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Abstract 

In engineering design, the decision to select an optimal material has become a challenging task 

for the designers, and the evaluation of alternative materials may be based on some multiple 

attribute group decision making (MAGDM) methods. Moreover, the attributes are often 

inter-dependent or correlated in the real decision making process. In this paper, with respect to the 

material selection problems in which the attribute values take the form of single valued 

neutrosophic numbers (SVNNs), a novel multiple attribute group decision making method is 

proposed. First, the concept and operational laws of SVNNs are briefly introduced. Then, 

motivated by the idea of Choquet integral, two correlated aggregation operators are proposed for 

aggregating single valued neutrosophic information based on the operational laws of SVNNs, such 

as the single valued neutrosophic correlated average (SVNCA) operator, the single valued 

neutrosophic correlated geometric (SVNCG) operator, and then some desirable properties of these 

operators and the relationships among them are investigated in detail. Furthermore, based on the 

proposed aggregation operators, a novel multiple attribute group decision making method is 

developed to select the most desirable material(s) under single valued neutrosophic environment. 

Finally, a numerical example of material selection is given to illustrate the application of the 

proposed method.  

 

Keywords: Multiple attribute group decision making (MAGDM); Material selection; Single valued 

neutrosophic set (SVNS); Choquet integral; Single valued neutrosophic correlated aggregation 
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1. Introduction  

Material selection is one of the most prominent activities in the process of design and 

development of products, which is a task normally carried out by design and materials engineers 

and also critical for the success and competitiveness of the producers [1, 2]. An inappropriate 

selection of materials may result in damage or failure of an assembly and significantly decreases 

the performance [3], thus negatively affecting the productivity, profitability and reputation of an 

organization [4]. In the process of selecting materials, there is not always a definite criterion or 

attribute, and the designers or engineers have to consider many attributes that influence the 

selection of materials for a given application simultaneously. These attributes include not only the 

traditional ones such as availability, production and cost, but also material impact on environment, 

recycling and cultural aspects and so on, which may be contradicted and even conflicting with 

each other. Therefore, the selection of the most desirable material is a multiple attribute decision 

making (MADM) problem and many traditional MADM methods have been proposed to deal with 
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the material selection problem, such as Ashby approach [5], analytic hierarchy process (AHP) [6], 

analytic network process (ANP) [7], technique of order preference by similarity to ideal solution 

(TOPSIS) [8], quality function deployment (QFD)-based approach [9], gray relational analysis 

(GRA) [10], graph theory and matrix approach [11], ELECTRE (ELimination Et Choix Traduisant 

la REalite) [12], VIKOR (VIsekriterijumska optimizacija i KOmpromisno Resenje) [13-15], 

Preference Ranking Organization METHhod for Enrichment Evaluation (PROMETHEE) [16], 

DEMATEL-based ANP (DANP) [17] and COPRAS (COmplex PRoportional ASsessment) 

[18,19]. 

However, due to the increasing complexity of the material selection process and the vagueness 

of inherent subjective nature of human think, decision makers usually cannot express his/her 

preference to material alternatives by crisp numbers and some are more suitable to be denoted by 

fuzzy values. Since fuzzy set was introduced by Zadeh [20], many extensions of fuzzy set have 

been widely discussed [21-27]. Recently, a new concept called neutrosophic set (NS) has been 

introduced by Smarandache [28], where each element of the universe has a degree of truth (T), 

indeterminacy (I) and falsity (F) respectively and which lies in ]0
-
, 1

+
[. Different from the 

intuitionistic fuzzy set where the incorporated uncertainty is dependent of the membership degree 

and the non-membership degree, the indeterminacy degree in neutrosophic set is independent of 

the truth and falsity degrees. Moreover, from the practical point of view, the neutrosophic set 

needs to be specified. Otherwise, it will be difficult to use in the real applications. Therefore, 

Wang et al. [29] introduced an instance of neutrosophic set known as single valued neutrosophic 

set (SVNS). By the idea of single valued neutrosophic set, we can utilize the single valued 

neutrosophic numbers to express the decision makers’ preference to materials, such as “<0.6, 0.2, 

0.3>”, which means that the truth-membership, indeterminacy-membership and 

falsity-membership of one material alternative to a given attribute are “0.6”, “0.2” and “0.3”, 

respectively. However, if we use the intuitionistic fuzzy numbers to express the attribute 

preference information, we only consider the membership degree and the non-membership degree 

of an element to a given set, and the indeterminacy membership information is lost. Therefore, 

intuitionistic fuzzy set (IFS) is an instance of neutrosophic set. Since its appearance, neutrosophic 

set has received more and more attention from researchers and practitioners [29-32]. Majumdar 

and Samanta [33] defined several similarity measures between two single valued neutrosophic sets 

and investigated their characteristics as well as a measure of entropy of a single valued 

neutrosophic set was introduced. Ye [34, 35] proposed two novel multiple attribute decision 

making methods based on the correlation coefficient and cross-entropy of SVNSs, respectively, in 

which the attribute value is described by truth membership degree, indeterminacy membership 

degree and falsity membership degree under single valued neutrosophic environment. Hanbay and 

Talu [36] proposed a novel synthetic aperture radar (SAR) image segmentation algorithm based on 

the neutrosophic set and developed an improved artificial bee colony (I-ABC) algorithm. 

In the existing research on decision making with single valued neutrosophic set, it is generally 

assumed that the attributes are independent of one another, which are characterized by an 

independent axiom [37]. However, in the real decision making problems, the attributes are often 

inter-dependent or correlated. Choquet integral, originally developed by Choquet [38], provides a 

type of operators used to process the inter-dependence or correlation among attributes [39-46]. 

Until now, to our best knowledge, there is not any method for solving the problem of material 

selection considering the inter-dependence or correlation among attributes under single valued 
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neutrosophic environment. Hence, it is necessary to develop some new correlated aggregation 

operators of single valued neutrosophic information based on Choquet integral. This is the 

motivation of our study. 

The purpose of this paper is to develop a method for solving material selection problem under 

single valued neutrosophic environment. Firstly, based on Choquet integral, two single valued 

neutrosophic correlated aggregation operators are proposed, i.e., single valued neutrosophic 

correlated  average (SVNCA) operator and single valued neutrosophic correlated  geometric 

(SVNCG) operator. Then, a novel MAGDM method is proposed to solve the material selection 

problems under single valued neutrosophic environment based on the developed operators. To do 

so, the remainder of this paper is organized as follows: some basic concepts of neutrosophic set 

and Choquet integral are introduced in Section 2; In Section 3, some new correlated aggregation 

operators are proposed based on Choquet integral under single valued neutrosophic environment, 

and then some properties and special cases of the proposed operators are examined. Section 4 

develops a novel multiple attribute group decision making (MAGDM) method based on these 

proposed operators. In Section 5, a numerical example of material selection is given to illustrate 

the application of the developed method. The paper is concluded in Section 6. 

 

2. Preliminaries 

To facilitate the following discussion, some concepts related to neutrosophic set and single 

valued neutrosophic set are briefly introduced in this section. 

 

2.1. Neutrosophic set and single valued neutrosophic set 

 

Definition 1. [28]. Let X be a universe set, with a generic element in X denoted by x. A 

neutrosophic set A in X is characterized by a truth-membership function ( )AT x , an 

indeterminacy-membership function ( )AI x
 
and a falsity-membership function ( )AF x . The 

functions ( )AT x , ( )AI x  
and ( )AF x  are real standard or nonstandard subsets of ]0

-
, 1

+
[, that is 

( ) : ]0 ,1 [,AT x X    ( ) : ]0 ,1 [AI x X    and ( ) : ]0 ,1 [.AF x X    

There is no restriction on the sum of ( )AT x , ( )AI x  and ( )AF x , so 

0 sup ( ) sup ( ) sup ( ) 3A A AT x I x F x     . 

Definition 2. [28]. The complement of a neutrosophic set A is denoted by CA  and is defined as 

(x) {1 }c

AT  Ө (x),AT  ( ) {1 }c

AI x  Ө ( ),AI x and (x) {1 }c

AF  Ө ( )AF x for every element x in X.  

Definition 3. [28]. A neutrosophic set A is contained in the other neutrosophic set B, A B  if 

and only if inf ( ) inf ( ),A BT x T x  sup ( ) sup ( ),A BT x T x  inf ( ) inf ( ),A BI x I x  sup ( ) sup ( ),A BI x I x  

inf (x) inf (x)A BF F  and sup ( ) sup ( )A BF x F x  for every x in X. 
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Definition 4. [28]. The union of two neutrosophic sets A and B is a neutrosophic set C, denoted by 

C A B  , whose truth-membership, indeterminacy-membership and false-membership functions 

are related to those of A and B by ( ) ( ) ( )C A BT x T x T x  Ө ( ) ( ),A BT x T x  

( ) ( ) ( )C A BI x I x I x  Ө ( ) ( )A BI x I x
 
and ( ) ( ) ( )C A BF x F x F x  Ө ( ) ( )A BF x F x for any x in X. 

