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Abstract

In this paper, the correlation measure of neutrosophic refined(multi-) sets is proposed. The concept
of this correlation measure of neutrosophic refined sets is the extension of correlation measure of neutro-
sophic sets and intuitionistic fuzzy multi sets. Finally, using the correlation of neutrosophic refined set
measure, the application of medical diagnosis and pattern recognition are presented.
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1 Introduction

Recently, several theories have been proposed to deal with uncertainty, imprecision and vagueness. Probabil-
ity set theory, fuzzy set theory[56], intuitionistic fuzzy set theory[8], interval intuitionistic fuzzy set theory[7]
etc. are consistently being utilized as efficient tools for dealing with diverse types of uncertainties and impre-
cision embedded in a system. But, all these above theories failed to deal with indeterminate and inconsistent
information which exist in beliefs system. In 1995, inspired from the sport games (wining/tie/defeating),
from votes (yes/ NA/ no), from decision making (making a decision/ hesitating/not making) etc. and guided
by the fact that the law of excluded middle did not work any longer in the modern logics, F. Smarandache[43]
developed a new concept called neutrosophic set (NS) which generalizes fuzzy sets and intuitionistic fuzzy
sets. NS can be described by membership degree, indeterminate degree and non-membership degree. After
that, Wang et al. [50] introduced an instance of neutrosophic sets known as single valued neutrosophic
sets (SVNS), which were motivated from the practical point of view and that can be used in real scientific
and engineering application, and provide the set theoretic operators and various properties of SVNSs. This
theory and their hybrid structures have proven useful in many different fields such as control theoryl[1],
databases[4, 5], medical diagnosis problem[2], decision making problem [20, 31, 33, 55|, physics[37], topology
[32], etc. The works on neutrosophic set, in theories and applications, have been progressing rapidly (e.g.
[3, 6, 12, 16, 17, 22, 52, 53]).

Combining neutrosophic set models with other mathematical models has attracted the attention of many
researchers. Maji et al. [34] presented the concept of neutrosophic soft sets which is based on a combination of
the neutrosophic set and soft set [35] models. Broumi and Smarandache [9, 13] introduced the concept of the
intuitionistic neutrosophic soft set by combining the intuitionistic neutrosophic sets and soft sets. Broumi et
al. presented the concept of rough neutrosophic set[18] which is based on a combination of neutrosophic sets
and rough set models. The works on neutrosophic sets combining with soft sets, in theories and applications,
have been progressing rapidly (e.g. [10, 14, 15, 24, 25, 26, 27]).

The multiset theory was formulated first in [51] by Yager as generalization of the concept of set theory
and then the multiset was developed in [19] by Calude et al. Several authors from time to time made



a number of generalizations of the multiset theory. For example, Sebastian and Ramakrishnan [46, 47]
introduced a new notion called multi fuzzy sets which is a generalization of the multiset. Since then, several
researchers [36, 45, 49] discussed more properties on multi fuzzy set. And they [28, 48] made an extension
of the concept of fuzzy multisets to an intuitionstic fuzzy set which was called intuitionstic fuzzy multisets
(IFMS). Since then in the study on IFMS, a lot of excellent results have been achieved by researchers
[21, 38, 39, 40, 41, 42]. An element of a multi fuzzy set can occur more than once with possibly the
same or different membership values whereas an element of intuitionistic fuzzy multiset allows the repeated
occurrences of membership and non membership values. The concepts of FMS and IFMS fail to deal with
indeterminacy. In 2013 Smarandache [44] extended the classical neutrosophic logic to n-valued refined
neutrosophic logic, by refining each neutrosophic component T, I, F into respectively Ty, Ty, ..., T), and
I, I, ..., I,, and Fq, Fa, ..., F,. Recently, Deli et al.[23] used the concept of neutrosophic refined sets and
studied some of their basic properties. The concept of neutrosophic refined set (NRS) is a generalization of
fuzzy multisets and intuitionistic fuzzy multisets.

