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Abstract— we develop a novel information fusion scheme 

based on topological event space, viewed as a distributive lattice. 

We discuss the advantages of topological modeling and compare 

our approach to the existing Bayesian, Dempster-Shafer, and 

Dezert-Smarandache approaches. The proposed scheme is 

described in detail and illustrated with an example of fusion of 

three sensors in the presence of missing information. 
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I. INTRODUCTION  

Classical information fusion methods utilize probability theory 
to model both individual sensor performance and the rules of 
their combination. The Dempster-Shafer theory (DST) of belief 
functions provides an alternative to classical probability by 
assigning basic probability mass to subsets of the ground set, 
which models the set of elementary events, as opposed to 
assigning to singletons in the Bayesian methods [1]. DST 
eliminates the need to assign a priori probabilities to the ground 
set. Further development of the belief function theory resulted 
in the Dezert-Smarandache theory (DSmT) [2], [3]. Bayesian 
and DST methods perform poorly in the presence of conflicting 
evidence [4] [5] [6], hence the introduction of several 
Proportional Conflict Redistribution (PCR) rules that are 
applicable to both DST and DSmT. The advantage of 
DST/DSmT over Bayesian methods comes at a price of 
computing with an exponentially larger event space - the set of 
all subsets of the ground set (the powerset). The event space of 
DSmT is even larger as it includes not only the subsets but also 
all their unions and intersections. The computational load 
increases rapidly with the size of the problem. 

This work studies information fusion and uncertainty modeling 
in topological event spaces [7], [8], [9]. One of the advantages 
of using a topological event space is its smaller size, compared 
to the Boolean event space used by Bayesian and DST 
approaches, yet still forms a closed system for event calculus.  

The topological concepts of open and closed sets, boundary 
and interior, provide richer modeling environments, which are 
suitable for rational decision making since they admit 
probability functions [10]. Topological event spaces have been 
used to model human decision making and to explain results of 
experiments involving human judgments of probabilities [9]. 
Our goal is to formulate a fusion framework based on 
topological event spaces that can be utilized in a wide variety 
of applications. An initial formulation of such a framework 
briefly reported in [11].  Here we provide detailed descriptions 

of the steps involved in implementing the system and illustrate 
a possible application of our framework to the fusion of feature 
detectors with missing information.      

The rest of this paper is organized as follows. We provide 
theoretical background on topological event spaces in Sec. II. 
Beliefs and probabilities on topological spaces are best 
explained through connection with the lattice theory, and this 
connection is the subject of Sec. III. The background on belief 
functions on Boolean event spaces and arbitrary lattices is 
covered in Sec. IV. Based on the introduced concepts, Sec. V 
describes the proposed topological fusion scheme. We consider 
the problem of classifier fusion with missing information that 
can be solved with our approach in Sec. VI.  Sec. VII provides 
the discussion of our results and future directions of our 
topological approach.   

II.  BOOLEAN AND TOPOLOGICAL EVENT SPACES 

Throughout this paper, we consider finite sets. A topological 

space, or just a topology, is an ordered pair ሺȳǡ ࣮ሻ, where ȳ is 

a set (where each element is called a point), and ࣮  is a 

collection of subsets of ȳ , such that ׎ א ࣮, ȳ א ࣮, and ࣮ is 

closed under finite intersections and arbitrary unions of its 

elements [12]. The elements of  ࣮  are called open sets. 

Suppose ܣ א ࣮Ǥ The set-theoretical complement of the subset ܣ is ൓ܣ ൌ ȳ̳A; any subset ൓ܣ that is the complement of an 

open set is called a closed set. The collection of closed sets is 

also closed under unions and intersections. It is possible for a 

set to be closed and open at the same time (clopen), or neither. 

The extreme cases of topological spaces are the discrete 

topology, which consists of all subsets of  ȳ , that is the 

powerset ʹஐ , and the indiscrete topology consisting of only 

two elements: ׎ and ȳ.  

   Designating  ȳ  to be the set of elementary events, or the 

ground set, we model the set of all possible events by the 

topology ࣮. The discrete topology corresponds to the Boolean 

event space that is used by the classical probability.  

   The events in Boolean space are closed under the operations 

of set intersection, union, and complementation. They form a 

Boolean algebra of events, which directly corresponds to 

classical propositional logic. The topological space is closed 

under union and intersection, but not under complementation. 

It corresponds to intuitionistic logic [13]. Thus, topological 

modeling allows capturing the features of intuitionistic logic, 

with the relaxation of the law of excluded middle as its 

centerpiece. Evidence negating a certain event does not 

exclude the possibility of some additional “third” event 

occurring. In addition to capturing intuitionistic logic, 
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topological spaces are also suitable for probabilistic reasoning. 

