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Quantification of Uncertainty in Mineral Prospectivity Prediction
Using Neural Network Ensembles and Interval Neutrosophic Sets

Pawalai Kraipeerapun, Kok Wai Wong, Chun Che Fung, and Warick Brown

Abstract— Quantification of uncertainty in mineral prospee-
tivity prediction is an important process to support decision
making in mineral exploration. Degree of uncertainty can
identify level of quality in the prediction. This paper proposes an
approach to predict degrees of favourability for gold deposits
together with quantification of uncertainty in the prediction.
Geographic Information Systems (GIS) data is applied to the
integration of ensemble neural networks and interval neutro-
sophic sets. Three different neural network architectures are
used in this paper. The prediction and its uncertainty are
represented in the form of truth-membership, indeterminacy-
membership, and false-membership values. Two networks are
created for each network architecture to predict degrees of
favourability for deposit and non deposit, which are represented
by truth and false membership values respectively. Uncertainty
or indeterminacy-membership values are estimated from both
truth and false membership values. The results obtained using
different neural network ensemble techniques are discussed in
this paper.

I. INTRODUCTION

Uncertainty estimation in mineral prospectivity prediction
is an important task in order to support decision making in
regional-scale mineral exploration. In this paper, we focus on
uncertainty of type vagueness in which it refers to boundaries
that cannot be defined precisely. In [1], vague objects are
separated into vague point, vague line, and vague region.
Dilo et al. [1] defined vague point as a finite set of disjoint
sites with known location, but the existence of the sites may
be uncertain,

This study involves gridded map layers in a GIS database,
each grid cell represents a site with a known location,
but uncertain existence of favourability for deposit. Hence,
this study deals with vague point. Some locations have
one hundred percent of favourability for deposits. Some
locations have zero percent of favourability for mineral
deposits. Such cells are referred to as non-deposit or barren
cells, Most locations have degrees of favourability between
these two extremes. Therefore, each cell contains uncertain
information about the degree of favourability for deposits,
degree of favourability for barrens, and degree of indeter-
minable information or uncertainty. In order to store these
three types of information for each cell, we apply interval
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neutrosophic sets [2] to keep these information in the form
of truth-membership, false-membership, and indeterminacy-
membership values, respectively.

In recent years. neural network methods were found to
give better mineral prospectivity prediction results than the
conventional empirical statistically-based methods [3]. There
are various types of neural network used to predict degree
of favourability for mineral deposits. For example, Brown
et al. [3]. [4] applied backpropagation neural network for
mineral prospectivity prediction. Skabar [5] used a feed-
forward neural network to produce mineral potential maps.
Tyer etal. [6], [7] applied a general regression neural network
and a polynomial neural network to predict the favourability
for gold deposits. Fung et al. [8] applied neural network
ensembles to the prediction of mineral prospectivity.

Hansen and Salamon [9] suggested that ensembles of neu-
ral networks gives better results and less error than a single
neural network. Ensembles of neural networks consist of two
steps: training of individual components in the ensembles and
combing the output from the component networks [10]. This
study aims to apply neural network ensembles to predict the
degrees of favourability for gold deposits and also the degrees
of favourability for barrens. These two degrees are then
used to estimate the degree of uncertainty in the prediction
for each grid cell on a mineral prospectivity map. Each
component of neural network ensembles applied in this study
consists of @ pair of neural networks trained to predict degree
of favourability for deposits and degree of favourability
for barrens, respectively. We use three components in the
ensemble of neural networks. These component architectures
are feed-forward backpropagation neural network, general
regression neural network, and polynomial neural network.
These three are selected mainly because they have successtul
application in the field.

A multilayer feed-forward neural network with backprop-
agation learning is applied in this study since it is suitable for
a large variety of applications. A general regression neural
network is a memory-based supervised feed-forward network
based on nonlinear regression theory. This network is not
necessary to define the number of hidden layers in advance
and has fast training time comparing to backpropagation
neural network [11]. A polynomial neural network is based
on Group Method of Data Handling (GMDH) [12] which
identifies the nonlincar relations between input and output
variables. Similar to general regression neural network. a
topology of this network is not predetermined but developed
through learning [7].