Rajarajeswari and Uma [42] put forward the correlation measure for IFMS. Recently, Broumi and Smaran-
dache defined the Hausdorff distance between neutrosophic sets and some similarity measures based on the
distance such as; set theoretic approach and matching function to calculate the similarity degree between
neutrosophic sets. In the same year, Broumi and Smarandache [11] also proposed the correlation coefficient
between interval neutrosphic sets. In other research, Ye [54] proposed three vector similarity measure for
SNSs, an instance of SVNS and INS, including the Jaccard, Dice, and cosine similarity measures for SVNS
and INSs, and applied them to multicriteria decision-making problems with simplified neutrosophic infor-
mation. Hanafy et al. [29] proposed the correlation coefficients of neutrosophic sets and studied some of
their basic propperties. Based on centroid method, Hanafy et al. [30], introduced and studied the concepts
of correlation and correlation coefficient of neutrosophic sets and studied some of their properties.

The purpose of this paper is an attempt to extend the correlation measure of neutrosophic sets to
neutrosophic refined sets (NRS). This paper is arranged in the following manner. In section 2, we present
some definitions and notion about neutrosophic set and neutrosophic refined (multi-) set theory which help
us in later section. In section 3, we study the concept of correlation measure of neutrosophic refined set. In
section 4, we present an application of correlation measure of neutrosophic refined set to medical diagnosis
problem. Finally, we conclude the paper.

2 PRELIMINARIES

In this section, we present the basic definitions and results of neutrosophic set theory [43, 50], neutrosophic
refined (multi-) set theory [23] and correlation measure of intuitionistic fuzzy multisets [41] that are useful
for subsequent discussions. See especially [2, 3, 4, 5, 6, 12, 20, 23, 24, 31, 32, 37] for further details and
background.

Definition 2.1 [8] Let E be a universe. An intuitionistic fuzzy set I on E can be defined as follows:
I'={<ax,ur(x),y(z) > z€E}

where, uy : E — [0,1] and v; : E — [0,1] such that 0 < pr(z) +vr(x) <1 for any x € E.
Here, pr(z) and vr(x) is the degree of membership and degree of non-membership of the element x,
respectively.

Definition 2.2 [38] Let E be a universe. An intuitionistic fuzzy multiset K on E can be defined as follows:

K ={<a, (uj (), n5 (), oo i (7)), (Vi (), VE (), s e (2)) >0 @ € E}

where, p(z), p3(x), ..., pi(z) : E — [0,1] and vi(x), 7% (), ..., vE(z) : E — [0,1] such that 0 < pi-(z) +
)

v () <1(i=1,2,..., P) and p} (z) < pk(z) < ... < puk(z) for any z € E.

Here, (pu} (z), p% (z), .., pi(2)) and (v (2), Y% (), ..., v (x)) is the membership sequence and non-membership
sequence of the element x, respectively.

We arrange the membership sequence in decreasing order but the corresponding non membership sequence

may not be in decreasing or increasing order.

Definition 2.3 [42] Let E be a universe and K = {< x, (uk (), % (z)
)

[ oo i (), (Vi (@), 7% (2), -0 i () >
v € B}, L ={<x,(up(x), ui (), .., L (@), (L (), VL (@), o7 (2) >0 @ €

E} be two intuitionistic fuzzy



multisets consisting of the membership and non membership functions, then the correlation co efficient of K
and L defined as follows:

C K, L
prrvs(K, L) = 175 ( )
VCrrms(K,K) * Crpms(L, L)
where
CIFMS K, L Z Z MK Z; HL(xz) +7K($1)7L($1)))
j=1 =1
P n ] ) ) )
Crrus(K, K) = Z( (ke (i) e (i) + v (@) 75 (24))
J=1 i=1
and

P n
C'IFMS L, L Z Z NL X ,LLL T +7L(xz)7L($z)))

j=1 i=1
Expresses the so-called informational energy of neutrosophic sets A and B.

Definition 2.4 [/3] Let U be a space of points (objects), with a generic element in U denoted by u. A neutro-
sophic set(N-set) A in U is characterized by a truth-membership function Ta, a indeterminacy-membership
function 14 and a falsity-membership function Fa. Ta(x), Ia(x) and Fa(x) are real standard or nonstandard
subsets of |70,17].

