

SMARANDACHE – R-MODULE AND COMMUTATIVE AND BOUNDED BE-ALGEBRAS

Dr. N. KANNAPPA¹ P. HIRUDAYARAJ²

¹Head & Associate Professor, PG & Research Department of Mathematics,

TBML College, Porayar - 609307, TamilNadu, India

² Assistant Professor, Department of Mathematics,

RVS College of Arts and Science, Karaikal - 609609, Puducherry, India.

ABSTRACT

In this paper we introduced Smarandache -2 – algebraic structure of R-Module namely Smarandache – R-Module. A Smarandache – 2 – algebraic structure on a set N means a weak algebraic structure A_0 on N such that there exist a proper subset M of N, which is embedded with a stronger algebraic structure A_1 , stronger algebraic structure means satisfying more axioms, by proper subset one understands a subset different from the empty set, from the unit element if any, from the whole set. We define Smarandache – R-Module and obtain some of its characterization through Commutative and Bounded BE-Algebras. For basic concepts we refers to Florentin smarandache[2] and Raul Padilla[9].

Keyword: R-Module, Smarandache – R-Module, BE-Algebras.

1.INTRODUCTION

New notions are introduced in algebra to study more about the congruence in number theory by Florentin smarandache[2]. By proper subset> of a set A, We consider a set P included in A and different from A, different from the empty set, and from the unit element in A – if any they rank the algebraic structures using an order relationship.

The algebraic structures $S_1 \ll S_2$ if :both are defined on the same set :: all S_1 laws are also S_2 laws; all axioms of S_1 law are accomplished by the corresponding S_2 law; S_2 law strictly accomplishes more axioms than S_1 laws, or in other words S_2 laws has more laws than S_1 .

For example: semi group << monoid << group << ring << field, or Semi group << commutative semi group, ring << unitary ring, etc. they define a General special structure to be a structure SM on a set A, different from a structure SN, such that a proper subset of A is an SN structure, where SM << SN.

2. Prerequistics

Definition 2.1: An algebra (A; *, 1) of type (2, 0) is called a BE-algebra if for all x, y and z in A,

- (BE1) x * x = 1
- (BE2) x * 1 = 1
- (BE3) 1 * x = x
- (BE4) x * (y * z) = y * (x * z).

In A, a binary relation " \leq " is defined by $x \leq y$ if and only if x * y = 1.

Definition 2.2: A BE-algebra (X; *, 1) is said to be self-distributive if x * (y * z) = (x * y) * (x * z) for all x, y and $z \in A$.

Definition 2.3: A dual BCK-algebra is an algebra (A; *, 1) of type (2,0) satisfying (BE1) and (BE2) and the following axioms for all $x, y, z \in A$.

- (dBCK1) x * y = y * x = 1 implies x = y
- (dBCK2) (x * y) * ((y * z) * (x * z)) = 1
- (dBCK3) x * ((x * y) * y) = 1.

Definition 2.4: Let A be a BE-algebra or dual BCK-algebra . A is said to be commutative if the following identity holds:

 $x \vee_B y = y \vee_B x$ where $x \vee_B y = (y * x) * x$ for all $x, y \in A$.

Definition 2.5: Let A be a BE-algebra. If there exists an element 0 satisfying $0 \le x$ (or 0 * x = 1) for all $x \in A$, then the element "0" is called unit of A. A BE-algebra with unit is called a bounded BE-algebra.

Note: In a bounded BE-algebra x * 0 denoted by xN.

Definition 2.6: In a bounded BE-algebra, the element x such that xNN = x is called an involution .

Let S (A) = $\{x \in A : xNN = x\}$ where A is a bounded BE-algebra. S(A) is the set of all involutions in A. Moreover, since 1NN = (1 * 0) * 0 = 0 * 0 = 1 and 0NN = (0 * 0) * 0 = 1 * 0 = 0, We have $0, 1 \in S(A)$ and so $S(A) \neq \emptyset$.

Definition 2.7: Each of the elements a and b in a bounded BE-algebra is called the complement of the other if $a \lor b = 1$ and $a \land b = 0$.

Definition 2.8: Now we have introduced our concept smarandache -R – module : "Let R be a module, called R-module. If R is said to be smarandache -R – module. Then there exist a proper subset A of R which is an algebra with respect to the same induced operations of R."

3.Theorem

Theorem 3.1: Let R be a smarandache-R-module, if there exists a proper subset A of R in which (BE1) to (BE4) are hold, then the following conditions are satisfied,

- (i) 1N = 0, 0N = 1
- (ii) $x \le xNN$
- (iii) x * yN = y * xN
- (iv) $0 \lor x = xNN, x \lor 0 = x.$

Proof. Let R be a smarandache-R-module. Then by definition there exists a proper subset A of R which is an algebra. By hypothesis A holds for (BE1) to (BE4) then A is bounded BE-algebras.

