(−→
G
)
. �

4.
−→
G-Flow Solutions of Equations

As we mentioned, all G-solutions of non-solvable systems on algebraic, ordinary

or partial differential equations determined in [13]-[19] are in fact
−→
G -flows. We

show there are also
−→
G -flow solutions for solvable equations, which implies that the

−→
G -flow solutions are fundamental for equations.

4.1 Linear Equations

Let V be a field (F ; +, ·). We can further define

−→
GL1 ◦

−→
GL2 =

−→
GL1·L2

with L1 · L2(u
v) = L1(u

v) · L2(u
v) for ∀(u, v) ∈ X

(−→
G
)
. Then it can be verified

easily that
−→
GF is also a field

(−→
GF ; +, ◦

)
with a subfield F̂ isomorphic to F if

the conservation laws is not emphasized, where

F̂ =
{−→
GL ∈

−→
GF |L (uv) is constant in F for ∀(u, v) ∈ X

(−→
G
)}

.

Clearly,
−→
GF ≃ F

∣∣∣E
(−→

G
)∣∣∣

. Thus
∣∣∣
−→
GF

∣∣∣ = p
n
∣∣∣E
(−→

G
)∣∣∣

if |F | = pn, where p is a

prime number. For this F -extension on
−→
G , the linear equation

aX =
−→
GL

is uniquely solvable for X =
−→
Ga−1L in

−→
GF if 0 6= a ∈ F . Particularly, if one views

an element b ∈ F as b =
−→
GL if L(uv) = b for (u, v) ∈ X

(−→
G
)

and 0 6= a ∈ F , then

an algebraic equation

ax = b

in F also is an equation in
−→
GF with a solution x =

−→
Ga−1L such as those shown in

Fig.6 for
−→
G =

−→
C 4, a = 3, b = 5 following.
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Let [Lij ]m×n
be a matrix with entries Lij : uv → V . Denoted by [Lij ]m×n

(uv)

the matrix [Lij (uv)]
m×n

. Then, a general result on
−→
G -flow solutions of linear

systems is known following.

Theorem 4.1. A linear system (LESn
m) of equations






a11X1 + a12X2 + · · · + a1nXn =
−→
GL1

a21X1 + a22X2 + · · · + a2nXn =
−→
GL2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

am1X1 + am2X2 + · · · + amnXn =
−→
GLm

(LESn
m)

with aij ∈ C and
−→
GLi ∈

−→
GV for integers 1 ≤ i ≤ n and 1 ≤ j ≤ m is solvable for

Xi ∈
−→
GV , 1 ≤ i ≤ m if and only if

rank [aij ]m×n
= rank [aij ]

+
m×(n+1) (uv)

for ∀(u, v) ∈
−→
G , where

[aij ]
+
m×(n+1) =




a11 a12 · · · a1n L1

a21 a22 · · · a2n L2

. . . . . . . . . . . . . . . .
am1 am2 · · · amn Lm


 .

Proof Let Xi =
−→
GLxi with Lxi

(uv) ∈ V on (u, v) ∈ X
(−→
G
)

for integers

1 ≤ i ≤ n. For ∀(u, v) ∈ X
(−→
G
)
, the system (LESn

m) appears as a common linear

system





a11Lx1 (uv) + a12Lx2 (uv) + · · · + a1nLxn
(uv) = L1 (uv)

a21Lx1 (uv) + a22Lx2 (uv) + · · · + a2nLxn
(uv) = L2 (uv)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
am1Lx1 (uv) + am2Lx2 (uv) + · · · + amnLxn

(uv) = Lm (uv)

By linear algebra, such a system is solvable if and only if ([4])

rank [aij ]m×n
= rank [aij ]

+
m×(n+1) (uv)

for ∀(u, v) ∈
−→
G .