It can be written as

A= {< x, (TA(QT),IA(Z‘),FA(JJ)) >z el, TA(’U,),IA(l‘),FA(J?) - [O, 1}}

There is no restriction on the sum of Ta(u); Ia(u) and Fa(u), so ~0 < supTa(u)+supla(u)+supFa(u) <
3T,

Here, 17 = 1+¢, where 1 is its standard part and ¢ its non-standard part. Similarly, ~0= 1+¢, where 0
is its standard part and € its non-standard part.

For application in real scientific and engineering areas,Wang et al.[50] proposed the concept of an SVNS,
which is an instance of neutrosophic set. In the following, we introduce the definition of SVNS.

Definition 2.5 [50] Let U be a space of points (objects), with a generic element in U denoted by u. An
SVNS A inX is characterized by a truth-membership function Ta(x), a indeterminacy-membership function
Ia(z) and a falsity-membership function Fa(x), where Ta(z), Ia(x), and Fa(x) belongs to [0,1] for each
point u in U. Then, an SVNS A can be expressed as
A= {< u, (TA(l‘),IA(a)‘),FA(l‘)) >:x el TA(.’L‘), IA(J,‘),FA(l‘) S [0, 1}}
There is no restriction on the sum of Ta(x); Ia(x) and Fa(x), so 0 < supTa(x)+supls(x)+supFa(x) <
3.

Definition 2.6 [23] Let E be a universe. A neutrosophic refined (multi-) set(NRs) A on E can be defined
as follows:

A = {< 2, (Th(@), T3(@), o TF (@), (I4(2), T3 (2), s I5(2)), (F} (), F3 (2), .. F} () >: @ € E}
where,

T (2),T3(x),..,TY (z) : E —[0,1],

Ii(z), I3 (), ... IY () : E —[0,1],

and
Fl(z),F3(z),...,F{(z): E —[0,1]



such that 4 4 4
0 < supTh(z) + suplly(z) + supFy(z) < 3

(i=1,2,..,P) and
Ti(r) <Ti(x) < ... <TH(x)

for any x € E.

(Th(2), T3(),...,TY (2)), (I} (2), I3 (), ..., I§ () and (F}(z), F3(2),..., F{ (2)) is the truth-membership
sequence, indeterminacy-membership sequence and falsity-membership sequence of the element x, respectively.
Also, P is called the dimension(cardinality) of Nms A, denoted d(A). We arrange the truth-membership se-
quence in decreasing order but the corresponding indeterminacy-membership and falsity-membership sequence
may not be in decreasing or increasing order.

The set of all Neutrosophic neutrosophic (multi-)sets on E is denoted by NRS(E).
Definition 2.7 [23] Let A,B € NRS(E). Then,

1. A is said to be Nm-subset of B is denoted by ACB if Ti(z) < Th(x), I'y(x) > I's(z) ,Fi(x) > Fi(x),
Vee EFandi=1,2,..., P.

2. A is said to be meutrosophic equal of B is denoted by A = B if Th(z) = Ths(x), I}(z) = I5(z)
JFi(z) =Fh(z),Ve € E and i = 1,2, ..., P.

3. The complement of A denoted by A® and is defined by

A® = (<0, (FL(@), F3(@), oo FE (2)), (T4 (2), T3 (2), s T5 (@), (T (@), T3 (@), o TF (2)) > @ € E}

4. If Ti(z) =0 and I'y(x) = Fi(x) =1 for allx € E and i = 1,2, ..., P then A is called null ns-set and

denoted by .

5. If Ti(z) =1 and I'y(z) = Fi(z) =0 for allz € E and i = 1,2, ..., P, then A is called universal ns-set
and denoted by E.

Definition 2.8 [23] Let A,B € NRS(E). Then,
1. The union of A and B is denoted by AUB = C and is defined by
C ={<z,(Ti(), T¢(z),...,TE (2)), (I (), I3(2), ..., IE(2)), (F&(2), FE(2), ..., FE (z)) >: z € E}

where TE =T (x) V T (), IL = I'(x) AN (x) FL = Fiy(x) A Fi(z), Ve € E and i = 1,2, ..., P.