In order to consider probabilities on topological event spaces 

we need to briefly discuss the connection between topology 

and lattice theory.                       

III. LATTICE THEORY AND TOPOLOGICAL SPACES 

A comprehensive treatment of Lattice Theory can be found in 

[14] and here we only provide the basic definitions. A partial 

order on a set ܲ  is a binary relation, denoted by ൑  that is 

reflexive, antisymmetric, and transitive. Sets with partial order 

are called posets. Given a subset ܵ ك ܲ, an element ݔ א ܲ is 

an upper bound of ܵ if ሺݏ׊ א ܵሻǡ ݏ ൑  The lower bound is .ݔ

defined analogously. The least upper bound is an element ݔ  is an upper bound of ܵ , and for any other upper ݔ such that ܲא

bound ݕ  of ܵ ݔ , ൑ ݕ . The greatest lower bound is defined 

analogously.  

Given any two elements, ݔǡ ݕ א ܲ , we denote their least 

upper bound and dually, greatest lower bound, by ݔ ש ݔ and ݕ ר  .These operations are respectively called join and meet .ݕ

A partially ordered set ܲ such that join and meet exist for 

all pairs of its elements is called a lattice. The lattice is called 

complete if meet and join exist for any subset of P.  

A finite lattice always has the least element, or bottom, 

denoted by 0, and the greatest element (top), denoted by 1. An 

important operation on a lattice is that of complementation.  

For any element ܽ א ܲ, its complement is an element ܽԢ א ܲ, 

such that ܽᇱ ר ܽ ൌ Ͳ and ܽᇱ ש ܽ ൌ ͳ. Note that for an arbitrary 

element of P, its complement may not exist, or it may have 

multiple complements. A finite lattice is often visualized as a 

Hasse diagram [14], for example see Fig.1.  

A lattice is called distributive if for any lattice elements ܽǡ ܾǡ ܿ  the distributive law ܽ ר ሺܾ ש ܿሻ ൌ ሺܽ ר ܾሻ ש ሺܽ ר ܿሻ  is 

satisfied. In a distributive lattice, it is known that an element 

can have at most one complement. 

Lattice of sets is a lattice formed by a family of subsets of 

the powerset of  ȳ ,  ܲ ك ʹஐ , with the binary relation 

corresponding to set inclusion: for all Aǡ B א ȳǡ A ൑ B ֞ A Bك  and the meet and join operations correspond to the set 

theoretical intersection and union. The top element is the 

set  ȳ , and the bottom element is the empty set ׎ . Lattice 

complementation operation is just the set-theoretic 

complementation: Aᇱ ൌ ȳ̳A. 

Finite distributive lattice can be viewed as a lattice of sets, 

and this is expressed by Birkhoff’s representation theorem 

[15]. A special kind of distributive lattice is a Boolean lattice, 

where each element has a unique complement. 

Since not every element of a distributive lattice has a 

complement, a weaker notion, called pseudo-complement, is 

defined. For a lattice element ܽ א ܲ, its pseudo-complement 

is an element כܽ  א  ܲ , such that כܽ   ר ܽ ൌ Ͳ  and   ܽכ  is the 

largest such element to do so (i.e., meet ܽ to 0). It turns out 

that every element of a finite distributive lattice has a unique 

pseudo-complement; though it may not be true that  ܽכ ש ܽ ൌͳ. 

From the definitions is it intuitively clear that a topology 

can be thought of as a distributive lattice of sets. In fact, there 

is a direct correspondence between the operations of closure 

and interior of a set endowed with a topology and the 

operation of pseudo-complementation. In terms of event 

modeling, the pseudo-complement corresponds to 

intuitionistic negation, or “refutation” [7].   

Lattice theory point of view is useful due to the recent 

interest in lattice belief functions. We will discuss next the 

theory of belief functions on different types of lattice, and 

relate them to topological modeling.        

IV. BELIEF FUNCTIONS AND PROBABILITIES ON A 

LATTICE 

Dempster-Shafer theory of belief functions [1] assumes a 

finite set ȳ of possible answers to a question, referred to as the 

frame of discernment. The events correspond to subsets of ȳ, 

with their uncertainty quantified by the basic probability 

assignment, or bpa (also referred to as basic belief 

assignment, or bba), which is a function ݉ǣ ʹஐ ՜ ሾͲǡͳሿ such 

that 

 ݉ሺ׎ሻ ൌ Ͳǡ (1)  

and 

 ෍ ݉ሺܣሻ஺كஐ ൌ ͳǤ 
(2)  

 

The key idea here is that not all subsets of ȳ encode inferred 

information; some are basic events and can be assigned basic 

(elementary) probability mass. Those subsets that we assign 

non-zero ݉ሺሻ  are called focal elements. This structure is 

called a body of evidence.  Based on our discussion of lattice 

theory, the body of evidence is defined on the powerset of ȳ, 

or equivalently, on a Boolean lattice. 

