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Abstract. In 1995 Smarandache introduced the concept of 

neutrosophic set which is a mathematical tool for handling 

problems involving imprecise, indeterminacy and inconsistent 

data. In 2013 Maji introduced the concept of neutrosophic soft 

set theory as a general mathematical tool for dealing with 

uncertainty. In this paper we define the notion of a mapping on 

classes where the neutrosophic soft classes are collections of 

neutrosophic soft set. We also define and study the properties of 

neutrosophic soft images and neutrosophic soft inverse images of 

neutrosophic soft sets. 

  

 

Keywords: soft set, fuzzy soft set, neutrosophic soft set, neutrosophic soft classes, mapping on neutrosophic soft classes, 

neutrosophic soft images, neutrosophic soft inverse images.  
.

 

1 Introduction  

Most of the problems in engineering, medical science, 

economics, environments etc. have various uncertainties. 

in 1995, Smarandache talked for the first time about 

neutrosophy and in 1999 and 2005 [15, 16] he initiated the 

theory of neutrosophic set as a new mathematical tool for 

handling problems involving imprecise, indeterminacy, 

and inconsistent data. Molodtsov [8] initiated the concept 

of soft set theory as a mathematical tool for dealing with 

uncertainties. Chen et al. [7] and Maji et al. [11, 9] studied 

some different operations and application of soft sets. 

Furthermore Maji et al. [10] presented the definition of 

fuzzy soft set and Roy et al. [12] presented the applications 

of this notion to decision making problems. Alkhazaleh et 

al. [4] generalized the concept of fuzzy soft set to 

neutrosophic soft set and they gave some applications of 

this concept in decision making and medical diagnosis. 

They also introduced the concept of fuzzy parameterized 

interval-valued fuzzy soft set [3], where the mapping is 

defined from the fuzzy set parameters to the interval-

valued fuzzy subsets of the universal set, and gave an 

application of this concept in decision making. Alkhazaleh 

and Salleh [2] introduced the concept of soft expert sets 

where the user can know the opinion of all experts in one 

model and gave an application of this concept in decision 

making problem. As a generalization of Molodtsov’s soft 

set, Alkhazaleh et al. [5] presented the definition of a soft 

multiset and its basic operations such as complement, 

union and intersection. In 2012 Alkhazaleh and Salleh [6] 

introduced the concept of fuzzy soft multiset as a 

combination of soft multiset and fuzzy set and studied its 

properties and operations. They presented the applications 

of this concept to decision making problems. In 2012 

Salleh et al. [1] introduced the notion of 

multiparameterized soft set and studied its properties. In 

2010 Kharal and Ahmad [14] introduced the notion of 

mapping on soft classes where the soft classes are 

collections of soft sets. They also defined and studied the 

properties of soft images and soft inverse images of soft 

sets and gave the application of this mapping in medical 

diagnosis. They defined the notion of a mapping on classes 

of fuzzy soft sets. They also defined and studied the 

properties of fuzzy soft images and fuzzy soft inverse 

images of fuzzy soft sets (see [13]). In 2009 Bhowmik and 

Pal [18] studied the concept of intuitionistic neutrosophic 

set, and Maji [17] introduced neutrosophic soft set, 

established its application in decision making, and thus 

opened a new direction, new path of thinking to engineers, 

mathematicians, computer scientists and many others in 

various tests. In 2013 Said and Smarandache [19] defined 

the concept of intuitionistic neutrosophic soft set and 

introduced some operations on intuitionistic neutrosophic 

soft set and some properties of this concept have been 

established. In this paper we define the notion of a 

mapping on classes where the neutrosophic soft classes are 

collections of neutrosophic soft set. We also define and 

study the properties of neutrosophic soft images and 

neutrosophic soft inverse images of neutrosophic soft sets. 

2 Preliminaries 

In this section, we recall some basic notions in 

neutrosophic set theory, soft set theory and neutrosophic 
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 soft set theory . Smarandache defined neutrosophic set in 

the following way. 

 

Definition 2.1 [15] A neutrosophic set A  on the universe 

of discourse X  is defined as ={< , ( ), ( ), ( ) >, }A A AA x T x I x F x x X  

where T , I , : ] 0,1 [F X    and 0 ( ) ( ) ( ) 3 .A A AT x I x F x       

 

 Smarandache explained his concept as follows: 

"for example, neutrosophic logic is a generalization of the 

fuzzy logic. In neutrosophic logic a proposition is T true , 

I indeterminate , and F false . For example, let’s analyze the 

following proposition: "Pakistan will win against India in 

the next soccer game". This proposition can be (0.6,0.3,0.1)  

which means that there is possibility of 60%   that Pakistan 

wins, 30%   that Pakistan has a tie game, and 10%   that 

Pakistan looses in the next game vs. India." 

 Molodtsov defined soft set in the following way. 

Let U  be a universe and E  be a set of parameters. Let ( )P U  

denote the power set of U  and A E .  

 

Definition 2.2 [8] A pair  ,F A  is called a soft set over ,U  

where F  is a mapping 

 : .F A P U  

In other words, a soft set over U  is a parameterized family 

of subsets of the universe .U  For  ,A F   may be 

considered as the set of  -approximate elements of the 

soft set  ,F A .  

  

Definition 2.3 [17] Let U  be an initial universe set and E  

be a set of parameters. Consider A E . Let ( )P U  denotes 

the set of all neutrosophic sets of U . The collection ( , )F A  is 

termed to be the neutrosophic soft set (NSS in short) over 

U , where F  is a mapping given by : ( )F A P U .  

  

Example 2.1 Suppose that  1 2 3= , ,U c c c  is the set of color 

cloths under consideration,  1 2 3= , ,A e e e  is the set of 

parameters, where 1e  stands for the parameter 

‘color‘ which consists of red, green and blue, 2e  stands for 

the parameter ‘ingredient‘ which is made from wool, 

cotton and acrylic, and 3e  stands for the parameter 

‘price‘ which can be various: high, medium and low. We 

define neutrosophic soft set as follows:  

    1 1 2 3= < ,0.4,0.2,0.3 >,< ,0.7,0.3,0.4 >,< ,0.5,0.2,0.2 >F e c c c , 

    2 1 2 3= < ,0.6,0.2,0.6 >,< ,0.9,0.4,0.1>,< ,0.4,0.3,0.3 >F e c c c , 

    3 1 2 3= < ,0.3,0.3,0.7 >,< ,0.7,0.2,0.4 >,< ,0.5,0.6,0.4 >F e c c c . 

 

Definition 2.4 [17] Let ( , )F A  and ( , )G B  be two 

neutrosophic soft sets over the common universe U . ( ,F A ) 

is said to be neutrosophic soft subset of ( ,G B ) if A B , and 

( )( ) ( )( )T e x T e x
F G

 , ( )( ) ( )( )F GI e x I e x , ( )( ) ( )( )F GF e x F e x , , .e A x U    

We denote it by ( , ) ( , ).F A G B  ( , )F A  is said to be 

neutrosophic soft super set of ( , )G B  if ( , )G B  is a 

neutrosophic soft subset of ( , )F A . We denote it by 

( , ) ( , ).F A G B   

  

Definition 2.5 [17] Let ( , )H A  and ( , )G B  be two NSSs over 

the common universe U . Then the union of ( , )H A  and ( , )G B  

is denoted by `( , ) ( , )`H A G B  and is defined by 

( , ) ( , ) = ( , )H A G B K C , where =C A B  and the truth-

membership, indeterminacy-membership and falsity-

membership of ( , )K C  are defined as follows:  

 ( )( ) = ( )( ), ifK HT e m T e m e A B  , 

 

 = ( )( ), ifGT e m e B A  , 

 = ( ( )( ), ( )( )), if .H Gmax T e m T e m e A B   

 ( )( ) = ( )( ), ifK HI e m I e m e A B  , 

 

 = ( )( ), ifGI e m e B A  , 

 

 
( )( ) ( )( ))

= , if .
2

H GI e m I e m
e A B


   

 

 ( )( ) = ( )( ), ifK HF e m F e m e A B  , 

 

 = ( )( ), ifGF e m e B A  , 

 = ( ( )( ), ( )( )), if .H Gmin F e m F e m e A B   

 

Definition 2.6 [17] Let ( , )H A  and ( , )G B  be two NSSs over 

the common universe U . Then the intersection of ( , )H A  

and ( , )G B  is denoted by `( , ) ( , )`H A G B  and is defined by 

( , ) ( , ) = ( , )H A G B K C , where =C A B  and the truth-

membership, indeterminacy-membership and falsity-

membership of ( , )K C  are as follows:  

 

 ( )( ) = ( ( )( ), ( )( ))K H GT e m min T e m T e m , 

 

 
( )( ) ( )( ))

( )( ) =
2

H G
K

I e m I e m
I e m


, 

 
 ( )( ) = ( ( )( ), ( )( )), .K H GF e m max F e m F e m e C   

  

Definition 2.7 [17] Let ( , )H A  and ( , )G B  be two NSSs over 

the common universe U . Then the ‘AND‘ operation on 

them is denoted by `( , ) ( , )`H A G B  and is defined by 

( , ) ( , ) = ( , )H A G B K A B , where the truth-membership, 

indeterminacy-membership and falsity-membership of 

( , )K A B  are as follows:  

 ( , )( ) = ( ( )( ), ( )( ))K H GT m min T m T m    , 

 

 
( )( ) ( )( ))

( , )( ) =
2

H G
K

I m I m
I m

 
 


 and  



Neutrosophic Sets and Systems, Vol. 1, 2013 5 

 

 

 Shawkat Alkhazaleh and Emad Marei, Mappings on Neutrosophic Soft Classes 

 ( , )( ) = ( ( )( ), ( )( )), , .K H GF m max F m F m A B          

 

Definition 2.8 [17] Let ( , )H A  and ( , )G B  be two NSSs over 

the common universe U . Then the ‘OR‘ operation on them 

is denoted by `( , ) ( , )`H A G B  and is defined by 

( , ) ( , ) = ( , )H A G B O A B , where the truth-membership, 

indeterminacy-membership and falsity-membership of 

( , )O A B  are as follows:  

 

 ( , )( ) = ( ( )( ), ( )( ))O H GT m max T m T m    , 

 
( )( ) ( )( ))

( , )( ) =
2

H G
O

I m I m
I m

 
 


 

 and  
 ( , )( ) = ( ( )( ), ( )( )), , .O H GF m min F m F m A B          

 

3  Mapping on Neutrosophic Soft Classes  

 In this section, we introduce the notion of 

mapping on neutrosophic soft classes. Neutrosophic soft 

classes are collections of neutrosophic soft sets. We also 

define and study the properties of neutrosophic soft images 

and neutrosophic soft inverse images of neutrosophic soft 

sets, and support them with example and theorems.  

 

Definition 3.1 Let X  be a universe and E  be a set of 

parameters. Then the collection of all neutrosophic soft 

sets over X  with parameters from E  is called a 

neutrosophic soft class and is denoted as  ,X E


.  

   

Definition 3.2 Let  ,X E


 and  , 'Y E


 be neutrosophic soft 

classes. Let :r X Y  and : 's E E  be mappings. Then a 

mapping    : , , 'f X E Y E


 is defined as follows: 

 

 For a neutrosophic soft set  ,F A  in  ,X E


,  ,f F A  is a 

neutrosophic soft set in  , 'Y E


 obtained as follows: 

  

   

 

 

   

 

1

1 1

,

, ,

0,0,0 .

x r y

F

f F A y if r y and s A

otherwise





 



 

  
  
  

 


   






 

 

For   's E E   , y Y  and  1s A    .  

 

 ,f F A  is called a neutrosophic soft image of the 

neutrosophic soft set  ,F A .  

Definition 3.3 Let  ,X E


 and  , 'Y E


 be neutrosophic soft 

classes. Let :r X Y  and : 's E E  be mappings. Then a 

mapping    1 : , ,'f Y E X E 
 

 is defined as follows: 

 For a neutrosophic soft set  ,G B  in  , 'Y E


,  1 ,f G B  is a 

neutrosophic soft set in  ,X E


 obtained as follows:  

   

       

 1

, ,

, = 0,0,0 .

G s r x if s B

f G B x otherwise

 



 






 

For  1s B E    and x X .  1 ,f G B  is called a 

neutrosophic soft inverse image of the neutrosophic soft 

set  ,G B .  

   

Example 3.1 Let 1 2 3={ , , }X x x x , 1 2 3={ , , }Y y y y  and let 

 1 2 3= , ,E e e e  and  1 2 3= , ,' ' ' 'E e e e . Suppose that  ,X E


 and  , 'Y E


 

are neutrosophic soft classes. Define :r X Y  and : 's E E  

as follows:   

 1 1( ) =r x y , 2 3( ) =r x y , 3 3( ) = ,r x y  

 1 1( ) = 's e e , 2 3( ) = 's e e , 3 2( ) = .'s e e  

 

 Let ( , )F A  and ( , )G B  be two neutrosophic soft sets 

over X  and Y  respectively such that 

 

    1 1 2 3, ={ , < ,0.4,0.2,0.3 >,< ,0.7,0.3,0.4 >,< ,0.5,0.2,0.2 > ,F A e x x x  

   2 1 2 3, < ,0.2,0.2,0.7 >,< ,0.3,0.1,0.8 >,< ,0.2,0.3,0.6 > ,e x x x  

   3 1 2 3, < ,0.8,0.2,0.1>,< ,0.9,0.1,0.1>,< ,0.1,0.4,0.5 > }e x x x , 

 

    1 1 2 3, ={ , < ,0.2,0.4,0.5 >,< ,0.1,0.2,0.6 >,< ,0.2,0.5,0.3 > ,'G B e y y y  

   2 1 2 3, < ,0.8,0.1,0.1>,< ,0.5,0.5,0.5 >,< ,0.3,0.4,0.4 > ,'e y y y  

   3 1 2 3, < ,0.7,0.3,0.3 >,< ,0.9,0.2,0.1>,< ,0.8,0.2,0.1> }'e y y y , 

 

Then we define a mapping    : , , 'f X E Y E


 as follows: 

For a neutrosophic soft set  ,F A  in  ,X E


,  ,f F A  is a 

neutrosophic soft set in  , 'Y E


 and is obtained as follows: 

 

 

    
 

 1 1

1
1

, ='

x r y

f F A e y F







 
  
  
  
  

 

   
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  

{ } { }
1 1

=

x x e

F





 

  
  
  
  

  

   

  

  1 2 3

{ }
1

= ( < ,0.4,0.2,0.3 >,< ,0.7,0.3,0.4 >,< ,0.5,0.2,0.2 > )

x x

x x x


  

 = 0.4,0.2,0.3 . 

   
 

 1 2

1
2

, ='

x r y

f F A e y F







 
  
  
  
  

 

   

  = 0,0,0  as  1
2 =r y  . 

   
 

 1 3

1
3

, ='

x r y

f F A e y F







 
  
  
  
  

 

   

  
{ , } { }

2 3 1

=

x x x e

F





 

  
  
  
  

  

   

 

  1 2 3

{ , }
2 3

= ( < ,0.4,0.2,0.3 >,< ,0.7,0.3,0.4 >,< ,0.5,0.2,0.2 > )

x x x

x x x


  

      
0.3 0.2

= max 0.7,0.5 , ,min 0.4,0.2 = 0.7,0.25,0.2
2

 
 
 

. 

 By similar calculations, consequently, we get 

 

     1 1 2 3, , ={ , < ,0.4,0.2,0.3 >,< ,0,0,0 >,< ,0.7,0.25,0.2 > ,'f F A B e y y y  

   2 1 2 3, < ,0.8,0.2,0.1>,< ,0,0,0 >,< ,0.9,0.25,0.1> ,'e y y y  

   3 1 2 3, < ,0.2,0.2,0.7 >,< ,0,0,0 >,< ,0.3,0.2,0.6 > }.'e y y y  

 Next for the neutrosophic soft inverse images, the 

mapping    1 : , ,'f Y E X E 
 

 is defined as follows: 

 

 For a neutrosophic soft set  ,G B  in  , 'Y E


,   1 , ,f G B A  is a 

neutrosophic soft set in  ,X E


 obtained as follows:  

           1
1 1 1 1, =f G B e x G s e r x  

   1 1= 'G e y  

 = 0.2,0.4,0.5 , 

          1
1 2 1 2, =f G B e x G s e r x  

   1 3= 'G e y  

 = 0.2,0.5,0.3 , 

          1
1 3 1 3, =f G B e x G s e r x  

   1 3= 'G e y  

 = 0.2,0.5,0.3 . 

By similar calculations, consequently, we get 

 

     1
1 1 2 3, , ={ , < ,0.2,0.4,0.5 >,< ,0.2,0.5,0.3 >,< ,0.2,0.5,0.3 > ,f G B A e x x x  

   2 1 2 3, < ,0.7,0.3,0.3 >,< ,0.8,0.2,0.1>,< ,0.8,0.2,0.1> ,e x x x  

   3 1 2 3, < ,0.8,0.1,0.1>,< ,0.3,0.4,0.4 >,< ,0.3,0.4,0.4 > }.e x x x  

 

Definition 3.4  Let    : , , 'f X E Y E


 be a mapping and  ,F A  

and  ,G B  neutrosophic soft sets in  ,X E


. Then for 'E  , 

y Y , the neutrosophic soft union and intersection of 

neutrosophic soft images  ,F A  and  ,G B  are defined as 

follows:  

 

              , , = , , .f F A f G B y f F A y f G B y  

 
 
 
 
 

 


 
 

                   , , = , , .f F A f G B y f F A y f G B y  
 
   
 


  

 

Definition 3.5  Let    : , , 'f X E Y E


 be a mapping and  ,F A  

and  ,G B  neutrosophic soft sets in  , 'X E . Then for E , 

x X , the neutrosophic soft union and intersection of 

neutrosophic soft inverse images  ,F A  and  ,G B  are 

defined as follows:  

 

              1 1 1 1, , = , , .f F A f G B x f F A x f G B x     

 
 
 
 
 

 


 

              1 1 1 1, , = , , .f F A f G B x f F A x f G B x     

 
 
 
 
 

 


 

 

Theorem 3.1 Let    : , , 'f X E Y E


 be a mapping. Then for 

neutrosophic soft sets  ,F A  and  ,G B  in the neutrosophic 

soft class  ,X E


, [a.]  

a.    =f   .  

b.   f X Y .  

 c.         , , = , ,f F A G B f F A f G B

 
 
 
 
 

 
 

.  

d.         , , , ,f F A G B f F A f G B

 
 

 
 
 

 
 

.  

 e.  If    , ,F A G B , then    , ,f F A f G B .  

  

Proof. For (a), (b) and (e) the proof is trivial, so we just 

give the proof of (c) and (d).  

 

c.  For 'E   and y Y , we want to prove that 
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              , , = , ,f F A G B y f F A y f G B y  

 
 
 
 
 

 
 

 

For left hand side, consider 

          , , = ,f F A G B y f H A B y 

 
 

 
 
 




. Then  

   
 

 

     
 

1

1 1

,

, =
,

0,0,0 .

x r y

H

f H A B y
if r y and s A B

otherwise










 

  
  
  

 
 

   




 
(1) 

 where       = ,H F G   . 

Considering only the non-trivial case, then Equation 1 

becomes: 

   
 

     
1

, = ,

x r y

f H A B y F G  



          (2) 

 For right hand side and by using Definition 3.4, 

we have 

              , , = , ,f F A f G B y f F A y f G B y  

 
 
 
 
 

 


   

 
   

 
1 1 1 1

=

x r y s A x r y s B

F G

   

 

        

      
      
      
         

      

      

     

    
1 1

=

x r y s A B

F G

 

 

    

 
 
 
 
 

    

 

     
1

= ,

x r y

F G 



        (3) 

 From Equations 2 and 3, we get (c). 

d. For 'E   and y Y , and using Definition 3.4, we have 

          , , = ,f F A G B y f H A B y 

 
 

 
 
 




 

     

 
1 1

=

x r y s A B

H

 



    

 
 
 
 
 

 

     

   
1 1

=

x r y s A B

F G

 

 

    

 
 
 
 
 

    

     

   
1 1

=

x r y s A B

F G

 

 

    

 
 
 
 
 

    

   

 
   

 
1 1 1 1x r y s A x r y s B

F G

   

 

        

      
      

       
         

      

      

         = , ,f F A y G B y   

       = , , .f F A f G B y

 
 
 
 
 




 

 This gives (d). 

Theorem 3.2 Let    : , , 'f X E Y E


 be mapping. Then for 

neutrosophic soft sets  ,F A ,  ,G B  in the neutrosophic soft 

class  , 'X E , we have: 

1.  1 =f    . 

2.  1 =f Y X . 

3.        1 1 1, , = , ,f F A G B f F A f G B  

 
 
 
 
 

 
 

. 

4.        1 1 1, , = , ,f F A G B f F A f G B  

 
 
 
 
 

 
 

. 

5. If    , ,F A G B , then    1 1, ,f F A f G B  . 

Proof. We use the same method as in the previous proof. 

4  Conclusion 

 In this paper we have defined the notion of a 

mapping on classes where the neutrosophic soft classes are 

collections of neutrosophic soft set. The properties of 

neutrosophic soft images and neutrosophic soft inverse 

images of neutrosophic soft sets have been defined and 

studied. 
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Abstract: In this paper, we firstly review the neutrosophic set, 

and then construct two new concepts called neutrosophic 

implication of type 1 and of type 2 for neutrosophic sets. 

 Furthermore, some of their basic properties and some 

results associated with the two neutrosophic 

implications are proven.  

Keywords: Neutrosophic Implication, Neutrosophic Set, N-norm, N-conorm. 

1 Introduction 

Neutrosophic set (NS) was introduced by Florentin 

Smarandache in 1995 [1], as a generalization of the fuzzy 

set proposed by Zadeh [2], interval-valued fuzzy set [3], 

intuitionistic fuzzy set [4], interval-valued intuitionistic 

fuzzy set  [5], and so on. This concept represents 

uncertain, imprecise, incomplete and inconsistent 

information existing in the real world.  A NS is a set 

where each element of the universe has a degree of truth, 

indeterminacy and falsity respectively and with lies in] 0
-
 , 

1
+
  [, the non-standard unit interval.  

NS has been studied and applied in different fields 

including decision making problems [6, 7, 8], Databases 

[10], Medical diagnosis problem [11], topology [12], 

control theory [13], image processing [14, 15, 16] and so 

on. 

In this paper, motivated by fuzzy implication [17] and 

intutionistic fuzzy implication [18], we will introduce the 

definitions of two new concepts called neutrosophic 

implication for neutrosophic set. 

This paper is organized as follow: In section 2 some basic 

definitions of neutrosophic sets are presented. In section 3, 

we propose some sets operations on neutrosophic sets. 

Then, two kind of neutrosophic implication are proposed. 

Finally, we conclude the paper. 

2 Preliminaries 

This section gives a brief overview of concepts of 

neutrosophic sets, single valued neutrosophic sets, 

neutrosophic norm and neutrosophic conorm which will 

be utilized in the rest of the paper. 

Definition 1 (Neutrosophic set) [1] 

Let X be a universe of discourse then, the neutrosophic set 

A is an object having the form:  

A = {< x: , , >,x  X}, where the 

functions T, I, F : X→ ]−0, 1+[  define respectively the 

degree of membership (or Truth), the degree of 

indeterminacy, and the degree of non-membership 

(or Falsehood) of the element x  X to the set A 

with the condition.  

                     −
0 ≤  + + ≤ 3

+
.       (1)                              

From philosophical point of view, the 

neutrosophic set takes the value from real 

standard or non-standard subsets of ]
−
0, 1

+
[. So 

instead of ]
−
0, 1

+
[, we need to take the interval [0, 

1] for technical applications, because ]
−
0, 1

+
[will 

be difficult to apply in the real applications  such 

as in scientific and engineering problems.  

 

Definition 2 (Single-valued Neutrosophic sets) [20] 

Let X be an universe of discourse with generic 

elements in X denoted by x. An SVNS A in X is 

characterized by a truth-membership function 

, an indeterminacy-membership function 

, and a falsity-membership function ,  

for each point x in X, , , , [0, 

1].  