)

2. The intersection of A and B is denoted by ANB = D and is defined by
D ={<a,(Th(@). T3(@)s s TH@)). (I (2). I (@), oI5 (@), (F (@), F3(2), o FE (@) >t 3 € E}
where Tt = T4 (x) AN Th(x), I = I4(z) vV I5(z) ,F = Fi(x)V F(z), Ve € E and i = 1,2,..., P.

3. The addition of A and B is denoted by A¥B = E; and is defined by

By ={<uz (T}, (2),TE (v), ... TE (), (Ig, (), I3 (@), ..., I (2)), (F§, (z), F3 (2), ..., Ff (2)) >: = € E}

where Th = Th(x) + Th(x) — Th(x).Th(x), Iy, = I'y(x).I5(z) Fp, = Fi(x).Fg(z), Vo € E and
i=1,2,.. P.

4. The multiplication of A and B is denoted by AxB = E5 and is defined by

By ={<u,(Tg,(2),T8,(x), .. T§, (@), U g, (@), IE, (), .. 15, (@), (Fg, (2), FE, (2), ... Fi, (7)) >: 2 € E}

where Ty, = T (2). Ty (x), Iy, = Ij(2) + Ig(x) — Iy(2).I(x) Fp, = Fi(z) + Fg(x) - Fj(2). Fp(2),

Vee F andi=1,2,...,P.
Here vV, N\, +, ., — denotes mazximum, minimum, addition, multiplication, subtraction of real numbers
respectively.



3 Correlation Measure of two Neutrosophic refined sets

In this section, we give correlation measure of two neutrosophic refined sets. Some of it is quoted from
[29, 30, 41, 42, 55].

Following the correlation measure of two intuitionistic fuzzy multisets defined by Rajarajeswari and Uma
in [42]. In this section, we extend these measures to neutrosophic refined sets.

Definition 3.1 Let X = {x1, 22,3, ....x, } be the finite universe of discourse and A = {< Tj(mi), Iﬁ,(mi), Fi‘(xl) >
|z, € X}, B = {< Tg(xi), Ié(xi), Fé (z;) > |x; € X} be two neutrosophic refined sets consisting of the mem-

bership, indeterminate and non-membership functions. Then the correlation coefficient of A and B

C A B
\/CNRS A, A) x Cnprs(B, B)
where
1 e~
Crns(AB) = > 3° 3~ {T4e)Th(w) + Tyl Th(z:) + P(w) Fh(w:) |
j=11i=1
1 e~
Cnrs(A,A) 52 Z {T] ;) T] (xz) —+ r (1‘1)[ (z:) + F) (xz)FA(xz)}
j=11:i=1
and

3

Cxrs(B, B) %ZZ{TJ £ T () + Ty () Ty () + Fh () Fh(a:) }

j=11i=1

Proposition 3.2 The defined correlation measure between NRS A and NRS B satisfies the following prop-
erties

1. 0 <pnrs(A,B) <1

2. pnrs(A,B) =1 if and only if A =B
3. pnrs(A,B) =pnrs(B,A).

Proof

1. 0 < pnrsa,B)(4,B) <1

As the membership, indeterminate and non-membership functions of the NRS lies between 0 and 1,
pNRrs(A, B) also leis between 0 and

2. pnrs(A,B) =1 if and only if A =B
(a) Let the two NRS A and B be equal (i.e A= B). Hence for any
T) () = Th(i), Ip(ws) = Ij(w:) and Fj (w;) = Fp(xs),

then

Crs(A, A) = Cys(B, B) %ZZ (T @) T4 (e0) + Py By () + Fy () F ()}
j=11i=1
and
Cwrs(A,B) %ZZ{T] (@) Th(x) + Pz (e + FA) P}



—L S S { MA@ T (w0) + Py (@) I (@) + FA (@) Fi ()}
:CNRS (A7 A)

Hence

B Cnrs(A, B) _ Cnrs(A, A) _
pNrs(A, B) = = =1
V/Cnrs(A, A)«Cyrs(B,B)  \/Cnrs(A, A) * Cyrs(A, A)