A belief function ݈݁ܤǣ ʹஐ ՜ ሾͲǡͳሿ is computed from the bpa 

as follows: 

 

ሻܣሺ݈݁ܤ  ൌ ෍ ݉ሺܤሻ஻ك஺ ǡ (3)  

 

where ܣ  ك ȳ . The bpa can be recovered from the belief 

function using the following formula, 

 

 ݉ሺܣሻ ൌ ෍ሺെͳሻȁ஺̳஻ȁ݈݁ܤሺܤሻ஻ك஺ Ǥ 
(4)  

 

Thus there is a one-to-one correspondence between  ݉ 

and ݈݁ܤ. The belief functions satisfy the following properties: 

 

ሻ׎ሺ݈݁ܤ  ൌ Ͳǡ ሺȳሻ݈݁ܤ ൌ ͳǡ 
݈݁ܤ  ൭ራ ௜௡ܣ

௜ୀଵ ൱ ൒ ෍ ሺെͳሻȁூȁାଵ݈݁ܤ ൭ሩ ூא௜௜ܣ ൱ ǤூؿሼଵǡଶǤǤ௡ሽǡூஷ׎  

 

(5)  

The last property shows that belief functions are non-additive 

even in the case of two disjoined subsets ܣ and ݈݁ܤ :ܤሺܣ ሻܤ׫ ൒ ሻܣሺ݈݁ܤ ൅ ሻܤሺ݈݁ܤ , in contrast to the additivity of 

probability functions.  
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   If, and only if, the focal elements of bpa are 1-element 

subsets (“singletons”) of ȳ, does ݈݁ܤ become equivalent and 

reduces to a probability function. Thus, a classical probability 

function is a case of a belief function with bpa assigned to 

singleton elements of the Boolean lattice.  In this case, the 

function ݈݁ܤ becomes additive. 

Given two bodies of evidence with bpa’s ݉ଵand ݉ଶ  that 

need to be combined or “fused”, the conjunctive consensus is 

given by the following formula:        

 

 ݉ଵתଶሺܣሻ ൌ ෍ ݉ଵሺܤሻ݉ଶሺܥሻ஻ת஼ୀ஺ Ǥ (6)  

 

The result of (6) needs to be normalized in order to satisfy (2).  

Dividing  ݉ଵתଶ  by the total conflicting mass, K achieves 

normalization.  K is defined in (7). 

 

ܭ  ൌ ෍ ݉ଵሺܤሻ݉ଶሺܥሻ஻ת஼ୀ׎  
(7)  

 

Formulas (8) and (9) correspond to the Dempster’s rule of 
combination. The un-normalized version (6) of the Dempster’s 
rule is used in Transferable Belief Models (TBM) [16]. Other 

combination rules have been proposed as well [2], [17]. The 

rule (6) can easily be generalized for more than two bpa’s. 
   Since ݈݁ܤ is not additive in general, it is usually transformed 

into a probability function using the pignistic transformation 

[16]. Rational decisions are made based on pignistic 

probabilities, or betting changes, defined as follows, 

௠ሺܽሻݐ݁ܤ  ൌ ෍ ݉ሺܣሻȁܣȁ ǡ ܽ׊ א ȳǤሼ஺ȁ୅كஐǡ௔א஺ሽ  (8)  

    

   It turns out that the belief function framework can be 

generalized to the lattice setting [18]. For any poset ሺܲǡ ൑ሻ, 

and a function ݂ǣ ܲ ՜ Թ , the Möbius transform [19] is the 

function ݉ǣ ܲ ՜ Թ such that 

 

 ݂ሺݔሻ ൌ ෍ ݉ሺݕሻ௬ஸ௫ Ǥ 
(9)  

This function can be computed as follows: 

 

 ݉ሺݔሻ ൌ ෍ ǡݕሺߤ ሻ௬ஸ௫ݕሻ݂ሺݔ ǡ 
(10)  

using the Möbius function, defined recursively as follows: 

 

ǡݔሺߤ  ሻݕ ൌ ۔ە
ۓ ͳ ݔ ݂݅ ൌ െݕ ෍ ǡݔሺߤ ሻ௫ஸ௧ழ௬ݐ ݔ ݂݅ ൏ Ͳݕ   Ǥ (11)݁ݏ݅ݓݎ݄݁ݐ݋

 

It is easy to show that the transforms (3) and (4) between the 

belief function and the basic probability assignment are 

special cases of the Möbius transform on a Boolean lattice. 

