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Parameters for minimal unsatisfiability:

Smarandache primitive numbers and full clauses⋆
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Abstract. We establish a new bridge between propositional logic and
elementary number theory. A full clause contains all variables, and we
study them in minimally unsatisfiable clause-sets (MU); such clauses
are strong structural anchors, when combined with other restrictions.
Counting the maximal number of full clauses for a given deficiency k,
we obtain a close connection to the so-called “Smarandache primitive
number” S2(k), the smallest n such that 2k divides n!.
The deficiency k ≥ 1 of an MU is the difference between the number of
clauses and the number of variables. We also consider the subclass UHIT
of MU given by unsatisfiable hitting clause-sets (every two clauses clash).
We study the four fundamental quantities FCH,FCM,VDH,VDM : N →

N, defined as the maximum number of full clauses in UHIT resp. MU,
resp. the maximal minimal number of occurrences of a variable (the
variable degree) in UHIT resp. MU, in dependency on the deficiency.
We have the relations FCH(k) ≤ FCM(k) ≤ VDM(k) and FCH(k) ≤

VDH(k) ≤ VDM(k), together with VDM(k) ≤ nM(k) ≤ k+1+ log2(k),
using the “non-Mersenne numbers” nM(k) as established in [21].
We show the lower bound S2(k) ≤ FCH(k); indeed we conjecture this
to be exact. The proof rests on two methods: Applying subsumption
resolution and its inverse, and analysing certain recursions, combining
an application-specific recursion with a recursion from the field of meta-
Fibonacci sequences. The S2-lower bound together with the nM-upper-
bound yields a good handle on the four quantities, which we determine
for 1 ≤ k ≤ 13.

1 Introduction

Long clauses often occur in practical instances; we study the most extreme
case, the occurrences of full clauses, clauses of maximal possible length, in min-
imal unsatisfiable clause-sets (F ∈ MU). The main parameter is the deficiency
δ(F ) = c(F )− n(F ) ≥ 1, the number of clauses minus the number of variables.
We denote by FCM(k) the maximal possible number of full clauses in F ∈ MU
with δ(F ) = k (short: F ∈ MUδ=k). From [21, Theorem 15] follows the up-
per bound FCM(k) ≤ nM(k) for the non-Mersenne numbers nM(k) ∈ N, with
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k+ ⌊log2(k+1)⌋ ≤ nM(k) ≤ k+1+ ⌊log2(k)⌋ ([21, Corollary 10]). Until now no
general lower bound on FCM(k) was known, and we establish S2(k) ≤ FCM(k).
Here S2(k), as introduced in [28], is the smallest n ∈ N0 such that 2k divides n!,
and various number-theoretical results on S2 and the generalisation Sp for prime
numbers p are known. Actually we show a stronger lower bound, namely we do
not consider all F ∈ MUδ=k, but only those F which are hitting (F ∈ UHIT ),
that is, where every two clauses clash, yielding FCH(k) with FCH(k) ≤ FCM(k),
and we show S2 ≤ FCH. The elements of UHIT are known in the DNF language
as “orthogonal” or “disjoint” tautological DNF, and when considering arbitrary
boolean functions, then also “disjoint sums of products” (DSOP) or “disjoint
cube representations” are used; see [25, Section 4.4] or [4, Chapter 7].

The central underlying research question is the programme of classification
of MU in the deficiency, that is, the characterisation of the layers MUδ=k for
k ∈ N. A special case of the general classification is the classification of UHITδ=k.
The earliest source [1] showed (in modern notation) δ(F ) ≥ 1 for F ∈ MU , and
characterised the special case SMUδ=1 ⊂ MUδ=1, where SMU ⊂ MU contains
those F ∈ MU such that no literals can be added to any clauses without de-
stroying unsatisfiability. Later [5] characterised MUδ=1 via matrices, while the
intuitive characterisation via binary trees was given in [16, Appendix B], where
also SMUδ=1 = UHITδ=1 has been shown. In the form of “S-matrices”, the
class MUδ=1 had been characterised earlier in [13,11], going back to a conjecture
on Qualitative Economics ([7]), and where the connections to this field of ma-
trix analysis, called “Qualitative Matrix Analysis (QMA)”, where first revealed
in [18] (see [15, Subsection 11.12.1] and [23, Subsection 1.6.4] for overviews).
SMUδ=2 and partially MUδ=2 were characterised in [14], with further informa-
tion on MUδ=2 in [22]. [6] showed that all layersMUδ=k are poly-time decidable.

A key element for these investigations into the structure of MU is the min-
var-degree µvd(F ) := minv∈var(F )|{C ∈ F : v ∈ var(C)}|, the minimal variable-
degree of F , and its maximum VDM(k) over all F ∈ MUδ=k. Indeed the key to
the characterisation ofMUδ=1 in [5] as well as in [13] was the proof of VDM(1) =
2. The first general upper bound ∀ k ∈ N : VDM(k) ≤ 2k was shown in [16,
Lemma C.2]. Now in [21], mentioned above, we actually showed the upper bound
VDM(k) ≤ nM(k). Using fc(F ) for the number of full clauses in F , obviously
fc(F ) ≤ µvd(F ) holds, and FCM(k) is the maximum of fc(F ) over all F ∈
MUδ=k, thus FCM(k) ≤ VDM(k).