Definition 5. [28]. The intersection of two neutrosophic sets A and B is a neutrosophic set C, 

denoted by C A B  , whose truth-membership, indeterminacy-membership and 

false-membership functions are related to those of A and B by ( ) ( ) ( ),C A BT x T x T x  

( ) ( ) ( ),C A BI x I x I x  and ( ) ( ) ( )C A BF x F x F x  for any x in X. 

 

2.2. Single valued neutrosophic set 

 

A single valued neutrosophic set (SVNS) is an instance of a neutrosophic set, which can be used 

in real scientific and engineering applications [35].  

 

Definition 6. [29]. Let X be a universe set, with a generic element in X denoted by x. A single 

valued neutrosophic set (SVNS) A in X is characterized by truth-membership function ( )AT x , 

indeterminacy-membership function ( )AI x
 
and falsity-membership function ( )AF x . For each 

element x in X, ( ), ( ), ( ) [0,1]A A AT x I x F x  . 

Therefore, a SVNS A can be written as follows [35]: 

{ , ( ), ( ), ( ) }.A A AA x T x I x F x x X     

For two SVNSs A, B, Wang et al. [29] presented the following expressions: 

(1) A B  if and only if ( ) ( ), ( ) ( ),A B A BT x T x I x I x  and ( ) ( )A AF x F x  for every x in X. 

(2) A B  if and only if A B  and B A . 

(3) { , ( ),1 ( ), ( ) }c

A A AA x F x I x T x x X     . 

A SVNS A is usually denoted by the simplified symbol ( ), ( ), ( )A A AA T x I x F x   for any x in 

X. For any two SVNSs A and B, the operational relations are defined by Wang et al. [29]. 

(1) max( ( ), ( )),min( ( ), ( )),min( ( ), ( ))A B A B A BA B T x T x I x I x F x F x  
 
for every x in X. 

(2) min( ( ), ( )),max( ( ), ( )),max( ( ), ( ))A B A B A BA B T x T x I x I x F x F x  
 
for every x in X. 

(3) ( ) ( ) ( ) ( ), ( ) ( ), ( ) ( )A B A B A B A BA B T x T x T x T x I x I x F x F x    
 
for every x in X. 

For a SVNS A in X, Ye [47] called the triplet ( ), ( ), ( )A A AT x I x F x    single valued 
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neutrosophic number (SVNN), which is denoted by , ,A A AT I F    . 

Definition 7. [48]. Let , ,a T I F
 
be a SVNN, then the score function and the accuracy 

function of A are determined by Eqs. (1) and (2), respectively. 

( ) ( 1 1 ) / 3S a T I F                                                   (1) 

( ) ( 1 ) / 3V a T F I                                                    (2) 

Theorem 1. [48]. Let , ,a a aa T I F  and , ,b b bb T I F
 
be two SVNNs, then the comparison 

laws between them are shown as follows: 

If ( ) ( )S a S b , then a b ; 

If ( ) ( )S a S b , then a b ; 

If ( ) ( )S a S b , then: 

(1) If ( ) ( )V a V b , then a b ; 

(2) If ( ) ( )V a V b , then a b ; 

(3) If ( ) ( )V a V b , then a b . 

Definition 8 [49]. Let , ,a T I F , 1 1 1 1, ,a T I F  and 2 2 2 2, ,a T I F  be any three 

single valued neutrosophic numbers, and 0  , then some operational laws of the SVNNs are 

defined as follows. 

(1) 1 2 1 2 1 2 1 2 1 2- , ,a a T T T T I I F F      ; 

(2) 1 2 1 2 1 2 1 2 1 2 1 2, - , -a a T T I I I I F F F F       ; 

(3)  1 1 , ,a T I F
      , 0  ; 

(4) ,1 (1 ) ,1 (1 )a T I F        , 0  . 

Obviously, the above operational results are still SVNNs. Some relationships can be further 

established for these operations on SVNNs. 

 

2.2. Choquet integral 

Definition 9. [50]. Let },...,,{ 21 nxxxX   be a finite set and P(X) be the power set of X. The set 

function ]1,0[)(: XP is called a fuzzy measure satisfying the following axioms: 

(1) 0)(  , 1)( X ; 

(2) If )(, XPBA  and BA , then )()( BA   ; 

(3) If )(XPFn  for  n1 and a sequence {Fn} is monotone, then )lim()(lim n
n

n
n

FF


  . 
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  To avoid the problems with computational complexity and practical estimation, λ-fuzzy 

measure  , a special kind of fuzzy measure, was proposed by Sugeno [51], which satisfies the 

following additional properties [52]: 

)()()()()( BABABA                                      (3) 

where ),1(  , for all )(, XPBA   and BA . For the interaction between A and B, if 

0 , then there exists the multiplicative effect; if 0 , then there exists the substitutive 

effect. If 0 , then A and B are independent of each other and the Eq.(3) reduces to the 

following additive measure: 

)()()( BABA   , for all )(, XPBA  and BA .                 (4) 

If the elements of A in X are independent, we have 





Ax

i

i

xA )()(  , for all )(XPA .                                       (5) 

If X is a finite set, then
n

i

i Xx
1

 . The λ-fuzzy measure  satisfies the following Eq.(6):  




































n

i

i

n

i

in

i

i

x

x

xX

1

1

1 0),(

0,1))(1(
1

)()(






                             (6) 

where  ji xx , for all nji ,...,2,1,   and ji  . It can be noted that )( ix  for a subset 

with a single element xi is called a fuzzy density and can be denoted as )( ii x  . 

 

Definition 10. [53]. Let   be a fuzzy measure of (X, P(X)), },...,,{ 21 nxxxX   be a finite set. 

The Choquet integral of a function ]1,0[: Xh  with respect to the fuzzy measure  is 

expressed as follows: 




 
n

i

iii xhHHhd
1

)()1()( )())()((                                     (7) 

where ))(),...,2(),1(( n  is a permutation of ),...,2,1( n such that )()()( )()2()1( nxhxhxh    , 

},...,,{ )()2()1()( ii xxxH    and  )0(H . 

 

 

3. Some single valued neutrosophic correlated aggregation operators  

In this section, we shall develop some correlated aggregation operators to aggregate single 

valued neutrosophic information based on the operations of single valued neutrosophic numbers. 

Definition 11. Let = , ,j j j ja T I F (j=1,2,…,n) be a collection of SVNNs on X,  be a fuzzy 



7 
 

measure on X , then the single valued neutrosophic correlated  average (SVNCA) operator is 

defined as follows: 

1 2 ( ) ( 1) ( )
1

SVNCA ( , , , ) ( ( ) ( ))
n

n i i i
i

a a a H H a     


                             (8) 

where ))(),...,2(),1(( n  is a permutation of ),...,2,1( n  such that  

(1) (2) ( )na a a     , 
)(ix is the attribute corresponding to 

( )ia
, }{ )()( ikxH ki  

, for 

1i ,  )0(H . 

Based on the operational laws of SVNNs, we get Theorem 2. 

Theorem 2. Let  = , ,i i i ia T I F (i=1,2,…,n)  be a collection of SVNNs on X,  be a fuzzy 

measure on X , then their aggregated value obtained by the SVNCA operator is still a SVNN, 

and 

 

     ( ) ( 1) ( ) ( 1) ( ) ( 1)

1 2

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 1 1

SVNCA , , ,

1 1 , ,
i i i i i i

n

n n n
H H H H H H

i i i

i i i

a a a

T I F
     



     

  

    

  

    
      (9) 

Proof. The first result follows quickly from Definition 11. In what follows, we prove Eq. (9) using 

the mathematical induction on n. 

 

(1) When n=2, it is easy to conclude that Eq. (9) holds according to the operational law (1) in 

Definition 8: 

 

   

     

 

(1) (0) (1) (0) (1) (0)

( 2) (1)

1 2

2

( ) ( 1) ( )
1

(1) (0) (1) (2) (1) (2)

( ) ( ) ( ) ( ) ( ) ( )

(1) (1) (1)

( ) ( )

(2)

SVNCA ,

( ( ) ( ))

( ( ) ( )) ( ( ) ( ))

1 1 , ,

1 1 ,

i i i
i

H H H H H H

H H

a a

H H a

H H a H H a

T I F

T I

     

 



  

     

     

  

 



 

   




  



  

   

   

     

     

( 2) (1) ( 2) (1)

( ) ( 1) ( ) ( 1) ( ) ( 1)

( ( ) ( ) ( ) ( )

(2) (2)

2 2 2
( ) ( ) ( ( ) ( ) ( ( ) ( )

( ) ( ) ( )

1 1 1

,

1 1 , ,
i i i i i i

H H H H

H H H H H H

i i i

i i i

F

T I F

   

     

   

 

     

  

  

 

  

  

    

 

 

(2) Assume that Eq. (9) holds for ( 2)n k k  , namely, 

 

     ( ) ( 1) ( ) ( 1) ( ) ( 1)

1 2

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 1 1

SVNCA , , ,

1 1 , ,
i i i i i i

n

k k k
H H H H H H

i i i

i i i

a a a

T I F
     



     