Labeling the semi-arc uv respectively by solutions Lx1 (uv), Lx2 (uv), · · · , Lxn
(uv)

for ∀(u, v) ∈ X
(−→
G
)
, we get labeled graphs

−→
GLx1 ,

−→
GLx2 , · · · ,

−→
GLxn . We prove that

−→
GLx1 ,

−→
GLx2 , · · · ,

−→
GLxn ∈

−→
GV .
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Let rank [aij ]m×n
= r. Similar to that of linear algebra, we are easily know that






Xj1 =
m∑

i=1

c1i

−→
GLi + c1,r+1Xjr+1 + · · · c1nXjn

Xj2 =
m∑

i=1

c2i

−→
GLi + c2,r+1Xjr+1 + · · · c2nXjn

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Xjr
=

m∑
i=1

cri

−→
GLi + cr,r+1Xjr+1 + · · · crnXjn

,

where {j1, · · · , jn} = {1, · · · , n}. Whence, if
−→
G

Lxjr+1 , · · · ,
−→
GLxjn ∈

−→
GV , then

∑

v∈NG(u)

Lxk
(uv) =

∑

v∈NG(u)

m∑

i=1

ckiLi (uv)

+
∑

v∈NG(u)

c2,r+1Lxjr+1
(uv) + · · · +

∑

v∈NG(u)

c2nLxjn
(uv)

=

m∑

i=1

cki




∑

v∈NG(u)

Li (uv)




+c2,r+1

∑

v∈NG(u)

Lxjr+1
(uv) + · · · + c2n

∑

v∈NG(u)

Lxjn
(uv) = 0

Whence, the system (LESn
m) is solvable in

−→
GV . �

The following result is an immediate conclusion of Theorem 4.1.

Corollary 4.2. A linear system of equations






a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
am1x1 + am2x2 + · · · + amnxn = bm

with aij , bj ∈ F for integers 1 ≤ i ≤ n, 1 ≤ j ≤ m holding with

rank [aij ]m×n
= rank [aij ]

+
m×(n+1)

has
−→
G -flow solutions on infinitely many topological graphs

−→
G .

Let the operator D and ∆ ⊂ Rn be the same as in Subsection 3.2. We consider

differential equations in
−→
GV following.

Theorem 4.3. For ∀GL ∈
−→
GV , the Cauchy problem on differential equation

DGX = GL

is uniquely solvable prescribed with
−→
G

X|xn=x0
n =

−→
GL0 .
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Proof For ∀(u, v) ∈ X
(−→
G
)
, denoted by F (uv) the flow on the semi-arc uv.

Then the differential equation DGX = GL transforms into a linear partial differen-
tial equation

n∑

i=1

ai

∂F (uv)

∂xi

= L (uv)

on the semi-arc uv. By assumption, ai ∈ C0(∆) and L (uv) ∈ L2[∆], which
implies that there is a uniquely solution F (uv) with initial value L0 (uv) by the
characteristic theory of partial differential equation of first order. In fact, let
φi (x1, x2, · · · , xn, F ) , 1 ≤ i ≤ n be the n independent first integrals of its charac-
teristic equations. Then

F (uv) = F ′ (uv) − L0

(
x′1, x

′
2 · · · , x

′
n−1

)
∈ L2[∆],

where, x′1, x
′
2, · · · , x

′
n−1 and F ′ are determined by system of equations





φ1

(
x1, x2, · · · , xn−1, x

0
n, F

)
= φ1

φ2

(
x1, x2, · · · , xn−1, x

0
n, F

)
= φ2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

φn

(
x1, x2, · · · , xn−1, x

0
n, F

)
= φn

Clearly,

D




∑

v∈NG(u)

F (uv)


 =

∑

v∈NG(u)

DF (uv) =
∑

v∈NG(u)

L(uv) = 0.

Notice that

∑

v∈NG(u)

F (uv)

∣∣∣∣∣∣
xn=x0

n

=
∑

v∈NG(u)

L0(u
v) = 0.

We therefore know that ∑

v∈NG(u)

F (uv) = 0.