For the variation VDH(k) ≤ VDM(k), which only considers hitting clause-
sets, we conjecture VDH(k) = VDM(k) for all k ≥ 1. Furthermore we conjecture
FCM(k) ≥ nM(k)−1, and thus the quantities nM(k),VDM(k),VDH(k),FCM(k)
are believed to have at most a distance of 1 to each other. On the other hand we
conjecture FCH(k) = S2, where S2(k) oscillates between the linear function k+1
and the quasi-linear function k+1+ ⌊log2(k)⌋. Altogether the “four fundamen-
tal quantities” FCH,FCM,VDH,VDM are fascinating and important structural
parameters, whose study continues to reveal new and surprising aspects of MU
and UHIT .
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It is also possible to go beyond MU : in [23, Section 9] it is shown that when
considering the maximum of µvd(F ) over all F ∈ LEANδ=k ⊃ MUδ=k, the set
of all “lean” clause-sets, that then nM(k) is the precise maximum for all k ≥ 1.
Lean clause-sets were introduced in [17] as the clause-sets where it is not possible
to satisfy some clauses while not touching the other clauses, and indeed were
already introduced earlier, as “non-weakly satisfiable formulas (matrices)” in the
field of QMA by [12]. Furthermore it is shown in [23, Section 10], that there is
a polytime “autarky reduction”, removing some clauses which can be satisfied
without touching the other clauses, which establishes for arbitrary clause-sets F
the upper bound µvd(F ) ≤ nM(δ(F )); an interesting open question here is to
find the witnessing autarky in polynomial time.

Back to the main result of this paper, the proof of S2 ≤ FCH is non-trivial.
Indeed the proof is relatively easy for a function S′

2(k) defined by an appropriate
recursion, motivated by employing full subsumption extension C ❀ C∪{v}, C∪
{v} in an optimal way. Then the main auxiliary result is S′

2 = S2. For that we
use another function, namely a2(k) as considered in [24] in a more general form,
while a2 was introduced with a small modification in [3]. These considerations
belong to the field of meta-Fibonacci sequences, where special nested recursions
are studied, initiated by [8, Page 145]. Via a combinatorial argument we derive
such a nested recursion from the course-of-value recursion for S′

2, which yields
S′
2 = 2a2. We also show 2a2 = S2 (this equality was conjectured on the OEIS

[27]), and we obtain S′
2 = S2.

Overview. The main results of this paper are as follows. Theorem 18 proves
S2 = 2a2. Theorem 31 shows a meta-Fibonacci recursion for S′

2, where S′
2 is

introduced by a recursion directly related to our application. Theorem 33 then
proves S′

2 = S2. After these number-theoretic preparations, we consider sub-
sumption resolution and its inversion (extension); Theorem 38 combines sub-
sumption extension and the recursion machinery, and shows S2 ≤ FCH. In the
remainder of the paper, this fundamental result is applied. Theorem 39 proves a
tight upper bound on S2, while Theorem 42 considers the cases where the lower
bound via S2 and the upper bound via nM coincides. Finally in Theorem 47 we
determine the four fundamental quantities for 1 ≤ k ≤ 13 (see Table 1).

2 Preliminaries

We use Z for the set of integers, N0 := {n ∈ Z : n ≥ 0}, N := N0 \ {0}, and
finally R ⊃ Z is the set of real numbers. For maps f, g : X → R we write f ≤ g
if ∀x ∈ X : f(x) ≤ g(x).

On the set LIT of literals we have complementation x ∈ LIT 7→ x, with
x 6= x and x = x. We assume Z \ {0} ⊆ LIT , with z = −z for z ∈ Z \ {0}.
Variables VA ⊂ LIT with N ⊆ VA are special literals, and the underlying
variable of a literal is given by var : LIT → VA, such that for v ∈ VA holds
var(v) = var(v) = v, while for x ∈ LIT \ VA holds x = var(x). For a set
L ⊆ LIT we define L := {x : x ∈ L}. A clause is a finite set C of literals with
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C ∩ C = ∅ (C is clash-free). A clause-set is a finite set of clauses, the set of all
clause-sets is denoted by CLS.

For a clause C we define var(C) := {var(x) : x ∈ C} ⊂ VA, and for a
clause-set F we define var(F ) :=

⋃

C∈F var(C) ⊂ VA. We use the measure
n(F ) := |var(F )| ∈ N0 and c(F ) := |F | ∈ N0, while the deficiency is δ(F ) :=
c(F )− n(F ) ∈ Z.

The set of satisfiable clause-sets is denoted by SAT ⊂ CLS, which is the set
of clause-sets F such that there is a clause C which intersects all clauses of F , i.e.,
with ∀D ∈ F : C∩D 6= ∅; the unsatisfiable clause-sets are USAT := CLS\SAT .

The set MU ⊂ USAT of minimally unsatisfiable clause-sets is the set of
F ∈ USAT , such that for F ′ ⊂ F holds F ′ ∈ SAT . The unsatisfiable hitting
clause-sets are given by UHIT := {F ∈ USAT | ∀C,D ∈ F,C 6= D : C ∩D 6=
∅}. It is easy to see that UHIT ⊂ MU holds, and that for all F ∈ UHIT holds
∑

C∈F 2−|C| = 1. While all definitions are given in this paper, for some more
background see [15].

2.1 Full clauses

A full clause for F ∈ CLS is some C ∈ F with var(C) = var(F ) (equivalently,
|C| = n(F )), and the number of full clauses is counted by fc : CLS → N0, which
can be defined as fc(F ) := c(F∩A(var(F ))), and whereA(V ) ∈ UHIT for some
finite V ⊂ VA is the set of all clauses C with var(C) = V . Standardised versions
of the A(V ) are An := A({1, . . . , n}) for n ∈ N0. The following observation is
contained in the proof of [31, Utterly Trivial Observation]:

Lemma 1. For F ∈ UHIT , F 6= {⊥}, the number fc(F ) of full clauses is even.