  

    

  

    
   

When 1 kn , we get 
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 

 

  ( ) ( 1

1 2 1

1

( ) ( 1) ( )
1

( ) ( 1) ( ) ( 1) ( ) 1
1

1 2 ( 1) ( ) 1

( ) (

( )

SVNCA ( , , , )

( ( ) ( ))

( ( ) ( )) ( ( ) ( ))

SVNCA ( , , , ) ( ( ) ( ))

1 1
i i

k

k

i i i
i

k

i i i k k k
i

k k k k

H H

i

a a a

H H a

H H a H H a

a a a H H a

T
 



  

    

  

 



 

   

 










  


 



  

 
     
 

  

      

     

) ( ) ( 1) ( ) ( 1)

( 1) ( ) ( 1) ( ) ( 1) ( )

) ( ) ( ) ( ) ( )

( ) ( )

1 1 1

( ) ( ) ( ) ( ) ( ) ( )

( 1) ( 1) ( 1)

, ,

1 1 , ,

i i i i

k k k k k k

k k k
H H H H

i i

i i i

H H H H H H

k k k

I F

T I F

   

     

   

 

     

  

 

  

 

  

  

  



 

    

Let   ( ) ( 1)( ) ( )

1 ( )

1

1
i i

k
H H

i

i

a T
  







  ,   ( ) ( 1)( ) ( )

1 ( )

1

i i
k

H H

i

i

b I
  







 ,   ( ) ( 1)( ) ( )

1 ( )

1

i i
k

H H

i

i

c F
  







 ,  

  ( 1) ( )( ) ( )

2 ( 1)1
k kH H

ka T
  



 

  ,   ( 1) ( )( ) ( )

2 ( 1)

k kH H

kb I
  



 

 ,   ( 1) ( )( ) ( )

2 ( 1)

k kH H

kc F
  



 

 ,  

According to the operational law (1) in Definition 8, we have 

     ( ) ( 1) ( ) ( 1) ( ) ( 1)

1 2 1

1 1 1 2 2 2

1 2 1 2 1 2

1 1 1
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 1 1

SVNCA ( , , , )

1 , , 1 , ,

= 1 , ,

1 1 , ,
i i i i i i

k

k k k
H H H H H H

i i i

i i i

a a a

a b c a b c

a a b b c c

T I F
     



     

  

  



  
  

  

   



    
 

i.e., Eq. (9) holds for 1 kn . 

According to steps (1) and (2), we know that Eq. (9) holds for any positive integer n. 

Some special cases of the SVNCA operator are considered as follows. Let  = , ,i i i ia T I F

(i=1,2,…,n)  be a collection of SVNNs on X, and  be a fuzzy measure on X. 

 

(1) If ( ) 1H  for any ( )H P x , then 

1 2 (1) (1) (1)SVNCA ( , , , )= , ,na a a T I I   
. 

(2) If ( ) 0H  for any ( )H P x  and H X , then 

1 2 ( ) ( ) ( )SVNCA ( , , , )= , ,n n n na a a T I I   
. 

(3) If the independent condition (5) holds, then  

niHHx iii ,...,2,1),()()( )1()()(                                     (10) 

In this case, the SVNCA operator reduces to the following single valued neutrosophic weighted 

average (SVNWA) operator: 

         
( ) ( ) ( )

1 2
1

1 1 1

SVNWA , , , ( ) 1 1 , ,i i i

n n nn
x x x

n i i i i i
i

i i i

a a a x a T I F
  




  

             (11) 

In particular, if 
n

xi

1
)(  , for ni ,...,2,1 , then the SVNCA operator in Eq.(8) reduces to 

the single valued neutrosophic arithmetric average (SVNAA) operator. 
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         
1/ 1/ 1/

1 2
1

1 1 1

SVNAA , , , ( ) 1 1 , ,
n n nn

n n n

n i i i i i
i

i i i

a a a x a T I F


  

                  (12) 

(4) If  

XHwH

H

i

i 


allfor,)(
1

                                              (13) 

where H  is the number of the elements in H, then 

( ) ( 1)( ) ( ), 1,2,...,i i iH H i n                                            (14) 

where 
1 2( , ,..., )T

n     such that 0, 1,2,..., ,i i n    and 
1

1
n

i

i




 . In this case, the 

the  SVNCA operator reduces to the following single valued neutrosophic ordered weighted 

average (SVNOWA) operator: 

         1 2 ( ) ( ) ( ) ( )
1

1 1 1

SVNOWA , , , 1 1 , ,
i i i

n n nn

n i i i i i
j

i i i

a a a a T I F
  

   


 

        

In particular, if 
n

H
H )( , for all  XH  , then the SVNCA operator in Eq.(8) reduces to 

the SVNAA operator in Eq. (12). 

 

(5) If =0iI and 1i iT F  , then SVNNs = , ,i i i ia T I F (i=1,2,…,n) are reduced to intuitionistic 

fuzzy numbers (IFNs), and we can obtain the following intuitionistic fuzzy correlated average 

(IFCA) operators proposed by Tan and chen [39, 54]. 

   ( ) ( 1) ( ) ( 1)

1 2

( ) ( 1) ( )
1

( ( ) ( )) ( ( ) ( ))

( ) ( )

1 1

IFCA ( , , , )

( ( ) ( ))

1 1 ,
i i i i

n

n

i i i
i

n n
H H H H

i i

i i

b b b

H H b

T F
   



  

   

 

 

 




 

 

  

   

     

where = ,i i ib T F  (i=1,2,…,n) be a collection of intuitionistic fuzzy values on X, and  be a 

fuzzy measure on X. 

 

It can be proved that the SVNCA operator has the following properties. 

Theorem 3. Let = , ,i i i ia T I F (i=1,2,…,n) be a collection of SVNNs on X,  be a fuzzy measure 

on X , then we have the following properties. 

(1) (Idempotency) If = , ,i i i ia T I F  (i=1,2,…,n) are equal, i.e., = , ,i a a aa a T I F , then 

 1 2SVNCA , , , .na a a a   
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(2) (Boundedness) Let 
min

1
min{ }i

i n
T T

 
 , max

1
max{ }i

i n
T T

 
 , min

1
min{ }i

i n
I I

 
 , max

1
max{ }i

i n
I I

 
 ,

min
1
min{ }i

i n
F F

 
 , 

max
1
max{ }i

i n
F F

 
 . Then we can obtain 

min max max 1 2 max min min, , SVNCA ( , , , ) , ,nT I F a a a T I F  .                   (15) 

(3) (Monotonicity)  If 
'

i iT T ,
 

'

i iI I  and 
'

i iF F  for all i, then 

' ' '

1 2 1 2SVNCA ( , , , ) SVNCA ( , , , )n na a a a a a  . 

(4) (Commutativity) If 
' ' ' '= , ,i i i ia T I F (i=1,2,…,n) is any permutation of = , ,i i i ia T I F (i=1,2,…,n) , 

then 

' ' '

1 2 1 2SVNCA ( , , , )=SVNCA ( , , , )n na a a a a a   

Proof. (1) Since , ,i a a aa T I F
 
for all i, we have 

 

     

     

( ) ( 1) ( ) ( 1) ( ) ( 1)

( ) ( 1) ( ) ( 1) ( ) ( 1)

1 1 1

1 2

( ) ( ) ( ) ( ) ( ) ( )

1 1 1

( ( ) ( )) ( ( ) ( )) ( ( ) ( ))

SVNCA , , ,

1 1 , ,

1 1 , ,

,

i i i i i i

n n n

i i i i i i

i i i

n

n n n
H H H H H H

a a a

i i i

H H H H H H

a a a

a

a a a

T I F

T I F

T I

     

     



     

     

  

  

  

  

  

  

  

    



  

,a aF

 

Thus, we have  1 2SVNCA , , , na a a a  . 

 

(2)  Since min maxiT T T  , min maxiI I I  , min maxiF F F   for all i, then we have 

     
( ) ( 1) ( ) ( 1) ( ) ( 1)

1

( ) ( ) ( ) ( ) ( ) ( )

( ) min min min

1 1

1 1 1 1 1 1 ,

n

i i i i i i

i

n n
H H H H H H

i

i i

T T T T
     

     



  



  

 

           

     
( ) ( 1) ( ) ( 1) ( ) ( 1)

1

( ) ( ) ( ) ( ) ( ( ) ( ))

( ) max max max

1 1

1 1 1 1 1 1 ,

n

i i i i i i

i

n n
H H H H H H

i

i i

T T T T
     

     



  



  

 

           

i.e., 

  ( ) ( 1)( ( ) ( ))

min ( ) max

1

1 1
i i

n
H H

i

i

T T T
  







    .                                    (16) 

Similarly, we have 

  ( ) ( 1)( ( ) ( ))

min ( ) max

1

i i
n

H H

i

i

I I I
  







  ,                                       (17) 

  ( ) ( 1)( ( ) ( ))

min ( ) max

1

i i
n

H H

i

i

F F F
  







  .                                      (18) 

Let  1 2SVNCA , , , , ,n a a aa a a T I F a   , *

max min min, ,T I F a and min max max *, ,T I F a , then 

Eqs. (16), (17) and (18) are transformed into the following forms, respectively: 

min maxaT T T                                                        (19) 
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min a maxI I I                                                        (20) 

min a maxF F F                                                       (21) 

Thus, we have 

    *

a max min min

1 1
( ) 1 1 1 1 ( ).