(b) Let the pyrs(A,B) =1. Then, the unite measure is possible only if

CNRS(Aa B)
VCnrs(A, A) « Cyrs(B, B)

this refers that ' _ _ _ ' '
T (2;) = Th(w:), Ip(x:) = Ip(w;) and F) (2;) = Fp(ai)

for all i, j values. Hence A = B

3. If pyrs (A,B) =pnrs (B,A), it obvious that

Cnrs(A, B) _ Cnrs(B,A)
VCnrs(A,A)«Cngs(B,B)  \/Cnrs(A, A) « Cnrs(B, B)

= pNrs(B, A)

Cnrs(A,B) =5 3201 30 {Ti(%)Tﬁ(xi) + Iy () T () + Fi(%)f’%(xi)}

= 150 S { Th(@a) Th ) + () F @) + Fiy(a) Fh ()}
=Cnrs(B,A)

4 Application

In this section, we give some applications of NRS in medical diagnosis and pattern recognition problems
using the correlation measure. Some of it is quoted from [41, 42, 48].
From now on, we use

A = {< 2 (T(2), I4(@), Fi(@), (T3 (@), I3 (@), F3(2)), oon (T (@), I§ (2), F{ (2)) >: @ € E}

instead of

A = (<, (Th(@), T (), .. TF (@), (T (2), LA (@), o 15 (2)), (F(2), Fi (@), s F (2) >: @ € E}

4.1 Medical Diagnosis via NRS Theory

In what follows, let us consider an illustrative example adopted from Rajarajeswari and Uma [41] and
typically considered in [42, 48]. Obviously, the application is an extension of intuitionistic fuzzy multi sets
[41].

”As Medical diagnosis contains lots of uncertainties and increased volume of information available to
physicians from new medical technologies, the process of classifying different set of symptoms under a
single name of disease becomes difficult. In some practical situations, there is the possibility of each element
having different truth membership, indeterminate and false membership functions. The proposed correlation
measure among the patients Vs symptoms and symptoms Vs diseases gives the proper medical diagnosis.
The unique feature of this proposed method is that it considers multi truth membership, indeterminate and
false membership. By taking one time inspection, there may be error in diagnosis. Hence, this multi time
inspection, by taking the samples of the same patient at different times gives best diagnosis” [41].

Now, an example of a medical diagnosis will be presented.



Example 4.1 Let P = {Py, Py, Ps} be a set of patients, D = {Viral Fever, Tuberculosis, Typhoid, Throat
disease} be a set of diseases and S = {Temperature, cough, throat pain, headache, bodypain} be a set of
symptoms. Our solution is to examine the patient at different time intervals (three times a day), which in
turn give arise to different truth membership, indeterminate and false membership function for each patient.

Table I: Q (the relation Beween Patient and Symptoms)

Q Temparature Cough Throat pain Headache Body Pain
(0.4,0.3,0.4) (0.5,0.4,0.4) (0.3,0.5,0.5) (0.5,0.3,0.4) (0.5,0.2,0.4
Py (0.3,0.4,0.6) (0.4,0.1,0.3) (0.2,0.6,0.4) (0.5,0.4,0.7) (0.2,0.3,0.5
(0.2,0.5,0.5) (0.3,0.4,0.5) (0.1,0.6,0.3) (0.3,0.3,0.6) (0.1,0.4,0.3
(0.6,0.3,0.5) (0.6,0.3,0.7) (0.6,0.3,0.3) (0.6,0.3,0.1) (0.4,0.4,0.5
Py (0.5,0.5,0.2) (0.4,0.4,0.2) (0.3,0.5,0.4) (0.4,0.5,0.8) (0.3,0.2,0.7
(0.4,0.4,0.5) (0.2,0.4,0.5) (0.1,0.4,0.5) (0.2,0.4,0.3) (0.1,0.5,0.5
(0.8,0.3,0.5) (0.5,0.5,0.3) (0.3,0.3,0.6) (0.6,0.2,0.5) (0.6,0.4,0.5
Py (0.7,0.5,0.4) (0.3,0.4,0.3) (0.2,0.5,0.7) (0.5,0.3,0.6) (0.3,0.3,0.4
(0.6,0.4,0.4) (0.1,0.6,0.4) (0.1,0.4,0.5) (0.2,0.2,0.6) (0.2,0.2,0.6