Thus, we get a uniquely solution
−→
GX =

−→
GF ∈

−→
GV for the equation

DGX = GL

prescribed with initial data
−→
G

X|xn=x0
n =

−→
GL0 . �

We know that the Cauchy problem on heat equation

∂u

∂t
= c2

n∑

i=1

∂2u

∂x2
i

is solvable in R
n × R if u(x, t0) = ϕ(x) is continuous and bounded in R

n, c a

non-zero constant in R. For
−→
GL ∈

−→
GV in Subsection 3.2, if we define

∂
−→
GL

∂t
=

−→
G

∂L
∂t and

∂
−→
GL

∂xi

=
−→
G

∂L
∂xi , 1 ≤ i ≤ n,

then we can also consider the Cauchy problem in
−→
GV , i.e.,

∂X

∂t
= c2

n∑

i=1

∂2X

∂x2
i
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with initial values X |t=t0 , and know the result following.

Theorem 4.4. For ∀
−→
GL′

∈
−→
GV and a non-zero constant c in R, the Cauchy

problems on differential equations

∂X

∂t
= c2

n∑

i=1

∂2X

∂x2
i

with initial value X |t=t0 =
−→
GL′

∈
−→
GV is solvable in

−→
GV if L′ (uv) is continuous

and bounded in Rn for ∀(u, v) ∈ X
(−→
G
)
.

Proof For (u, v) ∈ X
(−→
G
)
, the Cauchy problem on the semi-arc uv appears as

∂u

∂t
= c2

n∑

i=1

∂2u

∂x2
i

with initial value u|t=0 = L′ (uv) (x) if X =
−→
GF . According to the theory of partial

differential equations, we know that

F (uv) (x, t) =
1

(4πt)
n
2

∫ +∞

−∞

e−
(x1−y1)2+···+(xn−yn)2

4t L′ (uv) (y1, · · · , yn)dy1 · · · dyn.

Labeling the semi-arc uv by F (uv) (x, t) for ∀(u, v) ∈ X
(−→
G
)
, we get a labeled

graph
−→
GF on

−→
G . We prove

−→
GF ∈

−→
GV .

By assumption,
−→
GL′

∈
−→
GV , i.e., for ∀u ∈ V

(−→
G
)
,

∑

v∈NG(u)

L′ (uv) (x) = 0,

we know that∑

v∈NG(u)

F (uv) (x, t)

=
∑

v∈NG(u)

1

(4πt)
n
2

∫ +∞

−∞

e−
(x1−y1)2+···+(xn−yn)2

4t L′ (uv) (y1, · · · , yn)dy1 · · · dyn

=
1

(4πt)
n
2

∫ +∞

−∞

e−
(x1−y1)2+···+(xn−yn)2

4t




∑

v∈NG(u)

L′ (uv) (y1, · · · , yn)


 dy1 · · · dyn

=
1

(4πt)
n
2

∫ +∞

−∞

e−
(x1−y1)2+···+(xn−yn)2

4t (0) dy1 · · · dyn = 0

for ∀u ∈ V
(−→
G
)
. Therefore,

−→
GF ∈

−→
GV and

∂X

∂t
= c2

n∑

i=1

∂2X

∂x2
i

with initial value X |t=t0 =
−→
GL′

∈
−→
GV is solvable in

−→
GV . �

Similarly, we can also get a result on Cauchy problem on 3-dimensional wave

equation in
−→
GV following.
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Theorem 4.5. For ∀
−→
GL′

∈
−→
GV and a non-zero constant c in R, the Cauchy

problems on differential equations

∂2X

∂t2
= c2

(
∂2X

∂x2
1

+
∂2X

∂x2
2

+
∂2X

∂x2
3

)

with initial value X |t=t0 =
−→
GL′

∈
−→
GV is solvable in

−→
GV if L′ (uv) is continuous

and bounded in Rn for ∀(u, v) ∈ X
(−→
G
)
.