Proof. Let n := n(F ). We have
∑

C∈F 2n−|C| = 2n, and thus
∑

C∈F 2n−|C| is

even (due to n > 0). Since
∑

C∈F,|C|6=n 2
n−|C| is even, the assertion follows. ⊓⊔

2.2 The four fundamental quantities

For F ∈ CLS we define the var-degree as vdF (v) := c({C ∈ F : v ∈ var(C)}) ∈
N0 for v ∈ VA, while in case of var(F ) 6= ∅ (i.e., F /∈ {⊤, {⊥}}) we define the
min-var-degree µvd(F ) := minv∈var(F ) vdF (v) ∈ N.

Definition 2. For k ∈ N let

– FCH(k) ∈ N be the maximal fc(F ) for F ∈ UHITδ=k;
– FCM(k) ∈ N be the maximal fc(F ) for F ∈ MUδ=k;
– VDH(k) ∈ N be the maximal µvd(F ) for F ∈ UHITδ=k;
– VDM(k) ∈ N be the maximal µvd(F ) for F ∈ MUδ=k.

For k = 1 the case F = {⊥} is excluded in the last two definitions.

By [21, Lemma 9, Corollary 10, Theorem 15]:
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Theorem 3 ([21]). VDM(k) ≤ nM(k) = k + ⌊log2(k + 1 + ⌊log2(k + 1)⌋)⌋ ≤
k + 1 + ⌊log2(k)⌋ for all k ∈ N.

Here nM : N → N is the enumeration of natural numbers excluding the Mersenne
numbers 2n − 1 for n ∈ N; the list of initial values is 2, 4, 5, 6, 8, 9, 10, 11, 12,
13, 14, 16, 17 (http://oeis.org/A062289). In [23, Theorem 14.4] it is shown
that VDM(6) = 8 = nM(6) − 1, extending this to an improved upper bound
VDM ≤ nM1 ([23, Theorem 14.6], where nM1 : N → N can be defined as
follows: nM1(k) := nM(k) for k ∈ N with k 6= 2n − n+ 1 for some n ≥ 3, while
nM1(2

n − n+ 1) := nM(2n − n+ 1)− 1 = 2n; see Table 1 for initial values.

Theorem 4 ([23]). For k ∈ N holds VDM(k) ≤ nM1(k) ≤ nM(k).

We conclude these preparations with a special property of FCH(k) (support-
ing our Conjecture 48 that FCH = S2), namely by Lemma 1 we have:

Corollary 5. FCH(k) is even for all k ∈ N.

3 Some integer sequences

We review the “Smarandache primitive numbers” S2(k) and the meta-Fibonacci
sequences a2(k). We show in Theorem 18, that S2 = 2a2 holds.

3.1 Some preparations

We define two general operations a 7→ ∆a and a 7→ P a for sequences a. First
the (standard) ∆-operator:

Definition 6. For a : I → R, where I ⊆ Z is closed under increment, we define
∆a : I → R by ∆a(k) := a(k + 1)− a(k).

So a is monotonically increasing iff ∆a ≥ 0, while a is strictly monotonically
increasing iff ∆a ≥ 1. Sequences with exactly two different ∆-values, where one
of these values is 0, play a special role for us, and we call them “d-Delta”, where
d is the other value:

Definition 7. A sequence a : N0 → Z is called d-Delta for d ∈ Z \ {0}, if
∆a(N0) = {∆a(n)}n∈N0 = {0, d}.

While the ∆-operator determines the change to the next value, the plateau-
operator determines subsequences of unchanging values:

Definition 8. For a sequence a : N → R which is non-stationary (for all i
there is j > i with aj 6= ai) we define P a : N → N (the “plateau operator”) by
letting P a(n) for n ∈ N be the size of the n-th (maximal) plateau of equal values
(maximal intervals of N where a is constant).

So P a(1) is the size of the first plateau, P a(2) the size of the second plateau,
and so on; ∀ i ∈ N : a(i) 6= a(i + 1) iff P a is the constant 1-function. For a
d-Delta sequence a from P a and the initial value a1 we can reconstruct a.

http://oeis.org/A062289
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3.2 Smarandache primitive numbers

The “Smarandache Primitive Numbers” were introduced in [28, Unsolved Prob-
lem 47]:

Definition 9. For k ∈ N0 let S2(k) be the smallest n ∈ N0 such that 2k divides
n!. Using ord2(n), n ∈ N, for the maximal m ∈ N0 such that 2m divides n, we
get that S2(k) for k ∈ N0 is the smallest n ∈ N0 such that k ≤

∑n
i=1 ord2(i).

So S2(0) = 0, and ∆S2(N0) = {0, 2}. The following is well-known and easy to
show (see Subsection III.1 in [9] for basic properties of S2(k)):

Lemma 10. The sequence S2(1), S2(2), S2(3), . . . is obtained from the sequence
1, 2, 3, . . . of natural numbers, when each element n ∈ N is repeated ord2(n)
many times.