In order to combine the outputs obtained from components
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of ensemble neural networks, we propose and compare six
aggregation techniques which are based on majority vote,
averaging, and dynamic averaging techniques. Our proposed
techniques have applied the three membership values in the
aggregation instead of the truth-membership only as in most
conventional approaches.

The rest of this paper is organized as follows. Section IT
presents interval neutrosophic sets used in this study. Sec-
tion IIT explains the proposed model for the quantification
of uncertainty in the prediction of favourability for gold
deposits using interval neutrosophic sets and ensemble of
neural networks, Section IV explains the GIS data set used
in this paper. Experimental methodologies and results are
also presented in this section. Conclusions are explained in
section V.,

I1. INTERVAL NEUTROSOPHIC SETS

An interval neutrosophic set (INS) is an instance of
neutrosophic set [13] which is generalized from the con-
cept of a classical set, fuzzy set, interval-valued fuzzy set,
intuitionistic fuzzy set, interval-valued intuitionistic fuzzy
set, paraconsistent set, dialetheist set, paradoxist set, and
tautological set [2]. The membership of an element to the
interval neutrosophic set is expressed by three values: t,1,
and f, which represent truth-membership, indeterminacy-
membership, and false-membership, respectively. These three
memberships are independent and can be any real sub-unitary
subsets. In some special cases, they can be dependent. In this
paper, the indeterminacy-membership value depends on both
truth-membership and false membership values. The interval
neutrosophic set can represent several kinds of imperfection
such as imprecise, incomplete, inconsistent, and uncertain
information [14]. In this paper, we express imperfection in
the form of uncertainty of type vagueness. This research
follows the definition of an interval neutrosophic set that is
defined in [2]. This definition is described below.

Let X be a space of points (objects). An interval neutro-
sophic set in X is

Ty X — [01] A
_[A:X—>[0,1] A
FA:X —F [U,]._l}

(1)

where
T4 is the truth-membership function,
I4 is the indeterminacy-membership function, and
F'4 is the false-membership function.

The operations of interval neutrosophic sets are also ap-
plied in this paper. Details of the operations can be found
in [14].

ITI. UNCERTAINTY ESTIMATION USING INTERVAL
NEUTROSOPHIC SETS AND ENSEMBLE NEURAL
NETWORKS

This paper applies GIS input data to ensemble neural net-
works for the prediction of favourability for gold deposits and
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Fig. 1. Uncertainty model based on the integration of interval neutrosophic

sets and ensemble neural network

utilizes the interval neutrosophic set to express uncertainties
in the prediction. Fig. 1 shows our proposed model. The
input feature vectors of the proposed model represent values
from co-registered cells derived from GIS data layers which
are collected and preprocessed from the Kalgoorlie region of
Western Australia. The same input data set is used in every
neural network created in this paper.

In order to predict degrees of favourability for deposits,
we apply three types of neural network architecture: feed-
forward backpropagation neural network (BPNN), general
regression neural network (GRNN), and polynomial neural
neural network (PNN) for training individual network in the
ensembles. We create two neural networks for each neural
network architecture. The first network is used to predict
the degree of favourability for deposits (truth-membership
values) and another network is used to predict the degree
of favourability for barrens (false-membership values). Both
networks have the same architecture and are applied with
the same input feature data. The difference between these
two networks is that the second network trained to predict
degrees of favourability for barrens uses the complement of
target outputs used in the first network which is trained to
predict degrees of favourability for deposits. For example,
if the target output used to train the first network is 0.1, its
complement is 0.9. The results from these two networks are
used to analyze uncertainty in the prediction. If a cell has
high truth-membership value then this cell should have low
false-membership value and vise versa. Otherwise, this cell
contains high uncertainty. Hence, the degrees of uncertainty
in the prediction or indeterminacy-membership values can
be calculated as the difference between truth-membership
and false-membership values. If the difference between truth-

3035

Authorized licensed use limited to: Murdoch University. Downloaded on June 15, 2009 at 03:22 from |IEEE Xplore. Restrictions apply.



membership and false-membership is high then the uncer-
tainty is low. In contrast, if the difference between both
values is low then the uncertainty is high.