3 3
a aS a T I F T I F S a            

<1> If *( ) ( )S a S a  , then by Theorem 1, we have 

1 2 max min minSVNCA ( , , , )< , ,na a a T I F .                               (22) 

<2> If *( ) ( )S a S a , then by the following conditions: 

a maxT T , 
a min1 1I I   , and 

a min1 1F F   ,  

we have 

a maxT T , 
min1 1aI I   , and 

min1 1aF F   ,  

thus, 

    *

a max min min

1 1
( ) 1 1 ( ).

3 3
a aV a T F I T F I V a          

In this case, by Theorem 1, we have 

1 2 max min minSVNCA ( , , , )= , ,na a a T I F .                                   (23) 

From Eqs.(22) and (23), we have 

1 2 max min minSVNCA ( , , , ) , , .na a a T I F                                     (24) 

Similarly, we have 

min max max 1 2, , SVNCA ( , , , ).nT I F a a a                                     (25) 

From Eqs.(24) and (25), we know that Eq.(15) always holds, i.e., 

min max max 1 2 max min min, , SVNCA ( , , , ) , ,nT I F a a a T I F  . 

 

(3). Since 
'

i iT T ,
 

'

i iI I  and 
'

i iF F  for all i, then we have  

'

( ) ( )i iT T  ,
 

'

( ) ( )i iI I   and 
'

( ) ( )i iF F  . 

So,  

    ( ) ( 1)( ) ( 1) ( ) ( )( ) ( )
'

( ) ( )1 1
i ii i H HH H

i iT T
     

 

 

   , 

    ( ) ( 1)( ) ( 1) ( ) ( )( ) ( )
'

( ) ( )

i ii i H HH H

i iI I
     

 

 

 , 

    ( ) ( 1)( ) ( 1) ( ) ( )( ) ( )
'

( ) ( )

i ii i H HH H

i iF F
     

 

 

 . 

Furthermore, we have 

    ( ) ( 1)( ) ( 1) ( ) ( )( ) ( )
'

( ) ( )

1 1

1 1 1 1
i ii i

n n
H HH H

i i

i i

T T
     

 

 

 

      ,                        (26) 

    ( ) ( 1)( ) ( 1) ( ) ( )( ) ( )
'

( ) ( )

1 1

1 1
i ii i

n n
H HH H

i i

i i

I I
     

 

 

 

    ,                             (27) 
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    ( ) ( 1)( ) ( 1) ( ) ( )( ) ( )
'

( ) ( )

1 1

1 1
i ii i

n n
H HH H

i i

i i

F F
     

 

 

 

    .                            (28) 

Therefore, we have 

     

     

( ) ( 1) ( ) ( 1) ( ) ( 1)

( ) ( 1) ( ) ( 1) ( ) (

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 1 1

( ) ( ) ( ) ( ) ( ) (
' ' '

( ) ( ) ( )

1 1

1
1 1 1 1

3

1
1 1 1 1

3

i i i i i i

i i i i i i

n n n
H H H H H H

i i i

i i i

n n
H H H H H H

i i i

i i

T I F

T I F

     

     

     

  

     

  

  

  

  

  

  

 

 
      

 

      

  

 
1) )

1

. (29)
n

i

 
 
 



  

Let  1 2SVNCA , , , , ,n a a aa a a T I F a    and ' ' '

' ' ' '

1 2SVNCA ( , , , )= , ,n a a a
a a a T I F a   , 

then Eq. (29) is transformed into the following forms: 

'( ) ( )S a S a  

<1> If '( ) ( )S a S a  , then by Theorem 1, we have 

' ' '

1 2 1 2SVNCA ( , , , )<SVNCA ( , , , )n na a a a a a  .                          (30) 

<2> If '( ) ( )S a S a , then by Eqs.(26) to (28), we have 

    ( ) ( 1)( ) ( 1) ( ) ( )( ) ( )
'

( ) ( )

1 1

1 1 1 1
i ii i

n n
H HH H

i i

i i

T T
     

 

 

 

      , 

    ( ) ( 1)( ) ( 1) ( ) ( )( ) ( )
'

( ) ( )

1 1

1 1
i ii i

n n
H HH H

i i

i i

I I
     

 

 

 

    , 

    ( ) ( 1)( ) ( 1) ( ) ( )( ) ( )
'

( ) ( )

1 1

1 1
i ii i

n n
H HH H

i i

i i

F F
     

 

 

 

    . 

Thus, we have 

     

     

( ) ( 1) ( ) ( 1) ( ) ( 1)

( ) ( 1) ( ) ( 1) ( ) ( 1)

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 1 1

( ) ( ) ( ) ( ) ( ) ( )
' ' '

( ) ( ) ( )

1 1

1
1 1 1

3

1
1 1 1

3

i i i i i i

i i i i i i

n n n
H H H H H H

i i i

i i i

n n
H H H H H H

i i i

i i i

T F I

T F I

     

     

     

  

     

  

  

  

  

  

  

 

 
     

 

     

  

 
1

n



 
 
 



 

i.e., 
'( ) ( )V a V a . 

In this case, by Theorem 1, we have  

' ' '

1 2 1 2SVNCA ( , , , )=SVNCA ( , , , )n na a a a a a                                (31) 

Therefore, from Eqs.(30) and (31), we have 

' ' '

1 2 1 2SVNCA ( , , , ) SVNCA ( , , , )n na a a a a a  . 

 

(4). Since 
' ' ' '= , ,i i i ia T I F (i=1,2,…,n) is a permutation of = , ,i i i ia T I F (i=1,2,…,n), we have 

'

( ) ( )i ia a  , for all i=1,2,…,n. Then, based on Definition 11, we obtain 

' ' '

1 2 1 2SVNCA ( , , , )=SVNCA ( , , , )n na a a a a a  . 
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Theorem 4. Let = , ,i i i ia T I F (i=1,2,…,n) be a set of SVNNs on X,  be a fuzzy measure on X . 

If = , ,s s ss T I F
 
is a SVNN on X, then 

1 2 1 2SVNCA ( , , , )=SVNCA ( , , , )n na s a s a s a a a s      

Proof. According to the operational law (1) in Definition 8, for all i=1,2,…,n, we have 

- , , 1 (1 )(1- ), ,i i s i s i s i s i s i s i sa s T T T T I I F F T T I I F F           . 

According to Theorem 2, we have 

     

 

( ) ( 1) ( ) ( 1) ( ) ( 1)

( ) ( 1)
( ) ( 1)

1

1 2

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 1 1

( ( ) ( ))
( ) ( )

( )

1

SVNCA ( , , , )

1 (1 )(1 ) , ,

1 (1 ) 1 ,

i i i i i i

n

i i
i i

i

n

n n n
H H H H H H

i s i s i s

i i i

nH H
H H

s i

i

a s a s a s

T T I I F F

T T

     

 
 



     

  

 
 



  






  

  






  

   


   

  

  

 

     

( ) ( 1)
( ) ( 1)

1

( ) ( 1)
( ) ( 1)

1

( ) ( 1) ( ) ( 1)

( ( ) ( ))
( ) ( )

( )

1

( ( ) ( ))
( ) ( )

( )

1

( ) ( ) ( ) ( )

( ) ( ) ( )

1 1

( ) ,

( )

1 (1 ) 1 , ,

n

i i
i i

i

n

i i
i i

i

i i i i

nH H
H H

s i

i

nH H
H H

s i

i

n n
H H H H

s i s i s i

i i

I I

F F

T T I I F F

 
 

 
 

   

 
 



 
 



    

  











 











 

 





   





 
( ) ( 1)( ) ( )

1

.
i i

n
H H

i

  





 

On the other hand, according to the operational law (1) in Definition 8, we have 

     

   

( ) ( 1) ( ) ( 1) ( ) ( 1)

( ) ( 1) ( ) ( 1)

1 2

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 1 1

( ( ) ( )) ( ( ) ( ))

( ) ( )

1 1

SVNCA ( , , , )

1 1 , , , ,

1 (1 ) 1 ,

i i i i i i

i i i i

n

n n n
H H H H H H

i i i s s s

i i i

n
H H H H

s i s i

i i

a a a s

T I F T I F

T T I I

     

   



     

  

   

 

  

 

  

  

 

 



   

   

  

   ( ) ( 1)( ( ) ( ))

( )

1

, .
i i

n n
H H

s i

i

F F
  







 

Thus, 
 

1 2 1 2SVNCA ( , , , )=SVNCA ( , , , ) .n na s a s a s a a a s      

Theorem 5. Let = , ,i i i ia T I F (i=1,2,…,n) be a set of SVNNs on X,  be a fuzzy measure on X . 