Example 11. The numbers S2(k) for k ∈ {1, . . . , 25} are 2, 4, 4, 6, 8, 8, 8, 10, 12,
12, 14, 16, 16, 16, 16, 18, 20, 20, 22, 24, 24, 24, 26, 28, 28. The corresponding OEIS-
entry (which has 1 as first element (index 0), instead of 0 as we have it, and
which we regard as appropriate) is http://oeis.org/A007843.

Lemma 12 ([30]). For k ∈ N holds k + 1 ≤ S2(k) = k +O(log k).

We give an independent proof for the lower bound in Lemma 40, while we sharpen
the upper bound in Theorem 39. For more number-theoretic properties of S2 see
[29]. To understand the plateaus of S2, we need the ruler function:

Definition 13. Let run := ord2(2n) ∈ N for n ∈ N.

The plateaus of S2 are given by the ruler function: in Lemma 10 we deter-
mined the number of repetitions of values v ∈ N as ord2(v), while for the plateaus
we skip zero-repetitions, which happen at each odd number, and thus for the
associated index n we have n = v

2 for even v, and the number of repetitions is
ord2(v) = ord2(2n); we obtain

Lemma 14. P(S2(k))k∈N = (run)n∈N.

3.3 Meta-Fibonacci sequences

Started by [8, Page 145], various nested recursions for integer sequences have
been studied. Often the focus in this field of “meta-Fibonacci sequences” is
on “chaotic behaviour”, but we consider here only a well-behaved case (but in
detail):

Definition 15. In [24] the sequence a2 : N0 → N0
3), has been defined recursively

via
a2(k) = a2(k − a2(k − 1)) + a2(k − 1− a2(k − 2)),

while a2(k) := k for k ∈ {0, 1}.

3) hiding two parameters d ∈ N, s ∈ Z used in [24], which are d = 2, s = 0 in our case

http://oeis.org/A007843
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The sequence a2 was introduced in [3] as F : N → N0, with F (k) = k− 1 for
k ∈ {1, 2} and the same recursion law, which yields F (k) = a2(k − 1) for k ∈ N.
Furthermore, using F ′(1) = F ′(2) = 1 as initial conditions does not change
anything else, and this sequence is the OEIS entry http://oeis.org/A046699.
It is shown (in our notation):

Lemma 16 ([3]). For k ∈ N and p := ⌊log2(k+1)⌋: a2(k) = 2p−1 + a2(k+1−
2p).

Lemma 16 yields a fast computation of a2(k). [10, Corollary 2.9, Equation (1)]
determines the plateau sizes:

Lemma 17 ([10]). a2 is a 1-Delta sequence with P(a2(k))k∈N = ru.

We can now show a2 = 1
2S2, which has been conjectured on the OEIS

(http://oeis.org/A007843, by Michel Marcus):

Theorem 18. ∀ k ∈ N0 : S2(k) = 2 · a2(k).

Proof. By Lemma 14 and Lemma 17, together with S2(0) = a2(0) = 0. ⊓⊔

4 Recursions for Smarandache primitive numbers

In Subsection 4.1 we introduce the sequence S′
2 via a recursive process, which

directly ties into our main application in Theorem 38 for constructing unsatis-
fiable hitting clause-sets with many full clauses. This recursive definition uses
an index, which is studied in Subsection 4.2. The central helper function is the
“slack”, studied in Subsection 4.3. We then prove a meta-Fibonacci recursion in
Theorem 31, and obtain S′

2 = S2 in Theorem 33.

4.1 A simple course-of-values recursion

Definition 19. For k ∈ N0 let

1. S′
2(0) := 0, S′

2(1) := 2; and for k ≥ 2:

2. S′
2(k) := 2·(k−i+1) for the minimal i ∈ {1, . . . , k−1} with k−i+1 ≤ S′

2(i).

Note that the recursion step is well-defined (the i exists), since for i = k − 1
holds k − i + 1 = 2, and S′

2(k − 1) = 2 for k = 2, while for k ≥ 3 holds
S′
2(k − 1) = 2 · ((k − 1) − i′ + 1) ≥ 2 · ((k − 1) − ((k − 1) − 1) + 1) = 4. The

condition “k − i + 1 ≤ S′
2(i)” is equivalent to k + 1 ≤ i + S′

2(i). Some simple
properties are that S′

2(k) is divisible by 2, S′
2(k) ≥ 2 for k ≥ 1, and S′

2(2) = 4
and S′

2(k) ≥ 4 for k ≥ 2.

http://oeis.org/A046699
http://oeis.org/A007843
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4.2 Analysing the index

Definition 20. For k ≥ 0 let iS(k) := k + 1− S′

2(k)
2 ∈ N.

Simple properties (for all k ≥ 0):

1. S′
2(k) = 2 · (k − iS(k) + 1).

2. iS(0) = iS(1) = iS(2) = 1.
3. ∆ iS(k) = 0 ⇔ ∆S′

2(k) = 2 and ∆ iS(k) = 1 ⇔ ∆S′
2(k) = 0.

An alternative characterisation of iS(k):

Lemma 21. For k ≥ 0: iS(k) is the minimal i ∈ N0 with i+ S′
2(i) ≥ k + 1.

Proof. The assertion follows by what has already been said above, plus the
consideration of the corner cases: 0 + S′

2(0) = 0 < k + 1 for all k ≥ 0, while
1 + S′

2(1) = 3 ≥ k + 1 for k ≤ 2. ⊓⊔

We obtain a method to prove lower bounds for S′
2(k):

Corollary 22. For k, i ∈ N0 with S′
2(i) ≥ k − i+ 1 holds S′

2(k) ≥ 2(k − i + 1).

iS(k) grows in steps of +1, while S′
2(k) grows in steps of +2:

Lemma 23. ∆S′
2(k) ∈ {0, 2} and ∆ iS(k) ∈ {0, 1} for all k ∈ N0.