In Fig. I, the proposed neural network ensembles contain
three components which each consists of a pair of neural
networks. The first pair is feed-forward backpropagation
neural networks (truth BPNN and falsity BPNN), The second
pair is general regression neural networks (truth GRNN
and falsity GRNN). The third pair is polynomial neural
networks (truth PNN and falsity PNN). Each pair of neural
networks is trained to predict degrees of favourability for de-
posits (truth-membership values) and degrees of favourability
for barrens (false-membership values), The indeterminacy-
membership values are calculated from the different between
truth-membership and false-membership values. Therefore,
we have three interval neutrosophic sets which are outputs
from those three pairs of neural networks, We can define
these outputs as the following.

Let X; be the set of outputs from the neural network.
In our case, we have three sets of outputs, i.e. X, X2 and
X3, representing output sets from BPNN, GRNN and PNN
respectively. Each set X ; contains the outputs from each pair
of the neural networks. The output set for BPNN is therefore
represented as Xy = {11, 12, -y T1iy oy 1 } Where 2y is
a <ell in the output from the BPNN at location 1.

Let A; be an interval neutrosophic set of X;. A; can be
defined as

A; = {z(Ta,(2),L4,(z), Fa,(2))|z € X; A
TA,- 1 X — [U, l] A
JAJ 3 X—)[Ul] A
FA} : X — 0,11},

Iy (x) =1—|T4a,(x) = Fa,(z)|

where T, is the truth (deposit) membership function, T4, is
the indeterminacy membership function, and F4, is the false
(barren) membership function. After the individual neural
network is trained and the three interval neutrosophic sets
A; are created, the next step is to combine these three sets,
Instead of using only truth membership values to predict
the favourability for gold deposits. the followings are our
proposed aggregation techniques using truth-membership,
false-membership, and indeterminacy-membership values,
1) Majority vote using T&F
For each interval neutrosophic set A;. if a cell
has truth-membership value T4,(x) greater than a
threshold value then this cell is classified as deposit,
otherwise it is classified as barren. In this paper, we
use threshold values ranging from 0.1 to 0.9 in steps
of 0.1. If a cell has false-membership value Fa,(z)
less than a threshold value then this cell is classified
as deposit, otherwise it is classified as barren, The
results calculated from the best threshold for truth-
membership values and the results calculated from the
best threshold for false-membership values are then
calculated using the logical operator and to provide
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2)

4)

the prediction results for each cell @ in each output X;.
The degree of uncertainty for each cell is expressed by
the indeterminacy-membership value, 14 (z).

After the three outputs are classified, the next step is
to combine these outputs. The majority vote is then
applied in order to aggregate the three outputs. For each
cell, if two or more outputs are classified as deposits
then the cell is deposit. Otherwise, the cell is classified
as barren. The uncertainty value for each “deposit”
cell is estimated from the average indeterminacy-
membership value for all the neural network pairs
in the ensemble that classified the input pattern as
a deposit. Likewise, uncertainty values for “barren”
cells are calculated as the average of indeterminacy-
membership values from the members of the network
pairs that gave a classification of barren.

Majority vote using T > F

This technique is more flexible than the first technique.
The threshold value is not required for the prediction.
For every cell in each interval neutrosophic set A;, if
the truth-membership value is greater than the false-
membership value (Ta,(z) > Fa,(z)) then the cell
is classified as deposit. Otherwise it is classified as
barren. The degree of uncertainty for each cell is
represented by the indeterminacy-membership value,
I AJ,(.I‘). Similar to the first technique, the majority
vote is then used to combine the three outputs and
the indeterminacy-membership values are calculated
according to the predicted cell type for each individual
outpul.

Averaging using T&F

In this technique, the three interval neutrosophic sets
Aj,j = 1,2,3 are averaged. Let O be an averaged
output map. Q = {01.02,...,0, } where o; is a cell of
the averaged output map at location i. Let Avg be an
interval neutrosophic set of the averaged output map
0. Avg can be calculated as follow

Avg = Z(Aj /3)-

j=1

If a cell has averaged truth-membership value Ta,,4(0)
greater than a threshold value then this cell is classified
as deposit, otherwise the cell is classified as barren, If a
cell has averaged false-membership value Fla,4(0) less
than a threshold value then this cell is classified as de-
posit, otherwise this cell is classified as barren. Similar
1o the first technique, the logical operator and is used
1o calculate the prediction from the results obtained
from the best threshold for both truth-membership and
false-membership values. The degree of uncertainty is
expressed by the averaged indeterminacy-membership
value Tag(0).