If 0r  , then 

1 2 1 2SVNCA ( , , , )= SVNCA ( , , , )n nra ra ra r a a a   

Proof. According to the operational law (3) in Definition 8, for all i (i=1,2,…,n) and 0r  , we 

have 

 1 1 , ,
r r r

i i i ira T I F   . 

According to Theorem 2, we have 
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     

   

( ) ( 1) ( ) ( 1) ( ) ( 1)

( ) ( 1) ( ) ( 1)

1 2

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 1 1

( ( ) ( )) ( ( ) ( ))

( ) ( )

1 1

SVNCA ( , , , )

1 (1 ) , ( ) , ( )

1 1 , ,

i i i i i i

i i i i

n

n n n
H H H H H H

r r r

i i i

i i i

n n
r H H r H H

i i

i i

ra ra ra

T I F

T I F

     

   



     

  

   

  

  

 

  

  

 

 

  

  

  

    ( ) ( 1)( ( ) ( ))

( )

1

.
i i

n
r H H

i

i

   





 

On the other hand, according to the operational law (3) in Definition 8, we have 

     

     

( ) ( 1) ( ) ( 1) ( ) ( 1)

( ) ( 1) ( ) ( 1)

1 2

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 1 1

( ( ) ( )) ( ( ) ( )) ( (

( ) ( ) ( )

1 1

SVNCA ( , , , )

1 1 , ,

1 1 , ,

i i i i i i

i i i i

n

n n n
H H H H H H

i i i

i i i

n n
r H H r H H r H

i i i

i i

r a a a

r T I F

T I F

     

   



     

  

    

  

  

 

  

  

 

 



   

  

  

 
( ) ( 1)) ( ))

1

i i
n

H

i

  





 

Thus, 
 

1 2 1 2SVNCA ( , , , )= SVNCA ( , , , ).n nra ra ra r a a a   

 

Definition 12. Let = , ,i i i ia T I F (i=1,2,…,n) be a collection of SVNNs on X,  be a fuzzy 

measure on X , then the single valued neutrosophic correlated  geometric (SVNCG) operator is 

defined as follows: 

  ( ) ( 1)( ) ( )

1 2 ( )
1

SVNCG ( , , , )
i i

n H H

n i
i

a a a a
  

 




                               (32) 

where ))(),...,2(),1(( n  is a permutation of ),...,2,1( n  such that  

(1) (2) ( )na a a     , 
)(ix is the attribute corresponding to 

( )ia
, }{ )()( ikxH ki  

, for 

1i ,  )0(H . 

Based on the operational laws of SVNNs, we get Theorem 6. 

 

Theorem 6. Let = , ,i i i ia T I F (i=1,2,…,n)  be a collection of SVNNs on X,  be a fuzzy 

measure on X , then their aggregated value obtained by the SVNCG operator is still a SVNN, 

and 

 

     ( ) ( 1) ( ) ( 1) ( ) ( 1)

1 2

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 1 1

SVNCG , , ,

,1 1 ,1 1
i i i i i i

n

n n n
H H H H H H

i i i

i i i

a a a

T I F
     



     

  

    

  

      
   (33) 

This theorem can be proved similar to Theorem 2. 

 

Some special cases of the SVNCG operator are considered as follows. Let = , ,i i i ia T I F

(i=1,2,…,n)  be a collection of SVNNs on X, and  be a fuzzy measure on X. 

 

(1) If ( ) 1H  for any ( )H P x , then 
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1 2 (1) (1) (1)SVNCG ( , , , )= , ,na a a T I I   
. 

(2) If ( ) 0H  for any ( )H P x  and H X , then 

1 2 ( ) ( ) ( )SVNCG ( , , , )= , ,n n n na a a T I I   
. 

(3) If Eqs. (5) and (10) hold, then the SVNCG operator reduces to the following single valued 

neutrosophic weighted geometric (SVNWG) operator: 

         
( ) ( ) ( ) ( )

1 2
1

1 1 1

SVNWG , , , ,1 1 ,1 1i i i i

n n nn
x x x x

n i i i i
i

i i i

a a a a T I F
   


  

              (34) 

In particular, if 
n

xi

1
)(  , for ni ,...,2,1 , then the SVNCG operator in Eq.(32) reduces to 

the single valued neutrosophic geometric average (SVNGA) operator. 

         
1/ 1/ 1/ 1/

1 2
1

1 1 1

SVNGA , , , ,1 1 ,1 1
n n nn

n n n n

n i i i i
i

i i i

a a a a T I F


  

                (35) 

(4) If Eqs. (13) and (14) hold, then the SVNCG operator reduces to the following single valued 

neutrosophic ordered weighted geometric (SVNOWG) operator: 

         1 2 ( ) ( ) ( ) ( )
1

1 1 1

SVNOWG , , , ,1 1 ,1 1
i i i i

n n nn

n i i i i
i

i i i

a a a a T I F
   

   


  

          

In particular, if 
n

H
H )( , for all XH  , then the SVNCA operator in Eq.(8) reduces to 

the SVNGA operator in Eq. (33). 

 

(5) If =0iI  and 1i iT F  , then SVNNs = , ,i i i ia T I F (i=1,2,…,n) are reduced to intuitionistic 

fuzzy numbers (IFNs), and we can obtain the following intuitionistic fuzzy correlated geometric 

(IFCG) operators proposed by Xu [54]. 

 

   

( ) ( 1)

( ) ( 1) ( ) ( 1)

1 2

( ) ( )

( )
1

( ) ( ) ( ) ( )

( ) ( )

1 1

IFCG ( , , , )

,1 1

i i

i i i i

n

n H H

i
i

n n
H H H H

i i

i i

a a a

a

T F

 

   



 



   

 



 





 

 

 

   

     

where = ,i i ia T F  (i=1,2,…,n) be a collection of intuitionistic fuzzy values on X, and  be a 

fuzzy measure on X. 

 

Similar to the SVNCA operator, we can prove that the SVNCG operator has the following 

properties. 

Theorem 7. Let = , ,i i i ia T I F (i=1,2,…,n) be a collection of SVNNs on X,  be a fuzzy measure 

on X , then we have the following properties. 
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(1) If = , ,i i i ia T I F  (i=1,2,…,n) are equal, i.e., = , ,i a a aa a T I F , then 

 1 2SVNCG , , , .na a a a   

(2) (Boundedness) Let 
min

1
min{ }i

i n
T T

 
 , max

1
max{ }i

i n
T T

 
 , min

1
min{ }i

i n
I I

 
 , max

1
max{ }i

i n
I I

 
 ,

min
1
min{ }i

i n
F F

 
 , 

max
1
max{ }i

i n
F F

 
 . Then we can obtain 

min max max 1 2 max min min, , SVNCG ( , , , ) , ,nT I F a a a T I F  .   

(3) (Monotonicity) If 
'

i iT T ,
 

'

i iI I  and 
'

i iF F  for all i, then 

' ' '

1 2 1 2SVNCG ( , , , ) SVNCG ( , , , )n na a a a a a  . 

(4) (Commutativity) If 
' ' ' '= , ,i i i ia T I F (i=1,2,…,n) is any permutation of = , ,i i i ia T I F (i=1,2,…,n) , 

then 

' ' '

1 2 1 2SVNCG ( , , , )=SVNCG ( , , , )n na a a a a a   

 

Theorem 8. Let = , ,i i i ia T I F (i=1,2,…,n) be a set of SVNNs on X,  be a fuzzy measure on X . 

If = , ,s s ss T I F
 
is a SVNN on X, then 

1 2 1 2SVNCG ( , , , )=SVNCG ( , , , )n na s a s a s a a a s      

Proof. According to the operational law (2) in Definition 8, for all i=1,2,…,n, we have 

, , ,1 (1 )(1- ),1 (1 )(1- ) .i i s i s i s i s i s i s i s i sa s T T I I I I F F F F T T I I F F              

According to Theorem 6, we have 
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
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   
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i
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s i

i

nH H
H H
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 
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

   
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 


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






 


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  


  

   

 



  ) ( ) ( 1)) ( ) ( )

( )

1 1

,1 (1 ) 1 .
i i

n n
H H

s i

i i

F F
  


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 

   

On the other hand, according to the operational law (2) in Definition 8, we have 
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   
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1

,1 (1 ) 1 .
i i

n n
H H
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F F
  


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

   

Thus, 
 

1 2 1 2SVNCG ( , , , )=SVNCG ( , , , ) .n na s a s a s a a a s      

 

Theorem 9. Let = , ,i i i ia T I F (i=1,2,…,n) be a set of SVNNs on X,  be a fuzzy measure on X . 

If 0r  , then 

 1 2 1 2SVNCG ( , , , )= SVNCG ( , , , )
rr r r

n na a a a a a   

Proof. According to the operational law (4) in Definition 8, for all i (i=1,2,…,n) and 0r  , we 

have 

   ,1 1 ,1 1
r rr r

i i i ia T I F     . 