For an integral kernel K(x,y), the two subspaces N ,N ∗ ⊂ L2[∆] are deter-
mined by

N =

{
φ(x) ∈ L2[∆]|

∫

∆

K (x,y)φ(y)dy = φ(x)

}
,

N
∗ =

{
ϕ(x) ∈ L2[∆]|

∫

∆

K (x,y)ϕ(y)dy = ϕ(x)

}
.

Then we know the result following.

Theorem 4.6. For ∀GL ∈
−→
GV , if dimN = 0, then the integral equation

−→
GX −

∫

∆

−→
GX = GL

is solvable in
−→
GV with V = L2[∆] if and only if

〈−→
GL,

−→
GL′

〉
= 0, ∀

−→
GL′

∈ N
∗.

Proof For ∀(u, v) ∈ X
(−→
G
)

−→
GX −

∫

∆

−→
GX = GL and

〈−→
GL,

−→
GL′

〉
= 0, ∀

−→
GL′

∈ N
∗

on the semi-arc uv respectively appear as

F (x) −

∫

∆

K (x,y)F (y) dy = L (uv) [x]

if X (uv) = F (x) and
∫

∆

L (uv) [x]L′ (uv) [x]dx = 0 for ∀
−→
GL′

∈ N
∗.

Applying Hilbert and Schmidt’s theorem ([20]) on integral equation, we know
the integral equation

F (x) −

∫

∆

K (x,y)F (y) dy = L (uv) [x]

is solvable in L2[∆] if and only if
∫

∆

L (uv) [x]L′ (uv) [x]dx = 0

for ∀
−→
GL′

∈ N ∗. Thus, there are functions F (x) ∈ L2[∆] hold for the integral
equation

F (x) −

∫

∆

K (x,y)F (y) dy = L (uv) [x]
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for ∀(u, v) ∈ X
(−→
G
)

in this case.

For ∀u ∈ V
(−→
G
)
, it is clear that

∑

v∈NG(u)

(
F (uv) [x] −

∫

∆

K(x,y)F (uv) [x]

)
=

∑

v∈NG(u)

L (uv) [x] = 0,

which implies that,

∫

∆

K(x,y)




∑

v∈NG(u)

F (uv) [x]



 =
∑

v∈NG(u)

F (uv) [x].

Thus, ∑

v∈NG(u)

F (uv) [x] ∈ N .

However, if dimN = 0, there must be
∑

v∈NG(u)

F (uv) [x] = 0

for ∀u ∈ V
(−→
G
)
, i.e.,

−→
GF ∈

−→
GV . Whence, if dimN = 0, the integral equation

−→
GX −

∫

∆

−→
GX = GL

is solvable in
−→
GV with V = L2[∆] if and only if

〈−→
GL,

−→
GL′

〉
= 0, ∀

−→
GL′

∈ N
∗.

This completes the proof. �

Theorem 4.7. Let the integral kernel K(x,y) : ∆ × ∆ → C ∈ L2(∆ × ∆) be
given with

∫

∆×∆

|K(x,y)|2dxdy > 0, dimN = 0 and K(x,y) = K(x,y)

for almost all (x,y) ∈ ∆ × ∆. Then there is a finite or countably infinite system
−→
G -flows

{−→
GLi

}

i=1,2,···
⊂ L2(∆,C) with associate real numbers {λi}i=1,2,··· ⊂ R

such that the integral equations
∫

∆

K(x,y)
−→
GLi[y]dy = λi

−→
GLi[x]

hold with integers i = 1, 2, · · · , and furthermore,

|λ1| ≥ |λ2| ≥ · · · ≥ 0 and lim
i→∞

λi = 0.

Proof Notice that the integral equations
∫

∆

K(x,y)
−→
GLi[y]dy = λi

−→
GLi[x]

is appeared as ∫

∆

K(x,y)Li (uv) [y]dy = λiLi (u
v) [x]
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on (u, v) ∈ X
(−→
G
)
. By the spectral theorem of Hilbert and Schmidt ([20]), there is

indeed a finite or countably system of functions {Li (uv) [x]}i=1,2,··· hold with this
integral equation, and furthermore,

|λ1| ≥ |λ2| ≥ · · · ≥ 0 with lim
i→∞

λi = 0.