Given a lattice ሺܲǡ ൑ሻ, a function ݈݁ܤǣ ܲ ՜ ሾͲǡͳሿ is called a 

(generalized) belief function if ݈݁ܤሺͲሻ ൌ Ͳ, ݈݁ܤሺͳሻ ൌ ͳ, ݈݁ܤ 

is strictly monotonic, and its Möbius transform is non-

negative [20]. When a lattice admits a belief function, we can 

define a bpa on the lattice as well. 

   It has been shown that belief functions always exist on a 

lattice [18]. It has been further demonstrated in [8] and [21] 

that distributive lattices admit probability functions. In fact, in 

case when non-zero bpa is assigned only to the join-

irreducible elements (elements that cannot be represented as 

joins of other lattice elements) of the distributive lattice, the 

resulting belief function is a probability function. It is the 

existence of probability functions on distributive lattices that 

enables our fusion scheme, as we will show in the next 

section.  

V. FUSION SCHEME ON TOPOLOGICAL SPACE  

Consider a network of sensors used to perform automatic 

target detection and classification. The finite ground set ȳ is 

the set of all possible targets. The space of possible events for 

Bayesian and DST frameworks is of course ʹஐ.  

   We assume that each of our sensors ܵ௦ǡ ݏ ൌ ͳǤ Ǥ ܵǡ  can 

provide evidence supporting a certain subset,  ܺ௦ ك ȳ , and 

evidence supporting another subset ܺ௦כ ك ȳ , such that ܺ௦ ת ܺ௦כ ൌ ׎ .  Such situation can occur when a sensor is 

trained to detect a certain feature of the target.  The detection 

of this feature provides support for a certain subset of 

targets, ܺ௦. The absence of this feature means that the target is 

not in  ܺ௦ .  However, the absence of the feature can only 

eliminate some of the remaining possibilities; in other words, 

it only supports a certain subset ܺ ௦כ ك ൓ܺ௦. 

   The set ሼܺ௦ǡ ܺ௦כሽǡ ݏ ൌ ͳǤ Ǥ ܵ is used as the set of generators for 

the topology  ࣮ . The topology is generated by finding all 

possible joins of all possible meets of the generating set. This 

is how our sensor network gives rise to a topological event 

space.    

     TABLE 1 

Multi-sensor fusion in Topological Event Space 

A. Given the set of possible events ȳ, and the sensor network, 
generate open set topology ࣮  

B. At each time step 

    1. Transform evidence coming from each sensor into bpa on ࣮  

    2. Fuse all bpa’s from all sensors on ࣮ , with conflict 
resolution 

    3. Transform the resulting bpa’s into probability distribution 
by “Flow-Down” procedure 

    4. Compute probability for each singleton element of ȳ 

    5. Make target class declaration decision based on MAP 
estimates of target class in ȳ 

 

The major steps in the fusion scheme are given in Table 1. 

The topology is generated off line, based on the knowledge of 

the sensors. At each time step, the evidence comes in from 
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each sensor in the form of a posteriori probability distribution 

over the set of possible targets, which is our case is just two 

numbers: PୱሺXୱሻǡ PୱሺXୱכሻ. These numbers are transformed into 

the bpa’s, ݉௦. The fusion of ܵ bpa’s is performed to result in 

the fused bpa,  ݉ . The resulting bpa,  ݉ , may have focal 

elements that are not join-irreducible, making the 

corresponding belief function non-additive. In order to ensure 

that the result of fusion is a probability function, we employ 

the “flow-down” procedure [11] that reassigns probability 

mass to only join-irreducible sets. 

   Once the “flow-down” is completed, the resulting belief 
function is used to make target class decision based on the 

maximum a posteriori probability. The detailed steps of bpa 

assignment procedure are given in Table 2.  The details of our 

fusion algorithm are given in Table 3. The flow-down 

procedure is outlined in Table 4, and the decision procedure is 

given in Table 5. We will discuss these procedures next.      

