Quanti numeri primi in 100 interi consecutivi?

Marco Ripà 1, Gabriele Tessaro 2, Andrea Forti 3

1 e-mail: marcokrt1984@yahoo.it
2 e-mail: gabriele.tessaro@email.it
3 e-mail: fortiandrea@yahoo.com

Abstract: In questo articolo si studieranno per quali $m \in \mathbb{N}_0$ esiste un numero finito di $k \in \mathbb{N}-\{0\}$ distinti tali che l'intervallo chiuso [k, k+99] contiene m primi. Si procederà altresì a provare che tali k non sono finiti per alcuni particolari m e che non ne esistono per m>26. In conclusione si farà il punto sullo stato attuale della ricerca in questo settore, avanzando altresì alcune congetture concernenti il tema trattato.

Keywords: numeri primi, distribuzione, ipotesi di Schinzel, Terence Tao.

MSC2010: Primary 11N05; Secondary 11A41, 11N13.

1. Introduzione

Com'è noto, non esiste tuttora una dimostrazione che provi l'esistenza di infinite coppie di numeri primi che differiscono tra loro per due sole unità (ad esempio 17 e 19). Ciò è l'oggetto di una delle più famose congetture della teoria dei numeri [11] ed è probabilmente vero che ci sono anche un'infinità di terzine e di quartine di primi (come 11, 13, 17, 19).

Il problema di cui ci occuperemo nell'articolo è quello di dimostrare che esiste solo un numero finito di insiemi di 100 naturali consecutivi tali che l'intervallo chiuso [k, k+99], $k \in \mathbb{N}$, contenga $m \ge 24$ primi (per cui, $m := \pi(k-1, k+99)$, in quanto $\pi(k-1, k+99) := \pi(k+99) - \pi(k-1)$ conta per definizione i primi nell'intervallo (k-1, k+99] = [k, k+99] [3]); in particolare, esistono 19 siffatti k. Nello specifico si proverà che non esistono k per cui m > 26, che ce n'è solo uno per cui m = 26, 6 per m = 24. Ci sono invece infinite k-uple per cui $1 \le m \le 23$.

2. Risultato principale: $m \ge 24$ se e solo se $2 \le k \le 17$

Lemma 1: Tutti e soli i $k \in \mathbb{N} - \{0\}$ per cui $m \ge 24$ sono strettamente minori di 18. In particolare, $m = 26 \Leftrightarrow k = \{2\}$; $m = 25 \Leftrightarrow k = \{1,3,4,5,10,11\}$; $m = 24 \Leftrightarrow k = \{6,7,8,9,12,13,14,15,16,17\}$ e m>26 $\Rightarrow k \in \{\emptyset\}$.

Dimostrazione del **Lemma 1**: Scrivendo in ordine incrementale i naturali divisibili per i primi \leq 17, si ottiene una sequenza periodica di periodo $p_7\#=\prod_{i=1}^7 p_i=2*3*5*7*11*13*17=510510$ [1]. Se un qualsiasi numero composto siffatto $q\leq$ 510510 appartiene a tale sequenza periodica, anche $q+c\cdot$ 510510 ne farà parte e viceversa, $\forall c\in\mathbb{N}$.

È sufficiente dunque verificare che gli unici valori di $k \le 510510$ tali che l'insieme chiuso [k, k+99] contenga 24 primi siano anche ≤ 17 (e che quelli per cui m=25 o m=26 siano ≤ 13 e ≤ 11 , rispettivamente), giacché in tutti i casi in questione i numeri $2+c\cdot510510$, $3+c\cdot510510$, ..., $17+c\cdot510510$ sono numeri primi (e quindi non composti) se e solo se c=0, mentre saranno composti e divisibili per almeno un primo ≤ 17 $\forall c \in \mathbb{N}-\{0\}$.

Con l'aiuto di un semplice programma (cfr. Appendice), effettuiamo le verifiche del risultato di cui sopra e appuriamo che, \forall 18 \leq k \leq 510510, m \leq 23. In particolare, m<27 \forall k \in \mathbb{N} , m=26 \Leftrightarrow k \in {2}; m=25 \Leftrightarrow k \in {1,3,4,5,10,11}; m=24 \Leftrightarrow k \in {6,7,8,9,12,13,14,15,16,17} \square .