Similar to the proof of Theorem 4.5, if dimN = 0, we know that
∑

v∈NG(u)

Li (uv) [x] = 0

for ∀u ∈ V
(−→
G
)
, i.e.,

−→
GLi ∈

−→
GV for integers i = 1, 2, · · · . �

4.2 Non-linear Equations

If
−→
G is strong-connected with a special structure, we can get a general result on

−→
G -solutions of equations, including non-linear equations following.

Theorem 4.8. If the topological graph
−→
G is strong-connected with circuit

decomposition

−→
G =

l⋃

i=1

−→
C i

such that L(uv) = Li (x) for ∀(u, v) ∈ X
(−→
C i

)
, 1 ≤ i ≤ l and the Cauchy problem

{
Fi (x, u, ux1, · · · , uxn

, ux1x2 , · · · ) = 0
u|x0

= Li(x)

is solvable in a Hilbert space V on domain ∆ ⊂ R
n for integers 1 ≤ i ≤ l, then the

Cauchy problem
{

Fi (x, X,Xx1, · · · , Xxn
, Xx1x2 , · · · ) = 0

X |x0 =
−→
GL

such that L (uv) = Li(x) for ∀(u, v) ∈ X
(−→
C i

)
is solvable for X ∈

−→
GV .

Proof Let X =
−→
GLu(x) with Lu(x) (uv) = u(x) for (u, v) ∈ X

(−→
G
)
. Notice that

the Cauchy problem
{

Fi (x, X,Xx1, · · · , Xxn
, Xx1x2 , · · · ) = 0

X |x0
= GL

then appears as {
Fi (x, u, ux1, · · · , uxn

, ux1x2 , · · · ) = 0
u|x0

= Li(x)

on the semi-arc uv for (u, v) ∈ X
(−→
G
)
, which is solvable by assumption. Whence,

there exists solution u (uv) (x) holding with
{

Fi (x, u, ux1, · · · , uxn
, ux1x2 , · · · ) = 0

u|x0
= Li(x)
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Let
−→
GLu(x) be a labeling on

−→
G with u (uv) (x) on uv for ∀(u, v) ∈ X

(−→
G
)
. We

show that
−→
GLu(x) ∈

−→
GV . Notice that

−→
G =

l⋃

i=1

−→
C i

and all flows on
−→
C i is the same, i.e., the solution u (uv) (x). Clearly, it is holden

with conservation on each vertex in
−→
C i for integers 1 ≤ i ≤ l. We therefore know

that ∑

v∈NG(u)

Lx0 (uv) = 0, u ∈ V
(−→
G
)
.

Thus,
−→
GLu(x) ∈

−→
GV . This completes the proof. �

There are many interesting conclusions on
−→
G -flow solutions of equations by The-

orem 4.8. For example, if Fi is nothing else but polynomials of degree n in one
variable x, we get a conclusion following, which generalizes the fundamental theo-
rem in algebra.

Corollary 4.9.(Generalized Fundamental Theorem in Algebra) If
−→
G is strong-

connected with circuit decomposition

−→
G =

l⋃

i=1

−→
C i

and Li (uv) = ai ∈ C for ∀(u, v) ∈ X
(−→
C i

)
and integers 1 ≤ i ≤ l, then the

polynomial

F (X) =
−→
GL1 ◦Xn +

−→
GL2 ◦Xn−1 + · · · +

−→
GLn ◦X +

−→
GLn+1

always has roots, i.e., X0 ∈
−→
GC such that F (X0) = O if

−→
GL1 6= O and n ≥ 1.

Particularly, an algebraic equation

a1x
n + a2x

n−1 + · · · + anx+ an+1 = 0

with a1 6= 0 has infinite many
−→
G -flow solutions in

−→
GC on those topological graphs

−→
G with

−→
G =

l⋃

i=1

−→
C i.