Averaging using T > F

In this technique, the three interval neutrosophic sets
are also averaged and the results are stored in Avg. if
the averaged truth-membership value is greater than the
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averaged false-membership value Tau,(0) > Fla,lo)
then the cell is classified as deposit. Otherwise the cell
is classified as barren. The deeree of uncertainty for
each cell is represented by the averaged indeterminacy-
membership value La.,4(0).
5) Dynamic averaging using 7'& /'

Instead of using equal weight averaging. this tech-
nigue uses dynamic weight averaging in which the
weight is the complement of the uncertainty value or
indeterminacy-membership value for each cell. Uncer-
tainty s integrated into wuth-membership and false-
membership values 10 support the confidence of the
prediction. Let YV be a dynamic averaged output map.
Y = {41400t} Where y; is a cell of dynamic
averaged output at location £ Let I be an interval
neutrosophic set of the dynamic averaged output Y. 1D
can be defined as follow

D= {y(tply). Inly). Foy)ly € Y}
where
1'p(y;)

Foly) = wilg (21) — wa P, (o) — wa T (20),

In(w)=1—|Tp(y) — Fplu) .

=T {ap) §
At =100, 3

W = _ ; = 1,2, ... 7.
' 3 - . .
Wi -1 Fayteun?t £ il

If a cell has truth-membership value 17 (y) greater than
4 Lhreshold value then this cell is classified as deposit,
otherwise the ecell is classified as barren. On the other
hand. if a cell has false-membership value Fip(y) less
than a2 threshald value then this cell is classified as
deposit, otherwise the cell is classified as harren. The
results obtained from the best threshold tor both tuth-
membership and false-membership values are then
combined using the logical operator and to provide
the prediction results. The degree of uncertainty is ex-
pressed by the indeterminacy-membership value I (y)
which is calculated as the different between truth-
membership and Lalse-membership values.

Dynamic averaging using T' > F

In this technique, an interval neutrosophic set D ig
created using the same previous technique. In erder
to predict the favourability for deposits. it the truth-
membership value is greater than the false-membership
valuc I5n(y) > Fp(y) then the cell is classified as
deposit. Otherwise the cell is classified as barren. The
degree ol uncertainty for each eell is represented by
the indeterminacy-membership value Inly).

6

—

IV. CXPERIMENTS
A. CIS data set

The data set used in this swdy was obtained from an
approximately 100 100km arca of the Archaean Yilgarn
Block, ncar Kalgoorlie, Western Australia. This data set were
preprocessed and compiled into GIS layers from a variety of
sources such as geology. geochemistry, and geophysics. We

wils, (1) | weda, (2e) | wyls, ().

used ten layers in raster format to create input feature vectors
for our model. These layers represent different variables
such as favourability of host rocks, distance 10 the nearest
regional-scale fault, and distance 1o the nearest magnetic
anocmaly. Each layer is divided into a grid of squarc cells of
100 m side. Henee, the map arca contains 1,254,000 cells.
Each cell stores a single aunribute value which 1s scaled 1o
the range [0, 1]. Tor example, a ¢ell in a layer representing
the distance 10 the nearest fault containg a value of distance
scaled 1o the range [0,1]. Each single grid cell is also
classified into deposit o barren «ell. The <ells containing
greater than 1.000 ke total contained gold are labeled as
deposits. All other cells are classified as non-deposits or
barren cells. In this paper, we use 268 cells which are
separated into 120 deposit cells and 148 barren cells. These
cells are divided into training and test data sets. We use §5
depositcells and 102 barren cells for training dat. For testing
data, we use 35 deposit cells and 46 barren cells,

B. E.\p(erimemtd mffﬁndnfﬂg}‘ wrid resadty

In this paper. two pairs of nevral networks trained using
feed-forward backpropagation neural network and general
rapression neural network are created using Matlab, A pair
of polynomial ncural networks is trained using PNN online-
software developed by Tetko et al [13]. Each pair of neural
networks iy trained (o predict degrees of favourability for
deposits and degrees of favourability for barrens which
are truth-membership T, () and false-membership Fa, (),
respectively. These two values are then used to calculate the
indeterminacy-membership values 7y, (). The three outputs
obtaincd from these three network architectures are combined
using the proposed cnsemble techniques, All results shown
in this paper are calculated from the test data sel,