Proof. Proof via (simultaneous) induction on k: The assertions hold for k ≤ 1,
and so consider k ≥ 2. Now iS(k) is the minimal i ∈ {1, . . . , k− 1} with k+ 1 ≤
i+ S′

2(i), and due to ∆S′
2(i) ≥ 0 for all i < k it follows ∆ iS(k) ∈ {0, 1}. ⊓⊔

We obtain a simple upper bound on iS:

Corollary 24. For k ≥ 1 holds iS(k) ≤ k and for k ≥ 2 holds iS(k) ≤ k − 1

4.3 The “slack”

An important helper function is the “slack” slS(k):

Definition 25. For k ∈ N0 let slS(k) := (iS(k) + S′
2(iS(k))) − (k + 1) ∈ N0.

So slS(0) = (1 + 2) − (0 + 1) = 2 and slS(1) = (1 + 2) − (1 + 1) = 1. Directly
from the definition follows:

Lemma 26. For k ≥ 0 holds S′
2(iS(k)) =

1
2S

′
2(k) + slS(k).

We can characterise the cases ∆ iS(k) = 1 as the “slackless” k’s:

Lemma 27. For k ≥ 0:

1. ∆ iS(k) = 1 ⇔ slS(k) = 0 ⇔ ∆S′
2(k) = 0.

2. ∆ iS(k) = 0 ⇔ slS(k) ≥ 1 ⇔ ∆S′
2(k) = 2.
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Proof. If slS(k) ≥ 1, then ∆ iS(k) = 0 by Lemma 21, while for slS(k) = 0 we get
∆ iS(k) ≥ 1. ⊓⊔

Thus the slack determines the growth of S′
2:

Corollary 28. For k ≥ 0 holds ∆S′
2(k) = 2 ·min(slS(k), 1).

And plateaus of the slack happen only for slack zero, and from such a plateau
the slack jumps to 2, and then is stepwise again decremented to zero:

Corollary 29. For k ≥ 0 holds:

1. If slS(k) > 0, then slS(k + 1) = slS(k)− 1.
2. If slS(k) = 0, then slS(k + 1) ∈ {0, 2}.

4.4 A meta-Fibonacci recursion

We are ready to prove an interesting nested recursion for S′
2. First a combina-

torial lemma, just exploiting the fact that the shape of the slack repeats the
following pattern (Corollary 29): a plateau of zeros, followed by a jump to 2 and
a stepwise decrement to 0 again (where right at k = 0 we start with slS(0) = 2):

Lemma 30. For k ≥ 2 holds
∑2

i=1 slS(k − i) =
∑2

i=1 i ·min(1, slS(k − i)).

Proof. There are 0 ≤ p ≤ 2 and 1 ≤ q ≤ 3 such that the left-hand side is

p+ (p− 1) + · · ·+ 1 + 0 + · · ·+ 0 + 2 + (2 − 1) + · · ·+ q;

for p = 0 the initial part is empty, for q = 3 the final part is empty. Let r ≥ 0
be the number of zeros; so r = 0 iff p = 2 (and then also q = 3). We have
p+ r + (2− q + 1) = 2, i.e., p+ r + 1 = q. Now the right-hand side is

1 + 2 + · · ·+ p+ 0 + · · ·+ 0 + q + (q + 1) + · · ·+ 2,

and we see that both sides are equal. ⊓⊔

Theorem 31. For k ≥ 2 holds

S′
2(k) =

2
∑

i=1

S′
2(iS(k − i))

(note that by Lemma 24 holds iS(k − i) < k).

Proof. By Lemma 26 and Lemma 30 holds

2
∑

i=1

S′
2(iS(k − i)) = (

2
∑

i=1

slS(k − i)) + S′
2(k)−

1

2

2
∑

i=1

(S′
2(k)− S′

2(k − i)) =

S′
2(k) + (

2
∑

i=1

i ·min(1, slS(k − i)))−
1

2

2
∑

i=1

i−1
∑

j=0

∆S′
2(k + i− j),
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where now by Corollary 28 holds
∑2

i=1

∑i−1
j=0 ∆S′

2(k + i − j) = (∆S′
2(k − 1)) +

(∆S′
2(k − 2) + ∆S′

2(k − 1)) =
∑2

i=1 i · ∆S′
2(k − 1) = 2

∑2
i=1 i · min(1, slS(k)),

which completes the proof. ⊓⊔

Now we see that S′
2 is basically the same as a2 (recall Subsection 3.3):

Corollary 32. ∀ k ∈ N0 : S′
2(k) = 2 · a2(k).

Proof. For the purpose of the proof let a2(k) :=
1
2S

′
2(k) for k ∈ N0. So we get

a2(k) = k for k ∈ {0, 1}, while iS(k) = k + 1− a2(k), and thus for k ≥ 2:

a2(k) =
1

2
S′
2(k) =

1

2

2
∑

i=1

S′
2(iS(k − i)) =

2
∑

i=1

a2(iS(k − i)) =

2
∑

i=1

a2(k − i+ 1− a2(k − i)),

and so the assertion follows by the equations of Definition 15. ⊓⊔

We obtain the main result of this section:

Theorem 33. S′
2 = S2 (recall Definition 9).