Notice that Theorem 4.8 enables one to get
−→
G -flow solutions both on those linear

and non-linear equations in physics. For example, we know the spherical solution

ds2 = f(t)
(
1 −

rg
r

)
dt2 −

1

1 − rg

r

dr2 − r2(dθ2 + sin2 θdφ2)

for the Einstein’s gravitational equations ([9])

Rµν −
1

2
Rgµν = −8πGT µν

with Rµν = Rµαν
α = gαβR

αµβν , R = gµνR
µν , G = 6.673 × 10−8cm3/gs2, κ =

8πG/c4 = 2.08 × 10−48cm−1 · g−1 · s2. By Theorem 4.8, we get their
−→
G -flow

solutions following.
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Corollary 4.10. The Einstein’s gravitational equations

Rµν −
1

2
Rgµν = −8πGT µν ,

has infinite many
−→
G -flow solutions in

−→
GC, particularly on those topological graphs

−→
G =

l⋃

i=1

−→
C i with spherical solutions of the equations on their arcs.

For example, let
−→
G =

−→
C 4. We are easily find

−→
C 4-flow solution of Einstein’s

gravitational equations,such as those shown in Fig.7.- ?y6 S1

S2

S3

S4

v1 v2

v3v4

Fig.7

where, each Si is a spherical solution

ds2 = f(t)
(
1 −

rs
r

)
dt2 −

1

1 − rs

r

dr2 − r2(dθ2 + sin2 θdφ2)

of Einstein’s gravitational equations for integers 1 ≤ i ≤ 4.
As a by-product, Theorems 4.5-4.6 can be also generalized on those topological

graphs with circuit-decomposition following.

Corollary 4.11. Let the integral kernel K(x,y) : ∆ × ∆ → C ∈ L2(∆ × ∆) be
given with ∫

∆×∆

|K(x,y)|2dxdy > 0, K(x,y) = K(x,y)

for almost all (x,y) ∈ ∆ × ∆, and

−→
GL =

l⋃

i=1

−→
C i

such that L(uv) = L[i] (x) for ∀(u, v) ∈ X
(−→
C i

)
and integers 1 ≤ i ≤ l. Then, the

integral equation

−→
GX −

∫

∆

−→
GX = GL

is solvable in
−→
GV with V = L2[∆] if and only if

〈−→
GL,

−→
GL′

〉
= 0, ∀

−→
GL′

∈ N
∗.
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Corollary 4.12. Let the integral kernel K(x,y) : ∆ × ∆ → C ∈ L2(∆ × ∆) be
given with ∫

∆×∆

|K(x,y)|2dxdy > 0, K(x,y) = K(x,y)

for almost all (x,y) ∈ ∆ × ∆, and

−→
GL =

l⋃

i=1

−→
C i

such that L(uv) = L[i] (x) for ∀(u, v) ∈ X
(−→
C i

)
and integers 1 ≤ i ≤ l. Then,

there is a finite or countably infinite system
−→
G -flows

{−→
GLi

}

i=1,2,···
⊂ L2(∆,C)

with associate real numbers {λi}i=1,2,··· ⊂ R such that the integral equations
∫

∆

K(x,y)
−→
GLi[y]dy = λi

−→
GLi[x]

hold with integers i = 1, 2, · · · , and furthermore,

|λ1| ≥ |λ2| ≥ · · · ≥ 0 and lim
i→∞

λi = 0.