When X is continuous, an SVNS A can be written 

as                                                     

A=          (2)      

When X is discrete, an SVNS A can be written as 

 A=         (3)            

Definition 3 (Neutrosophic norm, n-norm) [19] 

Mapping : (]-0,1+[ × ]-0,1+[ × ]-0,1+[)
2
→ ]-

0,1+[  × ]-0,1+[ × ]-0,1+[  

 (x( , , ), y( , , )  ) = ( T(x,y), 

I(x,y), F(x,y), where 

 T(.,.), I(.,.), F(.,.)  

are the truth/membership, indeterminacy, and 

respectively falsehood/ nonmembership 

components. 

Said Broumi and Florentin Smarandache, On Neutrosophic Implication 
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 have to satisfy, for any x, y, z in the neutrosophic 

logic/set M of the universe of discourse X, the following 

axioms 

a) Boundary Conditions:  (x, 0) = 0,  (x, 1) = x.  

b) Commutativity:  (x, y) =  (y, x).  

c) Monotonicity: If x ≤y, then  (x, z) ≤  (y, z).  

d) Associativity:  (  (x, y), z) =  (x,  (y, z)). 

 represents the intersection operator in neutrosophic set 

theory. 

Let J {T, I, F} be a component. 

Most known N-norms, as in fuzzy logic and set the T-

norms, are:  

• The Algebraic Product N-norm: J(x, y) = x · y  

• The Bounded N-Norm: J(x, y) = max{0, x + 

y −1}  

• The Default (min) N-norm:  (x, y) = min{x, y}. 

A general example of N-norm would be this.  

Let  x( , , ) and  y ( , , )  be in the neutrosophic 

set M. Then:  

 (x, y) = ( ,  , )                         (4) 

where the “ ” operator is a N-norm (verifying the above 

N-norms axioms); while the “ ” operator, is a N-conorm.  

For example,  can be the Algebraic Product T-norm/N-

norm, so = ·   and  can be the Algebraic 

Product T-conorm/N-conorm, so = + - ·  

Or  can be any T-norm/N-norm, and  any T-conorm/N-

conorm from the above. 

 

Definition 4 (Neutrosophic conorm, N-conorm) [19] 

Mapping : ( ]-0,1+[ × ]-0,1+[ × ]-0,1+[ )2→]-0,1+[ × ]-

0,1+[ × ]-0,1+[  

 (x( , , ), y( , , )) = ( T(x,y), I(x,y), 

F(x,y)),  

where T(.,.), I(.,.), F(.,.) are the truth/membership, 

indeterminacy, and respectively falsehood/non mem-

bership components.  

 have to satisfy, for any x, y, z in the neutrosophic 

logic/set M of universe of discourse X, the following 

axioms:  

a) Boundary Conditions:  (x, 1) = 1,  (x, 0) = x.  

b) Commutativity:  (x, y) =  (y, x).  

c) Monotonicity: if x ≤y, then  (x, z) ≤  (y, z).  

d) Associativity:  (  (x, y), z) =  (x,  (y, z)) 

 represents respectively the union operator in 

neutrosophic set theory.  

Let J {T, I, F} be a component. Most known N-

conorms, as in fuzzy logic and set the T-conorms, are:  

• The Algebraic Product N-conorm:  J(x, y) = 

x + y −x · y  

• The Bounded N-conorm:  J(x, y) = min{1, x 

+ y}  

• The Default (max) N-conorm:  J(x, y) = max{x, 

y}. 

A general example of N-conorm would be this.  

Let x( , , ) and y( , , ) be in the neutrosophic 

set/logic M. Then:  

 (x, y) = (T1 T2, I1 I2, F1 F2)     (5) 

where the “ ” operator is a N-norm (verifying the 

above N-conorms axioms); while the “ ” 

operator, is a N-norm.  

For example,  can be the Algebraic Product T-

norm/N-norm, so T1 T2= T1·T2 and  can be the 

Algebraic Product T-conorm/N-conorm, so 

T1 T2= T1+T2-T1·T2. 

Or  can be any T-norm/N-norm, and  any T-

conorm/N-conorm from the above. 

In 2013, A. Salama [21] introduced beside the 

intersection and union operations between two 

neutrosophic set A and B, another operations 

defined as follows: 

Definition 5  

Let A, B two neutrosophic sets 
A  = min (   ,  ) ,max (  ,   ) , max(   , )  

A  B = (max (  , ) , max (  , ) ,min(  , )) 

A  B={ min (  ,  ), min (  ,  ), max (  , )}   

A  B = (max (  , ) , min (  , ) ,min(  , ))                                                                         

= (  ,   ,  ). 

 

Remark 

For the sake of simplicity we have denoted: 

 = min min max,  = max min min 

 = min max max,  = max max min. 

Where  ,  represent the intersection set and 

the union set proposed by Florentin Smarandache 

and  ,  represent the intersection set and the 

union set proposed by A.Salama. 

3 Neutrosophic Implications 

In this subsection, we introduce the set operations 

on neutrosophic set, which we will work with. 

Then, two neutrosophic implication  are 

constructed on the basis of  single valued 

neutrosophic set .The two neutrosophic 

implications  are denoted by   and . Also, 

important properties of  and  are 

demonstrated and proved. 

Definition 6 (Set Operations on Neutrosophic sets) 

Let  and  two neutrosophic sets , we propose 

the following operations on NSs as follows: 

  @   = (  ,  ,  )  where 

 < , ,    ,< , ,     

     = ( ,  , ) ,where  

< , ,    ,< , ,     

  #   = ( ,  ,  ) , where 

   < , ,    ,< , ,     

 B=(  + -   ,  ,  ) ,where  

   < , ,    ,< , ,     

 B= (   , + -  ,  + -  ), where 

 < , ,    ,< , ,     
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Obviously, for every two  and , (  @ ),  ( ), 

( ) ,  B and  B are also NSs. 

Based on definition of standard implication denoted by “A 

 B”, which is equivalent to “non A or B”. We extended 

it for neutrosophic set as follows: 

 

Definition 7  

Let A(x) ={<x,  ,  , > | x  X}     and 

B(x) ={<x,  ,  , > | x  X} ,  A, B   

NS(X).  So, depending on how we handle the 

indeterminacy, we can defined two types of neutrosophic 

implication, then  is the neutrosophic type1 defined as  

A  B ={< x,     ,     ,  

  > | x  X}                              (6) 

And  

  is the neutrosophic type 2 defined as 

 A  B =={< x,     ,    ,  

  > | x  X}                (7) 

by  and   we denote a neutrosophic norm (N-norm) and 

neutrosophic conorm (N-conorm). 

 

Note: The neutrosophic implications are not unique, as 

this depends on the type of functions used in N-norm and 

N-conorm. 

Throughout this paper, we used the function (dual) min/ 

max.  

Theorem 1    

For A, B and C   NS(X), 

i. A  B  C  =( A  C  )  ( B  C  ) 

ii. A   B  =( A  B  )  ( A  C  ) 

iii. A   C = ( A  C  )  ( B  C  ) 

iv. A   B  =( A  B  )  ( A  C) 

Proof 

 (i)  From definition in (5) ,we have 

A  B  C  ={<x ,Max(min(  , ), ) , Min(max 

( , ),  ) , Min(max (  , ), ) >| x  X}            (8)                     

and 

(A  C)  (B  C)= {<x, Min( max(  , ), 

max( , )) , Max (min (  , ), min (  , )),  Max(min 

(  , ), min (  , )) >| x  X}            (9)                                        

Comparing the result of (8) and (9), we get 

Max(min(  , ), )= Min( max(  , ), max(  , )) 

Min(max (  , ),  )= Max (min (  , ), min (  , )) 

Min(max (  , ), )= Max(min (  , ), min (  , )) 

Hence, A  B  C  = (A  C )  (B  C) 

(ii) From definition in (5), we have 

A   B ={Max( , min(  , )) , Min(  ,max 

( , ) ) , Min( ,  max (  , ) >| x  X}                  (10)                

and  ( A  B  )  ( A  C  ) = {<x, Min (max (  

, ), max(  , )) , Max (min (  , ), min (  , )), 

Max(min (  , ), min (  , ) >| x  X}                               

(11)                                                                                          

Comparing the result of (10) and (11), we get                                                                                     

Max( , min(  , ))= Min( max(  , ), 

max(  , )) 

Min(  ,max (  , ) )= Max (min (  , ), min 

(  , )) 

Min( ,  max (  , )= Max(min (  , ), min 

(  , )) 

Hence,   A   C = (A  C)  (B  C) 

 

(iii) From definition in (5), we have 

A   C ={< x , Max(max(  , ), ) , 

Min(min(  , ),  ) , Min(min (  , ), ) >| x 

 X}               (12)                                 

and 

(A  C)  (B  C) = {<x, Max( max(  , ), 

max(  , )) , Max (min (  , ), min (  , )), 

Min(min (  , ), min (  , )) >| x  X}         

(13)                                                                                        

Comparing the result of (12) and (13), we get                                                                                     

Max(max(  , ), )= Max( max(  , ), 

max(  , )) 

Min(min(  , ),  )= Max (min (  , ), min 

( , )) 

Min(min (  , ), )= Min(min (  , ), min 

(  , )), 

Hence,   A   C = ( A  C  )  (B  C) 

(iv) From definition in (5), we have 

A   B  ={<x, Max (  ,Max (   ,  )),  

Min (  , Max (  ,  )),  Min( , Min(   , )) 

>| x  X}  (14)            

and 

(A  B  )  (A  C ) = {<x, Max(max 

( , ), max(  , )) , Max (min (  , ), min 

(  , )), Min(min (  , ), min (  , )) >| x  

X}                              (15)                                                                                                                  

Comparing the result of (14) and (15), we get                                                                                     

Max (  , Max (   ,  )) = Max( max(  , ), 

max(  , )) 

Min (  , Max (  ,  )) = Max (min (  , ), min 

(  , )) 

Min ( , Min(   ,   )) = Min(min (  , ), min 

(  , )) 

hence, A   B  = ( A  B  )  ( A  C ) 

In the following theorem, we use the 

operators:  = min min max     ,  = max min 

min. 

Theorem 2 For A, B and C    NS(X), 

i. A  B  C  =( A  C  )  ( B  

C  ) 
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ii. A   B  =( A  B  )  ( A  C  ) 

iii. A   C = ( A  C  )  ( B  C  ) 

iv. A   B  =( A  B  )  ( A  C  ) 

Proof  

The proof is straightforward. 

In view of A  B ={< x,    ,    ,    >| x 

 X} , we have the following theorem: 

Theorem 3  

For A, B and C   NS(X), 

i. A  B  C  =( A  C  )  ( B  C  ) 

ii. A   B  =( A  B  )  ( A  C  ) 

iii. A   C = ( A  C  )  ( B  C  ) 

iv. A   B  =( A  B  )  ( A  C  ) 

Proof  

(i) From definition in (5), we have 

A  B  C  ={<x, Max(min(  , ), ), Max(max 

( , ),  ) , Min(max (  , ), ) >| x  X}          (16)                   

and 

( A  C  )  ( B  C  )= {<x, Min( max(  , ), 

max(  , )) , Max (max (  , ), max (  , )), 

Max(min (  , ), min (  , )) >| x  X}                (17)                                                                                                                                                      

Comparing the result of (16) and (17), we get   

Max(min(  , ), )= Min( max(  , ), max(  , )) 

Max(max (  , ),  )= Max (max(  , ), max (  , )) 

Min(max (  , ), )= Max(min (  , ), min (  , )) 

hence, A  B  C  = ( A  C  )  ( B  C  ) 

(ii) From definition in (5) ,we have 

A   B ={<x ,Max( , min(  , )) , Max(  , max 

(  , ) ) , Min( ,  max (  , ) >| x  X}            (18)           

and                    

 ( A  B  )  ( A  C  ) = {<x,Min( max(  , ), 

max(  , )) , Max (max (  , ),max (  , )), Max(min 

(  , ), min (  , )) >| x  X}                          (19)                                                                                                                 

Comparing the result of (18) and (19), we get   

Max( , min(  , ))= Min( max(  , ), max(  , )) 

Max(  ,max (  , ) )= Max (max(  , ), max (  , )) 

Min( ,  max (  , )= Max(min (  , ), min (  , )) 

Hence , A   B  =( A  B  )  ( A  C  ) 

(iii) From definition in (5), we have 

A   C ={<x, Max(max(  , ), ) , Max(max 

( , ),  ) , Min(min (  , ), ) >| x  X}           (20)                      

and 

( A  C  )  ( B  C  ) = {Max( max(  , ), 

max( , )) , Max (max (  , ), max (  , )), Min(min 

(  , ), min (  , )) }                                               (21)                                                                 

Comparing the result of (20) and (21), we get   

Max(max(  , ), )= Max( max(  , ), max(  , )) 

Max(max(  , ),  )= Max (max (  , ), max (  , )) 

Min(min (  , ), )= Min(min (  , ), min (  , )), 

hence, A   C = ( A  C  )  ( B  C ) 

(iv) From definition in (5) ,we have 

A   B  ={<x, Max (  , Max (   ,  )),  

Max (  , Max (  ,  )) ,  Min ( , Min(   ,   

))> | x   (22)           

and 

( A  B  )  ( A  C  )= Max( max(  , ), 

max(  , )) , Max (max (  , ), max (  , )), 

Min(min (  , ), min (  , ))    (23).                                                                                                             

Comparing the result of (22) and (23), we get   

Max (  , Max (   ,  )) = Max( max(  , ), 

max(  , )) 

Max (  , Max (  ,  )) = Max (max (  , ), 

max (  , )) 

Min ( , Min(   ,   )) = Min(min (  , ), min 

(  , )) 

hence , A   B  =( A  B  )  ( A  C ) 

Using the two operators  = min min max     , 

 = max min min, we have 

 

Theorem 4   

For A, B and C  NS(X), 

i. A  B  C  =( A  C  )  ( B  

C  ) 

ii. A   B  =( A  B  )  ( A  

C  ) 

iii. A   C = ( A  C  )  (B  C) 

iv. A   B  =( A  B  )  (A  C) 

Proof  
The proof is straightforward. 

Theorem 5  

For A, B    NS(X), 

i. A     =       

ii.   =  = A  

B 

iii.  = A  B 

iv.  B =       

v.   =  

Proof  

(i) From definition in (5) ,we have 

A    ={<x, max (  , ) ,min (  ,  ) , min 

(  ,  ) | x                     (24) 

and 
     ={ max (  , ) ,min (  ,  ) , min ( , 

 )}      (25) 
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From (24) and (25), we get     A    =       

(ii) From definition in (5), we have 

    ={<x, max (  , ) ,min (  ,  ) , min 

( , ) > | x                 (26) 

and 

= {<x, min (  ,  ),min (  ,  ) ,max 

(  , ) > | x                                                            

(27)              

From (26) and (27), we get       

= = A  B 

(iii) From definition in (5) ,we have 

 ={ <x, min (  ,  ), min (  ,  ), max 

( , ) > | x                                                         (28)   

and        

A  B={ min (  ,  ), min (  ,  ), max (  , )}      

                                                                                (29)                                                                         

From (28) and (29), we get      = A  B 

(iv) 

   B =      ={ <x, max (  , ) , min (  ,  ), 

min (  ,  ) > | x  

(v) 

  ={<x, max (  ,  ),min (  ,  ) , max (  , ) 

> | x                                                                 (30) 

and 

 ={<x,  max (  ,  ),min (  ,  ) , max 

( , ) > | x                                                       (31)                                           

From (30) and (31), we get    =  

Theorem 6  

For A, B    NS(X), 

i. =

 =  

ii.  =

=  

iii.  =

=  

iv.  =

=  

v.  =

 =  

vi.  =

 =  

 

Proof  

Let us recall following simple fact for any two real 

numbers a and b. 

Max(a, b) +Min(a, b) = a +b. 

Max(a, b) x Min(a, b) = a x b. 

(i) From definition  in (6), we have 

 = {<x,Max(  + -  

, ) ,Min(  , ) ,Min(  ) 

> | x                                              = (  + -

 ,  ,   

 =               (32)                       

and 

 = (  ,  , )  

(  + -   ,  ,  )  

= {<x, Max( ,  + -  ) ,Min( ,  

) ,Min(  ) > | x       (33) 

  =(  + -  ,  ,  )   

=                                                                         

From (32) and (33 ), we get the result ( i) 

 (ii) From definition in (6), we have 

= ( ,

, ) 

 = 

  = ( , , ) (  

,  ,  )   

 ={<x, Max ( ,  ) ,Min(

,  ,Min( , ) > | x 

 

    =  ,  , ) =         (34)                     

and 

= 

=  ,  , ) (  ,   + -  

,  + -  ) 

={< x, Max( ,  , Min (  ,  + -  

), Min (  ,  + -  ) | x } 

=  ,  , ) =    (35)                                                                                                                                                                                                                                  

From (34)  and (35 ), we get the result ( ii) 

(iii) From definition  in (6) ,we have 

=(

, , )  

( , ,  )  

= {<x , Max (  , ) ,Min( , 

), Min( , ) > | x  

 =(  ,  , ) 

 =                     (36)                                                                                                                                   

and 

=( ,  , ) 

 (    , + -  ,  + -   ) 

={<x, Max (  ,  ) ,Min( , + -  

), Min( ,  + -  ) > | x  
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= (  ,  ,   )=                   (37)                                        

From ( 36)  and (37), we get the result (iii). 

(iv) From definition in (6), we have 

= (  ,  ,  ,  + -  ) 

( ,  , ) 

  = {<x, Max (  + -   , ), Min(  , 

,), Min(  , ) > | x  

 = (  ,  , ) 

  =                                                                 (38)                                                                                    

and 

= (  ,  , ) ( 

 + -   ,  ,  ) 

 ={< x, Max (  ,  + -  ) ,Min( ,   

), Min( ,  ) > | x  

  = (  ,  , ) 

  =           (39)                                                         

From (38)  and (39), we get the result (iv). 

(v) From definition in (6), we have 

 = ( ,

, ) (  ,  , ) 

 ={<x, Max (  , ) ,Min( , 

), Min( , ) > | x  

 =  ,  , ) 

  =     (40)                                                      

and 

=(  ,  

, ) (    , + -  ,  + -   ) 

={<x, Max ( ,  ) ,Min(  

), Min( , ) > | x  

=  ,  , ) 

=                                                                    (41)                                                     

From (40)  and (41), we get the result (v). 

(vi)  From definition in (6), we have 

 =  

=  

 = ( ,

, ) (  + -   ,  ,  ) 

 ={<x, Max ( ,  + -   ) ,Min(  

 ), Min( ,  ) > | x  

 = (  + -   ,  ,  ) 

=                                                                  (42) 

 and 

 =(  ,  ,  + -  

(    , + -  ,  + -   ) 

={<x,  Max (  + -  ,   ) , Min ( + -  

), Min(  ,  + -  ) > | x  

 = (  + -   ,  ,  ) 

=                                                                (43)                                                                                      

From (42) and (43), we get the result (vi). 

The following theorem is not valid. 

 

Theorem 7 

For A, B    NS(X), 

i. =

  

=  

ii.  =

 

=  

iii.  =

 

=  

iv.  =

=  

v.  =

=  

vi.  =

=  

 

Proof 

The proof is straightforward. 

 

Theorem 8  

For A, B    NS(X), 

i. =

 =  

ii.  =

=  

iii.  =

=  

iv.  =

=  

v.  =

=  

vi.  =

=  

 Proof 
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(i) From definition  in (6), we have 

 = (  + -    ,   ,  

) (  ,  ,  )   

={<x ,  > | 

x  

=  

=( , ,  

=                                                                    (44)                                                                                                                               

and 

 

=

 

=

 

=  

=(  ,  , ) 

=                                                                   (45)                                                                                                                 

From ( 44)  and (45), we get the result (i). 

 

(ii) From definition  in (6) ,we have 

= 

 

=  

=(  ,  , ) 

=                                                               (46)                                                                                        

and 

={<x,(  ,  , ) 

( , , ) > | x  
= 

 

=  

=( ,  , ) 

=                                                                (47)                                                                                         

From (46)  and (47), we get the result (ii). 

(iii)From definition in (6), we have 

=  

=

 

=  

=  

=                 (48)                                                                                                     

and 

 =

  (  ,  ,  ,  + -  ) 

=

 

=  

=  

=       (49)                                                                                            

From (48) and (49), we get the result (iii). 

(iv) From definition in (6), we have 

 = 

=

  

=  

=  

=           (50)                                                                                                               

and 

= 

=

 

=  

=  

=               (51)                                                                                                      

From (50)  and (51), we get the result (iv). 

(v) From definition in (6), we have 

 = 

=  

=  

=  ,  , ) 

=     (52)                                                                                                                        

and 
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= 

=  

=  

=  ,  , ) 

=                     (53)                                                                                                        

From (52)  and (53), we get the result (v). 

(vi) From definition in (2), we have 

  

=

 

=  

=  

=                                                                (54)                                                                                                                                     

and  

= 

=  

=  

=  

=                                                                 (55)                                                                                           

From (54)  and (55), we get the result (v). 

The following are not valid. 

 

Theorem 9  

1- =  

=  

2-  = 

=  

3-  = 

=  

4-  = 

=  

5-  =

=  

6-  =

 =  

8-  =

 =  

9-  =

 =  

Example  

We prove  only the (i) 

1-  = 

   (  ,  

,  ) 

={<x, max  (  ,  ) 

,max( , ) ,min (  , ) > | x  

={<x,   ,  ,  > | x 

  

The same thing, for  

 Then, 

=

 . 

 

Remark 

We remark that if  the indeterminacy values are 

restricted to 0, and the membership /non-

membership are restricted to  0 and 1. The results 

of the two neutrosophic implications and 

collapse to the fuzzy /intuitionistic fuzzy 

implications defined (V(A  ) in [17]  

 

Table  

Comparison of three kind of implications 

From the table, we conclude that fuzzy 

/intuitionistic fuzzy implications are special case 

of neutrosophic implication. 

Conclusion 

In this paper, the neutrosophic implication is 

studied. The basic knowledge of the neutrosophic 

set is firstly reviewed, a two kind of neutrosophic 

implications are constructed, and its properties. 

These implications may be the subject of further 

research, both in terms of their properties or 

comparison with other neutrosophic implication, 

and possible applications. 

 

<  

, > 

<  

, > 

A B A B V(A

 

< 0 ,1> < 0 ,1> < 1 ,0> < 1 ,0> < 1 ,0> 

< 0 ,1> < 1 ,0> < 1 ,0> < 1 ,0> < 1 ,0> 

< 1 ,0> < 0 ,1> < 0 ,1> < 0 ,1> < 0 ,1> 

< 1 ,0> < 1 ,0> < 1 ,0> < 1 ,0> < 1 ,0> 
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Abstract. Interval neutrosophic set (INS) is a generaliza-

tion of interval valued intuitionistic fuzzy set (IVIFS), 

whose the membership and non-membership values of el-

ements consist of fuzzy range, while single valued neutro-

sophic set (SVNS) is regarded as extension of intuition-

istic fuzzy set (IFS). In this paper, we extend the hierar-

chical clustering techniques proposed for IFSs and IVIFSs 

to SVNSs and INSs respectively. Based on the traditional 

hierarchical clustering procedure, the single valued neu-

trosophic aggregation operator, and the basic distance 

measures between SVNSs, we define a single valued neu-

trosophic hierarchical clustering algorithm for clustering 

SVNSs. Then we extend the algorithm to classify an inter-

val neutrosophic data. Finally, we present some numerical 

examples in order to show the effectiveness and availabil-

ity of the developed clustering algorithms.

 
Keywords: Neutrosophic set, interval neutrosophic set, single valued neutrosophic set, hierarchical clustering, neutrosophic aggre-

gation operator, distance measure.

 

1 Introduction 

Clustering is an important process in data mining, pat-

tern recognition, machine learning and microbiology analy-

sis [1, 2, 14, 15, 21]. Therefore, there are various types of 
techniques for clustering data information such as numerical 

information, interval-valued information, linguistic infor-
mation, and so on. Several of them are clustering algorithms 

such as partitional, hierarchical, density-based, graph-based, 

model-based. To handle uncertainty, imprecise, incomplete, 
and inconsistent information which exist in real world, 

Smarandache [3, 4] proposed the concept of neutrosophic 
set (NS) from philosophical point of view. A neutrosophic 

set [3] is a generalization of the classic set, fuzzy set [13], 
intuitionistic fuzzy set [11] and interval valued intuitionistic 

fuzzy set [12]. It has three basic components independently 

of one another, which are truht-membership, indeterminacy-
membership, and falsity-membership. However, the neutro-

sophic sets is be diffucult to use in real scientiffic or engi-
neering applications. So Wang et al. [5, 6] defined the con-

cepts of single valued neutrosophic set (SVNS) and interval 

neutrosophic set (INS) which is an instance of a neutro-
sophic set. At present, studies on the SVNSs and INSs is 

progressing rapidly in many different aspects [7, 8, 9, 10, 16, 
18]. Yet, until now there has been little study on clustering 

the data represented by neutrosophic information [9]. There-
fore, the existing clustering algorithms cannot cluster the 

neutrosophic data, so we need to develop some new tech-

niques for clustering SVNSs and INSs. 