According to Theorem 6, we have 
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( ) ( ) ( )

1 1 1

( ( ) ( )) ( ( ) ( ))

( ) ( )

1 1

SVNCG ( , , , )

( ) ,1 (1 ) ,1 (1 )

,1 1

i i i i i i

i i i i

r r r

n

n n n
H H H H H H

r r r

i i i

i i i

n n
r H H r H H

i i

i i

a a a

T I F

T I

     

   



     

  

   

 

  

 

  

  

 

 

    

  

  

   ( ) ( 1)( ( ) ( ))

( )

1

,1 1 .
i i

n
r H H

i

i

F
  







  

 

On the other hand, according to the operational law (4) in Definition 8, we have 

 

     ( ) ( 1) ( ) ( 1) ( ) ( 1)

1 2

( ( ) ( )) ( ( ) ( )) ( ( ) ( ))

( ) ( ) ( )

1 1 1

SVNCG ( , , , )

,1 1 ,1 1
i i i i i i

r

n

n n n
r H H r H H r H H

i i i

i i i

a a a

T I F
     



     

  

    

  

      

 

Thus, 
 

 1 2 1 2SVNCG ( , , , )= SVNCG ( , , , )
rr r r

n na a a a a a   

Lemma 1. [55]. Let 0ja  , 0jw  , 1,2,...,j n  and 
1

1
n

j

j

w


 , then 

11

j

n n
w

j j j

jj

a w a


                                                       (36) 

with equality if and only if 1 2 na a a   . 

To compare the aggregated values between the SVNCA and SVNCG operators, we give the 
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following theorem. 

Theorem 10. Let  = , ,i i i ia T I F (i=1,2,…,n) be a collection of SVNNs on X,  be a fuzzy 

measure on X , then 

   1 2 1 2, , , , , ,SVNCG SVNCAn na a a a a a .                                (37) 

Proof. According to Lemma1, we have 

 

 

 

( ) ( 1)

( ) ( 1)

( ) ( )

( )

1

( ) ( 1) ( )

1

( ) ( 1) ( )

1

( ) ( )

( )

1

1

( ( ) ( )) 1

1 ( ( ) ( ))

1

i i

i i

n
H H

i

i

n

i i i

i

n

i i i

i

n
H H

i

i

T

H H T

H H T

T

 

 

 



  

  

 



 

 























  

  

 









 

Thus, we have 

   ( ) ( 1) ( ) ( 1)( ) ( ) ( ) ( )

( ) ( )

1 1

1 1
i i i i

n n
H H H H

i i

i i

T T
      

 

  

 

                            (38) 

Similarly, we have 

   ( ) ( 1) ( ) ( 1)( ) ( ) ( ) ( )

( ) ( )

1 1

1 1
i i i i

n n
H H H H

i i

i i

I I
      

 

  

 

                         (39)  

   ( ) ( 1) ( ) ( 1)( ) ( ) ( ) ( )

( ) ( )

1 1

1 1
i i i i

n n
H H H H

i i

i i

F F
      

 

  

 

    .                    (40) 

Let  1 2SVNCA , , , , ,n a a aa a a T I F a   ,  1 2SVNCG , , , , ,n b b ba a a T I F b   , then Eqs. 

(38), (39) and (40) are transformed into the following forms, respectively: 

a bT T                                                            (41) 

a bI I ,                                                          (42) 

a bF F .                                                          (43) 

Thus, we have    

   a

1 1
( ) 1 1 1 1 ( ).

3 3
b b b a aS b T I F T I F S a            

According to Theorem 1, we have 

   1 2 1 2, , , , , ,SVNCG SVNCAn na a a a a a . 

 

4. A multiple attribute group decision making method to material selection under single 

valued neutrosophic environment  

In this section, we apply the SVNCA (SVNCG) operator to solve material selection problems 
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with single valued neutrosophic information. For a material selection problem, let 

1 2{ , ,..., }mA A A A ( 2m ) be a finite set of feasible material alternatives among which 

decision makers (DMs) have to choose, 
1 2{ , ,..., }nC C C C ( 2n  ) be a finite set of attributes 

with which alternative performance is measured, 
1 2{ , ,..., }tDM DM DM DM ( 2t  ) be a set of 

DMs, and T

t ),...,,( 21    be the weight vector of DMs, such that 0k , k=1,2,…,t, 

and 1
1




t

k

k . Suppose that ( ) ( )( )k k

ij m nR r   is a single valued neutrosophic decision matrix 

given by the kth DM, where ( ) ( ) ( ) ( )( , , )k k k k

ij ij ij ijr T I F
 
is the assessment value on the material 

alternative AAi   
with respect to the attribute CC j   provided by the kth DM, ( )k

ijT  

indicates the degree to which the material alternative 
iA  satisfies the attribute 

jC  provided by 

the kth DM, ( )k

ijI  indicates the indeterminacy degree to which the material alternative 
iA  

satisfies the attribute 
jC provided by the kth DM, and ( )k

ijF  indicates the degree to which the 

material alternative 
iA  does not satisfy the attribute 

jC
 
provided by the kth DM. The 

proposed operators are utilized to develop a multiple attribute group decision making method for 

material selection with single valued neutrosophic information by the following steps: 

 

Step 1. Aggregate all individual single valued neutrosophic decision matrices 

( ) ( )( ) ( 1,2,..., )k k

ij m nR r k t   into a collective single valued neutrosophic decision matrix 

( )ij m nR r 
 

based on SVNWA (SVNWG) operator as follows: 

 

     

(1) (2) ( )

( ) ( ) ( )

1 1 1

, ,

=SVNWA , , ,

1 1 , , , 1,2,..., , 1,2,...,
k k k

ij ij ij ij

k

ij ij ij

t t t
k k k

ij ij ij

k k k

r T I F

r r r

T I F i m j n
  

  



                       

(44) 

 

     

(1) (2) ( )

( ) ( ) ( )

1 1 1

, ,

=SVNWG , , ,

,1 1 ,1 1 , 1,2,..., , 1,2,...,
k k k

ij ij ij ij

k

ij ij ij

t t t
k k k

ij ij ij

k k k

r T I F

r r r

T I F i m j n
  

  



                    

(45) 

where T

t ),...,,( 21    is the weight vector of DMs. 
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Step 2. Confirm the fuzzy measures of the attributes Cj (j=1,2,…,n) and the attribute sets of C. The 

λ-fuzzy measure is used to calculate the fuzzy measure of criteria sets. Firstly, according to Eq. (6), 

the value of 
 
is obtained, and then the fuzzy measure of criteria sets of 

1 2{ , ,..., }nC C C C  are 

calculated by Eq. (6). 

 

Step 3. Utilize the SVNCA (or SVNCG) operator to aggregate all assessment values ijr  of the 

alternative Ai (i=1,2,…,m) under all attributes Cj (j=1,2,…,n) and get the overall assessment values 

ir  of alternatives Ai (i=1,2,…,m) by Eq.(46) or (47). 

 

     ( ) ( 1) ( ) ( 1) ( ) ( 1)

1 2

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 1 1

, ,

SVNCA , , ,

1 1 , , , 1,2,..., ,
i j i j i j i j i j i j

i i i i

i i in

n n n
H H H H H H

i j i j i j

j j j

r T I F

r r r

T I F i m
     



     

  

    

  





     

   

(46) 

or 

 

     ( ) ( 1) ( ) ( 1) ( ) ( 1)

1 2

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 1 1

, ,

SVNCG , , ,

,1 1 ,1 1 , 1,2,..., ,
i j i j i j i j i j i j

i i i i

i i in

n n n
H H H H H H

i j i j i j

j j j

r T I F

r r r

T I F i m
     



     

  

    

  





       

  (47) 

where 
( ) ( ) ( ) ( ), , ( 1,2,..., )i j i j i j i jr T T T j n      is a permutation of , , ( 1,2,..., )ij ij ij ijr T T T j n   such 

that  

((11)) (2) ( )i i i nr r r     , 
)(ix is the attribute corresponding to 

( )i jr , 
( ) ( ){ }i j i kH x k j   , for 

1i , 
(0)iH   .

 

Step 4. Calculate the score values ( )iV r  of the overall assessment values 
ir (i=1,2,…,m). The 

score values of the alternatives Ai (i=1,2,…,m) can be calculated by Eq. (48). 

( ) ( 1 1 ) / 3, 1,2,..., .i i i iS r T I F i m                                       (48) 

If there is no difference between two score values ( )iS r  and ( )lS r , then we need to calculate the 

accuracy values ( )iV r  and ( )lV r  of the alternatives Ai and Al (i,l=1,2,…,m), respectively, 

according to Eq. (49). 

( ) ( 1 ) / 3, 1,2,..., .i i i iV r T F I i m                                         (49) 

Step 5. Rank all feasible alternatives Ai (i=1,2,…,m) according to Theorem 1 and select the most 

desirable alternative(s). 

Step 6. End. 