Proof. By Corollary 32 and Theorem 18. ⊓⊔

5 On the number of full clauses

First we review full subsumption resolution, C ∪ {v}, C ∪ {v} ❀ C, and its
inversion, called “extension” in Section 5.1, where some care is needed, since
we need complete control. From a clause-set F with “many” full clauses we
can produce further clause-sets with “many” full clauses by full subsumption
extension done in parallel, and this process of “full expansion” is presented
in Definition 36. The recursive computation of S2 via Definition 19 captures
maximisation for this process, and so we can show in Theorem 38, that we can
construct examples of unsatisfiable hitting clause-sets Fk of deficiency k and
with S2(k) many full clauses. It follows that S2 yields a lower bound on FCH
(Conjecture 48 says this lower bound is actually an equality).

5.1 Full subsumption resolution

As studied in [23, Section 6] in some detail:

Definition 34 ([23]). A full subsumption resolution for F ∈ CLS can be
performed, if there is a clause C /∈ F with C∪{v}, C∪{v} ∈ F for some variable
v, and replaces the two clauses C ∪ {v}, C ∪ {v} by the single clause C. For the
strict form, there must exist a third clause D ∈ F \ {C ∪ {v}, C ∪ {v}} with
v ∈ var(D), while for the non-strict form there must NOT exist such a third
clause.
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If F ′ is obtained from F by one full subsumption resolution, then c(F ′) = c(F )−
1; we have the strict form iff n(F ′) = n(F ), or, equivalently, δ(F ′) = δ(F ) − 1,
while we have the non-strict form iff n(F ′) = n(F )− 1, or, equivalently, δ(F ′) =
δ(F ). A very old transformation of a CNF (DNF) into an equivalent one uses
the inverse of full subsumption resolution4):

Definition 35 ([23]). A full subsumption extension for F ∈ CLS and a
clause C ∈ F can be performed, if there is a variable v ∈ VA \ var(C) with
C ∪ {v}, C ∪ {v} /∈ F , and replaces the single clause C by the two clauses C ∪
{v}, C ∪ {v}. For the strict form we have v ∈ var(F ), while for the non-strict

form we have v /∈ var(F ).

If we consider F ∈ MU and C ∈ F , then we can always perform a non-strict full
subsumption extension, while we can perform the strict form iff C is not full. If
we denote the result by F ′, then for F ∈ UHIT we have again F ′ ∈ UHIT , but
for general F ∈ MU we might have F ′ /∈ MU ; see [23, Lemma 6.5] for an exact
characterisation.

5.2 Full expansions

We now perform full subsumption extensions in parallel to m full clauses of F ,
first using a non-strict extension, and then reusing the extension variable via
strict extensions:

Definition 36. For F ∈ CLS and m ∈ N, where fc(F ) ≥ m, a full m-

expansion of F is some G ∈ CLS obtained by

1. choosing some F ′ ⊆ F ∩ A(var(F )) with c(F ′) = m,
2. choosing some v ∈ VA \ var(F ) (the extension variable),
3. and replacing the clauses C ∈ F ′ in F by their full subsumption extension

with v (recall Definition 35).

The choice of v in Definition 36 is irrelevant, while the choice of F ′ might
have an influence on further properties of G, but is irrelevant for our uses. The
following basic properties all follow directly from the definition:

Lemma 37. Consider the situation of Definition 36.

1. There is always a full m-expansion G (unique for any fixed F ′, v).
2. If F ∈ UHIT , then G ∈ UHIT .
3. n(G) = n(F ) + 1, c(G) = c(F ) +m.
4. δ(G) = δ(F ) +m− 1.
5. fc(G) = 2 ·m.

We turn to the construction of unsatisfiable hitting clause-sets with many
full clauses (for a given deficiency):

4) Boole introduced in [2], Chapter 5, Proposition II, the general “expansion” f(v,x) =
(f(0,x)∧v)∨(f(1,x)∧v) for boolean functions f , where for our application f(v,x) ≈
C. This was taken up by [26], and is often referred to as “Shannon expansion”.
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Theorem 38. For k ∈ N we recursively construct Fk ∈ UHITδ=k as follows:

1. F1 := {{1}, {−1}}.
2. For k ≥ 2 let Fk be a full a2(k)-expansion of FiS(k).

Then we have fc(Fk) = S2(k). Thus ∀ k ∈ N : S2(k) ≤ FCH(k).

Proof. If the construction is well-defined, then we get fc(Fk) = 2 · a2(k) = S2(k)
and δ(Fk) = δ(FiS(k))+a2(k)−1 = iS(k)+a2(k)−1 = k for k ≥ 2 by Lemma 37
(using Theorem 33 freely), while these two properties hold trivially for k = 1.

It remains to show that 1 ≤ iS(k) ≤ k − 1 and a2(k) ≤ fc(FiS(k)) for k ≥ 2.
The first statement follows by Corollary 24, while the second statement follows
by Lemma 21. ⊓⊔

6 Applications

We start by sharpening the upper bound from Lemma 12:

Theorem 39. For k ∈ N holds S2(k) ≤ nM(k) ≤ k + 1 + ⌊log2(k)⌋.

Proof. By Theorem 38 and Theorem 3. ⊓⊔

We can also provide an independent proof of the lower bound of Lemma 12:

Lemma 40. For k ∈ N holds S2(k) ≥ k + 1.