2 Preliminaries 

In this section we recall some definitions, operations and 
properties regarding NSs, SVNSs and INSs, which will be 

used in the rest of the paper. 

 

2.1 Neutrosophic sets 

Definition 1. [3] Let 𝑋 be a space of points (objects) and 

𝑥 ∈  𝑋 . A neutrosophic set 𝑁  in 𝑋  is characterized by a 
truth-membership function 𝑇𝑁, an indeterminacy-member-

ship function 𝐼𝑁  and a falsity-membership function 𝐹𝑁 , 
where 𝑇𝑁(𝑥) , 𝐼𝑁(𝑥)  and 𝐹𝑁(𝑥)  are real standard or non-

standard subsets of ]0−, 1+[. That is, 𝑇𝑁 ∶ 𝑈 →]0−, 1+[, 𝐼𝑁 ∶
𝑈 →]0−, 1+[ and 𝐹𝑁 ∶ 𝑈 →]0−, 1+[. 

There is no restriction on the sum of 𝑇𝑁(𝑥), 𝐼𝑁(𝑥) and 

𝐹𝑁(𝑥), so 
 0−  ≤ sup 𝑇𝑁(𝑥)  + sup  𝐼𝑁(𝑥)  + sup 𝐹𝑁(𝑥)  ≤  3+. 

Neutrosophic sets is difficult to apply in real scientific 
and engineering applications [5]. So Wang et al. [5] pro-

posed the concept of SVNS, which is an instance of neutro-

sophic set. 

2.2 Single valued neutrosophic sets 

A single valued neutrosophic set has been defined in [5] 
as follows: 

 

Definition 2. Let 𝑋 be a universe of discourse. A single val-
ued neutrosophic set 𝐴 over 𝑋 is an object having the form: 

𝐴 =  {〈𝑥, 𝑢𝐴(𝑥), 𝑤𝐴(𝑥), 𝑣𝐴(𝑥)〉 ∶ 𝑥 ∈ 𝑋}, 

where 𝑢𝐴: 𝑋 →  [0,1] , 𝑤𝐴: 𝑋 → [0,1]  and 𝑣𝐴: 𝑋 → [0,1] 
with the condition 

0 ≤ 𝑢𝐴(𝑥) + 𝑤𝐴(𝑥) + 𝑣𝐴(𝑥) ≤ 3,   ∀𝑥 ∈ 𝑋. 

The numbers 𝑢𝐴(𝑥) , 𝑤𝐴(𝑥)  and 𝑣𝐴(𝑥) denote the de-

gree of truth-membership, indeterminacy membership and 
falsity-membership of 𝑥 to 𝑋, respectively. 

Definition 3. Let 𝐴  and 𝐵  be two single valued neutro-
sophic sets, 
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 𝐴 = {〈𝑥, 𝑢𝐴(𝑥), 𝑤𝐴(𝑥), 𝑣𝐴(𝑥)〉 ∶ 𝑥 ∈  𝑋} 
𝐵 = {〈𝑥, 𝑢𝐵 (𝑥), 𝑤𝐵 (𝑥), 𝑣𝐵 (𝑥)〉 ∶ 𝑥 ∈ 𝑋} 

Then we can give two basic operations of 𝐴 and 𝐵 as fol-

lows: 

     1.      𝐴 + 𝐵 = {< 𝑥, 𝑢𝐴(𝑥) + 𝑢𝐵(𝑥) − 𝑢𝐴(𝑥). 𝑢𝐵(𝑥), 

𝑤𝐴(𝑥). 𝑤𝐵(𝑥), 𝑣𝐴(𝑥). 𝑣𝐵(𝑥) >∶ 𝑥 ∈ 𝑋}; 

     2.      𝜆𝐴 = {< 𝑥, 1 − (1 − 𝑢𝐴(𝑥))
𝜆

 , (𝑤𝐴(𝑥))
𝜆

 , (𝑣𝐴(𝑥))
𝜆

>: 

                           𝑥 ∈ 𝑋 and 𝜆 > 0} 

Definition 4. Let 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} be a universe of dis-
course. Consider that the elements 𝑥𝑖  (i = 1,2,...,n) in the 

universe 𝑋  may have different importance, let 𝜔 =
(𝜔1, 𝜔2, . . . , 𝜔𝑛)𝑇 be the weight vector of 𝑥𝑖  (i = 1,2,...,n), 
with 𝜔𝑖 ≥ 0, i = 1,2,...,n, ∑ 𝜔𝑖𝑛

𝑖=1 = 1. Assume that  

       𝐴 = {〈𝑥, 𝑢𝐴(𝑥), 𝑤𝐴(𝑥), 𝑣𝐴(𝑥)〉: 𝑥 ∈ 𝑋} and 
𝐵 = {〈𝑥, 𝑢𝐵(𝑥), 𝑤𝐵(𝑥), 𝑣𝐵(𝑥)〉: 𝑥 ∈ 𝑋} 

be two SVNSs. Then we give the following distance 

measures: 
The weighted Hamming distance and normalized Hamming 

distance [9] 

            𝑒1
𝜔(𝐴, 𝐵) = (

1

3
∑ 𝜔𝑖(|𝑢𝐴(𝑥𝑖) − 𝑢𝐵(𝑥𝑖)| + |𝑤𝐴(𝑥𝑖) − 𝑤𝐵(𝑥𝑖)| +𝑛

𝑖=1

|𝑣𝐴(𝑥𝑖) − 𝑣𝐵(𝑥𝑖)|)).                                                                 (1)                              

Assume that 𝜔 = (1 𝑛⁄ , 1 𝑛⁄ , . . . , 1 𝑛⁄ )𝑇, then Eq. (1) is re-

duced to the normalized Hamming distance 

    𝑒2
𝑛(𝐴, 𝐵) = (

1

3𝑛
∑ (|𝑢𝐴(𝑥𝑖) − 𝑢𝐵(𝑥𝑖)| + |𝑤𝐴(𝑥𝑖) − 𝑤𝐵(𝑥𝑖)| +𝑛

𝑖=1

|𝑣𝐴(𝑥𝑖) − 𝑣𝐵(𝑥𝑖)|))                                                                  (2) 

The weighted Euclidean distance and normalized Euclidean 
distance [7] 

  𝑒3
𝜔(𝐴, 𝐵) = (

1

3
∑ 𝜔𝑖(|𝑢𝐴(𝑥𝑖) − 𝑢𝐵(𝑥𝑖)|)2 + (|𝑤𝐴(𝑥𝑖) − 𝑤𝐵(𝑥𝑖)|)2 +𝑛

𝑖=1

(|𝑣𝐴(𝑥𝑖) − 𝑣𝐵(𝑥𝑖)|)2)

1

2
                                                                       (3) 

Assume that ω = (1/n,1/n,...,1/n)T, then Eq. (3) is reduced to 
the normalized Euclidean distance         

 𝑒4
𝑛(𝐴, 𝐵) = (

1

3𝑛
∑ (|𝑢𝐴(𝑥𝑖) − 𝑢𝐵(𝑥𝑖)|)2 + (|𝑤𝐴(𝑥𝑖) −𝑛

𝑖=1

𝑤𝐵(𝑥𝑖)|)2 + (|𝑣𝐴(𝑥𝑖) − 𝑣𝐵(𝑥𝑖)|)2)

1

2
                                         (4) 

2.3 Interval neutrosophic sets  

Definition 5. [3] Let 𝑋 be a set and Int[0,1] be the set of all 
closed subsets of [0,1]. An INS 𝐴̃ in 𝑋 is defined with the 

form 

𝐴̃ = {〈𝑥, 𝑢𝐴(𝑥), 𝑤𝐴(𝑥), 𝑣𝐴(𝑥)〉 ∶ 𝑥 ∈ 𝑋} 

where 𝑢𝐴: 𝑋 → Int[0,1] , 𝑤𝐴: 𝑋 → Int[0,1]  and 𝑣𝐴: 𝑋 →

Int[0,1] with the condition  

0 ≤ sup 𝑢𝐴(𝑥) + sup 𝑤𝐴(𝑥) + sup 𝑣𝐴(𝑥) ≤ 3, 
for all 𝑥 ∈ 𝑋. 

The intervals 𝑢𝐴(𝑥), 𝑤𝐴(𝑥) and 𝑣𝐴(𝑥) denote the truth-

membership degree, the indeterminacy membership degree 
and the falsity-membership degree of 𝑥 to 𝐴̃, respectively. 

For convenience, if let  

𝑢𝐴̃(𝑥) = [𝑢𝐴̃
+(𝑥), 𝑢𝐴̃

−(𝑥)] 

𝑤𝐴̃(𝑥) = [𝑤𝐴̃
+(𝑥), 𝑤𝐴̃

−(𝑥)] 

𝑣𝐴̃(𝑥) = [𝑣𝐴̃
+(𝑥), 𝑣𝐴̃

−(𝑥)] 

then 

𝐴̃ = {〈𝑥, [𝑢𝐴̃
−(𝑥), 𝑢𝐴̃

+(𝑥)], [𝑤𝐴̃
−(𝑥), 𝑤𝐴̃

+(𝑥)], [𝑣𝐴̃
−(𝑥), 𝑣𝐴̃

+(𝑥)]〉}: 𝑥 ∈ 𝑋} 

with the condition  

0 ≤ sup 𝑢𝐴
+(𝑥) + sup 𝑤𝐴

+(𝑥) + sup 𝑣𝐴
+(𝑥) ≤ 3, 

for all 𝑥 ∈  𝑋 . If 𝑤𝐴(𝑥) = [0,0]  and sup 𝑢𝐴
+(𝑥) +

sup 𝑣𝐴
+ ≤ 1 then 𝐴̃ reduces to an interval valued intuition-

istic fuzzy set.  

Definition 6. [20] Let 𝐴̃ and 𝐵̃ be two interval neutrosophic 

sets, 

𝐴̃ = {〈𝑥, [𝑢𝐴̃
−(𝑥), 𝑢𝐴̃

+(𝑥)], [𝑤𝐴̃
−(𝑥), 𝑤𝐴̃

+(𝑥)], [𝑣𝐴̃
−(𝑥), 𝑣𝐴̃

+(𝑥)]〉: 𝑥 ∈ 𝑋}, 

𝐵̃ = {〈𝑥, [𝑢𝐵̃
−(𝑥), 𝑢𝐵̃

+(𝑥)], [𝑤𝐵̃
−(𝑥), 𝑤𝐵̃

+(𝑥)], [𝑣𝐵̃
−(𝑥), 𝑣𝐵̃

+(𝑥)]〉: 𝑥 ∈ 𝑋}. 

Then two basic operations of 𝐴̃ and 𝐵̃ are given as follows: 

1.     𝐴̃ + 𝐵̃ = {< 𝑥, [𝑢𝐴̃
−(𝑥) + 𝑢𝐵̃

−(𝑥)−, 𝑢𝐴̃
+(𝑥) ⋅ 𝑢𝐵̃

−(𝑥), 𝑢𝐴̃
+(𝑥) +

                         𝑢𝐵̃
+(𝑥) − 𝑢𝐴̃

+(𝑥) ⋅ 𝑢𝐵̃
+(𝑥)], [𝑢𝐴̃

−(𝑥) ⋅ 𝑤𝐵̃
−(𝑥), 𝑤𝐴̃

+(𝑥) ⋅ 𝑤𝐵̃
+(𝑥)],  

                      [𝑣𝐴̃
−(𝑥) ⋅ 𝑣𝐵̃

−(𝑥), 𝑣𝐴̃
+(𝑥) ⋅ 𝑣𝐵̃

+(𝑥)]: 𝑥 ∈ 𝑋} 

2.     𝜆𝐴̃ = {< 𝑥, [, 1 − (1 − 𝑢𝐴̃
−(𝑥))

𝜆
, 1 − (1 − 𝑢𝐴̃

+(𝑥))
𝜆

] , 

                  [(𝑤𝐴̃
−(𝑥))

𝜆
, (𝑤𝐴̃

+(𝑥))
𝜆

] , [(𝑣𝐴̃
−(𝑥))

𝜆
, (𝑣𝐴̃

+(𝑥))
𝜆

] >: 𝑥 ∈ 𝑋 and 𝜆 > 0}. 

Definition 7. Let 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} be a universe of dis-

course. Consider that the elements 𝑥𝑖  (i = 1,2,...,n) in the uni-
verse 𝑋  may have different importance, let 𝜔 =
(𝜔1, 𝜔2, . . . , 𝜔𝑛)𝑇  be the weight vector of 𝑥𝑖  (i = 1,2,...,n), 
with 𝜔𝑖 ≥ 0, i = 1,2,...,n, ∑ 𝜔𝑖

𝑛
𝑖=1 = 1. Suppose that 𝐴̃ and 

𝐵̃ are two interval neutrosophic sets. Ye [6] has defined the 

distance measures for INSs as follows: 
The weighted Hamming distance and normalized Hamming 

distance: 

𝑑1
𝜔(𝐴̃, 𝐵̃) = (

1

6
∑ 𝜔𝑖(|𝑢𝐴̃

−(𝑥) − 𝑢𝐵
−(𝑥)|𝑛

𝑖=1 + |𝑢𝐴̃
+(𝑥) − 𝑢𝐵

+(𝑥)|                     

+|𝑤𝐴̃
+(𝑥) − 𝑤𝐵

+(𝑥)| + |𝑣𝐴̃
−(𝑥) − 𝑢𝐵

−(𝑥)| + |𝑣𝐴̃
+(𝑥) − 𝑢𝐵

+(𝑥)|)            (5) 

Assume that 𝜔 = (1 𝑛⁄ , 1 𝑛⁄ , . . . , 1 𝑛⁄ )𝑇, then Eq. (5) is re-
duced to the normalized Hamming distance 

𝑑2
𝜔(𝐴̃, 𝐵̃) = (

1

6𝑛
∑ (|𝑢𝐴̃

−(𝑥) − 𝑢𝐵̃
−(𝑥)|𝑛

𝑖=1 +  

|𝑢𝐴̃
+(𝑥) − 𝑢𝐵̃

+(𝑥)| + |𝑤𝐴̃
+(𝑥) − 𝑤𝐵̃

+(𝑥)| + |𝑣𝐴̃
−(𝑥) − 𝑢𝐵̃

−(𝑥)| +
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|𝑣𝐴̃
+(𝑥) − 𝑢𝐵̃

+(𝑥)|)                                                                                    (6) 

The weighted Euclidean distance and normalized Hamming 
distance 

𝑑3
𝜔(𝐴̃, 𝐵̃) = (

1

6
∑ 𝜔𝑖(|𝑢𝐴̃

−(𝑥) − 𝑢𝐵̃
−(𝑥)|

2𝑛
𝑖=1 + |𝑢𝐴̃

+(𝑥) − 𝑢𝐵̃
+(𝑥)|

2
+

|𝑤𝐴̃
−(𝑥) − 𝑤𝐵̃

−(𝑥)|
2

+ |𝑤𝐴̃
+(𝑥) − 𝑤𝐵̃

+(𝑥)|
2

+ |𝑣𝐴̃
−(𝑥) − 𝑢𝐵̃

−(𝑥)|
2

+

|𝑣𝐴
+(𝑥) − 𝑢𝐵

+(𝑥)|2))

1

2
                                                                     (7)                               

Assume that 𝜔 =  (1/𝑛, 1/𝑛, . . . ,1/𝑛)𝑇, then Eq. (7) is re-

duced to the normalized Hamming distance 

𝑑4
𝑛(𝐴̃, 𝐵̃) = (

1

6𝑛
∑ (|𝑢𝐴̃

−(𝑥) − 𝑢𝐵̃
−(𝑥)|

2𝑛
𝑖=1 + |𝑢𝐴̃

+(𝑥) − 𝑢𝐵̃
+(𝑥)|

2
+

|𝑤𝐴̃
−(𝑥) − 𝑤𝐵̃

−(𝑥)|
2

+ |𝑤𝐴̃
+(𝑥) − 𝑤𝐵̃

+(𝑥)|
2

+ |𝑣𝐴̃
−(𝑥) − 𝑢𝐵̃

−(𝑥)|
2

+

|𝑣𝐴̃
+(𝑥) − 𝑢𝐵̃

+(𝑥)|
2
))

1

2
                                                                     (8) 

Definition 8. [20] Let  

𝐴̃𝑘 = 〈[𝑢𝐴̃
−(𝑥), 𝑢𝐴̃

+(𝑥)], [𝑤𝐴̃
−(𝑥), 𝑤𝐴̃

+(𝑥)], [𝑣𝐴̃
−(𝑥), 𝑣𝐴̃

+(𝑥)]〉 

𝑘 = 1,2, … , . 𝑛) be a collection of interval neutrosophic sets. 
A mapping 𝐹̃𝜔 ∶  𝐼𝑁𝑆𝑛  →  𝐼𝑁𝑆 is called an interval neutro-

sophic weighted averaging operator of dimension 𝑛 if it is 

satisfies 

𝐹̃𝜔(𝐴̃1, 𝐴̃2, … , 𝐴̃𝑛) = ∑ 𝜔𝑘𝐴̃𝑘
𝑛
𝑘=1   

where 𝜔 =  (𝜔1, 𝜔2, . . . , 𝜔𝑛)𝑇  is the weight vector of 𝐴̃𝑘  (𝑘 =

 1,2, . . . , 𝑛), 𝜔𝑘  ∈ [0,1] and ∑ 𝜔𝑘 = 1𝑛
𝑘=1 . 

Theorem 1. [20] Suppose that  

𝐴̃𝑘 = 〈[𝑢𝐴
−(𝑥), 𝑢𝐴

+(𝑥)], [𝑤𝐴
−(𝑥), 𝑤𝐴

+(𝑥)], [𝑣𝐴
−(𝑥), 𝑣𝐴

+(𝑥)]〉 

𝑘 = 1,2, … , . 𝑛) are interval neutrosophic sets. Then the ag-
gregation result through using the interval neutrosophic 

weighted averaging operator Fω is an interval neutrosophic 
set and 

𝐹̃𝜔(𝐴̃1, 𝐴̃2, … , 𝐴̃𝑛) = 𝐴̃𝑘 

=< [1 − ∏ (1 − 𝑢𝐴̃𝑘

− (𝑥))
𝜔𝑘

, 1 − ∏ (1 − 𝑢𝐴̃𝑘

+ (𝑥))
𝜔𝑘

𝑛
𝑘=1

𝑛
𝑘=1 ],   

       [∏ (𝑤𝐴̃𝑘

− (𝑥))
𝜔𝑘

, ∏ (𝑤𝐴̃𝑘

+ (𝑥))
𝜔𝑘

𝑛
𝑘=1

𝑛
𝑘=1 ],  

       [∏ (𝑣𝐴̃𝑘

− (𝑥))
𝜔𝑘

, ∏ (𝑣𝐴̃𝑘

+ (𝑥))
𝜔𝑘

𝑛
𝑘=1

𝑛
𝑘=1 ] >                                        (9) 

where 𝜔 =  (𝜔1, 𝜔2, . . . , 𝜔𝑛)𝑇  is the weight vector of 𝐴̃𝑘  

(𝑘 =  1,2, . . . , 𝑛), 𝜔𝑘  ∈ [0,1] and ∑ 𝜔𝑘 = 1.𝑛
𝑘=1  

Suppose that 𝜔 =  (1/𝑛, 1/𝑛, . . . ,1/𝑛)𝑇  then the 𝐹̃𝜔  is 
called an arithmetic average operator for INSs.  

Since INS is a generalization of SVNS, according to Defi-
nition 8 and Theorem 1, the single valued neutrosophic 

weighted averaging operator can be easily obtained as fol-
lows. 

Definition 9. Let 
𝐴𝑘  = 〈𝑢𝐴𝑘

, 𝑤𝐴𝑘
, 𝑣𝐴𝑘

〉 

 (𝑘 =  1,2, . . . , 𝑛)  be a collection single valued neutro-

sophic sets. A mapping 𝐹𝜔 ∶  𝑆𝑉𝑁𝑆𝑛  →  𝑆𝑉𝑁𝑆 is called a 

single valued neutrosophic weighted averaging operator of 

dimension 𝑛 if it is satisfies 

𝐹𝜔 (𝐴1, 𝐴2, . . . , 𝐴𝑛) = ∑ 𝜔𝑘𝐴𝑘
𝑛
𝑘=1   

where 𝜔 =  (𝜔1, 𝜔2, … , 𝜔𝑛)𝑇  is the weight vector of 

𝐴𝑘(𝑘 =  1,2, . . . , 𝑛), 𝜔𝑘  ∈  [0,1] and ∑ 𝜔𝑘 = 1𝑛
𝑘=1 . 

Theorem 2. Suppose that 

𝐴𝑘  = 〈𝑢𝐴𝑘
, 𝑤𝐴𝑘

, 𝑣𝐴𝑘
〉 

(𝑘 =  1,2, . . . , 𝑛) are single valued neutrosophic sets. Then 

the aggregation result through using the single valued neu-
trosophic weighted averaging operator 𝐹𝜔 is single neutro-

sophic set and 

𝐹𝜔 (𝐴1, 𝐴2, . . . , 𝐴𝑛) = 𝐴𝑘     

             =< 1 − ∏ (1 −  𝑢𝐴𝑘
(𝑥))

𝜔𝑘

,𝑛
𝑘=1   

                     ∏ (𝑤𝐴𝑘
(𝑥))

𝜔𝑘

,𝑛
𝑘=1 ∏ (𝑣𝐴𝑘

(𝑥))
𝜔𝑘

>𝑛
𝑘=1              (10) 

where 𝜔 =  (𝜔1, 𝜔2, … , 𝜔𝑛)𝑇  is the weight vector of 
𝐴𝑘(𝑘 =  1,2, . . . , 𝑛), 𝜔𝑘  ∈  [0,1] and ∑ 𝜔𝑘 = 1𝑛

𝑘=1 . 

Suppose that 𝜔 =  (1/𝑛, 1/𝑛, … ,1/𝑛)𝑇 , then the 𝐹𝜔  is 

called an arithmetic average operator for SVNSs.  

3 Neutrosophic hierarchical algorithms 

The traditional hierarchical clustering algorithm [17, 
19] is generally used for clustering numerical information. 

By extending the traditional hierarchical clustering algo-

rithm, Xu [22] introduced an intuitionistic fuzzy hierar-
chical clustering algorithm for clustering IFSs and extended 

it to IVIFSs. However, they fail to deal with the data infor-
mation expressed in neutrosophic environment. Based on 

extending the intuitionistic fuzzy hierarchical clustering al-

gorithm and its extended form, we propose the neutrosophic 
hierarchical algorithms which are called the single valued 

neutrosophic hierarchical clustering algorithm and interval 
neutrosophic hierarchical clustering algorithm.  

Algorithm 1. Let us consider a collection of n SVNSs 

𝐴𝑘(𝑘 =  1,2, . . . , 𝑛). In the first stage, the algorithm starts 
by assigning each of the n SVNSs to a single cluster. Based 

on the weighted Hamming distance (1) or the weighted Eu-
clidean distance (3), the SVNSs 𝐴𝑘(𝑘 =  1,2, . . . , 𝑛)  are 

then compared among themselves and are merged them into 
a single cluster according to the closest (with smaller dis-

tance) pair of clusters. The process are continued until all 

the SVNSs 𝐴𝑘  are merged into one cluster i.e., clustered into 
a single cluster of size n. In each stage, only two clusters can 

be merged and they cannot be separated after they are 
merged, and the center of each cluster is recalculated by us-

ing the arithmetic average (from Eq. (10)) of the SVNSs 

proposed to the cluster. The distance between the centers of 
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 each cluster is considered as the distance between two clus-

ters. 

      However, the clustering algorithm given above cannot 

cluster the interval neutrosophic data. Therefore, we need 

another clustering algorithm to deal with the data repre-
sented by INSs. 