5. Applications to System Control

5.1 Stability of
−→
G -Flow Solutions

Let X =
−→
GLu(x) and X2 =

−→
GLu1(x) be respectively solutions of

F (x, Xx1 , · · · , Xxn
, Xx1x2 , · · · ) = 0

on the initial values X |x0
=

−→
GL or X |x0

=
−→
GL1 in

−→
GV with V = L2[∆], the

Hilbert space. The
−→
G -flow solution X is said to be stable if there exists a number

δ(ε) for any number ε > 0 such that

‖X1 −X2‖ =
∥∥∥
−→
GLu1(x) −

−→
GLu(x)

∥∥∥ < ε

if
∥∥∥
−→
GL1 −

−→
GL
∥∥∥ ≤ δ(ε). By definition,

∥∥∥
−→
GL1 −

−→
GL
∥∥∥ =

∑

(u,v)∈X
(−→

G
)
‖L1 (uv) − L (uv)‖

and ∥∥∥
−→
GLu1(x) −

−→
GLu(x)

∥∥∥ =
∑

(u,v)∈X
(−→

G
)
‖u1 (uv) (x) − u (uv) (x)‖ .

Clearly, if these
−→
G -flow solutions X are stable, then

‖u1 (uv) (x) − u (uv) (x)‖ ≤
∑

(u,v)∈X
(−→

G
)
‖u1 (uv) (x) − u (uv) (x)‖ < ε

if
‖L1 (uv) − L (uv)‖ ≤

∑

(u,v)∈X
(−→

G
)
‖L1 (uv) − L (uv)‖ ≤ δ(ε),

i.e., u (uv) (x) is stable on uv for (u, v) ∈ X
(−→
G
)
.



88 LINFAN MAO EJMAA-2015/3(2)

Conversely, if u (uv) (x) is stable on uv for (u, v) ∈ X
(−→
G
)
, i.e., for any number

ε/ε
(−→
G
)
> 0 there always is a number δ(ε) (uv) such that

‖u1 (uv) (x) − u (uv) (x)‖ <
ε

ε
(−→
G
)

if ‖L1 (uv) − L (uv)‖ ≤ δ(ε) (uv), then there must be
∑

(u,v)∈X
(−→

G
)
‖u1 (uv) (x) − u (uv) (x)‖ < ε

(−→
G
)
×

ε

ε
(−→
G
) = ε

if

‖L1 (uv) − L (uv)‖ ≤
δ(ε)

ε
(−→
G
) ,

where ε
(−→
G
)

is the number of arcs of
−→
G and

δ(ε) = min
{
δ(ε) (uv) |(u, v) ∈ X

(−→
G
)}

.

Whence, we get the result following.

Theorem 5.1. Let V be the Hilbert space L2[∆]. The
−→
G -flow solution X of

equation {
F (x, X,Xx1, · · · , Xxn

, Xx1x2 , · · · ) = 0

X |x0
=

−→
GL

in
−→
GV is stable if and only if the solution u(x) (uv) of equation

{
F (x, u, ux1, · · · , uxn

, ux1x2 , · · · ) = 0

u|x0
=

−→
GL

is stable on the semi-arc uv for ∀(u, v) ∈ X
(−→
G
)
.

This conclusion enables one to find stable
−→
G -flow solutions of equations. For ex-

ample, we know that the stability of trivial solution y = 0 of an ordinary differential
equation

dy

dx
= [A]y

with constant coefficients, is dependent on the number γ = max{Reλ : λ ∈ σ[A]}
([23]), i.e., it is stable if and only if γ < 0, or γ = 0 but m′(λ) = m(λ) for all
eigenvalues λ with Reλ = 0, where σ[A] is the set of eigenvalue of the matrix [A],
m(λ) the multiplicity and m′(λ) the dimension of corresponding eigenspace of λ.

Corollary 5.2. Let [A] be a matrix with all eigenvalues λ < 0, or γ = 0 but
m′(λ) = m(λ) for all eigenvalues λ with Reλ = 0. Then the solution X = O of
differential equation

dX

dx
= [A]X

is stable in
−→
GV , where

−→
G is such a topological graph that there are

−→
G -flows hold

with the equation.
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For example, the
−→
G -flow shown in Fig.8 following-

�66 ?j�v1 v2

v3v4

f(x)

f(x)

f(x)
f(x) ?g(x)

g(x)

g(x)

g(x)

Fig.8

is a
−→
G -flow solution of the differential equation

d2X

dx2
+ 5

dX

dx
+ 6X = 0

with f(x) = C1e
−2x + C′

1e
−3x and g(x) = C2e

−2x + C′
2e

−3x, where C1, C
′
1 and

C2, C
′
2 are constants.