Table I and Table 11 show the percentage of total correct
cells obtained from individual neural network architectures
using a range of threshold values to the truth-membership and
to the false-membership values, respectively, The best thresh-
olds 1o the truth-membership for BPNN, GRNN, and PNN
are 0.5, 0.6, and 0.5, respectively. The best thresholds to the
lalsc-membership for BPNN, GRNN, and PNN are 0.4, 0.4,
and 0.5, respectively. Table T11 shows the percentage of total
correct cells obtained from the comparison between (ruth-
membership and false-membership values T, (x) > Fa, (),
and obtained using the logical operator and to the prediction
results using the best thresheld for truth-membership and
the best thresheld for false-membership values. Table [V
shows the percentage of total correct cells obtained {rom
cqual weight averaging and dynamic weight averaging using
a range of thresheld values 1o the truth-membership values
(T" > thresheold valuesy and 1o the false-membership values
(F < threshold values).

Table V shows the classification accuracy Tor the test data
se1 using our propesed ensemble techniques including the
accuracy obtained from the existing techniques that apply
only truth-membership values and the accuracy obtained by
applying, only false-membership values. The comparison of
accuracy among these techniques shows that the accuracy
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obtained from our propesed techniques using both truth-
membership and false-membership values is similar to the
gecuracy obtained from (he existing technigues using only
truth-membership values and also similar 1o the accuracy
obtained from the techniques using only false-membership
values. In dynamic weight averaging technique, the uncer-
tainty or indeterminacy-membership values are inegrated
into the truth-membership and lalse-membership values 0
support the confidence of the prediction. This proposed
technique provides a slightly berter accuracy than the other
c¢nsemble echnigues shown in this paper. Furthermore, all
our proposed techniques ¢an represent uncertainty in the
prediction for each cell location.

Table VI shows sample outputs from ensemble of neu-
ral networks using dynamic weight averaging by consid-
ering the comparison between truth-membership and false-
membership values (In(y) > Fu(y)). Quantification of
uneertainty ¢an support the decision muking, For example,
the third row of this table contain the uncertainty value
0,2949 in which the decision maker can accept this result
with more confidence. Sometimes, uncertainty for a cell is
high. For example. the fourth row and the seventh row of this
table contain very high uncertainty values which arc 0.9473
and 0.9716, respectively. The wuth-membership and false-
membership for each of these cells are very close (ogether,
The cell at the fourth row is predicted to be a deposit which
15 correct. The cell at the seventh row 1s also predicted to be
i deposit but it is incorrect, In this case, the decision maker
can remake decision for the cells that contain high degree of
uneertainty.

TABLE I
RESULTS FUR THE TEST LATA 31T OB TAINED BY APPLYING A RANGE O
THRESHOLI ¥ALUES TOTHE TRUTI-MEN BERSHIE YALUTLS (F
INRQIVIPUAL NEURAL NETWORES

TTreshiold BPNN CORNN PN
value freomeet Wooreel  GReomeet
0.1 60,49 4371 33,00
0.2 67,90 64.20 55,02
0.3 71680 6513 6667
0.4 75,31 To.54 7407
0.5 30,25 8025 15,31
0.0 TR0 gl48 407
Qr FER T 7284 037
0.8 420 0296 00,67
0.9 3502 J6.79 62,96

W, CONCLUSIONS

In this paper, inerval neutrosophic sets are integrated
into cnsemble of neural networks to predict degrees of
favourahility for deposits and barrens. They are also used
quanufy uncertainty in the prediction. Three pairs of neural
networks arc trained using three different neural network
architectures in order to provide three interval neutresophic
sets which are then combined using our proposcd aggrogation
techniques. The three nevral network architectures used in
this paper are feed-forward backpropagation neural network,
general regression neural network, and polynomial neuril