 

5. Numerical example 
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In this section, a material selection problem adopted from Venkata Rao [56] in which the 

alternatives are the material alternatives to be selected and the criteria are the attributes under 

consideration a MAGDM problem is used to illustrate the application of the proposed method with 

single valued neutrosophic information proposed in Section 4, and to demonstrate its feasibility 

and effectiveness in a realistic scenario. A company wants to select a suitable work material for a 

product operated in a high-temperature environment. After preliminary screening, there are four 

possible material alternatives A1, A2, A3 and A4 to be selected, according to the following four 

attributes: (1) C1 is the tensile strength (MPa); (2) C2 is the young’s modulus (GPa); (3) C3 is the 

density (gm/cm
3
); (4) C4 is the corrosion resistance. A committee of three decision makers Dk 

(k=1,2,3)
 

whose weight vector is (0.34,0.28,0.38)T 
 
is invited to evaluate the material 

alternatives Ai (i=1,2,3,4) with respect to the attributes Cj (j=1,2,3,4) and three individual single 

valued neutrosophic decision matrices ( ) ( )

4 4( )k k

ij ijR r 
 
(k=1,2,3) are constructed, which are as 

shown in Tables 1-3. 

Table 1  

Single valued neutrosophic decision matrix given by DM1. 

 C1 C2 C3 C4 

A1 <0.30, 0.40, 0.52> <0.50, 0.65, 0.20> <0.80, 0.24, 0.15> <0.45, 0.32, 0.15> 

A2 <0.42, 0.90. 0.25> <0.15, 0.45, 0.50> <0.80, 0.21, 0.20> <0.50, 0.36, 0.13> 

A3 <0.62, 0.34, 0.40> <0.24, 0.22, 0.72> <0.90, 0.35, 0.15> <0.35, 0.40, 0.25> 

A4 <0.81, 0.23, 0.40> <0.45, 0.42, 0.10> <0.21, 0.52, 0.25> <0.60, 0.40, 0.70> 

 

Table 2  

Single valued neutrosophic decision matrix given by DM2. 

 C1 C2 C3 C4 

A1 <0.57, 0.20, 0.41> <0.25, 0.30, 0.40> <0.35, 0.25, 0.10> <0.75, 0.20, 0.10> 

A2 <0.67, 0.40, 0.20> <0.40, 0.15, 0.10> <0.28, 0.45, 0.50> <0.50, 0.15, 0.35> 

A3 <0.45, 0.31, 0.32> <0.70, 0.10, 0.05> <0.55, 0.15, 0.35> <0.53, 0.30, 0.20> 

A4 <0.45, 0.05, 0.30> <0.70, 0.20, 0.15> <0.90, 0.10, 0.35> <0.52, 0.30, 0.25> 

 

Table 3 

Single valued neutrosophic decision matrix given by DM3. 

 C1 C2 C3 C4 

A1 <0.40, 0.15, 0.32> <0.50, 0.12, 0.40> <0.80, 0.12, 0.15> <0.53, 0.20, 0.15> 

A2 <0.65, 0.30, 0.15> <0.25, 0.43, 0.15> <0.85, 0.10, 0.25> <0.80, 0.10, 0.05> 

A3 <0.60, 0.32, 0.38>  <0.35, 0,25, 0.20> <0.53, 0.20, 0.12> <0.77, 0.30, 0.20> 

A4 <0.52, 0.20, 0.45> <0.60, 0.24, 0.31> <0.72, 0.05, 0.10> <0.72, 0.13, 0,24> 

In what follows, the proposed method with single valued neutrosophic information is utilized to 

get the most desirable material alternative(s), which involves the following steps:  

Step 1. Utilize the individual single valued neutrosophic decision matrix 

( ) ( )

4 4( ) ( 1,2,3)k k

ijR r k 
 
and the SVNWA operator to derive the collective single valued 
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neutrosophic decision matrix 
4 4( )ijR r   by Eq.(44), which is shown in Table 4. 

Table 4  

Collective single valued neutrosophic decision matrix by using the SVNWA operator. 

 C1 C2 C3 C4 

A1 <0.424, 0.227, 0.405> <0.440, 0.276, 0.316> <0.722, 0.187, 0.134> <0.585, 0.235, 0.134> 

A2 <0.591, 0.472, 0.193> <0.265, 0.325, 0.202> <0.743, 0.196, 0.281> <0.647, 0.173, 0.119> 

A3 <0.570, 0.324, 0.369> <0.448, 0.185,0.210> <0.726, 0.223, 0.175> <0.600, 0.331, 0.330> 

A4 <0.636, 0.142, 0.386> <0.589, 0.276, 0.172> <0.701, 0.135, 0.194> <0.632, 0.241, 0.349> 

Step 2. Suppose that the fuzzy measures of criteria of C are given as follows: 

2.0)( 1 C , 3.0)( 2 C , 2.0)( 3 C , 
4( ) 0.35C   

The λ-fuzzy measure is used to calculate the fuzzy measure of criteria sets. Firstly, according to 

Eq. (6), the value of 
 

is calculated: -0.2330  , and then the fuzzy measure of criteria sets of 

C={C1,C2,C3,C4} are calculated by Eq. (6), which are shown as follows: 

1 2( , ) 0.4860C C  , 
1 3( , ) 0.4384C C  , 

1 4( , ) 0.5337C C  , 
2 3( , ) 0.5325C C  ,  

2 4( , ) 0.6255C C  ,
3 4( , ) 0.5796C C  , 

1 2 3( , , ) 0.7077C C C  ,
1 2 4( , , ) 0.7964C C C  , 

1 3 4( , , ) 0.7526C C C  , 
2 3 4( , , ) 0.8391C C C  , 

1 2 3 4( , , , ) 1C C C C  . 

Step 3. Utilize the SVNCA operator to calculate the overall assessments of each material 

alternative Ai. Take A1 for an example: according to Theorem 1, we have 

1 (1) 0.722,  0.187,  0.134r   ,
1 (2) 0.585,  0.235,  0.134r   , 

1 (3) 0.440,  0.276,  0.316r   , 
1 (4) 0.424,  0.227,  0.405r   .  

Then, the overall assessments of the material alternative A1 can be calculated as follows: 

 1 11 12 13 14

0.2 0 0.5796 0.2 0.8391 0.5796 1 0.8391

0.2 0 0.5796 0.2 0.8391 0.5796 1 0.8391 0.2 0 0.5796 0.2

SVNCA , , ,

1 (1 0.722) (1 0.585) (1 0.440) (1 0.424) ,

0.187 0.235 0.276 0.227 ,0.134 0.134 0.316

r r r r r

   

     



        

     0.8391 0.5796 1 0.83910.405

0.564,0.233,0.200

 



Similarly, 
 

2r  (0.596, 0.248, 0.180), 
3r  (0.592, 0.262, 0.224), 

4r  (0.635, 0.205, 0.250). 

Step 4. Calculate the score values ( )iS r  of the overall assessment values 
ir (i=1,2,3,4). According 

to Eq. (48), the score values of material alternatives Ai (i=1,2,3,4) are obtained as follows:  

1( ) 0.7103S r  , 
2( ) 0.7231S r  , 

3( ) 0.7020S r  , 
4( ) 0.7267S r  . 

Step 5. Rank all material alternatives Ai (i=1,2,3,4) according to the descending order of 

corresponding score values ( )iS r (i=1,2,3,4) and select the most desirable material alternative(s). 
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Since 
4 2 1 3( ) ( ) ( ) ( )S r S r S r S r   , then the ranking of all material alternatives Ai (i=1,2,3,4) is 

shown as follows: 

4 2 1 3A A A A  

where the symbol “ ” means “superior to”. Therefore, the most desirable material alternative is 

A4. 

 

6. Conclusions 

In this paper, we study the material selection problems in which the attribute values take the 

form of single valued neutrosophic numbers. Motivated by the idea of Choquet integral, two 

correlated aggregation operators are proposed for aggregating the single valued neutrosophic 

information based on the operational laws of single valued neutrosophic numbers, such as the 

single valued neutrosophic correlated average (SVNCA) operator and the single valued 

neutrosophic correlated  geometric (SVNCG) operator. The prominent characteristic of these 

operators is that the truth degree, indeterminacy degree and falsity degree of an element to a given 

set are denoted by a set of three crisp numbers. Then, some desirable properties of the proposed 

operators and the relationships among them are investigated in detail. Furthermore, based on the 

proposed operators, a novel multiple attribute group decision making method is developed to solve 

material selection problems under single valued neutrosophic environment, in which the attributes 

are often inter-dependent or correlated. Finally, a numerical example of material selection is given 

to illustrate the application of the proposed method. In future research, we will focus on the 

application of the proposed method in other real decision making problems, such as personnel 

evaluation and emergency management.  

 

Acknowledgements 

This research is supported by Program for New Century Excellent Talents in University 

(NCET-13-0037), Natural Science Foundation of China (No. 70972007, 71271049), and Beijing 

Municipal Natural Science Foundation (No. 9102015, 9133020). 

 

References 

[1] Sapuan SM. A knowledge-based system for materials selection in mechanical engineering 

design. Mater Des 2001;22:687–95. 