Algorithm 2. Let us consider a collection of n INSs 
𝐴̃𝑘(𝑘 =  1,2, . . . , 𝑛). In the first stage, the algorithm starts 

by assigning each of the n INSs to a single cluster. Based on 

the weighted Hamming distance (5) or the weighted Euclid-
ean distance (7), the INSs 𝐴̃𝑘(𝑘 =  1,2, . . . , 𝑛)  are then 

compared among themselves and are merged them into a 
single cluster according to the closest (with smaller dis-

tance) pair of clusters. The process are continued until all 
the INSs 𝐴̃𝑘  are merged into one cluster i.e., clustered into a 

single cluster of size n. In each stage, only two clusters can 

be merged and they cannot be separated after they are 
merged, and the center of each cluster is recalculated by us-

ing the arithmetic average (from Eq. (9)) of the INSs pro-
posed to the cluster. The distance between the centers of 

each cluster is considered as the distance between two clus-

ters. 

3.1 Numerical examples.  

      Let us consider the clustering problem adapted from 
[21]. 

 Example 1. Assume that five building materials: sealant, 
floor varnish, wall paint, carpet, and polyvinyl chloride 

flooring, which are represented by the SVNSs 𝐴𝑘(𝑘 =
 1,2, . . . ,5) in the feature space 𝑋 =  {𝑥1, 𝑥2, . . . , 𝑥8}.   
𝜔 =  (0.15,0.10,0.12,0.15,0.10,0.13,0.14,0.11)  is the 

weight vector of 𝑥𝑖(𝑖 =  1,2, . . . ,8), and the given data are 
listed as follows: 

𝐴1 = {(𝑥1 ,0.20,0.05,0.50), (𝑥2, 0.10,0.15,0.80), 
           (𝑥3 ,0.50,0.05,0.30), (𝑥4, 0.90,0.55,0.00), 
           (𝑥5 ,0.40,0.40,0.35), (𝑥6, 0.10,0.40,0.90), 
           (𝑥7 ,0.30,0.15,0.50), (𝑥8, 1.00,0.60,0.00), } 
 

𝐴2 = {(𝑥1, 0.50,0.60,0.40), (𝑥2, 0.60,0.30,0.15)}, 
           (𝑥3, 1.00,0.60,0.00), (𝑥4, 0.15,0.05,0.65), 
           (𝑥5, 0.00,0.25,0.80), (𝑥6, 0.70,0.65,0.15), 
           (𝑥7, 0.50,0.50,0.30), (𝑥8, 0.65,0.05,0.20)} 
 

𝐴3 = {(𝑥1, 0.45,0.05,0.35), (𝑥2, 0.60,0.50,0.30)}, 
           (𝑥3, 0.90,0.05,0.00), (𝑥4, 0.10,0.60,0.80), 
           (𝑥5, 0.20,0.35,0.70), (𝑥6, 0.60,0.40,0.20), 
           (𝑥7, 0.15,0.05,0.80), (𝑥8, 0.20,0.60,0.65)} 

 

𝐴4 = {(𝑥1, 1.00,0.65,0.00), (𝑥2, 1.00,0.25,0.00)}, 
           (𝑥3, 0.85,0.65,0.10), (𝑥4, 0.20,0.05,0.80), 
           (𝑥5, 0.15,0.30,0.85), (𝑥6, 0.10,0.60,0.70), 
           (𝑥7, 0.30,0.60,0.70), (𝑥8, 0.50,0.35,0.70)} 

 

𝐴5 = {(𝑥1, 0.90,0.20,0.00), (𝑥2, 0.90,0.40,0.10), 
           (𝑥3, 0.80,0.05,0.10), (𝑥4, 0.70,0.45,0.20), 
           (𝑥5, 0.50,0.25,0.15), (𝑥6, 0.30,0.30,0.65), 
           (𝑥7, 0.15,0.10,0.75), (𝑥8, 0.65,0.50,0.80)} 

 
Now we utilize Algorithm 1 to classify the building ma-

terials 𝐴𝑘(𝑘 =  1,2, . . . ,5): 
 

Step1 In the first stage, each of the SVNSs 𝐴𝑘(𝑘 =
 1,2, . . . ,5)  is considered as a unique cluster 
{𝐴1}, {𝐴2}, {𝐴3}, {𝐴4}, {𝐴5}. 

 
Step2 Compare each SVNS 𝐴𝑘  with all the other four 

SVNSs by using Eq. (1): 
 

𝑒1
𝜔(𝐴1, 𝐴2) = 𝑑1 (𝐴2, 𝐴1) = 0.6403 

𝑒1
𝜔(𝐴1, 𝐴3) = 𝑑1 (𝐴3, 𝐴1) = 0.5191 

𝑒1
𝜔(𝐴1, 𝐴4) = 𝑑1 (𝐴4, 𝐴1) = 0.7120 

𝑒1
𝜔(𝐴1, 𝐴5) = 𝑑1 (𝐴5, 𝐴1) = 0.5435 

𝑒1
𝜔(𝐴2, 𝐴3) = 𝑑1 (𝐴3, 𝐴2) = 0.5488 

𝑒1
𝜔(𝐴2, 𝐴4) = 𝑑1 (𝐴4, 𝐴2) = 0.4546 

𝑒1
𝜔(𝐴2, 𝐴5) = 𝑑1 (𝐴5, 𝐴2) = 0.6775 

𝑒1
𝜔(𝐴3, 𝐴4) = 𝑑1 (𝐴4, 𝐴3) = 0.3558 

𝑒1
𝜔(𝐴3, 𝐴5) = 𝑑1 (𝐴5, 𝐴3) = 0.2830 

𝑒1
𝜔(𝐴4, 𝐴5) = 𝑑1 (𝐴5, 𝐴4) = 0.3117 

and hence  
𝑒1

𝜔(𝐴1, 𝐴3) = 
min{𝑒1

𝜔(𝐴1, 𝐴2), 𝑒1
𝜔(𝐴1, 𝐴3) , 𝑒1

𝜔(𝐴1, 𝐴4), 𝑒1
𝜔(𝐴1, 𝐴5)} 

     = 0.5191, 

     𝑒1
𝜔(𝐴2, 𝐴4) = 

     min{𝑒1
𝜔(𝐴2, 𝐴1), 𝑒1

𝜔(𝐴2, 𝐴3) , 𝑒1
𝜔(𝐴2, 𝐴4), 𝑒1

𝜔(𝐴2, 𝐴5)} 
     = 0.4546, 

     𝑒1
𝜔(𝐴3, 𝐴5) = 

     min{𝑒1
𝜔(𝐴3, 𝐴1), 𝑒1

𝜔(𝐴3, 𝐴2) , 𝑒1
𝜔(𝐴3, 𝐴4), 𝑒1

𝜔(𝐴3, 𝐴5)} 
     = 0.2830. 

 
Then since only two clusters can be merged in each stage, 

the SVNSs 𝐴𝑘(𝑘 =  1,2, . . . ,5) can be clustered into the fol-
lowing three clusters at the second stage 
{𝐴1}, {𝐴2, 𝐴4}, {𝐴3, 𝐴5 }. 

 
Step3 Calculate the center of each cluster by using Eq. (10) 

 
𝑐{𝐴1} = 𝐴1 

𝑐{𝐴2, 𝐴4} = 𝐹𝜔(𝐴2, 𝐴4) 
= {(𝑥1, 1.00,0.62,0.00), (𝑥2, 1.00,0.27,0.00), 

                      (𝑥3, 1.00,0.62,0.00), (𝑥4, 0.17,0.05,0.72), 
                      (𝑥5, 0.07,0.27,0.82), (𝑥6, 0.48,0.62,0.32), 
                      (𝑥7, 0.40,0.54,0.45), (𝑥8, 0.58,0.13,0.37)}  

𝑐{𝐴3, 𝐴5} = 𝐹𝜔(𝐴3, 𝐴5) 
= {(𝑥1, 0.76,0.10,0.00), (𝑥2, 0.80,0.44,0.17), 

                      (𝑥3, 0.85,0.05,0.00), (𝑥4, 0.48,0.51,0.40), 
                      (𝑥5, 0.36,0.29,0.32), (𝑥6, 0.47,0.34,0.36), 
                      (𝑥7, 0.15,0.07,0.77), (𝑥8, 0.47,0.54,0.72)}. 
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and then compare each cluster with the other two clus-

ters by using Eq. (1): 

𝑒1
𝜔(𝑐{𝐴1}, 𝑐{𝐴2, 𝐴4}) = 𝑒1

𝜔(𝑐{𝐴2, 𝐴4}, 𝑐{𝐴1}) = 0.7101, 

𝑒1
𝜔(𝑐{𝐴1}, 𝑐{𝐴3, 𝐴5}) = 𝑒1

𝜔(𝑐{𝐴3, 𝐴5}, 𝑐{𝐴1}) = 5266, 

𝑒1
𝜔(𝑐{𝐴2, 𝐴4}, 𝑐{𝐴3, 𝐴5}) = 𝑒1

𝜔(𝑐{𝐴3, 𝐴5}, 𝑐{𝐴2, 𝐴4}) 

= 0.4879. 

Subsequently, the SVNSs 𝐴𝑘(𝑘 =  1,2, . . . ,5)  can be 

clustered into the following two clusters at the third 

stage {𝐴1}, {𝐴2, 𝐴3, 𝐴4, 𝐴5 }. 

Finally, the above two clusters can be further clustered 

into a unique cluster {𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐴5 }.  

All the above processes can be presented as in Fig. 1. 

 

 

 

 

 

 

 

FIGURE 1: Classification of the building materi-

als 𝐴𝑘(𝑘 =  1,2, . . . ,5) 

Example 2. Consider four enterprises, represented by 

the INSs 𝐴̃𝑘(𝑘 =  1,2,3,4)  in the attribute set 𝑋 =

 {𝑥1, 𝑥2, . . . , 𝑥6} , where (1)  𝑥1−the ability of sale; (2) 

𝑥2−the ability of management; (3)  𝑥3−the ability of 

production; (4)  𝑥4 −the ability of technology; (5) 

𝑥5−the ability of financing; (6) 𝑥6−the ability of risk 

bearing (the weight vector of 𝑥𝑖(𝑖 =  1,2, . . . ,6) is 𝜔 =

 (0.25,0.20,15,0.10,0.15,0.15) . The given data are 

listed as follows. 

𝐴̃1 = {(𝑥1, [0.70,0.75], [0.25,0.45], [0.10,0.15]), 

            (𝑥2, [0.00,0.10], [0.15,0.15], [0.80,0.90]), 

            (𝑥3, [0.15,0.20], [0.05,0.35], [0.60,0.65]), 

            (𝑥4, [0.50,0.55], [0.45,0.55], [0.30,0.35]), 

            (𝑥5, [0.10,0.15], [0.40,0.60], [0.50,0.60]),  

            (𝑥6, [0.70,0.75], [0.20,0.25], [0.10,0.15])} 

𝐴̃2 = (𝑥1, [0.40,0.45], [0.00,0.15], [0.30,0.35]), 

           (𝑥2, [0.60,0.65], [0.10,0.25], [0.20,0.30]), 

           (𝑥3, [0.80,1.00], [0.05,0.75], [0.00,0.00]), 

           (𝑥4, [0.70,0.90], [0.35,0.65], [0.00,1.00]), 

           (𝑥5, [0.70,0.75], [0.15,0.55], [0.10,0.20]), 

           (𝑥6, [0.90,1.00], [0.30,0.35], [0.00,0.00])}. 

𝐴̃3 = (𝑥1, [0.20,0.30], [0.85,0.60], [0.40,0.45), 

            (𝑥2, [0.80,0.90], [0.10,0.25], [0.00,0.10]), 

            (𝑥3, [0.10,0.20], [0.00,0.05], [0.70,0.80]), 

            (𝑥4, [0.15,0.20], [0.25,0.45], [0.70,0.75]), 

            (𝑥5, [0.00,0.10], [0.25,0.35], [0.80,0.90]), 

            (𝑥6, [0.60,0.70], [0.15,0.25], [0.20,0.30])}. 

𝐴̃4 = (𝑥1, [0.60,0.65], [0.05,0.10], [0.30,0.35]), 

           (𝑥2, [0.45,0.50], [0.45,0.55], [0.30,0.40]), 

           (𝑥3, [0.20,0.25], [0.05,0.25], [0.65,0.70]), 

           (𝑥4, [0.20,0.30], [0.35,0.45], [0.50,0.60]), 

           (𝑥5, [0.00,0.10], [0.35,0.75], [0.75,0.80]), 

           (𝑥6, [0.50,0.60], [0.00,0.05], [0.20,0.25])}. 

 

Here Algorithm 2 can be used to classify the enter-

prises𝐴̃𝑘(𝑘 =  1,2,3,4): 

Step 1 In the first stage, each of the INSs 𝐴̃𝑘(𝑘 =

 1,2,3,4)   is considered as a unique cluster 

{𝐴̃1}, {𝐴̃2}, {𝐴̃3}, {𝐴̃4} 

Step 2 Compare each INS 𝐴̃𝑘  with all the other three 

INSs by using Eq. (5) 

𝑑1
𝜔(𝐴̃1, 𝐴̃2) = 𝑑1

𝜔(𝐴̃2, 𝐴̃1) = 0.3337, 

𝑑1
𝜔(𝐴̃1, 𝐴̃3) = 𝑑1

𝜔(𝐴̃3, 𝐴̃1) = 0.2937, 

𝑑1
𝜔(𝐴̃1, 𝐴̃4) = 𝑑1

𝜔(𝐴̃4, 𝐴̃1) = 0.2041, 

𝑑1
𝜔(𝐴̃2, 𝐴̃3) = 𝑑1

𝜔(𝐴̃3, 𝐴̃2) = 0.3508, 

𝑑1
𝜔(𝐴̃2, 𝐴̃4) = 𝑑1

𝜔(𝐴̃4, 𝐴̃2) = 0.2970, 

𝑑1
𝜔(𝐴̃3, 𝐴̃4) = 𝑑1

𝜔(𝐴̃4, 𝐴̃3) = 0.2487, 

then the INSs 𝐴̃𝑘(𝑘 =  1,2,3,4)  can be clustered into 

the following three clusters at the second stage  

{𝐴̃1, 𝐴̃4}, {𝐴̃2}, {𝐴̃3}. 

Step 3 Calculate the center of each cluster by using Eq. 

(9) 

𝑐{𝐴̃2} = {𝐴̃2}, 𝑐{𝐴̃3} = {𝐴̃3}, 

𝑐{𝐴̃1, 𝐴̃4} = 𝐹𝜔(𝐴̃1, 𝐴̃4) = 

                      (𝑥1, [0.60,0.70], [0.11,0.21], [0.17,0.22]), 

                      (𝑥2, [0.25,0.32], [0.25,0.28], [0.48,0.60]), 

                      (𝑥3, [0.17,0.22], [0.05,0.29], [0.62,0.67]), 

                      (𝑥4, [0.36,0.43], [0.39,0.49], [0.38,0.45]), 

                      (𝑥5, [0.05,0.12], [0.37,0.67], [0.61,0.69]), 

                      (𝑥6, [0.61,0.68], [0.00,0.011], [0.14,0.19])}. 

and then compare each cluster with the other two clus-

ters by using Eq. (5) 

  

  
  

  

  
    

 
 

 
 {A1}        {A2}         {A4}    {A3}          {A5}   

  

  

{A2,A3,A4,A5} 
} 

{A1,A2,A3,A4,A5} 

} 

{A2,A4} 
} 
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 𝑑1
𝜔(𝑐{𝐴̃2}, 𝑐{𝐴̃3}) = 𝑑1

𝜔(𝑐{𝐴̃3}, 𝑐{𝐴̃2}) = 0.3508 

𝑑1
𝜔(𝑐{𝐴̃2}, 𝑐{𝐴̃1, 𝐴̃4}) = 𝑑1

𝜔(𝑐{𝐴̃4, 𝐴̃1}, 𝑐{𝐴̃2}) = 0.3003 

𝑑1
𝜔(𝑐{𝐴̃3}, 𝑐{𝐴̃1, 𝐴̃4}) = 𝑑1

𝜔(𝑐{𝐴̃4, 𝐴̃1}, 𝑐{𝐴̃3}) = 0.2487. 

then the INSs 𝐴̃𝑘(𝑘 =  1,2,3,4)  can be clustered into 

the following two clusters in the third stage 

{𝐴̃2}, {𝐴̃1, 𝐴̃3, 𝐴̃4}. 

In the final stage, the above two clusters can be further 

clustered into a unique cluster {𝐴̃1, 𝐴̃2, 𝐴̃3, 𝐴̃4}. 

Note that the clustering results obtained in Example 1 

and 2 are different from ones in [21]. 

All the above processes can be presented as in Fig. 2. 

 FIGURE 2: Classification of the enterprises 𝐴̃𝑘(𝑘 =

 1,2,3,4)   

Interval neutrosophic information is a generalization of 
interval valued intuitionistic fuzzy information while the 

single valued neutrosophic information extends the intui-
tionistic fuzzy information. In other words, The components 

of IFS and IVIFS are defined with respect to 𝑇 and 𝐹, i.e., 

membership and nonmembership only, so they can only 
handle incomplete information but not the indetermine in-

formation. Hence INS and SVNS, whose components are 
the truth membership, indeterminacy-membership and fal-

sity membership functions, are more general than others that 

do not include the indeterminacy-membership. Therefore, it 
is a natural outcome that the neutrosophic hierarchical clus-

tering algorithms developed here is the extension of both the 
intuitionistic hierarchical clustering algorithm and its extend 

form. The above expression clearly indicates that clustering 
analysis under neutrossophic environment is more general 

and more practical than existing hierarchical clustering al-

gorithms. 

4 Conclusion 

To cluster the data represented by neutrosophic infor-
mation, we have discussed on the clustering problems of 

SVNSs and INSs. Firstly, we have proposed a single valued 

neutrosophic hierarchical algorithm for clustering SVNSs, 

which is based on the traditional hierarchical clustering pro-

cedure, the single valued neutrosophic aggregation operator, 
and the basic distance measures between SVNSs. Then, we 

have extented the algorithm to INSs for clustering interval 

neutrosophic data. Finally, an illustrative example is pre-
sented to demonstrate the application and effectiveness of 

the developed clustering algorithms. Since the NSs are a 
more general platform to deal with uncertainties, the pro-

posed neutrosophic hierarchical algorithms are more prior-

ity than the other ones. In the future we will focus our atten-
tion on the another clustering methods of neutrosophic in-

formation. 
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Abstract. In this paper, we generalize the crisp topological 

spaces to the notion of neutrosophic crisp topological space, and 

we construct the basic concepts of the neutrosophic crisp 

topology. In addition to these, we introduce the definitions of 

neutrosophic crisp continuous function and neutrosophic crisp 

compact spaces.  Finally, some characterizations 

concerning neutrosophic crisp compact spaces are 

presented and one obtains several properties.  Possible 

application to GIS topology rules are touched upon.  

 

Keywords: Neutrosophic Crisp Set; Neutrosophic Topology; Neutrosophic Crisp Topology. 

 

1 Introduction 

       Neutrosophy has laid the foundation for a whole 

family of new mathematical theories generalizing both 
their crisp and fuzzy counterparts, the most used one 

being the neutrosophic set theory [6, 7, 8]. After the 

introduction of the neutrosophic set concepts in [1, 2, 3, 4, 

5, 9, 10, 11, 12] and after haven given the fundamental 
definitions of neutrosophic set operations, we generalize 

the crisp topological space to the notion of neutrosophic 

crisp set. Finally, we introduce the definitions of 

neutrosophic crisp continuous function and neutrosophic 
crisp compact space, and we obtain several properties and 

some characterizations concerning the neutrosophic crisp 

compact space. 

2 Terminology 

     We recollect some relevant basic preliminaries, and 

in particular, the work of   Smarandache   in [6, 7, 8, 12], 

and Salama et al. [1, 2, 3, 4, 5, 9, 10, 11, 12]. 

Smarandache introduced the neutrosophic components T, 

I, F which represent the membership, indeterminacy, and 

non-membership values respectively, where 1,0 - is 

non-standard unit interval. 

     Hanafy and Salama et al. [10, 12] considered some 

possible definitions for basic concepts of the neutrosophic 

crisp set and its operations. We now improve 

some results   by the following. 

3 Neutrosophic Crisp Sets 

3.1 Definition 

    Let X be a non-empty fixed set. A  

neutrosophic crisp set (NCS for short) A  is an 

object having the form

  
321 ,, AAAA  where 

321   and , AAA are  subsets of  X  satisfying 

21 AA , 31 AA and 32 AA . 

 

3.1 Remark 

   A neutrosophic crisp set 321 ,, AAAA  

can be identified as an ordered triple 321 ,, AAA , 

where A1, A2, A3 are subsets on X, and one can 

define several relations and operations between 

NCSs. 

   Since our purpose is to construct the tools for 

developing neutrosophic crisp sets, we must 

introduce the types of NCSs NN X,  in X as 

follows: 

1)  N   may be defined in many ways as a 

NCS, as follows:  

A. A. Salama, Florentin Smarandache, Valeri Kroumov, Neutrosophic Crisp Sets & Neutrosophic Crisp Topological Spaces 

mailto:drsalama44@gmail.com
mailto:smarand@unm.edu
mailto:val@ee.ous.ac.jp


26            Neutrosophic Sets and Systems, Vol. 2, 2014 

26 

i) ,,, XN or 

ii) ,,, XXN or 

iii) ,,, XN or 

iv) ,,N

2) NX  may also be defined in many ways as a

NCS: 

i) ,,,XX N  

ii) ,,, XXX N  

iii) ,,, XXX N  

Every crisp set A formed by three disjoint subsets of a

non-empty set  is obviously a NCS having the form

321 ,, AAAA . 

3.2 Definition 

  Let 321 ,, AAAA a NCS on , then the 

complement of the set A ,  ( cA for short  may be 

defined in three different ways: 

1
C

cccc AAAA 321 ,, , 

2
C 123 ,, AAAAc

3
C 123 ,, AAAA

cc

 One can define several relations and operations 

between NCSs as follows: 

3.3 Definition 

Let X be a non-empty set, and the NCSs A  and   B

in the form 
321 ,, AAAA ,

321 ,, BBBB  , then we may

consider two possible definitions for subsets A B

A B  may be defined in two ways: 

1) 332211   and  , BABABABA  

or

2) 332211   and  , BABABABA  

3.1 Proposition 

 For any neutrosophic crisp set A  the following hold: 

i) .   , NNN A  

ii) .   , NNN XXXA  

3.4 Definition 

Let X is a non-empty set, and the NCSs A  and B

in the form
321 ,, AAAA ,

321 ,, BBBB . Then:

1) A B  may be defined in two ways:

i) 332211 ,, BABABABA or 

ii) 332211 ,, BABABABA

2) A B  may also be defined in two ways:

 i)
332211 ,, BABABABA  or 

 ii) 
332211 ,, BABABABA

3) 
c

AAAA 121 ,,]  [ . 

4) 
323 ,, AAAA

c
. 

3.2 Proposition 

 For all two neutrosophic crisp sets A and B 

on X, then the followings are true: 

1) 

2) 
    We can easily generalize the operations of 

intersection and union in definition 3.2 to 

arbitrary family of neutrosophic crisp subsets as 

follows: 

3.3 Proposition 

  Let be arbitrary family of 

neutrosophic crisp subsets in X, then 

1) jA may be defined as the following

types : 

i) 
321 ,, jjj AAAjA ,or 

ii) 
321 ,, jjj AAAjA . 

2) jA may be defined as the following

types : 

i) 
321 ,, jjj AAAjA or 

ii) 
321 ,, jjj AAAjA . 

3.5 Definition 

     The product of two neutrosophic crisp sets 

A and B is a neutrosophic crisp set BA
given by  

332211 ,, BABABABA . 

4 Neutrosophic Crisp Topological Spaces 

     Here we extend the concepts of topological 

space and intuitionistic topological space to the 

case of neutrosophic crisp sets. 

4.1 Definition 

     A neutrosophic crisp topology (NCT for 

short) on a non-empty set  is a family 

of neutrosophic crisp subsets in  satisfying 

the following axioms 

i) NN X, . 

ii) 21 AA for any 1A and 2A . 

iii) jA . 
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In this case the pair  ,X  is called a neutrosophic

crisp topological space NCTS( for short) in X . The 

elements in are called neutrosophic crisp open sets 

(NCOSs for short) in X .  A neutrosophic crisp set F is 

closed if and only if its complement CF is an open 

neutrosophic crisp set. 