Proof. We prove the assertion by induction. For k = 1 we have S2(1) = 2, so
consider k ≥ 2. We use Corollary 22, and so we need i ∈ N with k+1 ≤ 2(k−i+1),
i.e., i ≤ k+1

2 . So we choose i := ⌊k+1
2 ⌋ ∈ N. We have i < k, and so we can apply

the induction hypothesis to i: i+S2(i) = ⌊k+1
2 ⌋+S2(⌊

k+1
2 ⌋) ≥ ⌊k+1

2 ⌋+ ⌊k+1
2 ⌋+

1 = 2⌊k+1
2 ⌋+ 1 > 2(k+1

2 − 1) + 1 = k, and thus i+ S2(i) ≥ k + 1. ⊓⊔

When upper and lower bound coincide, then we know all four fundamental
quantities; first we name the sets of deficiencies (recall Theorems 3, 4):

Definition 41. SNM := {k ∈ N : S2(k) = nM(k)}, SNM1 := {k ∈ N :
S2(k) = nM1(k)}.

By S2 ≤ VDM ≤ nM1 ≤ nM we get SNM ⊆ SNM1 and:

Theorem 42. For k ∈ SNM1 holds S2(k) = FCH(k) = FCM(k) = VDH(k) =
VDM(k) = nM1(k).

We prove now that the special deficiencies 2n − n, 2n − n − 1 (n ≥ 1; note
δ(An) = 2n − n) considered in [23, Lemmas 12.10, 12.11], where we have shown
that for them the four fundamental quantities coincide, are indeed in SNM, and
that furthermore the special deficiencies 2n − n+ 1 (n ≥ 3), where nM1 differs
from nM, are in SNM1:

Lemma 43. Consider n ∈ N.
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1. S2(2
n − n) = 2n, and for k ∈ N0 holds S2(k) = 2n ⇔ 2n − n ≤ k ≤ 2n − 1.

2. 2n − n ∈ SNM, while 2n − n+ 1, . . . , 2n − 1 /∈ SNM.
3. Assume n ≥ 2 now. Then 2n − n− 1 ∈ SNM with S2(2

n − n− 1) = 2n − 2.
4. For n ≥ 3 holds 2n − n+ 1 ∈ SNM1.

Proof. By [23, Corollary 7.24] we have nM(2n−n) = 2n, while nM(2n−n−1) =
2n − 2 (remember that the jumps for nM happens at the deficiencies 2n − n).
Thus S2(2

n − n) ≤ 2n and S2(2
n − n − 1) ≤ 2n − 2. Since for the value 2n

the sequence S2 has a plateau of length n (Lemma 10), while nM is strictly
increasing, for Parts 1, 2, 3 it remains to show S2(2

n − n) ≥ 2n. We show this
by induction: For n = 1 we have S2(1) = 2 = 21, while for n ≥ 2 by induction
hypothesis we have (2n−n)− (2n−1− (n− 1))+1 = 2n−1 ≤ S2(2

n−1− (n− 1)),
thus by Corollary 22 S2(2

n − n) ≥ 2 · 2n−1 = 2n. Finally, for Part 4 we note
S2(2

n−n+1) = S2(n) = 2n by Part 1, while nM1(k) differs from nM(k) exactly
at the positions k = 2n − n+1 for n ≥ 3, where then nM1(k) = nM(k)− 1 = 2n

([23, Theorem 14.7]). ⊓⊔

So the lower bound of Lemma 40 is sharp for infinitely many deficiencies:

Corollary 44. We have S2(k) = k + 1 for all k = 2n − 1, n ∈ N.

7 Initial values of the four fundamental quantities

The task of this penultimate section is to prove the values in Table 1 (in Theorem
47; of course, only the four fundamental quantities are open).

k 1 2 3 4 5 6 7 8 9 10 11 12 13

nM(k) 2 4 5 6 8 9 10 11 12 13 14 16 17
nM1(k) 2 4 5 6 8 8 10 11 12 13 14 16 16
VDM(k) 2 4 5 6 8 8 10 11 12 13 14 16 16
VDH(k) 2 4 5 6 8 8 10 11 12 13 14 16 16
FCM(k) 2 4 4 6 8 8 9 10 12 12 14 16 16
FCH(k) 2 4 4 6 8 8 8 10 12 12 14 16 16
S2(k) 2 4 4 6 8 8 8 10 12 12 14 16 16

Table 1. Values for the fundamental quantities for 1 ≤ k ≤ 13; in bold the columns
not in SNM1, while the vertical bars are left of the special deficiencies 2n − n, n ≥ 2.

Strengthening [23, Corollary 12.13], first we show strong properties for min-
imally unsatisfiable clause-sets F such that the number of full clauses equals
the min-var-degree, i.e., there is a variable which occurs only in the full clauses.
We use varµvd(F ) := {v ∈ var(F ) : vdF (v) = µvd(F )} for F ∈ CLS with
n(F ) > 0 (the set of variables with minimal degree). Furthermore we use DPv(F )
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for F ∈ CLS and v ∈ var(F ) for the result of replacing the clauses containing
variable v by their resolvents on v; indeed the special use in Lemma 45 will be
just the inverse of the expansion process from Definition 36.

Lemma 45. Consider F ∈ MU with fc(F ) = µvd(F ) (and thus n(F ) > 0).

1. varµvd(F ) is the set of all v ∈ var(F ) which occur only in full clauses of F .
2. fc(F ) is even.

3. For v ∈ varµvd(F ) and F ′ := DPv(F ) we have F ′ ∈ MU
δ=δ(F )− fc(F )

2 +1
.

4. fc(F ) ≤ 2 · FCM(δ(F )− fc(F )
2 + 1).