- (i) We have 1N = 1 * 0 = 0 and 0N = 0 * 0 = 1. by using (BE1) and (BE3)
- (ii) Since x * xNN = x * ((x * 0) * 0) = (x * 0) * (x * 0) = 1

We get $x \le x$ (by (BE1) and (BE4))

- (iii) We have x * yN = x * (y * 0) (by using (BE4))
 - = y * (x * 0)
 - = y * xN.
- (iv) By routine operations, we have $0 \lor x = (x * 0) * 0 = xNN$ and $x \lor 0 = (0 * x) * x = 1 * x = x$.

Theorem 3.2: Let R be a smarandache-R-module, if there exists a proper subset A of R in which (BE1) to (BE4) are hold, then the following conditions are satisfied $x * y \le (y \lor x) * y$ for all $x, y \in A$.

Proof. Let R be a smarandache-R-module. Then by definition there exists a proper subset A of R which is an algebra. By hypothesis A holds for (BE1) to (BE4) then A is bounded BE-algebras. Since

$$(x * y) * ((y \lor x) * y) = (y \lor x) * ((x * y) * y) = (y \lor x) * (y \lor x) = 1$$

We have $x * y \le (y \lor x) * y$.

Theorem 3.3: Let R be a smarandache-R-module, if there exists a proper subset A of R in which (BE1) to (BE4) are hold, In addition to that satisfy x * (y * z) = (x * y) * (x * z) then the following conditions are satisfied *for all x*, *y*, $z \in A$

- (i) $x * y \le y N * xN$
- (ii) $x \le y$ implies $yN \le xN$.

Proof. Since R be a smarandache-R-module. Then by definition there exists a proper subset A of R which is an algebra. By hypothesis A holds for (BE1) to (BE4) then A is bounded and Self-Distributive BE-algebras.

(i) Since
$$(x * y) * (yN * xN)$$

$$= (x * y) * ((y * 0) * (x * 0))$$

$$= (y * 0) * ((x * y) * (x * 0))$$
 (by BE4)

=
$$(y * 0) * (x * (y * 0))$$
 (by distributivity)
= $x * ((y * 0) * (y * 0))$ (by BE4)
= $x * 1$ (by BE1)
= 1 (by BE2),

We have $x * y \le yN * xN$.

(ii) It is trivial by $x \le y$, We have $z * x \le z * y$ then $y * z \le x * z$ for all $x, y, z \in A$.

Theorem 3.4: Let R be a smarandache-R-module, if there exists a proper subset A of R in which (BE1) to (BE4) are hold, In addition to that satisfy x * (y * z) = (x * y) * (x * z), then the following conditions are satisfied

- (i) $(y \lor x) * y \le x * y$.
- (ii) x * (x * y) = x * y.

Proof. Since R be a smarandache-R-module. Then by definition there exists a proper subset A of R which is an algebra. By hypothesis A holds for (BE1) to (BE4) then A is a Self-Distributive BE-algebras.

(i) Since

$$x * (y \lor x) = x * ((x * y) * y)$$

= $(x * y) * (x * y)$
= 1.

We have $x \le y \lor x$. By $z * x \le z * y$

We have $(y \lor x) * y \le x * y$ for all $x, y, z \in A$

(ii) By using self distributive definition, (BE1) and (BE3), we have

$$x * (x * y) = (x * x) * (x * y)$$

= 1 * (x * y)
= x * y.

Theorem 3.5: Let R be a smarandache-R-module, if there exists a proper subset A of R in which (BE1) to (BE4) are hold, In addition to that satisfy $0 \le x$ (or 0 * x = 1), then the following conditions are satisfied for all $x, y \in A$

- (i) xNN = x
- (ii) $xN \wedge yN = (x \vee y)$

(iii)
$$xN \lor yN = (x \land y)$$

(iv)
$$xN * yN = y * x$$
.

Proof. Since R be a smarandache-R-module. Then by definition there exists a proper subset A of R which is an algebra. By hypothesis A holds for (BE1) to (BE4) then A is a bounded and Commutative BE-algebras.

(i) It is obtained that

$$xNN = (x * 0) * 0 \text{ (from BE3)}$$

= $(0 * x) * x \text{ (by commutativity)}$
= $1*x$
= x .

(ii) By the definition of " Λ " and (i) we have that

$$xN \wedge yN = (xNN \vee yNN)N = (x \vee y)N.$$

(iii)By the definition of " Λ " and (i) we have that

$$(x \land y)N = (xN \lor yN)NN = xN \lor yN.$$

(iv) We have
$$xN * yN = (x * 0) * (y * 0)$$

= $y * ((x * 0) * 0)$
= $y * (xNN) = y * x$.

Theorem 3.6: Let R be a smarandache-R-module, if there exists a proper subset A of R in which (BE1) to (BE4) are hold, In addition to that, there exists a complement of any element of A and then it is unique.