4.1 Remark 

     Neutrosophic crisp topological spaces are very 

natural generalizations of topological spaces and 

intuitionistic topological spaces, and they allow more 

general functions to be members of topology. 

NCTSITSTS 

4.1 Example 

Let  dcbaX ,,, , NN X, be any types of the

universal and empty subsets, and A, B two neutrosophic 

crisp subsets on X  defined by      cdbaA ,,, ,

     cbaB ,, , then the family  BAX NN ,,,   is

a neutrosophic crisp topology on X. 

4.2 Example 

Let  ,X be a topological space such that 

is not indiscrete. Suppose  JiGi : be a family and

   JiGX i  :,  . Then we can construct the

following topologies as follows 

i) Two intuitionistic topologies 

a)    JiGX iII  ,,,1  .

b)    JiGX c
iII  ,,,2 

ii) Four neutrosophic crisp topologies

a)    JiGX c
iNN  ,,,,1   

b)    JiGX iNN  ,,,,2 

c)    JiGGX c
iiNN  ,,,,3  , 

d)    JiGX c
iNN  ,,,,4   

4.2 Definition 

Let    21 ,,,  XX be two neutrosophic crisp

topological spaces on X . Then 1  is said be contained in

2  (in symbols 21   ) if 
2G  for each

1G . In 

this case, we also say that 
1 is coarser than

2 . 

4.1 Proposition 

Let Jjj :   be a family of NCTs on X . Then

j   is a neutrosophic crisp topology on X . 

Furthermore, j  is the coarsest NCT on X

containing  all topologies. 

Proof 
 Obvious. Now, we define the neutrosophic crisp 
closure and neutrosophic crisp interior operations 
on neutrosophic crisp topological spaces: 

4.3 Definition 

Let  ,X  be NCTS and 
321 ,, AAAA   be a

NCS in X . Then the neutrosophic crisp closure  

of  A (NCCl(A) for short) and neutrosophic 

interior crisp (NCInt (A ) for short) of A  are 

defined by  

 KA and Xin   NCSan   is  :)(  KKANCCl

 AG and Xin    NCOSan   is  :)(  GGANCInt , 

where NCS is a neutrosophic crisp set, and NCOS 

is a neutrosophic crisp open set. 

It can be also shown that )(   ANCCl  is a NCCS 

(neutrosophic crisp closed set) and )( ANCInt  is a 

CNOS in X

a) A   is in X  if and only if   AANCCl )( .

b) A   is a NCCS in X if and only if  

AANCInt )( .

4.2 Proposition 

For any neutrosophic crisp set A  in  ,X

we have 

(a) ,))(()( cc ANCIntANCCl   

(b) .))(()( cc ANCClANCInt   

Proof 

a) Let 
321 ,, AAAA   and suppose that the 

family of neutrosophic crisp subsets  

contained  in A  are indexed by the family if 

NCSs contained in A  are indexed by the

family  JiAAAA jjj  :,,
321

. Then 

we see that we have two types of 

 
321

,,)( jjj AAAANCInt  or 

 
321

,,)( jjj AAAANCInt  hence

 
321

,,))(( jjj
c AAAANCInt  or 

 
321

,,))(( jjj
c AAAANCInt . 

Hence ,))(()( cc ANCIntANCCl  which 

is analogous to (a). 

A. A. Salama, Florentin Smarandache, Valeri Kroumov, Neutrosophic Crisp Sets & Neutrosophic Crisp Topological Spaces 



28    Neutrosophic Sets and Systems, Vol. 2, 2014 

28 

4.3 Proposition 

Let  ,X  be a NCTS and ,A B  be two

neutrosophic crisp sets in X . Then the following 

properties hold: 

(a) ,)( AANCInt   

(b) ),(ANCClA  

(c) ),()( BNCIntANCIntBA 

(d) ),()( BNCClANCClBA 

(e) ),()()( BNCIntANCIntBANCInt 

(f) ),()()( BNCClANCClBANCCl 

(g) ,)( NN XXNCInt   

(h) NNNCCl  )(

Proof.   (a), (b) and (e) are obvious; (c) follows from (a) 

and from definitions. 

5 Neutrosophic Crisp Continuity 

    Here come the basic definitions first 

5.1 Definition 

(a) If 
321 ,, BBBB   is a NCS in Y, then the

preimage of  B under ,f  denoted by ),(1 Bf  is a 

NCS in X defined by 

.)(),(),()( 3
1

2
1

1
11 BfBfBfBf    

(b) If 
321 ,, AAAA   is a NCS in X, then the image 

of A under ,f denoted by ),(Af  is the a NCS in 

Y defined by .))(),(),()( 321
cAfAfAfAf 

Here we introduce the properties of images and preimages 

some of which we shall frequently use in the following 

sections . 

5.1 Corollary 

Let A,  JiAi :  , be NCSs in X, and

B,  KjB j :  NCS in Y, and YXf : a

 function. Then  

(a) ),()( 2121 AfAfAA 

),()( 2
1

1
1

21 BfBfBB    

(b) ))((1 AffA   and if f is injective, then 

))((1 AffA  . 

(c) BBff  ))((1  and if f is surjective, then 

,))((1 BBff  . 

(d) ),())( 11

ii BfBf   ),())( 11
ii BfBf  

(e) );()( ii AfAf  );()( ii AfAf  and if f is 

injective, then  );()( ii AfAf   

(f) ,)(1
NN XYf 

NNf   )(1 . 

(g) ,)( NNf   ,)( NN YXf   if f is subjective.

Proof 

   Obvious. 

5.2 Definition 

Let  1,X  and  2,Y  be two NCTSs, and

let YXf : be a function. Then f  is said to 

be continuous iff the preimage of each NCS in 

2  is a NCS in 1 . 

5.3 Definition 

Let  1,X  and  2,Y  be two NCTSs and

let YXf : be a function. Then f  is said to 

be open iff the image of each NCS in 1  is a 

NCS in 2 . 

5.1 Example 

Let  oX ,  and  oY ,  be two NCTSs

(a) If YXf :  is continuous in the usual 

sense, then in this case, f  is continuous in the 

sense of Definition 5.1 too. Here we consider 

the NCTs on X and Y, respectively, as follows :  

 o
c GGG   :,,1

 and 

 o
c HHH   :,,2

, 

In  this case we have, for each 2,,  cHH , 

oH  , 

)(),(),(,, 1111 cc HffHfHHf   

1
1 ))((),(,    cHffHf . 

(b) If YXf :  is open in the usual sense, 

then in this case, f  is open in the sense 

of Definition 3.2. Now we obtain some 

characterizations of continuity:  

5.1 Proposition 

  Let ),(),(: 21  YXf  . 

f is continuous if the preimage of each 

CNCS (crisp neutrosophic closed set) in 2  is a 

CNCS in 2 .

5.2 Proposition 

  The following are equivalent to each other: 

(a)  ),(),(: 21  YXf   is continuous. 

(b) ))(()(( 11 BfCNIntBCNIntf    

for each CNS B in Y. 

(c) ))(())(( 11 BCNClfBfCNCl    

for each CNC B in Y. 
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5.2 Example 

Let  2,Y  be a NCTS and YXf : be a function.

In this case  2
1

1 :)(    HHf is a NCT on X. 

Indeed, it is the coarsest NCT on X which makes the 

function YXf : continuous. One may call it the initial 

neutrosophic crisp  topology  with respect to .f  

6  Neutrosophic Crisp Compact Space (NCCS) 

First we present the basic concepts: 

6.1 Definition 

Let  ,X  be an NCTS.

(a) If a family  JiGGG iii :,,
321

 of  NCOSs in 

X satisfies the condition 

  ,:,,,
321 Niii XJiGGGX  then it is called

an  neutrosophic open cover of X.  

(b) A finite subfamily of an open cover 

 JiGGG iii :,,
321

 on X, which is also a  

neutrosophic open cover of X , is called a 

neutrosophic finite subcover 

 JiGGG iii :,,
321

.

(c) A family  JiKKK iii :,,
321

 of NCCSs in X

satisfies the finite intersection property (FIP for 

short) iff every finite subfamily 

 niKKK iii ,...,2,1:,,
321

  of the family 

satisfies the  condition 

  Niii JiKKK  :,,
321

. 

6.2 Definition 

A NCTS  ,X is called neutrosophic crisp compact

iff each crisp neutrosophic open cover of X has a finite 

subcover. 

6.1 Example 

a) Let X   and let’s consider the NCSs

(neutrosophic crisp sets) given below: 

  ,,,,...4,3,21 A     ,1,,,...4,32 A

    ,2,1,,,...6,5,43 A …      

   1,...3,2,1,,,...3,2,1  nnnnAn  . 

Then    ,...5,4,3, :  nNN AX is a NCT on X and

 ,X  is a neutrosophic crisp compact.

b) Let  1,0X and let’s take the NCSs

   
nn

n
nn XA 111 ,0,,,,  , ,...5,4,3n in X. 

In this case    ,...5,4,3, :  nNN AX

is an NCT on X, which is not a neutrosophic 

crisp compact. 

6.1 Corollary 

A NCTS  ,X  is a neutrosophic crisp

compact iff every family 

 JiGGGX iii :,,,
321

 of NCCSs in X having 

the FIP has nonempty intersection. 

 6.2 Corollary 

Let  1,X ,  2,Y be NCTSs and

YXf : be a continuous surjection. If  1,X

is a neutrosophic crisp compact, then so is  2,Y

6.3 Definition 

(a) If a family  JiGGG iii :,,
321

 of 

NCCSs in X satisfies the condition

 JiGGGA iii  :,,
321

 , then it is 

called a  neutrosophic crisp open cover 

of A.  

(b) Let’s consider a finite subfamily of a 

neutrosophic crisp open subcover of 

 JiGGG iii :,,
321

. 

A neutrosophic crisp set 321 ,, AAAA    in a 

NCTS  ,X  is called neutrosophic crisp

compact iff every neutrosophic crisp open cover 

of A has a finite neutrosophic crisp open 

subcover. 

6.3 Corollary 

Let  1,X ,  2,Y be NCTSs and

YXf : be a continuous surjection. If A is a 

neutrosophic crisp compact in  1,X , then so is

)(Af  in  2,Y .

7 Conclusion 

In this paper we introduce both the neutrosophic 

crisp topology and the neutrosophic crisp compact 

space, and we present properties related to them. 
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Abstract. Mental models are personal, internal representations 

of external reality that people use to interact with the world 

around them. They are useful in multiple situations such as 

muticriteria decision making, knowledge management, complex 

system learning and analysis. In this paper a framework for 

mental models elicitation and analysis based on 

neutrosophic Logic is presented. An illustrative 

example   is provided to show the applicability of the 

proposal. The paper ends with conclusion future 

research directions.  
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1 Introduction 

Mental models are useful in multiple situations such as 

muticriteria decision making [1], knowledge management, 

complex system learning and analysis [2]. In this paper, 

we propose the use of an innovative technique for 

processing uncertainty and indeterminacy in mental 

models. 
The outline of this paper is as follows: Section 2 is 

dedicated to mental models and neutrosophic logic and 
neutrosophic cognitive maps. The proposed framework is 
presented in Section 3. An illustrative example is discussed 
in Section 4. The paper closes with concluding remarks, 
and discussion of future work in Section 5.  

2 Mental Models and neutrosophic Logic 

Mental models are personal, internal representations of 

external reality that people use to interact with the world 

around them [3]. The development of more effective end-

user mental modelling tools is an active area of research 

[4]. 

A cognitive map is form of structured knowledge 

representation introduced by Axelrod [5]. Mental models 

have been studied using cognitive mapping [6].  

Another approach is based in fuzzy cognitive maps [7]. 

FCM utilizes fuzzy logic in the creation of a directed 

cognitive map.  FCM are a further extension of Axelrod‟s 

definition of cognitive maps [7] . 

Neutrosophic logic is a generalization of fuzzy logic based 

on neutrosophy [8]. If indeterminacy is introduced in 

cognitive mapping it is called Neutrosophic Cognitive 

Map (NCM) [9].  

NCM are based on neutrosophic logic to represent 

uncertainty and  indeterminacy in cognitive maps [8].  A 

NCM is a directed graph in which at least one edge is an 

indeterminacy denoted by dotted lines [6]. 

3 Proposed Framework 

The following steps will be used to establish a 
framework for mental model elicitation and 
analysis with NCM (Fig. 1). 

 
Figure 1: Mental model. 

• Mental model development. 

This Activity begins with determination 

of nodes. Finally causal relationships, its 

weights and signs are elicited [10]. 

• Mental model analysis 

Static analysis is develop to define the 

importance of each node based on the 

degree centrality measure [11]. A de-
neutrosophication process gives an 

interval number for centrality. Finally 

the nodes are ordered. 

 

Mental model develoment 

•Nodes determination 

• Causal relationships determination. 

•  Weights and signs determination. 

Mental Model analysis 

•Degree centrality determination 

•De-neutrosophication process 
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4 Illustrative example 

In this section, we present an illustrative example in order 

to show the applicability of the proposed model. We 

selected a group of concepts related to people factor in 

agile software develoment projects sucess (Table 1) [12]. 

Table I. FCM nodes 

Node Description 

A Competence and 

expertise of team members 

B Motivation of tem 

members   

C Managers knowledge of 

agile development 

D Team training  

E Customer  relationship 

F Customer 

commitment and 

presence 

 
The FCM is developed integrating knowledge from one 

expert. The FCM with weighs is represented in Fig. 4.  

A

B

D
0.25

C

E

F

0.75

0.75

0.75

 
Figure 2: Mental model. 

The neutrosophic score of each node based on the 

centrality measure is as follows: 

A 1.75 

B 0.75+I 

C 0.25+I 

D 0.75 

E 0.75 

F 0.75+2I 

The next step is the de-neutrosophication process 

as proposes by Salmeron and Smarandache [13].  

I ∈[0,1] is repalaced by both maximum and 

minimum values. 

A 1.75 

B [0.75,1.75] 

C [0.25,1.25] 

D 0.75 

E 0.75 

F [0.75,2.75] 

Finally we work with extreme values [14] for 

giving a total order: 

 

Competence and expertise of team members, 

Customer commitment and presence are the more 

important factors in his mental model.  

5 Conclusions 

In this paper, we propose a new framework for 

processing uncertainty and indeterminacy in 

mental models. Future research will focus on 

conducting further real life experiments and the 

development of a tool to automate the process. 

The use of the computing with words (CWW) is 

another area of research.  
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Abstract. A neutrosophic hyperstructure is an algebraic 

structure generated by a given hyperstructure H and an 

indeterminacy factor I under the hyperoperation(s) of H. 

The objective of this paper is to study canonical hyper-

groups and hyperrings in which addition and multiplica-

tion are hyperoperations in a neutrosophic environment. 

Some basic properties of neutrosophic canonical hyper-

groups and neutrosophic hyperrings are presented. Quo-

tient neutrosophic canonical hypergroups and neutro-

sophic hyperrings are presented.  

Keywords: neutrosophic canonical hypergroup, neutrosophic subcanonical hypergroup, neutrosophic hyperring, neutrosophic 

subhyperring, neutrosophic hyperideal. 

1 Introduction 

Given any hyperstructure H, a new hyperstructure H(I) 

may be generated by H and I under the hyperoperation(s) 

of H. Such new hyperstructures H(I) are called neutrosoph-
ic hyperstructures where I is an indeterminate or a neutro-

sophic element. Generally speaking, H(I) is an extension of 
H but some properties of H may not hold in H(I). However, 

H(I) may share some properties with H and at times may 
possess certain algebraic properties not present in H.  

Neutrosophic theory was introduced by F. 

Smarandache in 1995 and some known algebraic structures 
in the literature include neutrosophic groups, neutrosophic 

semigroups, neutrosophic loops, neutrosophic rings, neu-
trosophic fields, neutrosophic vector spaces, neutrosophic 

modules etc. Further introduction to neutrosophy and neu-

trosophic algebraic structures can be found in 
[1,2,3,4,16,26,27]. 

In 1934, Marty [18] introduced the theory of hyper-
structures at the 8th Congress of Scandinavian Mathemati-

cians. In 1972, Mittas [21] introduced the theory of canon-
ical hypergroups. A class of hyperrings (R, +, .), where + 

and . are hyperoperations are introduced by De Salvo [15]. 

This class of hyperrings has been further studied by 
Asokkumar and Velrajan [5,22] and Davvaz and Leoranu-

Fotea [14]. Further contributions to the theory of hyper-
structures can be found in [7,8,9,10,14,22]. 

Agboola and Davaaz introduced and studied neutro-

sophic hypergroups in [4]. The present paper is concerned 
with the study of canonical hypergroups and hyperrings in 

a neutrosophic environment. Basic properties of neutro-
sophic canonical hypergroups and neutrosophic hyperrings 

are presented. Quotient neutrosophic canonical hyper-
groups and neutrosophic hyperrings are also presented.     

2 A Review of Well Known Definitions 

In this section, we provide basic definitions, notations 

and results that will be used in the sequel.  

Definition 2.1. Let (G,  ) be any group and let 

IGIG )( . The couple )),(( IG is called a neu-
trosophic group generated by G and I under the binary op-

eration  . The indeterminacy factor I is such that 
.III  If   is ordinary multiplication, then 

IIIIII n  ... and   if is ordinary addition, 

then nIIIII  ... for .Nn  
G(I) is said to be commutative if abba  for all 

).(, IGba   

Theorem 2.2. [26] Let G(I) be a neutrosophic group. 

(1) G(I) in general is not a group; 
(2)  G(I) always contain a group. 

Definition 2.3. Let G(I) be a neutrosophic group. 

(1) A proper subset A(I) of G(I) is said to be a neutro-
sophic subgroup of G(I) if A(I) is a neutrosophic 

group, that is, A(I) contains a proper subset which 

is a group; 
(2) A(I) is said to be a pseudo neutrosophic group if it 

does not contain a proper subset which is a group. 

Definition 2.4. Let A(I) be a neutrosophic subgroup 

(pseudo neutrosophic subgroup) of a neutrosophic group 
G(I).  

(1) A(I) is said to be normal in G(I) if there exist 

)(, IGyx  such that )()( IAyIxA  . 

(2) G(I) is said to be simple if it has no non-trivial 
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neutrosophic normal subgroup. 

Example 1. [3] Let G(I)={e, a, b, c, I, aI, bI, cI} be a 

set, where a2=b2=c2=e, bc=cb=a, ac=ca=b, ab=ba=c. Then 

(G(I),.) is a commutative neutrosophic group, and 
H(I)={e,a,I,aI}, K(I)={e,b,I,bI} and PI={e,c,I,cI} are neu-

trosophic subgroups of G(I).   
Theorem 2.5. [3] Let H(I) be a non-empty proper sub-

set of a neutrosophic group (G(I), ). Then, H(I) is a neu-

trosophic subgroup of G(I) if and only if the following 
conditions hold: 

(1) )(, IHba  implies that );(IHba   
(2) There exists a proper subset A of H(I) such that (A,

) is a group. 

Definition 2.6. Let (G1(I), ) and (G1(I), ’) be two 

neutrosophic groups and let 1 2: ( ) ( )G I G I  be a 
mapping of G1(I) into G2(I). Then,   is said to be a ho-

momorphism if the following conditions hold: 
(1)   is a group of homomorphism; 

(2) ( )I I  . 

In addition, if   is a bijection, then   is called a neu-
trosophic group isomorphism and we write 

1 2( ) ( )G I G I . 

Definition 2.7. Let (R,+,.) be any ring. A neutrosophic 
ring is a triple (R(I),+,.) generated by R and I, that is, 

( )R I R I  . 

Indeed, ( ) { : , }R I x a bI a b R    , where if 
x=a+bI and y=c+dI are elements of R, then 

( ) ( ) ( ) ( )x y a bI c dI a c b d I         , 

( ) ( )x y a bI c dI     

( ) ( )ac ad bc bd I   . 

Example 2. Let n be a ring of integers modulo n. 

Then, ( ) { : , }n nI x a bI a b    is a neutrosoph-
ic ring of integers modulo n. 

Theorem 2.8. [27] Let (R(I),+,.) be a neutrosophic 

ring. Then, (R(I),+,.) is a ring.  

Definition 2.9. Let (R(I),+,.) be a neutrosophic ring. A 

non-empty subset S(I) of R(I) is said to be a neutrosophic 
subring if (S(I),+,.) is a neutrosophic ring. It is essential 

that S(I) must contain a proper subset which is a ring. Oth-

erwise, S(I) is called a pseudo neutrosophic subring of R(I). 

Example 3. Let 12( ( ), , )I   be a neutrosophic ring 
of integers modulo 12 and let S(I) and T(I) be subsets of 

12 ( )I  given by S(I)={0, 6, I, 2I, 3I, ..., 11I, 6+I, 6+2I, 
6+3I, ..., 6+11I} and T(I)={0, 2I, 4I, 6I, 10I}. Then, 

(S(I),+,.) is a neutrosophic subring of 12 ( )I while 

(T(I),+,.) is a pseudo neutrosophic ring of 12 ( )I . 

Definition 2.10. Let (R(I),+,.) be a neutrosophic ring 
and let S(I) be a neutrosophic subring (pseudo neutrosoph-

ic subring) of R(I). Then, S(I) is called a neutrosophic ide-

al (pseudo neutrosophic ideal) of R(I) if for all ( )r R I
and ( )s S I , , ( ).r s s r S I    

Definition 2.11. Let 1( ( ), , )R I   and 2( ( ), , )R I  
be two neutrosophic rings and let 1 2: ( ) ( )R I R I  be a 

mapping of 1( )R I into 2 ( )R I . Then,   is said to be a 
homomorphism if the following conditions hold: 

(1)   is a group of homomorphism; 

(2) ( )I I  . 
Moreover, if   is a bijection, then   is called a neu-

trosophic ring isomorphism and we write 1 2( ) ( )R I R I . 
The kernel of  denoted by Ker  is the set 

1{ ( ) : ( ) 0}x R I x  and the image of  denoted by 

Im  is the set 1{ ( ) : ( )}x x R I  . 

It should be noted that Im  is a neutrosophic subring 

of 2 ( )R I and Ker  is always a subring of R1 and never a 
neutrosophic subring (ideal) of R1(I). 

Definition 2.12. A map : *( )S S P S   is called 

hyperoperation on the set S, where S is non-empty set and 

*( )P S denotes the set of all non-empty subsets of S. 
A hyperstructure or hypergroupoid is the pair ( , )S  , 

where  is a hyperoperation on the set S.

Definition 2.13. A hyperstructure ( , )S   is called a 
semihypergroup if for all 

, , , ( ) ( )x y z S x y z x y z      , which means that 

.
u x y v y z

u z x v
   

    

Definition 2.14. A non-empty subset A of a semihy-

pergroup ( , )S  is called a subsemihypergroup. In other 

words, a non-empty subset A of a semihypergroup ( , )S  is 
a subsemihypergroup if A A A  . 

If x S and A,B are non-empty subsets of S, then 

, { }
a A
b B

A B a b A x A x



      , and 

{ }x B x B   . 

Definition 2.15. A hypergroupoid ( , )H  is called a 

quasihypergroup if for all a of H we have 
a H H a H    . This condition is also called the re-

production axiom.  

Definition 2.16. A hypergroupoid ( , )H  which is both 
a semihypergroup and a quasihypergroup is called a hy-

pergroup. 

Definition 2.17. Let H be a non-empty set and let + be 

a hyperoperation on H. The couple ( , )H  is called ca-
nonical hypergroup if the following conditions hold: 
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(1) x+y=y+x, for all ,x y H ; 

(2) x+(y+z)=(x+y)+z, for all , ,x y z H ; 
(3) there exists a neutral element 0 H such that 

x+0={x}=0+x, for all x H ; 

(4) for every x H , there exists a unique element 

x H  such that 0 ( ) ( )x x x x      ; 

(5) z x y  implies y x z  and x z y  , 
for all , ,x y z H . 

A non-empty subset A of H is called a subcanonical 
hypergroup if A is canonical hypergroup under the same 

hyperaddition as that of H that is, for every ,a b A , 

a b A  . In addition, if a A a A   for all ,a H
A is said to be normal. 