Similarly, applying the stability of solutions of wave equations, heat equations
and elliptic equations, the conclusion following is known by Theorem 5.1.

Corollary 5.3. Let V be the Hilbert space L2[∆]. Then, the
−→
G -flow solutions

X of equations following






∂2X

∂t2
− c2

(
∂2X

∂x2
1

+
∂2X

∂x2
2

)
=

−→
GL

X |t0 =
−→
GLφ(x1,x2) ,

∂X

∂t

∣∣∣∣
t0

=
−→
GLϕ(x1,x2) , X |∂∆ =

−→
GLµ(t,x1,x2)

,





∂2X

∂t2
− c2

∂X

∂x1
=

−→
GL

X |t0 =
−→
GLφ(x1,x2)

and





∂2X

∂x2
1

+
∂2X

∂x2
2

+
∂2X

∂x2
3

= O

X |∂∆ =
−→
GLg(x1,x2,x3)

are stable in
−→
GV , where

−→
G is such a topological graph that there are

−→
G -flows hold

with these equations.

5.2 Industrial System Control

An industrial system with raw materials M1,M2, · · · ,Mn, products (including
by-products) P1, P2, · · · , Pm but w1, w2, · · · , ws wastes after a produce process,
such as those shown in Fig.9 following,
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F (x)

M1

M2

Mn

6?-
x1

x2

xn

P1

P2

Pm

---
y1

y2

ym

w1 w2 ws
? ? ?

Fig.9

i.e., an input-output system, where,

(y1, y2, · · · , ym) = F (x1, x2, · · · , xn)

determined by differential equations, called the production function and con-
strained with the conservation law of matter, i.e.,

m∑

i=1

yi +

s∑

i=1

wi =

n∑

i=1

xi.

Notice that such an industrial system is an opened system in general, which can
be transferred into a closed one by letting the nature as an additional cell, i.e.,
all materials comes from and all wastes resolves by the nature, a classical one on
human beings with the nature. However, the resolvability of nature is very limited.
Such a classical system finally resulted in the environmental pollution accompanied
with the developed production of human beings.

Different from those of classical industrial systems, an ecologically industrial

system is a recycling system ([24]), i.e., all outputs of one of its subsystem, including
products, by-products provide the inputs of other subsystems and all wastes are

disposed harmless to the nature. Clearly, such a system is nothing else but a
−→
G -flow

because it is holding with conservation laws on each vertex in a topological graph
−→
G ,

where
−→
G is determined by the technological process for products, wastes disposal

and recycle, and can be characterized by differential equations in Banach space
−→
GV .

Whence, we can determine such a system by
−→
GLu with Lu : uv → u (uv) (t,x) for

(u, v) ∈ X
(−→
G
)
, or ordinary differential equations






−→
GL0 ◦

dkX

dtk
+
−→
GL1 ◦

dk−1X

dtk−1
+ · · · +

−→
GLu(t,x) = O

X |t=t0 =
−→
GLh0(x) ,

dX

dt

∣∣∣∣
t=t0

=
−→
GLh1(x) , · · · ,

dXk−1

dtk−1

∣∣∣∣
t=t0

=
−→
G

Lhk−1(x)

for an integer k ≥ 1, or a partial differential equation




−→
GL0 ◦

∂X

∂t
+
−→
GL1 ◦

∂X

∂x1
+ · · · +

−→
GLn ◦

∂X

∂xn

=
−→
GLu(t,x)

X |t=t0 =
−→
GLu(x)
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and characterize its stability by Theorem 5.1, where, the coefficients
−→
GLi , i ≥ 0 are

determined by the technological process of production.
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