TABLE 2 

Assignment of bpa in Topological Event Space 

Given:  ࣮ – open set topology generated by ܵ-sensor network ௦ܲሺܺ௦ሻǡ ௦ܲሺܺ௦כሻ – posterior probabilities of the declared target type ܺ௦ 

(and its refutation  ܺ௦כ) , for each sensor in the network, ݏ ൌ ͳǤ Ǥ ܵ.  

Initialize: empty bpa’s for ࣮ : ݉௦ 

Returns: ݉௦,  ݏ ൌ ͳǤ Ǥ ܵ 

1. For each sensor ݏ 

2. CASE 1:  ௦ܲሺܺ௦ሻ ൒ ௦ܲሺܺ௦כሻ, evidence to the set with the feature  

3.   ݉௦ሺܺ௦ሻ ൌ ௦ܲሺܺ௦ሻ 

4.   ݉௦ሺȳሻ ൌ ௦ܲሺܺ௦כሻ     to ignorance 

5. CASE 2: ௦ܲሺܺ௦ሻ ൐ ௦ܲሺܺ௦כሻ, support the set without the feature 

6. ݉௦ሺܺ௦כሻ ൌ ௦ܲሺܺ௦כሻ 

7.  ݉௦ሺȳሻ ൌ ௦ܲሺܺ௦ሻ     to ignorance 

 

TABLE 3 

Fusion of bpa’s in Topological Event Space, with conflict 

redistribution 

Given:  ࣮ –topological event space generated by ܵ-sensor network ݉௦- bpa obtained for each sensor in the network, ݏ ൌ ͳǤ Ǥ ܵ. 

Initialize: empty bpa’s for ࣮, ݉ 

Returns: ݉ 

1. Form all possible S-intersections of the subsets of ࣮ with non-

empty bpa’s: ܺ ൌ ځ ܺ௦௦ୀଵǤǤௌ , for all ܺ௦ א ࣮ǡ ݉௦ሺܺ௦ሻ ൐ Ͳ 

2. For each ܺ  

3.   compute conjunctive mass, ܭ௑ ൌ ς ݉௦ሺܺ௦ሻ௦   

4.   IF ܺ ്  ׎

5.   THEN ݉ሺܺሻ ൌ ݉ሺܺሻ ൅  ௑ܭ

6.   ELSE   ( the mass ܭ௑ is a partial conflicting mass ) 

7.   Proportionally distribute ܭ௑  to the non-empty sets in the       

current partial conflict ݉ሺܺ௦ሻ ൌ ݉ሺܺ௦ሻ ൅ ௑ܭ ௠ೞሺ௑ೞሻσ ௠ೞᇲሺ௑ೞᇲሻ೉ೞᇲಯ׎   

 

The bpa assignment procedure in Table 2 makes a decision 

whether to support the set  Xୱ  or the set Xୱכ . The supporting 

mass is assigned to the corresponding set, and the remaining 

mass is assigned to ȳ, which is the total ignorance. 

   The fusion procedure is the next major step. Table 3 outlines 

the procedure for a set of bpa’s on  ࣮. 

   Conflict resolution is a major difficulty to be overcome in 

any fusion procedure. Conflict occurs when two or more 

sensors assign supporting mass to subsets that are disjoint. The 

resulting mass is assigned to the empty set, which means that 

it supports an impossible event. Most fusion rules within DST 

and DSmT frameworks employ methodologies to redistribute 

the mass of conflict to other subsets. For example, the 

classical DST rule redistributes the total conflicting mass to all 

focal elements, by normalizing the mass assigned to the non-

empty focal elements. Other fusion rules redistribute each 

conflicting mass separately.  

   Our procedure is modeled after the PCR6 [3], which show 

good performance in problems with high conflict [22]. The 

procedure starts by computing conjunctive consensus, defined 

in (12), which is a generalization of (6) for S sources. 

 

ሺܺሻת݉  ൌ ෍ ݉ଵሺ ଵܺሻ ǥ ݉ௌሺ ௌܺሻ௑భתǥת௑ೄୀ௑ ǡ ܺ׊ א ࣮Ǥ 
(12)  

 

This computation, defined for Boolean event space is still 

possible since ࣮  is closed under set intersections. The mass ݉תሺܺሻ  is assigned to ܺ . Some of the summands in (10) 

correspond to ܺ ൌ  .These are referred to as partial conflicts .׎

The mass of each partial conflict is redistributed to the 

conflicting subsets as prescribed by PCR6 (step 7 in Table 3).  