Lemma 2: Se $m \le 25$ per un numero finito di k distinti, tale numero sarà pari.

Dimostrazione del **Lemma 2**: La prova è immediata, poiché segue dalla constatazione che non esistono numeri primi pari >2, quindi se m assume un certo valore (\leq 25) per $k=2\cdot c+1$ (con $c \in \mathbb{N}-\{0\}$), allora anche [k-1, k+98] conterrà m primi; viceversa, per $k=2\cdot c$, [k+1, k+99] conterrà m primi come [k, k+99]. Sarà pertanto sufficiente porre k':=k-1 per k dispari e k':=k+1 per k pari \square .

Lemma 3: Se $m \le 25$ per [k, k+99], m non varia considerando il sottoinsieme proprio [k, k+98] se k è dispari o [k+1, k+99] se k è pari.

Dimostrazione del **Lemma 3**: È sufficiente considerare il risultato della dimostrazione del **Lemma 2**, posto che $m \le 25 \Leftrightarrow k \ne 2$; pertanto, essendo i primi restanti tutti dispari, basta constatare che in [k, k+99] uno dei valori degli estremi è sempre pari e dunque ininfluente ai fini del computo di $m \square$.

Lemma 4: Per m=0 ed m=1 esistono infiniti k.

Dimostrazione del **Lemma 4**: Per m=0 i valori di k non costituiscono un insieme finito, giacché è (ad esempio) sufficiente porre k:=2+(101+n)!, \forall con $n \in \mathbb{N}_0$, al fine di individuare un insieme illimitato di sequenze di almeno 100 numeri composti consecutivi; anche se la più piccola di esse si ha in realtà per k=370262.

Sia invece m=1; fu provato dallo stesso Euclide, attorno al 300 a.C., che i primi sono infiniti [4] ed è evidente come basti partire da k:=2+(101+n)!, con $n \in \mathbb{N}_0$, e procedere con incrementi unitari per incontrare il numero primo p_{n+1} , il quale ci garantirà dunque che $m=1 \ \forall \ [p_{n+1}-99, p_{n+1}] \ \Box$.

È stato congetturato (T. Tao, J. Maynard al.) [8] (cfr. et http://math.mit.edu/~primegaps/) che esistano infinite "k-uple" [k, k+100] per m=24(si veda in proposito anche la sequenza A008407 dell'OEIS [7]). Poiché il minimo gap replicabile infinite volte fra due primi non può che essere H(2)=2, ci sarebbero almeno m-1=23 primi nell'intervallo chiuso [k, k+98] che, in virtù del **Lemma 3**, è per i nostri scopi del tutto equivalente a [k, k+99]. Giacché il **Lemma 1** ci assicura che i k per cui m=24 sono finiti, potremmo concludere che esistano infiniti valori di k (k-uple) per cui m=23, in maniera conforme a quanto seguirebbe dalla dimostrazione della veridicità dell'ipotesi di Schinzel [6-10].

Congettura 1: Esistono infinite k-uple per cui $m \in [2, 23]$.

La Congettura 1 è una versione debole di quelle viste in precedenza, in quanto è evidente che basterebbe dimostrare che esistono infiniti k per almeno uno degli m fra 2 e 23 (estremi compresi) per provare l'asserto [5]. Per quanto osservato, la veridicità della congettura dei primi gemelli [11] rappresenta un'altra condizione "sufficiente ma non necessaria" per dimostrare la Congettura 1 e tale celebre problema non è a sua volta che un caso particolare della congettura di Polignac [9]; ai nostri fini, basterebbe provarne la veridicità per uno solo dei "gap" \leq 98 contemplati (2, 4, ..., 98).

3. Conclusioni

Da quanto visto nella **Sezione 2**, si è pertanto appurato come se le congetture implicanti che i k siano di numerosità finita solo a partire da m=24 fossero verificate, risulterebbe subito che tale numero è strettamente positivo se e solo se $24 \le m \le 26$.

Queste considerazioni si collocano in un campo che sta destando rinnovato interesse dopo la formulazione del Teorema di Green-Tao [2] e da cui potrebbero nascere interessanti spunti di ricerca futuri nell'ambito del *Polymath8 Project* [8] sponsorizzato dallo stesso professor Tao, vincitore della medaglia Fields nel 2006 (cfr. http://polymathprojects.org/).