Definition 2.18. A hyperring is a triple ( , , )R   satis-

fying the following axioms: 
(1) ( , )R   is a canonical hypergroup; 

(2) ( , )R   is a semihypergroup such that 

0 0 0x x    for all x R , that is, ) is a bilat-
eral absorbing element; 

(3) ( )x y z x y x z      and 

( )x y z x z y z      , for all , ,x y z R . 

Definition 2.19. Let ( , , )R   be a hyperring and A be 
a non-empty subset of R. Then, A is said to be subhyper-

ring of R if ( , , )A    is itself a hyperring.   

Definition 2.20. Let A be a subhyperring of a hyper-
ring R.  

(1) A is called a left hyperideal of R if r a A  for 

all ,r R a A  . 
(2) A is called a right hyperideal of R if  a r A 

for all ,r R a A  . 
(3) A is called a hyperideal of R if A is both left and 

right hyperideal of R. 

(4) A hyperideal A is said to be normal if 
r a r A   for all r R . 

Definition 2.21. Let 1( , )H  and 2( , )H   be two 

canonical hypergroups. A mapping 1 2: H H  , is 
called 

(1) a homomorphism if  (i) for all 1,x y H , 

( ) ( ) ( )x y x y      and (ii) (0) 0  . 
(2) a good or strong homomorphism if  (i) for all 

1,x y H , ( ) ( ) ( )x y x y      and (ii) 

(0) 0  . 

(3) an isomorphism (strong isomorphism) if  is a bi-

jective  homomorphism (strong homomorphism). 

Definition 2.22. [4] Let ( , )H be any hypergroup and 
let {( , ) : , }H I a bI a b H   . The couple 

( ) ( , )H I H I  is called a neutrosophic hyper-
group generated by H and I under the hyperoperation , 

where for all ( , ),( , ) ( )a bI c dI H I , the composition 

element of H(I) is defined by

( , ) ( , ) {( , ) : ,a bI c dI x yI x a c   

}y a d b c b d   . 

3 Development of Neutrosophic Canonical Hy-
pergroups and Neutrosophic Hyperrings  

In this section, we develop the concepts of neutrosoph-

ic canonical hypergroups and neutrosophic hyperrings. 
Necessary definitions are given and examples are provided. 

Definition 3.1. Let ( , )H  be any canonical hyper-

group and let I be an indeterminate. Let 

( ) {( , ) : , }H I H I a bI a b H    be a set gener-
ated by H and I. The hyperstructure ( ( ), )H I  is called a 

neutrosophic canonical hypergroup, where for all 

( , ),( , ) ( )a bI c dI H I with 0b  or 0d  , we define 

( , ) ( , ) {( , ) : ,a bI c dI x yI x a c   
}y a d b c b d       

and 

( ,0) ( ,0) {( ,0) : }.x y u u x y     
The element I is represented by (0,I) in H(I) and any 

element x H is represented by (x,0) in H(I). For any 
non-empty subset A[I] of H(I) , we define [ ]A I 
{ ( , ) ( , ) : , }a bI a bI a b H     . 

Lemma 3.2. Let {0}H  be a canonical hypergroup 

and let H(I) be the corresponding neutrosophic canonical 
hypergroup. Then, (0,0) the neutral element of H is not a 

neutral element of H(I). 
Proof. Suppose that (0,0) is the neutral element of H(I) 

and suppose that ( , ) ( )a bI H I such that b is non-zero 

and a b .  
Then

( , ) (0,0) {( , ) : 0, 0 0 0}a bI u vI u a v a b b         
{( , ) : { }, { , }}u vI u a v a b    

( , ),a bI  

a contradiction. Hence, (0,0) is not a neutral element of 
H(I). 

Definition 3.3. Let (H(I),+) be a neutrosophic canoni-

cal hypergroup. 
(1) A non-empty subset A[I] of H(I) is called a neu-

trosophic subcanonical hypergroup of H(I) if 

(A[I],+) is itself a neutrosophic canonical hyper-
group. It is essential that A[I] must contain a prop-

er subset which is a subcanonical hypergroup of H. 
If A[I] does not contain a proper subset which is a 

subcanonical  hypergroup of H, then it is called a 

pseudo neutrosophic subcanonical hypergroup of 
H(I). 

(2) If A[I] is a neutrosophic subcanonical hypergroup 
(pseudo neutrosophic subcanonical hypergroup), 

then A[I] is said to be normal in H(I) if for all 

( , ) ( )a bI H I , 

( , ) [ ] ( , ) [ ].a bI A I a bI A I    

Lemma 3.4. Let (H(I),+) be a neutrosophic canonical 

hypergroup and let A[I] be a non-empty proper subset of 
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H(I). Then, A[I] is a neutrosophic subcanonical hyper-

group if and only if the following conditions hold: 
(1) for all 

( , ),( , ) [ ],( , ) ( , ) [ ],a bI c dI A I a bI c dI A I  

(2) A[I] contains a proper subset which is a canonical 

hypergroup of H.  

Lemma 3.5. Let (H(I),+) be a neutrosophic canonical 

hypergroup and let A[I] be a non-empty proper subset of 
H(I). Then, A[I] is a pseudo neutrosophic subcanonical 

hypergroup if and only if the following conditions hold: 
(1) for all 

( , ),( , ) [ ],( , ) ( , ) [ ],a bI c dI A I a bI c dI A I  

(2) A[I] does not contain a proper subset which is a 

canonical hypergroup of H.  

Definition 3.6. Let A[I] and B[I] be any two neutro-
sophic subcanonical hypergroups of a neutrosophic canon-

ical hypergroup H(I). The sum of A[I] and B[I] denoted by 

A[I]+B[I] is defined as the set: 

( , ) [ ]
( , ) [ ]

[ ] [ ] ( , ) ( , ).
a bI A I
c dI B I

A I B I a bI c dI



    

Definition 3.7. Let H(I) be a neutrosophic canonical 

hypergroup and let A[I] be a neutrosophic subcanonical 
hypergroup of H(I). If K is a subcanonical hypergroup of H, 

we define the set 

( , ) [ ]
( ,0)

[ ] ( , ) ( ,0).
a bI A I
k K

A I K a bI k



    

Definition 3.8. Let ( , , )R   be any hyperring and let I 

be an indeterminate. The hyperstructure ( ( ), , )R I 
generated by R and I, that is, R(I)= R I , is called a 

neutrosophic hyperring, where for all  

( , ),( , ) ( ),a bI c dI R I  

( , ) ( , ) {( , ) : , };a bI c dI x yI x a c y b d     
for all ( , ),( , ) ( )a bI c dI R I  with 0b  or 0,d   

( , ) ( , ) {( , ) : . ,a bI c dI x yI x a c   

. . . }y a d b c b d    
and 

( ,0) ( ,0) {( ,0) : }.x y u u x y    

We usually use + and  instead of  and . 

Lemma 3.9. Let R(I) be a neutrosophic hyperring. 
Then, (0,0) ( )R I is bilaterally absorbing element.  

Proof. Suppose that ( , ) ( ).a bI R I Then, 

( , ).(0,0)a bI      

{( , ) : 0, 0 0 0}u vI u a v a b b          

{( , ) : {0}, {0}} {(0,0)}.u vI u v    
Hence, (0,0) ( )R I is a bilaterally absorbing ele-

ment. 

Definition 3.10. Let ( ( ), , )R I    be a  neutrosophic 

hyperring and let A[I] be a non-empty subset of R(I). Then, 
A[I] is called a neutrosophic subhyperring of R(I) if 

( [ ], , )A I    is itself a neutrosophic hyperring. It is essen-

tial that A[I] must contain a proper subset which is a hy-
perring. Otherwise, A[I] is called a pseudo neutrosophic 

subhyperring of R(I).   

Definition 3.11. Let ( ( ), , )R I   be a neutrosophic 

hyperring and let A[I] be a neutrosophic subhyperring of 
R(I). 

(1) A[I] is called a left neutrosophic hyperideal if for 
all ( , ) ( ),( , ) [ ],r sI R I a bI A I   

( , ) ( , ) [ ].r sI a bI A I   
(2) A[I] is called a right neutrosophic hyperideal if for 

all ( , ) ( ),( , ) [ ],r sI R I a bI A I   

( , ) ( , ) [ ].a bI r sI A I   
(3) A[I] is called a neutrosophic hyperideal if A[I] is 

both a left and right neutrosophic hyperideal. 
A neutrosophic hyperideal A[I] of R[I] is said to be 

normal in R(I) if for all  ( , ) ( ),r sI R I  

( , ) [ ] ( , ) [ ]r sI A I r sI A I   . 

Lemma 3.12. Let ( ( ), , )R I   be a neutrosophic hy-
perring and let A[I] be a non-empty subset of R(I). Then, 

A[I] is a neutrosophic hyperideal if and only if the follow-
ing conditions hold: 

(1) For all 

( , ),( , ) [ ],( , ) ( , ) [ ];a bI c dI A I a bI c dI A I  

(2) For all ( , ) ( ),( , ) [ ],r sI R I a bI A I   
 ( , ) ( , ) [ ]a bI r sI A I  and 

( , ) ( , ) [ ];r sI a bI A I   

(3) A[I] contains a proper subset which is a hyperring. 

Lemma 3.13. Let ( ( ), , )R I   be a neutrosophic hy-
perring and let A[I] be a non-empty subset of R(I). Then, 

A[I] is a pseudo neutrosophic hyperideal if and only if the 
following conditions hold: 

(1) For all 

( , ),( , ) [ ],( , ) ( , ) [ ];a bI c dI A I a bI c dI A I  

(2) For all ( , ) ( ),( , ) [ ],r sI R I a bI A I   
 ( , ) ( , ) [ ]a bI r sI A I  and 

( , ) ( , ) [ ];r sI a bI A I   

(3) A[I] does not contain a proper subset which is a 
hyperring. 

Definition 3.14. Let A[I] and B[I] be any two neutro-

sophic hyperideals of a neutrosophic hyperring R(I). The 
sum of A[I] and B[I] denoted by A[I]+B[I] is defined as 

the set {( , ) : ( , ) ( , ) ( , ),x yI x yI a bI c dI  where 

( , ) [ ],( , ) [ ]}.a bI A I c dI B I   

Definition 3.15. Let R(I) be a neutrosophic hyperring 
and let A[I] be a neutrosophic hyperideal of R(I). If K is a 
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hyperideal (pseudo hyperideal) of R, the sum of A[I] and K 

denoted by A[I]+K is defined as the set 

{( , ) : ( , ) ( , ) ( ,0),x yI x yI a bI k  where 

( , ) [ ],( ,0) }.a bI A I k K   

Example 4. Let R(I)={(0,0),(x,0),(0,xI),(x,xI)} be a set 

and let + and  be hyperoperations on R(I) defined in the 
tables below.  

+ (0,0) (x,0) (0,xI) (x,xI) 

(0,0) {(0,0)} {(x,0)} {(0,0), 
(0,xI)} 

{(x,xI)} 

(x,0) {(x,0)} {(0,0), 

(x,0)} 

{(x,0), 

(x,xI)} 

R(I) 

(0,xI) {(0,0), 
(0,xI)} 

{(x,0), 
(x,xI)} 

{(0,0), 
(0,xI)} 

{(x,0), 
(x,xI)} 

(x,xI) {(x,xI)} R(I) {(x,0), 
(x,xI)} 

R(I) 

Table 1. 

 (0,0) (x,0) (0,xI) (x,xI) 

(0,0) {(0,0)} {(0,0)} {(0,0)} {(0,0)} 

(x,0) {(0,0)} {(0,0), 

(x,0)} 

{(0,0), 

(0,xI)} 

R(I) 

(0,xI) {(0,0)} {(0,0), 

(0,xI)} 

{(0,0), 

(0,xI)} 

{(0,0), 

(0,xI)} 

(x,xI) {(0,0)} R(I) {(0,0), 
(0,xI)} 

R(I) 

Table 2. 

It is clear from the tables that (R(I),+) is a neutrosophic 

canonical hypergroup and ( ( ), , )R I   is a neutrosophic 
hyperring. 

4 Properties of Neutrosophic Canonical Hyper-
groups 

In this section, we present some basic properties of 

neutrosophic canonical hypergroups. 

Proposition 4.1. Let (H(I),+) be a neutrosophic canon-
ical hypergroup. Then,  

(1) (H(I),+) in general is not a canonical hypergroup. 

(2) (H(I),+) always contain a canonical hypergroup. 

Lemma 4.2. Let (H(I),+) be a neutrosophic canonical 
hypergroup.  

(1) –(0,0)=(0,0). 

(2) ( ( , )) ( , )a bI a bI   for all ( , ) ( ).a bI H I  
(3) (( , ) ( , ) ( , ) ( , )a bI c dI a bI c dI     for all 

( , ),( , ) ( ).a bI c dI H I  

Proposition 4.3. Let (H(I),+) and (G(I),+’) be any two 
neutrosophic canonical hypergroups. Then, ( ) ( )H I G I
is a neutrosophic canonical hypergroup, where 

(( , ),( , ) "(( , ),( , ))a bI c dI e fI g hI  

{(( , ),( , )) : ( , ) ( , ) ( , ),p qI x yI p qI a bI e fI    

( , ) ( , ) '( , )},x yI c dI g hI   

 for all 

(( , ),( , )),(( , ),( , )) ( ) ( ).a bI c dI e fI g hI H I G I 

Proposition 4.4. Let (H(I),+) be a neutrosophic canon-

ical hypergroup and let (K,+’) be a canonical hypergroup. 
Then, H(I)xK is a neutrosophic canonical hypergroup, 

where  

(( , ),( ,0) "(( , ),( ,0))a bI m c dI n  

{(( , ),( ,0)) : ( , ) ( , ) ( , ),x yI k x yI a bI c dI    

( ,0) ( ,0) '( ,0)},k m n   
 for all 

(( , ),( ,0)),(( , ),( ,0)) ( ) .a bI m c dI n H I K   

Proposition 4.5. Let A[I] and B[I] be any two neutro-
sophic subcanonical hypergroups of a neutrosophic canon-

ical hypergroup H(I). Then, 

(1) A[I]+B[I] is a neutrosophic subcanonical hyper-
group of H(I). 

(2) A[I]+A[I]=A[I]. 
(3) [ ] [ ]A I B I is a neutrosophic subcanonical hy-

pergroup of H(I). 

Proposition 4.6. Let H(I) be a neutrosophic canonical 

hypergroup and let A[I] and B[I] be any neutrosophic sub-
canonical hypergroup and pseudo neutrosophic subcanon-

ical hypergroup of H(I), respectively. Then, 
(1) A[I]+B[I] is a neutrosophic subcanonical hyper-

group of H(I). 

(2) [ ] [ ]A I B I is a pseudo neutrosophic subcanon-
ical hypergroup of H(I). 

Proposition 4.7. Let H(I) be a neutrosophic canonical 

hypergroup and let A[I] and B[I] be any neutrosophic sub-

canonical hypergroup and pseudo neutrosophic subcanon-
ical hypergroup respectively. If K is any subcanonical hy-

pergroup of H, then 
(1) A[I]+K is a neutrosophic subcanonical hyper-

group of H(I). 
(2) B[I]+K is a neutrosophic subcanonical hyper-

group of H(I). 

Proposition 4.8. Let (H(I),+) be a neutrosophic canon-

ical hypergroup and let A be a subcanonical hypergroup of 
H. If A is normal in H, A[I] is not necessarily normal to 

H(I). 

Proposition 4.9. Let (H(I),+) be a neutrosophic canon-

ical hypergroup and let A be a normal neutrosophic subca-
nonical hypergroup of H. Then, 

( , ) ( , ) [ ]a aI A a aI A I   for all ( , ) ( ).a aI H I  
Proof. Suppose that A is normal in H. Let (h,0) be an 

arbitrary element of A. Then, for all ( , ) ( )a aI H I with 
0a  , we have 

( , ) ( ,0) ( , )a aI h a aI      

( , ) {( , ) : , 0 }a aI x yI x h a y h a a       
       {( , 1) : , ,u v u a x v a y a x        

, }x h a y h a a      
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{( , ) : ,u vI u a h a     

},v a h a a a a h a         
from which we obtain u A and v A . Therefore, 

( , ) [ ].u vI A I Since ( ,0)h A is arbitrary, the required 

results follow. 

Definition 4.10. Let (H(I),+) be a neutrosophic canoni-
cal hypergroup and let A[I] be a neutrosophic subcanonical 

hypergroup of H(I). We consider the quotient  

( ( ) : [ ]) {( , ) [ ]: ( , ) [ ]}H I A I a bI A I a bI H I  
and we put ( , ) [ ] [( , )].a bI A I a bI  For all  

[( , )],[( , )] ( ( ) : [ ]),a bI c dI H I A I we define the 
hyperoperation   on ( ( ) : [ ])H I A I as  

[( , )] [( , )] {[( , )]: ( , )a bI c dI e fI e fI   

( , ) ( , )}a bI c dI .  

Then the couple (( ( ) : [ ]), )H I A I  is called the quo-

tient neutrosophic canonical hypergroup. If A[I] is a pseu-
do neutrosophic subcanonical hypergroup, then we call 

(( ( ) : [ ]), )H I A I  a pseudo quotient neutrosophic ca-
nonical hypergroup.    

Proposition 4.11. Let H(I) be a neutrosophic canoni-
cal hypergroup and A[I] be a neutrosophic subcanonical 

hypergroup (pseudo neutrosophic subcanonical hype-
group) of H(I). Then, (( ( ) : [ ]), )H I A I  is generally not 

a canonical hypergroup. 

Definition 4.12. Let 1( ( ), )H I  and 2( ( ), )H I   be 

two neutrosophic canonical hypergroups and let 

1 2: ( ) ( )H I H I  be a mapping from 1( )H I  into 

2 ( )H I . 
(1)  is called a homomorphism if 

a.   is a canonical hypergroup homomor-

phism;
b. ((0, )) (0, ).I I 

(2)   is called a good or strong homomorphism if 
a.   is a good or strong canonical hyper-

group homomorphism;
b. ((0, )) (0, ).I I 

(3)  is called a isomorphism (strong isomorphism) if 

  is a bijective homomorphism (strong homo-
morphism).     

Definition 4.13. Let 1 2: ( ) ( )H I H I   be a ho-

momorphism from a neutrosophic canonical hypergroup 

1( )H I  into a neutrosophic canonical hypergroup 2 ( )H I .  
(1) The kernel of   denoted by Ker is the set 

 1{( , ) ( ) : (( , )) (0,0)}a bI H I a bI  . 
(2) The kernel of   denoted by Im is the set 

1{ (( , )) : ( , ) ( )}.a bI a bI H I   

5 Properties of Neutrosophic Hyperrings 

In this section, we present some basic properties of 

neutrosophic hyperrings. 

Proposition 5.1. Let ( ( ), , )R I   be a neutrosophic 

hyperring. Then,  
(1) ( ( ), , )R I    in general is not a hyperring. 

(2) ( ( ), , )R I   always contain a hyperring. 

Proof. (1) It has been presented in part (1) of Proposi-
tion 4.1. that  ( ( ), , )R I   is not a canonical hypergroup. 

Also, distributive laws are not valid in ( ( ), , )R I   . Hence, 

( ( ), , )R I   is not a hyperring. (2) Follows from the defi-

nition.  

Proposition 5.2. Let ( ( ), , )R I   and ( ( ), ', ')S I   be 
any two neutrosophic hyperrings. Then, ( ) ( )R I S I is a 

neutrosophic hyperring, where 

(( , ),( , ) "(( , ),( , ))a bI c dI e fI g hI  

{(( , ),( , )) : ( , ) ( , ) ( , ),p qI x yI p qI a bI e fI    

( , ) ( , ) '( , )},x yI c dI g hI   

and 

(( , ),( , ) "(( , ),( , ))a bI c dI e fI g hI  

{(( , ),( , )) : ( , ) ( , ).( , ),p qI x yI p qI a bI e fI   

( , ) ( , ).'( , )},x yI c dI g hI  
for all 

(( , ),( , )),(( , ),( , )) ( ) ( ).a bI c dI e fI g hI R I S I   

Proposition 5.3. Let ( ( ), , )R I   be a neutrosophic 

hyperring and let ( , ', ')K   be a hyperrings. Then, 

( )R I K is a neutrosophic hyperring, where 

(( , ),( ,0) "(( , ),( ,0))a bI m c dI n  

{(( , ),( ,0)) : ( , ) ( , ) ( , ),x yI k x yI a bI c dI    

( ,0) ( ,0) '( ,0)},k m n   

and 

(( , ),( ,0) "(( , ),( ,0))a bI m c dI n  

{(( , ),( ,0)) : ( , ) ( , ).( , ),x yI k x yI a bI c dI   

( ,0) ( ,0).'( ,0)},k m n  

 for all 

(( , ),( ,0)),(( , ),( ,0)) ( ) .a bI m c dI n R I K   

Lemma 5.4. Let A[I] be any neutrosophic hyperideal 
of a neutrosophic hyperring R(I). Then,  

(1) A[I]+A[I]=A[I]. 
(2) (a,bI)+A[I]=A[I] for all ( , ) [ ]a bI A I . 

Proposition 5.5. Let ( ( ), , )R I   be a neutrosophic 
hyperring and let A[I] and B[I] be left (right) neutrosophic 

ideals of R(I). Then, 
(1) [ ] [ ]A I B I is a left (right) neutrosophic hyper-

ideal of R(I). 

(2) [ ] [ ]A I B I is a left (right) neutrosophic hyper-
ideal of R(I). 

Proposition 5.6. Let R(I) be a neutrosophic hyperring 

and let A[I] and B[I] be any neutrosophic hyperideal and 
pseudo neutrosophic hyperideal of R(I) respectively. Then, 

(1) [ ] [ ]A I B I is a neutrosophic hyperideal of R(I). 

(2) [ ] [ ]A I B I is a pseudo neutrosophic hyperideal 
of R(I). 

Proposition 5.7. Let R(I) be a neutrosophic hyperring 
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and let A[I] and B[I] be any neutrosophic hyperideal and 

pseudo neutrosophic hyperideal, respectively. If K is any 
subhyperring of R, then 

(1) [ ]A I K is a neutrosophic hyperideal of R(I). 

(2) [ ]B I K is a neutrosophic hyperideal of R(I). 

Proposition 5.8. Let ( ( ), , )R I   be a neutrosophic 
hyperring and let A be a hyperideal of R. If A is normal in 

R, A[I] is not necessarily normal in R(I).   

Proposition 5.9. Let ( ( ), , )R I   be a neutrosophic 
hyperring and let A be a normal hyperideal of R. Then, 

( , ) ( , ) [ ]a aI A a aI A I    
for all ( , ) ( ).a aI R I  

Definition 5.10. Let ( ( ), , )R I   be a neutrosophic 

hyperring and let ( ( ), , )A I   be a neutrosophic hyperideal 

of R(I). We consider the quotient ( ( ) : [ ])R I A I   

{( , ) [ ]: ( , ) ( )}a bI A I a bI R I  and we put 

(a,bI)+A[I]=[(a,bI)].  
For all [( , )],[( , )] (( ( ) : [ ]),a bI c dI R I A I we con-

sider the hyperoperation  as defined in the Definition 

4.10 and we define the hyperoperation on 

(( ( ) : [ ])R I A I as    [( , )] [( , )] {[( , )]:a bI c dI e fI
( , ) ( , ).( , )}.e fI a bI c dI  

Then, the triple (( ( ) : [ ]), , )R I A I   is called the 

quotient neutrosophic hyperring. If A[I] is a pseudo neu-
trosophic hyperideal, then we call (( ( ) : [ ]), , )R I A I 
a pseudo neutrosophic hyperring.     

Proposition 5.11. Let R(I) be a neutrosophic hyperring 

and let A[I] be a neutrosophic hyperideal (pseudo neutro-
sophic hyperideal) of R(I). Then, (( ( ) : [ ]), , )R I A I 
is generally not a hyperring. 

Definition 5.12. Let 1( ( ), )R I 
 
and 2( ( ), )R I   be 

two neutrosophic hyperrings and let 1 2: ( ) ( )R I R I   
be a mapping from 1( )R I  into 2 ( )R I . 

(1)   is called a homomorphism if 
a.   is a hyperring homomorphism;

b. ((0, )) (0, ).I I 
(2)   is called a good or strong homomorphism if 

a.   is a good or strong hyperring homo-

morphism;
b. ((0, )) (0, ).I I 

(3)  is called a isomorphism (strong isomorphism) if 

  is a bijective homomorphism (strong homo-
morphism).     