Let the samples be taken at three different timings in a day (in 08:00,16:00,24:00)

Table 1I: R (the relation among Symptoms and Diseases)

R Viral Fever | Tuberculosis Typhoid Throat diseas
Temerature | (0.2,0.5,0.6) | (0.4,0.6,0.5) | (0.6,0.4,0.5) | (0.5,0.7,0.8)
Cough (0.6,0.4,0.6) | (0.8,0.2,0.3) | (0.3,0.2,0.6) | (0.2,0.4,0.1)
Throat Pain | (0.5,0.2,0.3) | (0.4,0.5,0.3) | (0.4,0.5,0.5) | (0.2,0.6,0.2)
Headache (0.6,0.8,0.2) | (0.2,0.3,0.6) | (0.1,0.6,0.3) | (0.2,0.5,0.5)
Body Pain | (0.7,0.4,0.4) | (0.2,0.3,0.4) | (0.2,0.3,0.4) | (0.2,0.2,0.3)

Table I1I: The Correlation Measure between NRS @ and R

Correlation measure | Viral Fever | Tuberculosis | Typhoid | Throat diseas
P 0.846 0.910 0.884 0.880
P, 0.849 0.868 0.892 0.809
Ps 0.792 0.853 0.872 0.822

The highest correlation measure from the Table III gives the proper medical diagnosis. Therefore, patient Py
suffers from Tuberculosis, patient Py and Ps3 suffers from Typhoid.

4.2 Pattern Recognition of NRS using proposed correlation mesure

In what follows, let us consider an illustrative example adopted from Rajarajeswari and Uma [41] and

typically considered in [42, 48]. Obviously, the application is an extension of intuitionistic fuzzy multi sets
[41].

Example 4.2 Let X = {A;, Ay, As, ...
are the NRS defined as

An} wzth A = {Al,AQ,A3,A4,A5} and B = {A27A5,A7,A8,A9}

PatternI = {< Aj,(0.4,0.5,0.6), (0.2,0.3,0.5) >, < A, (0.5,0.5,0.2), (0.3,0.2,0.7) >,
< As,(0.6,0.3,0.4), (0.6,0.5,0.3) >, < Ay, (0.7,0.4,0.5), (0.5,0.4,0.6) >,

< As:(0.3,0.7,0.2), (0.3,0.2,0.5) >}



and

the
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PatternII = {< A,,(0.5,0.2,0.4),(0.3,0.4,0.6) >, < As, (0.7,0.3,0.1), (0.6,0.1,0.4) >,
< A7 :(0.7,0.2,0.4),(0.4,0.5,0.3) >, < Ag, (0.8,0.1,0.4), (0.3,0.5,0.7) >,
Ay, (0.6,0.3,0.1), (0.2,0.6,0.1) >}

Then the testing NRS patern II be {Ag, A7, As, Ag, A10} such that

PatternIIT = {< Ag,(0.6,0.4,0.2),(0.4,0.3,0.7) >, < Az,(0.9,0.1,0.1), (0.8,0.3,0.3) >,
< As,(0.6,0.7,0.1),(0.3,0.8,0.2) >, < Ag, (0.3,0.8,0.5,(0.2,0.7,0.2) >,
A1o,(0.4,0.5,0.6), (0.3,0.7,0.2) >}

Then, the correlation measure between pattern I and 11 is 0.8404, pattern II and III is 0.8286. Therefore;
testing pattern III belogns to pattern I type.
Conclusion

his paper, we have firstly defined the correlation measure of neutrosophic refined sets and proved some

of their basic properties. We have present an application of correlation measure of neutrosophic refined sets
in medical diagnosis and pattern recognition. In The future work, we will extend this correlation measure
to the case of interval neutrosophic refined sets.
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