Proof. Consider v ∈ var(F ) with vdF (v) = µvd(F ). The occurrences of v are
now exactly in the full clauses of F (Part 1). Every full clauses must be resolvable
on v, and thus the full clauses of F can be partitioned into pairs {v} ·∪C, {v} ·∪C

for fc(F )
2 many clauses C. This shows Part 2. Parts 3, 4 now follow by considering

F ′ := DPv(F ): F ′ is obtained by replacing the full clauses of F by the clauses C
(i.e., performs a full subsumption resolution, which are all strict except of the last
one, which is non-strict). The new clauses C are full in F ′ (though there might

be other full clauses in F ′). Obviously F ′ ∈ MU and δ(F ′) = δ(F )− fc(F )
2 + 1.

⊓⊔

For deficiency k = 7 we have the first case of FCH(k) < FCM(k):

Lemma 46. FCM(7) = 9 = nM(7)− 1, while FCH(7) = 8 = S2(7).

Proof. By S2(7) = 8 we have FCH(7) ≥ 8. By Lemma 45, Part 4 and by
FCM(3) = 4 the assumption of FCM(7) = 10 = nM(7) yields the contradic-
tion 10 ≤ 2 FCM(7− 5 + 1) = 2 · 4 = 8, and thus FCM(7) ≤ 9. By Lemma 1 we
obtain FCH(7) = 8. A clause-set F ∈ MUδ=7 with fc(F ) = 9 (and n(F ) = 4) is
given by the following variable-clause-matrix:









− − + + − − + − − + 0
+ + − − − − + − + − 0
+ − + − + − 0 + + + −
+ + + + + + 0 − − − −









Let the variables be 1, . . . , 4, as indices of the rows. Now setting variable 4 to
false yields A3, where one non-strict subsumption resolution has been per-
formed, while setting variable 4 to true followed by unit-clause propagation of
{−3} yields A2. So both instantiations yield minimally unsatisfiable clause-sets,
whence by [23, Lemma 3.15, Part 2] F ∈ MU .5) ⊓⊔

We are ready to prove the final main result of this paper:

Theorem 47. Table 1 is correct.

5) [23, Lemma 3.15] contains a technical correction over [21, Lemma 1].
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Proof. The values for 1 ≤ k ≤ 6 have been determined in [23, Section 14]. We
observe that 1, 2, 4, 5, 6, 9, 11, 12, 13 ∈ SNM1, and thus by Theorem 42 nothing
is to be done for these values, and only the deficiencies 7, 8, 10 remain.

By Lemma 45, Part 2, we get that FCH(8) = FCM(8) = 10 (since nM(8) = 11
is odd), and also FCH(10) = FCM(10) = 12. By Lemma 46 it remains to provide
unsatisfiable hitting clause-sets witnessing VDH(7) = 10, VDH(8) = 11 and
VDH(10) = 13. For deficiency 7 consider

F7 :=









0 + − + − + − − + − +
0 − + + − − + − − + +
− + + + − − − + + + 0
− − − − + + + 0 + + +









.

F7 has 4 variables and 11 clauses, thus δ(F7) = 11−4 = 7; the hitting property is
checked by visual inspection, and F7 is unsatisfiable due to 8·2−4+2·2−3+2−2 =
1
2 + 1

4 + 1
4 = 1, while finally every row contains exactly one 0, and thus F7 is

variable-regular of degree 10 = nM(7).
Finally consider A4 with δ(A4) = 16 − 4 = 12 and µvd(A4) = 16: perform

four strict full subsumption resolutions on variables 1, 2, 3, 4, and obtain elements
of UHIT of deficiency 11, 10, 9, 8 with min-var-degree 14, 13, 12, 11. ⊓⊔

8 Conclusion and Outlook

In this paper we have improved the understanding of the four fundamental quan-
tities, by supplying the lower bound S2 ≤ FCH. The recursion defining S′

2 sheds
also light on S2 = S′

2, and we gained a deeper understanding of S2 = 2a2.
Moreover we believe

Conjecture 48. ∀ k ∈ N : S2(k) = FCH(k).

This would indeed give an unexpected precise connection of combinatorial SAT
theory and elementary number theory. On the upper bound side, by Conjectures
12.1, 12.6 in [23] (see Figure 1 there for a summary of the relations between the
four fundamental quantities) we get:

Conjecture 49. ∀ k ∈ N : nM(k)− 1 ≤ FCM(k) ≤ VDM(k) = VDH(k).

Recall that VDM(k) ≤ nM(k); so we believe that three of the four fundamental
quantities are very close to nM(k). This is in contrast to nM(k) − S2(k) being
unbounded, and indeed S2(k) = k + 1 for infinitely many k (Corollary 44),
while by Lemma 43 we also know S2(k) = nM(k) for infinitely many k, and
thus S2 oscillates between the linear function k+1 and the quasi-linear function
nM(k). To eventually determine the four fundamental quantities (which, if our
conjectures are true, boil down to VDM and FCM, while VDH = VDM and
FCH = S2), detailed investigations like those in Section 7 need to be continued.

As FCH(k) and S2(k) are closely related via (boolean) hitting clause-sets, via
generalised (non-boolean) (hitting-)clause-sets (see [19,20] for the basic theory)
we can establish a close connection to the Sp(k) for all prime numbers p in forth-
coming work (Sp(k) is the smallest n ∈ N0 such that pk divides n!, introduced
in [28, Unsolved Problem 49]).
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