Definition 5.13. Let 1 2: ( ) ( )R I R I   be a homo-

morphism from a neutrosophic hyperring 1( )R I  into a 
neutrosophic hyperring 2 ( )R I .  

(1) The kernel of   denoted by Ker is the set 

 1{( , ) ( ) : (( , )) (0,0)}a bI R I a bI  . 
(2) The kernel of   denoted by Im is the set 

1{ (( , )) : ( , ) ( )}.a bI a bI R I   

Proposition 5.14. Let 1 2: ( ) ( )R I R I   be a ho-

momorphism from a neutrosophic hyperring 1( )R I  into a 

neutrosophic hyperring 2 ( )R I .  Then, 
(1) Ker  is a subhyperring of 1R and never be a 

neutrosophic hyperring (neutrosophic hyperideal) 

of 1( )R I  . 
(2) Im  is a neutrosophic subhyperring of 2 ( )R I . 

Question 1: Does there exist: 

(1) A neutrosophic canonical hypergroup with normal 

neutrosophic subcanonical hypergroups? 
(2) A neutrosophic hyperring with normal neutrosoph-

ic hyperideals? 
(3) A simple neutrosophic canonical hypergroup? 

(4) A simple neutrosophic hyperring? 

6 Conclusion 

In this paper, we have introduced and studied neutro-

sophic canonical hypergroups and neutrosophic hyperrings. 
We presented elementary properties of neutrosophic ca-

nonical hypergroups and neutrosophic hyperrings. Also, 
we studied quotient neutrosophic canonical hypergroups 

and quotient neutrosophic hyperrings.  
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Abstract. In this paper authors for the first time define a 

new notion called neutrosophic lattices.  We define few 

properties related with them.  Three types of neutrosophic 

lattices are defined and the special properties about these 

new class of lattices are discussed and developed. This 

paper is organised into three sections. First section 

introduces the concept of partially ordered neutrosophic 

set and neutrosophic lattices. Section two introduces 

different types of neutrosophic lattices and the final sec-

tion studies neutrosophic Boolean algebras. Conclusions 

and results are provided in section three. 

Keywords: Neutrosophic set, neutrosophic lattices and neutrosophic partially ordered set.

1 Introduction to partially ordered neutrosophic 
set 

Here we define the notion of a partial order on a 

neutrosophic set and the greatest element and the least 

element of it.  Let N(P) denote a neutrosophic set which 

must contain I, 0, 1 and 1 + I;  that is 0, 1, I and 1+ I ∈ 

N(P).  We call 0 to be the least element so  0 < 1 and 0 < I 

is assumed for the working.  Further by this N(P) becomes 

a partially ordered set.  We define 0 of N(P) to be the least 

element and I ∪ 1 = 1 + I to be the greatest element of 

N(P).  

Suppose N(P) = {0, 1, I, 1 + I, a1, a2, a3, a1I, a2I, a3I} 

then N(P) with 0 < ai, 0 < aiI, 1 ≤ i ≤ 3.  Further 1 > ai; I > 

aiI; 1 ≤ i ≤ 3  ai </  aj if i ≠ j for 1 ≤ i, j ≤ 3 and Iai </  Iaj; i ≠ 

j  for 1 ≤ i, j ≤ 3.  

We will define the notion of Neutrosophic lattice. 

DEFINITION 1.1:  Let N(P) be a partially ordered set with 

0, 1, I, 1+I = 1 ∪ I ∈ N(P). 

Define min and max on N(P) that is max {x, y} and min 

{x, y} ∈ N(P).  0 is the least element and 1 ∪ I = 1 + I is 

the greatest element of N(P).  {N(P), min, max} is defined 

as the neutrosophic lattice. 

We will illustrate this by some examples. 

Example 1.1:  Let N(P) = {0, 1, I, I ∪ 1 = 1 + I, a, aI} be a 

partially ordered set; N(P) is a neutrosophic lattice.  

We know in case of usual lattices [1-4].  Hasse defined 

the notion of representing finite lattices by diagrams 

known as Hasse diagrams [1-4]. We in case of 

Neutrosophic lattices represent them by the diagram which 

will be known as the neutrosophic Hasse diagram.  

The neutrosophic lattice given in example 1.1 will have the 

following Hasse neutrosophic diagram. 

 

 

Figure 1.1 

Example 1.2:   Let N(P) = {0, 1, I, 1 ∪ I, a1, a2, a1I, a2I} be 

a neutrosophic lattice associated with the following Hasse 

neutrosophic diagram. 

Figure 1.2 

Example 1.3:  Let N(P) = {0 1, I, 1 ∪ I} be a neutrosophic 

lattice given by the following neutrosophic Hasse diagram. 

Figure 1.3 

0 

• I ∪ 1

•1 • 
I 

• a1 

• 

• a2 • a1I • a2I

• 
I ∪ 1 

• 1 • I

• a • a I

• 
0 

• 

• 

• 

1∪I 

I 1 

• 
0 
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It is pertinent to observe that if N(P) is a neutrosophic 

lattice then 0, 1, I, 1 ∪ I ∈ N(P) and so that N(P) given in 

example 1.3 is the smallest neutrosophic lattice. 

Example 1.4:  Let N(P) = {0, 1, I, 1 ∪ I = 1 + I, a1, a2, a1I, 

a2I, a1 < a2} be the neutrosophic lattice.  The Hasse 

diagram of the neutrosophic lattice N(P) is as follows: 

Figure 1.4 

We can have neutrosophic lattices which are different. 

Example 1.5:  Let N(P) = {0, 1, I, a1, a2, a3, a4, a1I, a2I, a3I, 

a4I, 1 + I = I ∪ 1} be the neutrosophic lattice of finite order. 

(ai is not comparable with aj if i ≠ j, 1 ≤ i, j ≤ 4). 

Figure 1.5 

We see N(P) is a neutrosophic lattice with the above 

neutrosophic Hasse diagram. 

 In the following section we proceed onto discuss 

various types of neutrosophic lattices.   

2. Types of Neutrosophic Lattices

 The concept of modular lattice, distributive lattice, 

super modular lattice and chain lattices can be had from [1-

4]. We just give examples of them and derive a few 

properties associated with them.  In the first place we say a 

neutrosophic lattice to be a pure neutrosophic lattice if it 

has only neutrosophic coordinates or equivalently all the 

co ordinates (vertices) are neutrosophic barring 0. 

 In the example 1.5 we see the pure neutrosophic part of 

the neutrosophic lattice figure 2.1; 

Figure 2.1 

whose Hasse diagram is given is the pure neutrosophic 

sublattice lattice from figure 1.5.  Likewise we can have 

the Hasse diagram of the usual lattice from example 1.5. 

Figure 2.2 

We see the diagrams are identical as diagrams one is pure 

neutrosophic where as the other is a usual lattice.  As we 

have no method to compare a neutrosophic number and a 

non neutrosophic number, we get two sublattices identical 

in diagram of a neutrosophic lattice. For the modular 

identity, distributive identity and the super modular 

identity and their related properties refer [1-4]. 

 The neutrosophic lattice given in example 1.5 has a 

sublattice which is a modular pure neutrosophic lattice and 

sublattice which is a usual modular lattice.   

 The neutrosophic lattice given in example 1.3 is a 

distributive lattice with four elements. However the 

neutrosophic lattice given in example 1.5 is not distributive 

as it contains sublattices whose homomorphic image is 

isomorphic to the neutrosophic modular lattice N(M4); 

where N(M4) is a lattice of the form 

0 

• 
I ∪ 1 

• 1 • I

• a1 • a1I

• 

• a2 • a2I

• 
I ∪ 1 

• 
1 

• I

• a2 

• 
0 

• a3 • a1I • 
a3I 

• a4 • a1 • 
a2I 

• 
a4I 

• 
I 

• a1I 

• 
0 

• a2I •a3I • a4I

• 
1 

• a1 

• 
0 

• a2 • a3 • a4
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Figure 2.3 

Likewise by N(Mn) we have a pure neutrosophic lattice of 

the form given below in figure 2.4. 

Figure 2.4 

Figure 2.5 

The neutrosophic pentagon lattice is given in figure 2.5 

which is neither distributive nor modular. 

The lattice N(M4) is not neutrosophic super modular we 

see the neutrosophic lattice in example 1.5 is not modular 

for it has sublattices whose homomorphic image is 

isomorphic to the pentagon lattice.   

So we define a neutrosophic lattice N(L) to be a quasi 

modular lattice if it has atleast one sublattice (usual) which 

is modular and one sublattice which is a pure neutrosophic 

modular lattice.   

Thus we need to modify the set S and the neutrosophic 

set N(S) of S.  For if S = {a1, …, an} we define N(S) = {a1I, 

a2I, …, anI} and take with S ∪ N(S) and the elements 0, 1, 

I, and 1 ∪ I = 1 + I.  Thus to work in this way is not 

interesting and in general does not yield modular 

neutrosophic lattices.   

We define the strong neutrosophic set of a set S as 

follows 

Let A = {a1, a2, …, an}, the strong neutropshic set of A; 

SN(A) = {ai, ajI, ai ∪ ajI = ai + ajI; 0, 1, I, 1 + I, 1 ≤ i, j 

≤ n}.  

S(L) the strong neutrosophic lattice is defined as 

follows: 

S(L) = {0, 1, I, 1 + I, ai, ajI, 

I ∪ ai = I + ai  a1I ∪ 1 = aiI + 1, ai + ajI = ai ∪ ajI  0 
≠
<

ai 
≠
<  1; 0 < ajI < I, 1 ≤ i, j ≤ n}. 

S(L) with max, min is defined as the strong 

neutrosophic lattice.    

We will illustrate this situation by some examples. 

Example 2.1:  Let S(L) = {0, 1, I, 1 + I, a, aI, a + aI, 1 + aI, 

I + a} 

Figure 2.6 

be a strong neutrosophic lattice. 

 We have several sublattices both strong neutrosophic 

sublattice as well as usual lattice.   

For 

Figure 2.7 

is the usual lattice. 

Figure 2.8 

is the pure neutrosophic lattice. 

• I

• a

• 0

• I

• aI

• 0

• 
I 

• a1I 

• 
0 

• a2I • a3I • a4I

• I 

• a1I 

• 
0 

• a2I …. • a4I

• 
I 

• aI 

• 
0 

• cI

• bI 

• 

• 
1+I 

1+aI 

• • 

I+a 

I 

• • aIa 

• 
0 

• 

• a+aI 1 
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Figure 2.9 

is the strong neutrosophic lattice. 

These lattices have the edges to be real.  Only vertices are 

indeterminates or neutrosophic numbers.  However we can 

have lattices where all its vertices are real but some of the 

lines (or edges) are indeterminates. 

Example 2.2:  For consider 

Figure 2.10 

Such type of lattices will be known as edge neutrosophic 

lattices. 

In case of edge neutrosophic lattices, we can have edge 

neutrosophic distributive lattices, edge neutrosophic 

modular lattices and edge neutrosophic super modular 

lattices and so on.   

We will only illustrate these by some examples. 

Example 2.3:  Consider the following Hasse diagram. 

 

Figure 2.11 

This is a edge neutrosophic lattice as the edge connecting 0 

to a2 is an indeterminate.  

Example 2.4: Let us consider the following Hasse diagram 

of a lattice L. 

 

Figure 2.12 

L is a edge neutrosophic modular lattice. 

The edges connecting 0 to a3 and 1 to a4 are neutrosophic 

edges and the rest of the edges are reals.  However all the 

vertices are real and it is a partially ordered set.  We take 

some of the edges to be an indeterminate. 

Example 2.5:  Let L be the edge neutrosophic lattice 

whose Hassee diagram is as follows: 

Figure 2.13 

Clearly L is not a distributive edge neutrosophic lattice. 

However L has modular edge neutrosophic sublattices as 

well as modular lattices which are not neutrosophic.   

Inview of this we have the following theorem. 

THEOREM 2.1:  Let L be a edge neutrosophic lattice.  Then 

L in general have sublattices which are not edge 

neutrosophic. 

Proof follows from the simple fact that every vertex is a 

sublattice and all vertices of the edge neutrosophic lattice 

• 

• 
1+I 

1 

• 

• I • 

0 

• 

• 
1 

a1 

• 

• a3 • 

a4 

• a2

• 
0 

• 
1 

a2 

• 

• a1 • 

0 

• 

• 
1 

a2 

• 

• a4 • 

0 

• a3
a1 • • a5

• 

• 
1 

a2 

• 

a3 • 

a5 

a1 • • a4

• a7 

• 

a9 • 

0 

• a8
a6 • • a10 • a11
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which are not neutrosophic; but real is an instance of a not 

an edge neutropshic lattice. 

 We can have pure neutrosophic lattice which have the 

edges as well the vertices to be neutrosophic.   

The following lattices with the Hasse diagram are pure 

neutrosophic lattices. 

Figure 2.14 

Figure 2.15 

These two pure neutrosophic lattices cannot have edge 

neutrosophic sublattice or vertex neutrosophic sublattice. 

3. Neutrosophic Boolean Algebras

 Let us consider the power set of a neutrosophic set S = 

{a + bI | a = 0 or b = 0 can occur with 0 as the least 

element and 1 + I as the largest element}. P(S) = 

{Collection of all subsets of the set S} {P(S), ∪, ∩, φ, S} 

is a lattice defined as the neutrosophic Boolean algebra of 

order 2
|P(S)|

. 

We will give examples of them. 

Example 3.1:  Let S = {0, 1, 1 +I, I}.  P(S) = {φ, {0}, {1}, 

{1+I}, {I}, {0,1}, {0, I}, {0, 1+I}, {1, I}, {1, 1+I}, {I, 

1+I}, {0, 1, I}, {0, 1, 1+I}, {0, I, 1+I}, {1, I, 1+I}, S} be 

the collection of all subsets of S including the empty set φ 

and the set S. |P(S)| = 16.  P(S) is a neutrosophic Boolean 

algebra under ‘∪’ and ‘∩’ as the operations on P(S) and 

the containment relation of subsets as the partial order 

relation on P(S). 

Figure 3.1 

Example 3.2:  Let S = {0, 1, I, 1+I, a, aI, a+I, aI+1, aI+a} 

be the neutrosophic set; 0 < a < 1.  P(S) be the power set of 

S. |P(S)| = 2
9
.  P(S) is a neutrosophic Boolean algebra of 

order 2
9
. 

Example 3.3:  Let S = {0, 1, I, 1+I, a1, a2, a1I, a2I, a1+I, 

a2+I, 1+a1I, 1+a2I, 1+a1I+a2, a1+a2, 1 + a1I + a2I, …} be the 

neutrosophic set with a1 </  a2 or a2 </  a1, 0 < a1 < 1, 0 < a2 

< 1.  P(S) is a neutrosophic Boolean algebra. 

 Now these neutrosophic Boolean algebras cannot be 

edge neutrosophic lattices. We make it possible to define 

edge neutrosophic  lattice.  Let L be a lattice given by the 

following Hasse-diagram. 

Figure 3.2 

a1 and a3 are not comparable but we can have a 

neutrosophic edge given by the above diagram. 

 So we see the lattice has become a edge neutrosophic 

lattice. 

Let L be a lattice given by the following diagram. 

• 

• 
1 

a1 I 

• 

• a2I • 

0 

• 1+I 

• a1I

• a2I

• a3I

• a4I

• 0

• 
1 

a1 

• 

• a2 • 

0 

• a3

Φ 

• 
1 

{0,I,1+I} 

• 

• 
{0,1,I} 

• 
{1,I+1+I} 

• 
{0,1,1+I}• 

{0,1} • {0,I) • 
{1+I} 

• {0,1+I} • 
{1,1+I} 

•{I,1+I} • 

{1} •{0} • {I} • {I+1} •
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Figure 3.3 

 Clearly a1 and a6 are not comparable, a2 and a5 are not 

comparable a4 and a7 are not comparable. 

 We can have the following Hasse diagram which has 

neutrosophic edges. 

     Figure 3.4 

Clearly L is a edge neutrosophic lattice where we have 

some neutrosophic edges which are not comparable in the 

original lattice. 

 So we can on usual lattices L remake it into a edge 

neutrosophic lattice this is done if one doubts that a pair of 

elements {a1, a2} of L with a1 ≠ a2, min {a1, a2} ≠ a1 or a2 

or max {a1, a2} ≠ a1 or a2. 

 If some experts needs to connect a1 with a2 by edge 

then the resultant lattice becomes a edge neutrosophic 

lattice. 

Conclusion: Here for the first time we introduce the 

concept of neutrosophic lattices.  Certainly these lattices 

will find applications in all places where lattices find their 

applications together with some indeterminancy.  When 

one doubts a connection between two vertices one can 

have a neutrosophic edge. 
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Abstract. Similarity measures play an important role in data 

mining, pattern recognition, decision making, machine learning, 

image process etc. Then, single valued neutrosophic sets 

(SVNSs) can describe and handle the indeterminate and 

inconsistent information, which fuzzy sets and intuitionistic 

fuzzy sets cannot describe and deal with. Therefore, the paper 

proposes new similarity meas-ures between SVNSs based on the 

minimum and maxi-mum operators. Then a multiple attribute 

decision-making method based on the weighted similarity 

measure of SVNSs is established in which attribute values for al-

ternatives are represented by the form of single valued 

neutrosophic values (SVNVs) and the attribute weights and the 

weights of the three independent elements (i.e., truth-

membership degree, indeterminacy-membership 

degree, and falsity-membership degree) in a SVNV are 

considered in the decision-making method. In the 

decision making, we utilize the single-valued 

neutrosophic weighted similarity measure between the 

ideal alternative and an alternative to rank the 

alternatives corresponding to the measure values and to 

select the most desirable one(s). Finally, two practical 

examples are provided to demonstrate the applications 

and effectiveness of the single valued neutrosophic 

multiple attribute decision-making method. 

Keywords: Neutrosophic set, single valued neutrosophic set, similarity measure, decision making. 

1 Introduction 

Since fuzzy sets [1], intuitionistic fuzzy sets (IFSs) 

[2], interval-valued intuitionistic fuzzy sets (IVIFSs) [3] 

were introduced, they have been widely applied in data 
mining, pattern recognition, information retrieval, 

decision making, machine learning, image process and so 

on. Although they are very successful in their respective 

domains, fuzzy sets, IFSs, and IVIFSs cannot describe and 
deal with the indeterminate and inconsistent information 

that exists in real world. To handle uncertainty, imprecise, 

incomplete, and inconsistent information, Smarandache 

[4] proposed the concept of a neutrosophic set. The 
neutrosophic set is a powerful general formal framework 

which generalizes the concepts of the classic set, fuzzy 

set, IFS, IVIFS etc. [4]. In the neutrosophic set, truth-

membership, indeterminacy-membership, and falsity-
membership are represented independently. However, the 

neutrosophic set generalizes the above mentioned sets 

from philosophical point of view and its functions TA(x), 

IA(x) and FA(x) are real standard or nonstandard subsets 
of ]−0, 1+[, i.e., TA(x): X → ]−0, 1+[, IA(x): X → ]−0, 

1+[, and FA(x): X → ]−0, 1+[. Thus, it is difficult to apply 

in real scientific and engineering areas. Therefore, Wang 

et al. [5, 6] introduced a single valued neutrosophic set 
(SVNS) and an interval neutrosophic set (INS), which are 

the subclass of a neutrosophic set. They can describe and 

handle indeterminate information and inconsistent 

information, which fuzzy sets, IFSs, and IVIFSs 

cannot describe and deal with. Recently, Ye [7-9] 

proposed the correlation coefficients of SVNSs 
and the cross-entropy measure of SVNSs and 

applied them to single valued neutrosophic 

decision-making problems. Then, Ye [10] 

introduced similarity measures based on the 
distances between INSs and applied them to 

multicriteria decision-making problems with 

interval neutrosophic information. Chi and Liu 

[11] proposed an extended TOPSIS method for 
the multiple attribute decision making problems 

with interval neutrosophic information. 

Furthermore, Ye [12] introduced the concept of 

simplified neutrosophic sets and presented 
simplified neutrosophic weighted aggregation 

operators, and then he applied them to 

multicriteria decision-making problems with 

simplified neutrosophic information. Majumdar 
and Samanta [13] introduced several similarity 

measures between SVNSs based on distances, a 

matching function, membership grades, and then 

proposed an entropy measure for a SVNS. 
Broumi and Smarandache [14] defined the 

distance between neutrosophic sets on the basis of 

the Hausdorff distance and some similarity 
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measures based on the distances, set theoretic approach, 
and matching function to calculate the similarity degree 
between neutrosophic sets. 

Because the concept of similarity is fundamentally 
important in almost every scientific field and SVNSs can 
describe and handle the indeterminate and inconsistent 
information, this paper proposes new similarity measures 
between SVNSs based on the minimum and maximum 
operators and establishes a multiple attribute decision-

making method based on the weighted similarity measure 
of SVNSs under single valued neutrosophic environment. 
To do so, the rest of the article is organized as follows. 
Section 2 introduces some basic concepts of SVNSs. 
Section 3 proposes new similarity measures between 

SVNSs based on the minimum and maximum operators 
and investigates their properties. In Section 4, a single 
valued neutrosophic decision-making approach is 
proposed based on the weighted similarity measure of 
SVNSs. In Section 5, two practical examples are given to 
demonstrate the applications and the effectiveness of the 

proposed decision-making approach. Conclusions and 
further research are contained in Section 6. 

2 Some basic concepts of SVNSs 

Smarandache [4] originally introduced the concept of 

a neutrosophic set from philosophical point of view, 

which generalizes that of fuzzy set, IFS, and IVIFS etc.. 

Definition 1 [4]. Let X be a space of points (objects), with 

a generic element in X denoted by x. A neutrosophic set A 

in X is characterized by a truth-membership function 

TA(x), an indeterminacy-membership function IA(x) and a 

falsity-membership function FA(x). The functions TA(x), 

IA(x) and FA(x) are real standard or nonstandard subsets of 

]−0, 1+[. That is TA(x): X → ]−0, 1+[, IA(x): X → ]−0, 1+[, 

and FA(x): X → ]−0, 1+[. Thus, there is no restriction on 

the sum of TA(x), IA(x) and FA(x), so −0 ≤ sup TA(x) + sup 

IA(x) + sup FA(x) ≤ 3+. 

Obviously, it is difficult to apply in real scientific and 

engineering areas. Hence, Wang et al. [6] introduced the 

definition of a SVNS. 

Definition 2 [6]. Let X be a universal set. A SVNS A in X 

is characterized by a truth-membership function TA(x), an 

indeterminacy-membership function IA(x), and a falsity-

membership function FA(x). Then, a SVNS A can be 

denoted by 

 XxxFxIxTxA AAA  |)(),(),(, , 

where TA(x), IA(x), FA(x)  [0, 1] for each point x in X. 

Therefore, the sum of TA(x), IA(x) and FA(x) satisfies the 

condition 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3. 

Definition 3 [6]. The complement of a SVNS A is 

denoted by Ac and is defined as TA
c(x) = FA(x), 

IA
c(x) = 1 − IA(x), FA

c(x) = TA(x) for any x in X. 

Then, it can be denoted by 

 XxxTxIxFxA AAA

c  |)(),(1),(, . 

Definition 4 [6]. A SVNS A is contained in the 

other SVNS B, A ⊆ B, if and only if TA(x) ≤ TB(x), 

IA(x) ≥IB(x), FA(x) ≥ FB(x) for any x in X. 

Definition 5 [6]. Two SVNSs A and B are equal, 
i.e., A = B, if and only if A ⊆ B and B ⊆ A.

3 Similarity measures of SVNSs 

This section proposes several similarity 

measures of SVNSs based on the minimum and 

maximum operators and investigates their 

properties.  

In general, a similarity measure between two 

SVNSs A and B is a function defined as S: N(X)2 

 [0, 1] which satisfies the following properties: 

(SP1) 0  S(A, B)  1; 

(SP2) S(A, B) = 1 if A = B; 

(SP3) S(A, B) = S(B, A); 

(SP4) S(A, C)  S(A, B) and S(A, C)  S(B, C) 

if A  B  C for a SVNS C. 