TABLE 4 

Flow-Down Procedure 

Given:  ࣮ –topological event space generated by ܵ-sensor network ݉ – bpa on ࣮ 

Initialize: ܺ ൌ ȳ 

Returns: ݉ 
1. Make a list of all children of ܺ, ࣝሺܺሻ 

2. IF ȁࣝሺܺሻȁ ൐ ͳ   ( this is not a join-irreducible element) 

3. THEN ݉ሺݕሻ ൌ ݉ሺݕሻ ൅ ௠ሺ௑ሻȁࣝሺ௑ሻȁ ǡ ݕ׊ א  ࣝሺܺሻ 

4.           ݉ሺܺሻ ൌ Ͳ 

5. Recur on each child element ݕ א  ࣝሺܺሻ 

 

Once the fused mass assignment is computed, the flow-down 

procedure is applied to redistribute the bpa to the join-

irreducible elements of the topology. The join-irreducible 

elements are those that cannot be represented as joins of some 

other lattice elements. For example, in the lattice in Fig. 2, the 

join-irreducible elements are  ሼܿሽ , ሼ݀ሽ , ሼܽǡ ܿሽ , ሼܾǡ ܿǡ ݀ሽ . The 

procedure in Table 4 starts at the top lattice element and recurs 

on its child elements. The probability mass of any element that 

has more than one child is redistributed to its children. This 

procedure requires only one pass through the lattice, and it can 

be shown that the values of the obtained belief functions are 

located within the belief and plausibility intervals given by the 

original bpa [11].  
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   The decision step requires computation of probability for 

each element of ȳ. Denote by Զ the belief function computed 

from ݉ using (7). Since we are operating on the lattice ࣮, this 

function is only defined on the singletons that belong to ࣮. In 

order to compute Զ for the singletons that are not included in ࣮ , we take advantage of the fact that Զ  is a probability 

function. For any ݔ א ȳǡ ݔ ב ࣮,  such that  ൓ݔ א ࣮, we can 

write  

 Զሺݔሻ ൌ ͳ െ Զሺ൓ݔሻǤ (13)  

This way we can extend the probability function to the 

entire ȳ and subsequently to the entire Boolean lattice ʹஐ. The 

decision is made based on the maximum of  Զ.  

   In the next section we will illustrate the presented fusion 

scheme with an example involving a sensor network with 

three sensors and four possible targets. 

 

VI. EXAMPLE SCENARIO FOR SENSOR FUSION  

Consider the following scenario. Three sensors are trained to 
detects certain target features, denoted by ଵ݂ǡ ଶ݂ǡ ଷ݂. We assume 
that targets can belong to one of the four classes: ܽǡ ܾǡ ܿǡ ݀. We 
have a database containing previously observed targets, 
indicating target class and which target has which features, as 
shown in Table 5. Some of the values in this database are 
missing, as indicated by question marks.     

TABLE 5 

Object ID ଵ݂ ଶ݂ ଷ݂ Class 

1 0 ? 1 ܽ 

2 ? 1 ? ܾ 

3 0 ? 1 ܽ 

4 1 1 0 ݀ 

5 ? 1 ? ܾ 

6 0 1 1 ܿ 

7 0 1 1 ܿ 

… … … … … 

 
The missing values could mean that no decision was made on 
the feature being present or absent for a particular object. 
Suppose that grouping the data by class, we obtain the 
following table. 

TABLE 6 

Class ଵ݂ ଶ݂ ଷ݂ ܽ 0 1 ? ܾ ? ? 1 ܿ 0 1 1 ݀ 1 0 1 

 
As we can see, for some classes, the values of certain features 
are missing. This means, for instance, that detecting feature ଵ݂ 
can provide support for class d, and not detecting it can provide 
support for classes a and c, but will not provide any 
information about class b. 
   The classes supported by each sensor are summarized in 
Table 7. 

TABLE 7 

Sensor Positive 
Class ሺܺ௦ሻ 

Negative 
Class ሺܺ௦כሻ 

Unknown 
Class ܵଵ ሼ݀ሽ ሼܽǡ ܿሽ ሼܾሽ ܵଶ ሼܽǡ ܿሽ ሼ݀ሽ ׎ ܵଷ ሼܾǡ ܿǡ ݀ሽ ׎ ሼܽሽ 

 
We will use the positive and negative sets in Table 7 to 
generate a topology. This is done by forming all possible 
intersections of the sets and then finding all possible unions. 
The resulting topology is shown in Fig. 1. 

 
Figure 1 Topological event space corresponding to the sensor configuration in 

Table 7. 

Each sensor serves as a binary classifier, declaring the presence 
or absence of the feature it’s been trained on. Such classifier is 
characterized by a confusion matrixܥ ௙ሺܦȁܶሻ, given in (14). 