Proof. Since R be a smarandache-R-module. Then by definition there exists a proper subset A of R which is an algebra. By hypothesis A holds for (BE1) to (BE4) then A is a bounded and Commutative BE-algebras. Let $x \in A$ and a, b be two complements of x. Then we know that $x \land a = x \land b = 0$ and $x \lor a = x \lor b = 1$.

Also since
$$x \lor a = (x * a) * a = 1$$
 and $a * (x * a) = x * (a * a) = x * 1 = 1$,

We have $x*a \le a$ and $a \le x*a$. So we get x*a = a. Similarly

$$x * b = b$$
.
Hence $a * b = (x * a) * (x * b) = (aN * xN) * (bN * xN)$ by Theorem 2.5 (iv)
 $= bN * ((aN * xN) * xN)$ by BE-4
 $= bN * (xN \lor aN)$
 $= bN * (x \land a) N$ by Theorem 2.5 (iii)
 $= (x \land a) * b$ by Theorem 2.5 (iii)
 $= 0 * b$
 $= 1$

With similar operations, we have b * a = 1.

Hence we obtain a = b which gives that the complement of x is unique.

Theorem 3.7: Let R be a smarandache-R-module, if there exists a proper subset A of R in which (BE1) to (BE4) are hold, In addition to that satisfy $0 \le x$ (or 0 * x = 1), then the following conditions are equivalent for all $x, y \in A$

(i) $x \wedge xN = 0$ (ii) $xN \vee x = 1$ (iii) xN * x = x(iv) x * xN = xN

(v) x * (x * y) = x * y.

Proof. Since R be a smarandache-R-module. Then by definition there exists a proper subset A of R which is an algebra. By hypothesis A holds for (BE1) to (BE4) then A is a Commutative and bounded BE-algebras.

```
(i) \Rightarrow (ii) Let x \land xN = 0. Then it follows that
            xN \lor x = (xN \lor x) by Theorem 2. 5 (i)
                   = (xNN \land xN) by Theorem 2.5 (ii)
                   = (x \land xN) by Theorem 2.5 (i)
                   = 0N
                   = 1.
(ii) \Rightarrow (iii) Let xNV x = 1. Then, since
        (xN * x) * x = x \lor xN = 1 and
        x * (xN * x) = xN * (x * x) = xN * 1 = 1
     We get xN * x = x by (dBCK1).
(iii) \Rightarrow (iv) Let xN * x = x. Substituting xN for x and using Theorem 2.5 (i)
   We obtain the result.
(iv) \Rightarrow (v) Let x * xN = xN. Then
   We get yN * (x * xN) = yN * xN.
   Hence we have x * (yN*xN) = yN*xN. Using Theorem 2.5 (iv)
   We obtain x * (x * y) = x * y.
(v) \Rightarrow (ii) Let x * (x * y) = x * y. Then
   We have xN \lor \dot{x} = (\dot{x} * (xN)) * xN
                   = (x * (x * 0)) * xN
                   = (x * 0) * (x * 0)
     (ii) \Rightarrow (i) Let xN \lor x = 1. Then
              We obtain N \wedge x = xN \wedge xNN
                            = (x \lor xN) by Theorem 2. 5 (ii)
                            = 0.
```

REFERENCES

- [1]. Ahn S. S. and So K. S, "On generalized upper sets in BE algebras," *Bulletin of the Korean Mathematical Society*, vol. 46, no. 2, pp. 281–287, 2009.
- [2]. Florentin smarandache, "Special Algebric Stuctures," University of New Mexico.MSC:06A99, 1991.
- [3]. Jun Y. B., Roh E. H., and Kim H. S, "On BH-algebras," *Scientiae Mathematicae*, vol. 1, no.3, pp. 347–354, 1998.
- [4]. Kannappa N and Hirudayaraj P "On some characterisation of Smarandache R module "International conference on Applications of Mathematics and Statistics. ISSN:978-93-81361-71-9 pp -103-106, 2012.
- [5]. Kannappa N and Hirudayaraj P "Smarandache R module and BRK Algebras" International conference on Mathematical methods and computation.

 ISSN 0973-0303,pp 346-349, 2014.
- [6]. Kannappa N and Hirudayaraj P "Smarandache R module with BCI- Algebras and BCC Algebras", Jamal Academic Research Journal, ISSN 0973-0303, pp. 07–10, 2015.
- [7]. Kim C. B. and Kim H. S, "On *BM*-algebras," *Scientiae Mathematicae Japonicae*, vol. 63, no. 3, pp. 421–427, 2006.
- [8]. Kim H. S. and Kim Y. H, "On BE-algebras," *Scientiae Mathematicae Japonicae*, vol. 66, no. 1, pp. 113–116, 2007.
- [9]. Raul Padilla "Smarandache Algebraic structures", Universidade do Minho, Portugal 1999.
- [10]. Walendziak A., "On commutative BE-algebras," *ScientiaeMathematicae Japonicae*, vol. 69, no. 2, pp. 281–284, 2009.