TABLE II
BUSUTTS FOR THE TEST RATA SET OBRTAINED BY APPLYING A BANGEGF
THRESINML D VALLES TO THERE FALSE-MEMBERSHI VALUES GF
INIZVIUAL SEVRAL METWORRS

vulue Geanrect  oomeel  fcormect
0.1 36.79 56.79 AR02
0.2 §9.26 £.2.596 59.26
0.3 71.60 7284 0543
0.4 53 S48 67.90
03 7184 §0.25 6Y, 14
06 TOAT 76,54 64,20
0.7 64,20 6543 5296
08 S8.02 6420 3920
09 4938 4321 S0.62
TABLE I

RESUITTS FOR THE TEST DATA 51T OB TAINED BY AFPLYING THI-

PROPOSLED TECHNIGUES FOR INDIVIDUAL NEURAL NETWORKS

pmpusc:] EF ﬂ N CEN.Q FN 0y

wehnigue  “eorrect eomeet ¢oomet
TRF 75,31 8148 7161
T > F 8148 80.25 78,31

network, The experimental results show that our proposed
ensemble techniques provide sinmlar accuracy to other exist-
ing ensemble techniques applied in this paper. Results from
the cxperiments have not identificd any approach which is
able to provide a significant improvement over the others.
llowever, the dynamic averaging approach has a slightly
better performance. The key contribution in this swdy s
that all the proposed techniques are capable of representing
uncertainty in the prediction of favourability for each ¢¢ll
lecation, While this paper focuses only on the uncertainty in
the prediction cutput, research Is continued ©n the assessment
of uncertainty in the GIS input data prior to applying 10 the
prediction system.

TABLE IV
RESULTS FUR THE TEST DATA SET USING EQUAL WEIIHT AVERAGING
AN DYNAMIC WEIGHTT AVERAGING TECHNIQUES GBTAINE] BY
APPLYING ARANGE OF THRESHOLIY VALLESTO THE
TRUTIH-MERBERSIIECT) AND FALSE-MEMBERSHIP(F ) VALLYS

1.)yn'.|m1c 1.)'.\'num1c

Tlhyeshald dveraring waizlit waight
value (Greormect)  aveTaging  averaging
k) (rcommect)  (Yioarmect)
(T il
0. 4034 S6.749 4038 56.79
0.2 £2.96 50.26 04,2 59.26
0.3 o914 72,84 649,14 7057
0.4 T8 To.54 T 7531
LI] K25 79.01 K025 80.25
0.0 8025 72.84 8148 71,60
L T72.84 66.67 7178 62,5
0.4 4936 2020 67.50 3079
0.9 6.9 4091 36,79 46,591
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TABLE vV
CLASSIFICATION ACTURACY FOR THE TEST BATA 31T USING THE
PROFOSEL TECHNIGUES AND THE EXISTING TECHNIQUES

Deposit cell | Barren cell Total cell

Euscmwhle Techuigue (fecormecth (Secormecly  (Greormeet)
Majority voting (T 286 78,26 R0.25
Majority votung (F) 7143 86,96 R().25
Majority voung (T&F) 64.57 B6.96 7901
Mujority voling (1'>F) 8571 76.09 80.25
Averaging (T) §2.86 78,26 80,25
Averaging (T) 20,00 80,43 80.25
Averaging (T&F) KO,00 #0,43 ROL.25
Averaging (T :»F) R2.860 IR.20 80).25
Dynumic averuging (T) R0.00 826l H1.48
Drynamie averaging (F) 80,00 78.26 79.01
Dynamic averaging {T&M) 80.00 226l 51.48
Dynamic averaging (T 219 32.86 T8.26 80.2%
TABLE VI

SAMPLE OUTPLTS FROM ENSEMBLE OF NEURAL NETWORKS LSING
DY NAMIC WEIGHT AVERAGING (F' 2 £ ) PO THE TEST DATA SET

Avtuy] Predivied Truth- Fulse- Indeternmnucy
Cell Type  Coll Twpe  Membership  Membership  Membership
Toeposit Toepostt 08558 TE%3 0303
Diepowit Banren 04198 0.6762 0.7436
Deposit Daeposit 08348 0,298 0.2049
Deposit reposit 0.5674 05149 09475
Barmen Baren 0.1624 05680 0.2943
Baren Deposit 06104 04556 08452
Banen [eposit 05181 04898 09716
Burmen Bunren 0.3079 00538 06542
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