Here D stands for classifier declaration, and T stands for the 
true presence of the feature.  
 

௙ܥ  ؠ ൬ ܲሺܦ ൌ ݂ȁܶ ൌ ݂ሻ ܲሺܦ ൌ ൓݂ȁܶ ൌ ݂ሻܲሺܦ ൌ ݂ȁܶ ൌ ൓݂ሻ ܲሺܦ ൌ ൓݂ȁܶ ൌ ൓݂ሻ൰ 

 
(14)  

Each row in this matrix is a conditional probability distribution 
of the sensor declaration, conditioned on the presence and 
absence of the feature. We suppose that feature detector is 
designed and tested using Bayesian methods, which are 
optimal when there is no missing information. Using a priori 
distribution on the feature, ሺܲሺ݂ሻǡ ܲሺ൓݂ሻሻ , the following a 
posteriori probabilities of the feature are computed. 
 

 ௙ܲሺܶ ൌ ݂ȁܦ ൌ ݂ሻ ൌ ܲሺܦ ൌ ݂ȁܶ ൌ ݂ሻܲሺ݂ሻσ ܲሺܦ ൌ ݂ȁܶᇱ ൌ ݂ሻܲሺ݂ሻ்ᇲ
௙ܲሺܶ ൌ ൓݂ȁܦ ൌ ൓݂ሻ ൌ ܲሺܦ ൌ ൓݂ȁܶ ൌ ൓݂ሻܲሺ൓݂ሻσ ܲሺܦ ൌ ൓݂ȁܶᇱ ൌ ൓݂ሻܲሺ൓݂ሻ்ᇲ

Ǥ (15)  

 
The probabilities in (15) can be used as the source of the mass 
of evidence supporting certain subsets of our event space.  For 
our example, we arbitrarily chose the following numbers for 
the posterior feature probabilities supporting the positive and 
the negative classes. 

TABLE 8 

Sensor ܲሺܺ௦ሻ ܲሺܺ௦כሻ ܵଵ 0.9 0.6 ܵଶ 0.9 0.6 ܵଷ 0.9 0.6 
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Consider a case where the true target class is c. The sensors 
will provide the following support: ଵܵ  to ሼܽǡ ܿሽ, which is its 
negative clsss,  ܵଶ  to ሼܽǡ ܿሽ  – its positive class, and  ܵଷ  to ሼܾǡ ܿǡ ݀ሽ. The bpa’s and the results of computations are shown 
in Table 9. 
 

The first three rows show the bpa’s assigned by individual 
sensors. The next row shows the fused bpa ݉.  We computed 
the belief and plausibility functions, ९ॱॷ and Զॷ, in rows five 
and six. Row seven shows ݉௙, which is the bpa obtained after 

the flow-down procedure. Row eight and nine are the belief 
and plausibility functions corresponding to  ݉௙. The last two 

rows show the pignistic probabilities (8) corresponding to ݉ 
and ݉௙.  

   The probability Զ  has been extended to sets ܽ  and ܾ 
according to (13).  As we can see, the maximum probability 
corresponds to class ܿ, which is the correct answer. 
  

Table 10 shows the computations for true target class ܾ . 
Individual sensors assign support as shown in the first three 
rows of the table. The rest of the numbers is computed in the 
same way as in Table 9. We see that the decision based on the 
maximum probability Զ is correct. Interestingly, the decision 
based on the maximum pignistic probability is incorrect in this 
case. 
  Observe that the values of Զ are always within the interval of 
the corresponding values of ९ॱॷ and Զॷ , meaning that the 

flow-down procedure left the probability values within the 
original uncertainty interval. 
 
 

VII. DISCUSSION AND CONCLUSION 

This work considered topological event space modeling. The 

features of topological event spaces that are useful for 

probabilistic reasoning include being closed under unions and 

intersections, and the existence of probability functions, as 

shown in [20], [21]. The topological space can be significantly 

smaller than the corresponding Boolean space decreasing 

computational complexity. Finally, the set of topologies forms 

a lattice, which offers a potential principled way of fusing 

multiple event spaces, as proposed in [11]. 

   This approach was originally applied to cognitive modeling, 

in particular to model the human judgment of probability, as 

described in [9]. There, the open sets of topological space 

represent easily identifiable, or clear, instances of possible 

objects. The borders represent those instances that are not 

clear and may be ambiguous. 