4. Appendice

Per completare la dimostrazione della non esistenza di $k \in [18, 510510]$ per cui $m \le 24$ è sufficiente effettuare uno screening a tappeto di tutti gli intervalli [k, k+99], vagliando ogni $n \in [k, k+99]$ e stabilendo se sia o meno divisibile per (almeno) uno dei primi ≤ 17 .

Data la ridotta numerosità dei valori da analizzare, è inutile insistere in ottimizzazioni (che sarebbero indispensabili in presenza di intervalli più grandi); questo algoritmo semplificato verifica infatti 100 volte ciascun numero.

L'algoritmo più semplice, espresso in pseudocodice, è il seguente:

```
numCasesFound \leftarrow 0
                                        # registro il numero di k-uple
for k in {18..510510} do
                                        # verifico per ogni k nell'intervallo
  cnt ← 0
                                        # registro quanti numeri non sono multipli
  for n in {0..99} do
                                        # nell'intervallo [k,k+99]
    found divisor ← false
                                        #
    for p in \{2,3,5,7,11,13,17\} do # verifico per i primi p\le 17...
      if (n \mod p) = 0 then
                                        # ... se n è multiplo di p
        found divisor ← true
                                        # se si, segno che esiste un divisore
      end if
    end for p
    if found_divisor = false then
                                        # se non è stato trovato un divisore...
      cnt ← cnt + 1
                                        # ... allora è un elemento della k-upla
    end if
```

```
end for n
                                         #
  if cnt >= 24 then
                                         # se la k-upla ha almeno 24 elementi...
    print "case found for k="+k
                                         # ... allora è una k-upla interessante
    numCasesFound \leftarrow numCasesFound +1
                                         # memorizzo che ho trovato un caso
  end if
end for k
                                         #
if numCasesFound = 0 then
                                         # segnalo se non trovo soluzioni
 printf "no solutions found"
                                         # (come effettivamente accade)
end if
```

Ringraziamenti

Gli autori ringraziano i colleghi del gruppo sPIqr Elite per il contributo e l'interesse dimostrato.

Riferimenti bibliografici

- [1] Dubner, H., Factorial and primorial primes, J. Rect. Math, 19(1987), 197–203.
- [2] Green, B., Tao, T., The primes contain arbitrarily long arithmetic progressions, *Annals of Mathematics*, **167-1**(2008), 481-547.
- [3] Languasco, A., Zaccagnini, A., *Intervalli fra numeri primi consecutivi*, Sito web Bocconi-Pristem, 11 Mar. 2014,

 http://people.math.unipr.it/alessandro.zaccagnini/psfiles/papers/langzac IV.pdf
- [4] Leonesi, S., Toffalori, C. (2006), Numeri e Crittografia, *Springer*, pag. 37.
- [5] Maynard, J., Small gaps between primes, *Annals of Mathematics*, **181-1**(2015), 383-413.
- [6] Schinzel, A., Sierpinski, W., Sur certaines hypothèses concernant les nombres premiers, *Acta Arithm*, **4**(1958), 185-208.
- [7] Sloane, N. J. A., *The Online Encyclopedia of Integer Sequences*, Inc. 15 Mar. 1996. Web. 14 Aug. 2015, oeis.org/A008407
- [8] Tao, T., Polymath8b: Bounded intervals with many primes, after Maynard, terrytao.wordpress.com, 19 Nov. 2013, https://terrytao.wordpress.com/2013/11/19/polymath8b-bounded-intervals-with-many-primes-after-maynard/
- [9] Weisstein, E. W., de Polignac's Conjecture, MathWorld, 25 Aug. 2015, http://mathworld.wolfram.com/dePolignacsConjecture.html
- [10] Weisstein, E. W., Schinzel's Hypothesis, MathWorld, 25 Aug. 2015, http://mathworld.wolfram.com/SchinzelsHypothesis.html
- [11] Weisstein, E. W., *Twin Prime Conjecture*, MathWorld, 25 Aug. 2015, http://mathworld.wolfram.com/TwinPrimeConjecture.html