[2] Chatterjee P, Chakraborty S. Material selection using preferential ranking methods. Mater 

Des 2012;35:384–93. 

[3] Jahan A, Mustapha F, Ismail MY, Sapuan SM, Bahraminasab M. A comprehensive VIKOR 

method for material selection. Mater Des 2011; 32(3):1215–21. 

[4] Liu HC, Liu H, Wu J. Material selection using an interval 2-tuple linguistic VIKOR method 

considering subjective and objective weights. Mater Des 2013; 52:158–167. 

[5] Parate O, Gupta N. Material selection for electrostatic microactuators using Ashby approach. 

Mater Des 2011;32(3):1577–81. 

[6] Mayyas A, Shen Q, Mayyas A, abdelhamid M, Shan D, Qattawi A, et al. Using quality 

function deployment and analytical hierarchy process for material selection of Body-In-White. 

Mater Des 2011;32(5):2771–82. 



24 
 

[7] Milani AS, Shanian A, Lynam C, Scarinci T. An application of the analytic network process in 

multiple criteria material selection. Mater Des 2013;44(2):622–32. 

[8] Gupta N. Material selection for thin-film solar cells using multiple attribute decision making 

approach. Mater Des 2011;32(3):1667–71. 

[9] Prasad K, Chakraborty S. A quality function deployment-based model for materials selection. 

Mater Des 2013;49(8):525–35. 

[10] Chan JWK, Tong TKL. Multi-criteria material selections and end-of-life product strategy: 

grey relational analysis approach. Mater Des 2007;28(5):1539–46. 

[11] Rao RV. A material selection model using graph theory and matrix approach. Mater Sci Eng A 

2006;431(1):248–55. 

[12] Shanian A, Savadogo O. A material selection model based on the concept of multiple attribute 

decision making. Mater Des 2006;27(4):329–37. 

[13] Bahraminasab M, Jahan A. Material selection for femoral component of total knee 

replacement using comprehensive VIKOR. Mater Des 2011;32(8–9):4471–7. 

[14] Cavallini C, Giorgetti A, Citti P, Nicolaie F. Integral aided method for material selection 

based on quality function deployment and comprehensive VIKOR algorithm. Mater Des 

2013;47(5):27–34. 

[15] Jahan A, Edwards KL. VIKOR method for material selection problems with interval numbers 

and target-based criteria. Mater Des 2013;47(5):759–65. 

[16] Peng AH, Xiao XM. Material selection using PROMETHEE combined with analytic network 

process under hybrid environment. Mater Des 2013;47(5):643–52. 

[17] Liu HC, You JX, Zhen L, Fan XJ. A novel hybrid multiple criteria decision making model for 

material selection with target-based criteria. Mater Des 2014;60(8):380–90. 

[18] Chatterjee P, Athawale VM, Chakraborty S. Materials selection using complex proportional 

assessment and evaluation of mixed data methods. Mater Des 2011;32(2):851–60. 

[19] Maity SR, Chatterjee P, Chakraborty S. Cutting tool material selection using grey complex 

proportional assessment method. Mater Des 2012;36(4):372–8. 

[20] Zadeh LA. Fuzzy sets. Inform Control 1965; 8(3): 338–53. 

[21] Turksen IB. Interval-valued fuzzy sets based on normal forms. Fuzzy Sets Syst 1986; 20: 

191–210. 

[22] Atanassov K. Intuitionistic fuzzy sets. Fuzzy Sets Syst 1986; 20: 87–96. 

[23] Atanassov K, Gargov G. Interval valued intuitionistic fuzzy sets. Fuzzy Sets Syst 1989; 31: 

343-9. 

[24] Dubois D, Prade H. Fuzzy sets and systems: theory and applications. New York: Academic 

Press; 1980. 

[25] Mizumoto M, Tanaka K. Some properities of fuzzy sets of type 2. Inf Control 1976; 31: 

312–40. 

[26] Torra V. Hesitant fuzzy sets. I J Intell Syst 2010; 25: 529–39. 

[27] Torra V, Narukawa Y. On hesitant fuzzy sets and decision. The 18th IEEE International 

Conference on Fuzzy Systems, Jeju Island, Korean, 2009; 1378-82. 

[28] Smarandache F. A unifying field in logics. Neutrosophy: Neutrosophic probability, set & 

logic. Rehoboth: American Research; 1999.  

[29] Wang H, Smarandache F, Zhang YQ. Single valued neutrosophic sets. Multispace Multistruct 

2010; 4: 410–3. 



25 
 

[30] Ye J. Similarity measures between interval neutronsophic sets and their applications in 

multicriteria decision-making. J Intell Fuzzy Syst 2014; 26: 165-72. 

[31] Ye J. A multicriteria decision-making method using aggregation operators for simplified 

neutronsophic sets. J Intell Fuzzy Syst 2014; 26: 2459-66. 

[32] Zhang HY, Wang JQ, Chen XH. Interval neutronsophic sets and their application in 

multicriteria decision making problems. Sci World J 2014; Article ID 645953, 

http://dx.doi.org/10.1155/2014/645953.  

[33] Majumdar P, Samanta SK. On similarity and entropy of neutronsophic sets. J Intell Fuzzy 

Syst 2014; 26: 1245-52. 

[34] Ye J. Multicriteria decision-making method using the correlation coefficient under 

single-valued neutronsophic environment. Int J Gen Syst 2013; 42: 386–94. 

[35] Ye J. A Single valued neutronsophic cross-entropy for multicriteria decision making problems. 

Appl Math Model 2014; 38: 1170–5. 

[36] Hanbay K, Talu MF. Segmentation of SAR images using improved artificial bee colony 

algorithm and neutrosophic set. Appl SoftComput 2014; 21: 433–43. 

[37] Wakker P. Additive representations of preferences, A new foundation of decision analysis; 

The algebraic approach. Berlin: Springer, 1991. 

[38] Choquet G. Theory of capacities. Annales del Institut Fourier 1953; 5: 131–295. 

[39] Tan CQ, Chen XH. Intuitionistic fuzzy Choquet integral operator for multi-criteria decision 

making. Expert Syst Appl 2010; 37(1): 149–57. 

[40] Tan CQ, Chen XH. Induced Choquet ordered averaging operator and its application to group 

decision making. Int J Intel Syst 2010; 25: 59–82. 

[41] Angilella S, Greco S, Matarazzo B. Non-additive robust ordinal regression: A multiple criteria 

decision model based on the Choquet integral. Eur J Oper Res 2010; 201(1): 277–88. 

[42] Büyüközkan G, Ruan D. Choquet integral based aggregation approach to software 

development risk assessment. Inform Sciences 2010; 180: 441–51. 

[43] Lee WS. Evaluating and ranking energy performance of office building using fuzzy measure 

and fuzzy integral. Energy Convers Manage 2010; 51: 197–203. 

[44] Hu YC, Tsai JF. Evaluating classification performances of single-layer perceptron with a 

Choquet fuzzy integral-based neuron. Expert Syst Appl 2009; 36(2): 1793–800. 

[45] Ming-Lang T, Chiang JH, Lan LW. Selection of optimal supplier in supply chain management 

strategy with analytic network process and Choquet integral. Comput Ind Eng 2009; 57(1): 

330–340. 

[46] Ju YB, Yang SH, Liu XY. Some new dual hesitant fuzzy aggregation operators based on 

Choquet integral and their applications to multiple attribute decision making. J Intell Fuzzy 

Syst 2014; DOI: 10.3233/IFS–141247. 

[47] Ye J, Multiple attribute group decision-making method with completely unknown weights 

based on similarity measures under single valued neutrosophic environment, J Intell Fuzzy 

Syst 2014; DOI: 10.3233/IFS–141252. 

[48] Ju YB. Some aggregation operators with single valued neutrosophic information and their 

application to multiple attribute decision making. Technical Report 2014. 

[49] Chi PP, Liu PD. An extended TOPSIS method for multiple attribute decision making 

problems based on interval neutrosophic set. Neutrosophic Sets and Systems (2013); 1: 

63–70. 

http://dx.doi.org/10.1155/2014/645953


26 
 

[50] Wang Z, Klir G. Fuzzy measure theory. New York: Plenum Press, 1992. 

[51] Sugeno M. Theory of fuzzy integral and its application. Tokyo: Tokyo Institute of Technology, 

PhD dissertation, 1974.  

[52] Yager RR, Filev DP. Essentials of fuzzy modeling and control. New York: John Willey & 

Sons Inc, 1994. 

[53] Grabisch M, Murofushi T, Sugeno M. Fuzzy measures and integrals. New York: 

Physica-Verlag, 2000. 

[54] Xu ZS. Choquet integrals of weighted intuitionistic fuzzy information. Inform Sci 2010; 180: 

726–36 

[55] Xu ZS. On consistency of the weighted geometric mean complex judgment matrix in AHP, 

Eur J Oper Res 2000; 126: 683–7. 

[56]Venkata Rao  R. A decision making methodology for material selection using an improved 

compromise ranking method. Mater Des 2008; 29: 1949–54. 