   Topological event space modeling replaces the traditional 

classical logic utilized in probabilistic reasoning with 

intuitionistic logic. The primary feature of such logic is the 

TABLE 9 FUSION OF BPA’S EXAMPE, THE TRUE TARGET CLASS IS ܿ (ZERO VALUES NOT SHOWN) 

      0.1739 0.6566 0.0636 0.1059  ࢌ࢚ࢋ࡮      0.1735 0.6552 0.0643 0.107  ࢚ࢋ࡮ 1 1 1 1 0.8897 0.3011 0.8897    ࢌԶ  0.2118 0.1908 0.4871 0.1103 0.6989 0.5973 0.8092 0.7882 1 Զॷ  0.1908 0  0.2118 0.1103 0.4871    ࢌ࢓ ९ॱॷ    0.486 0.1092 0.6957 0.5952 0.8049 0.7817 1 Զॷ    0.8908 0.3043 0.8908 1 1 1 1 0.0086 0.1865   0.2097 0.1092 0.486    ࢓ ૜         0.9 0.1࢓ ૛      0.9    0.1࢓ ૚     0.4     0.6࢓ ષ ࢊࢉ࢈ ࢊࢉࢇ ࢊࢉ ࢉࢇ ࢊ ࢉ ࢈ ࢇ ׎ 

TABLE 10 FUSION OF BPA’S EXAMPE, THE TRUE TARGET CLASS IS ܾ (ZERO VALUES NOT SHOWN) 

      0.4254 0.3976 0.1397 0.0372  ࢌ࢚ࢋ࡮      0.4238 0.3914 0.1429 0.0419  ࢚ࢋ࡮ 1 1 1 1 0.7143 0.7048 0.7143    ࢌԶ  0.0744 0.4191 0.2207 0.2857 0.2952 0.5064 0.5809 0.9256 1 Զॷ 0 0.4191 0  0.0744 0.2857 0.2207    ࢌ࢓ ९ॱॷ    0.216 0.281 0.281 0.497 0.562 0.8972 1 Զॷ    0.719 0.719 0.719 1 1 1 1 0.0378 0.4002 0 0 0.065 0.281 0.216    ࢓ ૜    0 0 0 0 0 0.9 0.1࢓ ૛    0 0 0.4 0 0 0 0.6࢓ ૚    0 0.4 0 0 0 0 0.6࢓ ષ ࢊࢉ࢈ ࢊࢉࢇ ࢊࢉ ࢉࢇ ࢊ ࢉ ࢈ ࢇ ׎ 
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impossibility to rely on the law of excluded middle. 

Statements can be proved based only on supporting evidence.  

   We investigate the applicability of topological event spaces 

in general fusion scenarios. We conjecture that situations 

where topological modeling and intuitionistic logic are 

applicable may arise in practical scenarios, such as the 

example in Sec. VI. In general, topological space allows 

distinguishing between known and unknown portions of the 

event space.  The framework we are working towards will 

allow principled reasoning within the open sets, which is the 

known part of the event space. It will also allow deciding 

when the observed event is likely to be outside of the known, 

which is on the border of the topology. Such capability will be 

useful in environments where it is important to distinguish 

decisions based with high confidence from those with low 

confidence. In dynamic environments, see for example [23], 

the system could treat the events on the border as less reliable 

and requiring more observations. 

   We proposed a procedure for basic probability mass 

assignment and subsequent fusion. Preliminary results 

presented in this paper demonstrate that the proposed 

procedure results in probability function representing the 

fused bodies of evidence, and leads to correct decision 

making. 

     Although the initial results are encouraging, there are many 

unanswered questions that will be addressed in the future 

research. Here are the most immediate directions. 

 

1.  The current bpa assignment procedure may not be optimal 

in the sense of providing the best possible decision given the 

mixture of known and missing information for the problem at 

hand.  For example, we may be required to introduce more 

sophisticated assignment that accounts for the relative size of 

missing vs. known information. 

 

2.  The current “flow-down” procedure that transforms the 
fused bpa into a join-irreducible assignment may not be 

optimal either. We may have to introduce certain weighting 

factors for mass reassignment, depending, for example, on the 

structure of the topology. 

 

3.  The current conflict resolution approach is essentially the 

PCR6 rule adapted to topological event space. PCR6 

demonstrated good performance in recent studies; however it 

may have to be further modified for topological spaces. 

 

4. Further studies need to be performed with various 

topologies, larger number of sensors and possible targets. 

 

5.  The proposed methodology need to eventually be tested on 

real world data. 

 

6. The longer term goal of this research is to move toward the 

hierarchical scheme where multiple topologies are fused using 

the lattice of topologies.  This will allow endowment of sensor 

network with a measure of reliability in the form of belief 

functions defined on the lattice of topologies, as discussed in 

[11].   
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