Let two SVNSs A and B in a universe of 

discourse X = {xl, x2, …, xn} be 

 XxxFxIxTxA iiAiAiAi  |)(),(),(, and 

 XxxFxIxTxB iiBiBiBi  |)(),(),(, , where 

TA(xi), IA(xi), FA(xi), TB(xi), IB(xi), FB(xi)  [0, 1] 

for every xi  X. Based on the minimum and 

maximum operators, we present the following 

similarity measure between A and B: 

 
 

 
 

 
 











 



)(),(max

)(),(min

)(),(max

)(),(min

)(),(max

)(),(min

3

1
),(

1

1

iBiA

iBiA

iBiA

iBiA

n

i iBiA

iBiA

xFxF

xFxF

xIxI

xIxI

xTxT

xTxT

n
BAS

. (1) 

The similarity measure has the following 

proposition. 

Proposition 1. Let A and B be two SVNSs in a 

universe of discourse X = {x1, x2, …, xn}. The 

single valued neutrosophic similarity measure 

S1(A, B) should satisfy the following properties: 
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(SP1) 0  S1(A, B)  1; 

(SP2) S1(A, B) = 1 if A = B; 

(SP3) S1(A, B) = S1(B, A); 

(SP4) S1(A, C)  S1(A, B) and S1(A, C)  S1(B, C) if A 

 B  C for a SVNS C. 

Proof. It is easy to remark that S1(A, B) satisfies the 

properties (SP1)-(SP3). Thus, we must prove the property 

(SP4). 

Let A  B  C, then, TA(xi)  TB(xi)  TC(xi), IA(xi)  

IB(xi)  IC(xi), and FA(xi)  FB(xi)  FC(xi) for every xi  X. 

According to these inequalities, we have the following 

similarity measures: 
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xF
, we can obtain that S1(A, C)  S1(A, B). 

Similarly, there are 
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xF
. Then, we can obtain 

that S1(A, C)  S1(B, C). 

Thus S1(A, B) satisfies the property (SP4). 

Therefore, we finish the proof.  

If the important differences are considered in the three 

independent elements (i.e., truth-membership, 

indeterminacy-membership, and falsity-membership) in a 

SVNS, we need to take the weights of the three 

independent terms in Eq.(1) into account. Therefore, we 

develop another similarity measure between SVNSs: 
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 , (2) 

where , ,  are the weights of the three 

independent elements (i.e., truth-membership, 

indeterminacy-membership, and falsity-

membership) in a SVNS and  +  +  = 1. 

Especially, when  =  =  

to Eq. (1). 

Then, the similarity measure of S2(A, B) also 

has the following proposition: 

Proposition 2. Let A and B be two SVNSs in a 

universe of discourse X = {x1, x2, …, xn}. The 

single valued neutrosophic similarity measure 

S2(A, B) should satisfy the following properties: 

(SP1) 0  S2(A, B)  1; 

(SP2) S2(A, B) = 1 if A = B; 

(SP3) S2(A, B) = S2(B, A); 

(SP4) S2(A, C)  S2(A, B) and S2(A, C)  S2(B, 

C) if A  B  C for a SVNS C.

By the similar proof method in Proposition 1, 

we can prove that the similarity measure of S2(A, 

B) also satisfies the properties (SP1)-(SP4)

(omitted). 

Furthermore, if the important differences are 

considered in the elements in a universe of 

discourse X = {xl, x2, …, xn}, we need to take the 

weight of each element xi (i = 1, 2,…, n) into 

account. Therefore, we develop a weighted 

similarity measure between SVNSs. 

Let wi be the weight for each element xi (i = 1, 

2,…, n), wi  [0, 1], and 1
1

 

n

i iw , and then we 

have the following weighted similarity measure: 

 
 

 
 

 
 















)(),(max

)(),(min

)(),(max

)(),(min

)(),(max

)(),(min
),(

1

3

iBiA

iBiA

iBiA

iBiA

n

i iBiA

iBiA
i

xFxF

xFxF

xIxI

xIxI

xTxT

xTxT
wBAS




. (3) 

Similarly, the weighted similarity measure of 

S3(A, B) also has the following proposition: 
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Proposition 3. Let A and B be two SVNSs in a universe of 

discourse X = {x1, x2, …, xn}. Then, the single valued 

neutrosophic similarity measure S3(A, B) should satisfy 

the following properties: 

(SP1) 0  S3(A, B)  1; 

(SP2) S3(A, B) = 1 if A = B; 

(SP3) S3(A, B) = S3(B, A); 

(SP4) S3(A, C)  S3(A, B) and S3(A, C)  S3(B, C) if A 

 B  C for a SVNS C. 

Similar to the proof method in Proposition 1, we can 

prove that the weighted similarity measure of S3(A, B) also 

satisfies the properties (SP1)–(SP4) (omitted). 

If w = (1/n, 1/n,…, 1/n)T  

For Example, Assume that we have the following 

three SVNSs in a universe of discourse X = {xl, x2}: 

A = {<x1, 0.3, 0.6, 0.7>, <x2, 0.4, 0.4, 0.6>}, 

B = {<x1, 0.5, 0.4, 0.5>, <x2, 0.5, 0.3, 0.4>}, 

C = {<x1, 0.7, 0.2, 0.3>, <x2, 0.8, 0.2, 0.2>}. 

Then, there are A  B  C, with TA(xi)  TB(xi)  

TC(xi), IA(xi)  IB(xi)  IC(xi), and FA(xi)  FB(xi)  FC(xi) 

for each xi in X = {x1, x2}. 

By using Eq. (1), the similarity measures between the 

SVNSs are as follows: 

S1(A, B) = 0.6996, S1(B, C) = 0.601, and S1(A, C) = 

0.4206. 

Thus, there are S1(A, C)  S1(A, B) and S1(A, C)  

S1(B, C). 

If the weight values of the three independent elements 

(i.e., truth-membership degree, indeterminacy-

membership degree, and falsity-membership degree) in a 

SVNS are  = 0.25,  = 0.35, and  = 0.4, by applying Eq. 

(2) the similarity measures between the SVNSs are as 

follows: 

S2(A, B) = 0.6991, S2(B, C) = 0.5916, and S2(A, C) = 

0.4143. 

Then, there are S2(A, C)  S2(A, B) and S2(A, C)  

S2(B, C). 

Assume that the weight vector of the two attributes is 

w = (0.4, 0.6)T and the weight values of the three 

independent elements (i.e., truth-membership degree, 

indeterminacy-membership degree, and falsity-

membership degree) in a SVNS are  = 0.25,  = 0.35, 

and  = 0.4. By applying Eq. (3), the weighted similarity 

measures between the SVNSs are as follows: 

S3(A, B) = 0.7051, S3(B, C) = 0.4181, and S3(A, C) = 

0.5912. 

Hence, there are S3(A, C)  S3(A, B) and S3(A, 
C)  S3(B, C).

4 Decisions making method using the weighted 

similarity measure of SVNSs 

In this section, we propose a multiple attribute 

decision-making method based on the weighted 

similarity measures between SVNSs under single 

valued neutrosophic environment.  

Let A = {A1, A2,…, Am} be a set of alternatives 

and C = {C1, C2,…, Cn} be a set of attributes. 

Assume that the weight of the attribute Cj (j = 1, 

2,…, n) is wj with wj  [0, 1], 1
1

 

n

j jx  and the 

weights of the three independent elements (i.e., 

truth-membership, indeterminacy-membership, 

and falsity-membership) in a SVNS are , , and 

 and  +  +  = 1, which are entered by the 

decision-maker. In this case, the characteristic of 

the alternative Ai (i = 1, 2,…, m) on an attribute Cj 

(j = 1, 2,…, n) is represented by a SVNS form: 

}|)(),(),(,{ CCCFCICTCA jjAjAjAji iii
 , 

where )( jA CF
i

, )( jA CI
i

, )( jA CF
i

 [0, 1] and 0 

 )( jA CT
i

 + )( jA CI
i

 + )( jA CF
i

  3 for Cj  C, j 

= 1, 2, …, n, and i = 1, 2, …, m. 

For convenience, the three elements )( jA CT
i

, 

)( jA CI
i

, )( jA CF
i

 in the SVNS are denoted by a 

single valued neutrosophic value (SVNV) aij = tij, 

iij, fij (i = 1, 2, …, m; j = 1, 2,…, n), which is 

usually derived from the evaluation of an 

alternative Ai with respect to an attribute Cj by the 

expert or decision maker. Hence, we can establish 

a single valued neutrosophic decision matrix D = 

(aij)mn: 























mnmm

n

n

aaa

aaa

aaa

D









21

22221

11211

. 

In multiple attribute decision making 

environments, the concept of ideal point has been 

used to help identify the best alternative in the 

decision set [7, 8]. Generally, the evaluation 

attributes can be categorized into two kinds: 

benefit attributes and cost attributes. Let H be a 

collection of benefit attributes and L be a 

collection of cost attributes. In the presented 

decision-making method, an ideal alternative can 

be identified by using a maximum operator for the 

benefit attributes and a minimum operator for the 

cost attributes to determine the best value of each 
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attribute among all alternatives. Therefore, we define an 

ideal SVNV for a benefit attribute in the ideal alternative 

A* as 

)(min),(min),(max,, ****

ij
i

ij
i

ij
i

jjjj fitfita   for jH; 

while for a cost attribute, we define an ideal SVNV in the 

ideal alternative A* as 

)(max),(max),(min,, ****

ij
i

ij
i

ij
i

jjjj fitfita   for jL. 

Thus, by applying Eq. (3), the weighted similarity 

measure between an alternative Ai and the ideal alternative 

A* are written as 

 
 

 
 

 
  


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
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ff

ii

ii

tt

tt
wAAS



 ,        (4) 

which provides the global evaluation for each alternative 

regarding all attributes. According to the weighted 

similarity measure between each alternative and the ideal 

alternative, the bigger the measure value S4(Ai, A*) (i = 1, 

2, 3, 4), the better the alternative Ai. Hence, the ranking 

order of all alternatives can be determined and the best 

one can be easily selected as well. 

5 Practical examples 

This section provides two practical examples for 
multiple attribute decision-making problems with single 

valued neutrosophic information to demonstrate the 
applications and effectiveness of the proposed decision-
making method. 

Example 1. Let us consider the decision-making problem 

adapted from [7, 8]. There is an investment company, 

which wants to invest a sum of money in the best option. 

There is a panel with four possible alternatives to invest 

the money: (1) A1 is a car company; (2) A2 is a food 

company; (3) A3 is a computer company; (4) A4 is an arms 

company. The investment company must take a decision 

according to the three attributes: (1) C1 is the risk; (2) C2 

is the growth; (3) C3 is the environmental impact, where 

C1 and C2 are benefit attributes and C3 is a cost attribute. 

The weight vector of the three attributes is given by w = 

(0.35, 0.25, 0.4)T. The four possible alternatives are to be 

evaluated under the above three attributes by the form of 

SVNVs.  

For the evaluation of an alternative Ai (i =1, 2, 3, 4) 

with respect to an attribute Cj (j =1, 2, 3), it is obtained 

from the questionnaire of a domain expert. For example, 

when we ask the opinion of an expert about an alternative 

A1 with respect to an attribute C1, he/she may say 

that the possibility in which the statement is good 

is 0.4 and the statement is poor is 0.3 and the 

degree in which he/she is not sure is 0.2. For the 

neutrosophic notation, it can be expressed as a11 = 

0.4, 0.2, 0.3. Thus, when the four possible 

alternatives with respect to the above three 

attributes are evaluated by the expert, we can 

obtain the following single valued neutrosophic 

decision matrix D: 























8.0,3.0,6.02.0,1.0,6.01.0,0.0,7.0

8.0,3.0,5.03.0,2.0,5.03.0,2.0,3.0

8.0,2.0,5.02.0,1.0,6.02.0,1.0,6.0

5.0,2.0,8.03.0,2.0,4.03.0,2.0,4.0

D
. 

Without loss of generality, let the weight 

values of the three independent elements (i.e., 

truth-membership degree, indeterminacy-

membership degree, and falsity-membership 

degree) in a SVNV be  =  =  = 1/3. Then we 

utilize the developed approach to obtain the most 

desirable alternative(s). 

Firstly, from the single valued neutrosophic 

decision matrix we can yield the following ideal 

alternative: 

}8.0,3.0,5.0,,2.0,1.0,6.0,,1.0,0.0,7.0,{ 321

*  CCCA . 

Then, by using Eq. (4) we can obtain the 

values of the weighted similarity measure S4(Ai, 

A*) (i =1, 2, 3, 4): 

S4(A1, A*) = 0.6595, S4(A2, A*) = 0.9805, 

S4(A3, A*) = 0.7944, and S4(A4, A*) = 0.9828. 

Thus, the ranking order of the four 

alternatives is A4  A2  A3  A1. Therefore, the 

alternative A4 is the best choice among the four 

alternatives. 

From the above results we can see that the 

ranking order of the alternatives and best choice 

are in agreement with the results (i.e., the ranking 

order is A4  A2  A3  A1 and the best choice is 

A4.) in Ye’s method [8], but not in agreement with 

the results (i.e., the ranking order is A2  A4  A3 

 A1 and the best choice is A2.) in Ye’s method 

[7]. The reason is that different measure methods 

may yield different ranking orders of the 

alternatives in the decision-making process.  
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Example 2 . A multi-criteria decision making problem 

adopted from Ye [9] is concerned with a manufacturing 

company which wants to select the best global supplier 
according to the core competencies of suppliers. Now 

suppose that there are a set of four suppliers A = {A1, A2, 

A3, A4} whose core competencies are evaluated by means 

of the four attributes (C1, C2, C3, C4): (1) the level of 
technology innovation (C1), (2) the control ability of flow 

(C2), (3) the ability of management (C3), (4) the level of 

service (C4), which are all benefit attributes. Then, the 

weight vector for the four attributes is w = (0.3, 0.25, 0.25, 

0.2)
T
. The four possible alternatives are to be evaluated 

under the above four attributes by the form of SVNVs. 

For the evaluation of an alternative Ai (i =1, 2, 3, 4) 

with respect to an attribute Cj (j =1, 2, 3, 4), by the similar 

evaluation method in Example 1 it is obtained from the 

questionnaire of a domain expert. For example, when we 

ask the opinion of an expert about an alternative A1 with 

respect to an attribute C1, he/she may say that the 

possibility in which the statement is good is 0.5 and the 

statement is poor is 0.3 and the degree in which he/she is 

not sure is 0.1. For the neutrosophic notation, it can be 

expressed as a11 = 0.5, 0.1, 0.3 . Thus, when the four 

possible alternatives with respect to the above four 

attributes are evaluated by the similar method from the 

expert, we can establish the following single valued 

neutrosophic decision matrix D:  

1.0,2.0,7.02.0,3.0,4.05.0,2.0,2.02.0,1.0,6.0

2.0,2.0,6.04.0,0.0,5.03.0,1.0,5.01.0,3.0,4.0

2.0,3.0,5.01.0,0.0,9.04.0,2.0,3.03.0,2.0,4.0

1.0,2.0,3.02.0,1.0,7.04.0,1.0,5.03.0,1.0,5.0

D

. 

Without loss of generality, let the weight values of the 

three independent elements (i.e., truth-membership 

degree, indeterminacy-membership degree, and falsity-

membership degree) in a SVNV be  =  =  = 1/3. Then 

the proposed decision-making method is applied to solve 

this problem for selecting suppliers. 

From the single valued neutrosophic decision matrix, 

we can yield the following ideal alternative: 

}1.0,2.0,7.0,,1.0,0.0,9.0,

,3.0,1.0,5.0,,1.0,1.0,6.0,{

43

21

*

CC

CCA . 

By applying Eq. (4), the weighted similarity measure 

values between an alternative Ai (i = 1, 2, 3, 4) and the 

ideal alternative A
*
 are as follows:  

S4(A1, A
*
) = 0.7491, S4(A2, A

*
) = 0.7433,

S4(A3, A
*
) = 0.7605, and S4(A4, A

*
) = 0.6871.

According to the measure values, the ranking order of 

the four suppliers is A3  A1  A2  A4. Hence, the best 

supplier is A3. From the results we can see that the ranking 

order of the alternatives and best choice are in agreement 

with the results in Ye‟s method [9]. 

From the above two examples, we can see 

that the proposed single valued neutrosophic 

multiple attribute decision-making method is 
more suitable for real scientific and engineering 

applications because it can handle not only 

incomplete information but also the indeterminate 

information and inconsistent information which 
exist commonly in real situations. Especially, in 

the proposed decision-making method we 

consider the important differences in the three 

independent elements (i.e., truth-membership 

degree, indeterminacy-membership degree, and 
falsity-membership degree) in a SVNV and can 

adjust the weight values of the three independent 

elements. Thus, the proposed single valued 

neutrosophic decision-making method is more 
flexible and practical than the existing decision-

making methods [7-9]. The technique proposed in 

this paper extends the existing decision-making 

methods and provides a new way for decision-
makers. 

6 Conclusion 

This paper has developed three similarity 

measures between SVNSs based on the minimum 
and maximum operators and investigated their 

properties. Then the proposed weighted similarity 

measure of SVNSs has been applied to multiple 

attribute decision-making problems under single 
valued neutrosophic environment. The proposed 

method differs from previous approaches for 

single valued neutrosophic multiple attribute 

decision making not only due to the fact that the 
proposed method use the weighted similarity 

measure of SVNSs, but also due to considering 

the weights of the truth-membership, indeter-

minacy-membership, and falsity-membership in 
SVNSs, which makes it have more flexible and 

practical than existing decision making methods 

[7-9] in real decision making problems. Through 

the weighted similarity measure between each 
alternative and the ideal alternative, we can obtain 

the ranking order of all alternatives and the best 

alternative. Finally, two practical examples 

demonstrated the applications and effectiveness 
of the decision-making approach under single 

valued neutrosophic environments. The proposed 

decision-making method can effectively deal with 

decision-making problems with the incomplete, 
indeterminate, and inconsistent information which 

exist commonly in real situations. Furthermore, 

by the similar method we can easily extend the 

proposed weighted similarity measure of SVNSs 
and its decision-making method to that of INSs. 

In the future, we shall investigate similarity 

measures between SVNSs and between INSs in 

the applications of other domains, such as pattern 
recognition, clustering analysis, image process, 

and medical diagnosis. 
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Abstract. Soft neutrosophic group and soft neutrosophic 

subgroup are generalized to soft neutrosophic bigroup 

and soft neutrosophic N-group respectively in this paper. 

Different kinds of soft neutrosophic bigroup and soft 

neutrosophic N-group are given. The structural properties 

and theorems have been discussed with a lot of examples 

to disclose many aspects of this beautiful man made 

structure.

Keywords: Neutrosophic bigroup, Neutrosophic N-group, soft set, soft group, soft subgroup, soft neutrosophic bigroup, soft neu-

trosophic subbigroup, soft neutrosophic N-group, soft neutrosophic sub N-group.

1 Introduction 
    Neutrosophy is a new branch of philosophy which is in 

fact the birth stage of neutrosophic logic first found by 

Florentin Smarandache in 1995.  Each proposition in neu-

trosophic logic is approximated to have the percentage of 

truth in a subset T, the percentage of indeterminacy in a 

subset I, and the percentage of falsity in a subset F so that 

this neutrosophic logic is called an extension of fuzzy log-

ic. In fact neutrosophic set is the generalization of classical 

sets, conventional fuzzy set  1 , intuitionistic fuzzy set

 2 and interval valued fuzzy set  3 . This mathematical

tool is handling problems like imprecise, indeterminacy 

and inconsistent data etc. By utilizing neutrosophic theory, 

Vasantha Kandasamy and Florentin Smarandache dig out 

neutrosophic algebraic structures in  11 . Some of them

are neutrosophic fields, neutrosophic vector spaces, neu-

trosophic groups, neutrosophic bigroups, neutrosophic N-

groups, neutrosophic semigroups, neutrosophic bisemi-

groups, neutrosophic N-semigroup, neutrosophic loops, 

neutrosophic biloops, neutrosophic N-loop, neutrosophic 

groupoids, and neutrosophic bigroupoids and so on. 

Molodtsov in  11  laid down the stone foundation of a

richer structure called soft set theory which is free from the 

parameterization inadequacy, syndrome of fuzzy se theory, 

rough set theory, probability theory and so on. In many ar-

eas it has been successfully applied such as smoothness of 

functions, game theory, operations research, Riemann inte-

gration, Perron integration, and probability. Recently soft 

set theory has attained much attention since its appearance 

and the work based on several operations of soft sets intro-

duced in   2,9,10 . Some more exciting properties and

algebra may be found in  1 . Feng et al. introduced the soft

semirings  5 . By means of level soft sets an adjustable

approach to fuzzy soft sets based decision making can be 

seen in 6 . Some other new concept combined with fuzzy

sets and rough sets was presented in 7,8 . AygÄunoglu

et al. introduced the Fuzzy soft groups  4 . This paper is a

mixture of neutrosophic bigroup,neutrosophic  N -group 

and soft set theory which is infact a generalization of soft 

neutrosophic group. This combination gave birth to a new 

and fantastic approach called "Soft Neutrosophic Bigroup 

and Soft Neutrosophic N -group". 

2.1 Neutrosophic Bigroup and N-Group

Definition 1 Let       1 2 1 2, ,NB G B G B G   

be a non empty subset with two binary operations 

on  NB G satisfying the following conditions: 

1)       1 2NB G B G B G  where   1B G

and   2B G   are proper subsets of  NB G .

2)   1 1,B G    is a neutrosophic group. 

3)   2 2,B G  is a group .

Then we define    1 2, ,NB G     to be a neutrosophic 
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bigroup. If both   1B G  and   2B G   are neutrosophic 

groups. We say  NB G   is a strong neutrosophic

bigroup. If both the groups are not neutrosophic group, we 

say  NB G   is just a bigroup. 

 Example 1 Let       1 2NB G B G B G 

where     9

1 / 1B G g g    be a cyclic group of order 

9   and     2 1,2, ,2B G I I   neutrosophic  group un-

der multiplication modulo  3  . We call   NB G   a neu-

trosophic bigroup. 

Example 2 Let       1 2NB G B G B G 

Where    1 1,2,3,4, ,2 ,3 ,4B G I I I I a neutrosoph 

ic group under multiplication modulo  5 . 

   2 0,1,2, ,2 ,1 ,2 ,1 2 ,2 2B G I I I I I I    

  is a neutrosophic group under multiplication modulo  

3  . Clearly   NB G   is a strong neutrosophic bi 

group. 

Definition 2 Let       1 2 1 2, ,NB G B G B G   

 be a neutrosophic bigroup. A proper subset 

 1 2 1 2, ,P P P      is a neutrosophic subbi 

group of  NB G   if the following conditions are 

satisfied  1 2 1 2, ,P P P      is a neutroso 

phic bigroup under the operations  1 2,    i.e. 

 1 1,P    is a neutrosophic subgroup of   1 1,B 

and   2 2,P  is a subgroup of   2 2,B   . 

1 1P P B    and 2 2P P B    are subgroups of 

1B  and 2B  respectively. If both of 1P   and 2P

are not neutrosophic then we call 1 2P P P    to 

be just a bigroup. 

Definition 3 Let 

      1 2 1 2, ,NB G B G B G   

be a neutrosophic bigroup. If both   1B G   and 

 2B G   are commutative groups, then we call  

 NB G  to be a commutative bigroup. 

Definition 4 Let 

      1 2 1 2, ,NB G B G B G    be a neutrosophic

bigroup. If both   1B G   and   2B G   are cyclic, we 

call   NB G   a cyclic bigroup.

 Definition 5 Let 

      1 2 1 2, ,NB G B G B G      be a neutrosophic 

bigroup.        1 2 1 2, ,P G P G P G      be a neu-

trosophic bigroup.        1 2 1 2, ,P G P G P G   

is said to be a neutrosophic normal subbigroup of 

 NB G   if   P G   is a neutrosophic subbigroup and

both   1P G   and   2P G   are normal subgroups of

 1B G   and   2B G   respectively.

 Definition 6 Let 

      1 2 1 2, ,NB G B G B G      be a neutrosophic 

bigroup of finite order. Let 

      1 2 1 2, ,P G P G P G      be a neutrosophic 

subbigroup of  NB G  . If       / No P G o B G

then we call   P G   a Lagrange neutrosophic sub-

bigroup, if every neutrosophic subbigroup  P   is such that 

    / No P o B G   then we call   NB G   to be a La-

grange neutrosophic bigroup. 

 Definition 7 If  NB G   has atleast one Lagrange neu-

trosophic subbigroup then we call   NB G   to be a weak

Lagrange neutrosophic bigroup. 

 Definition 8 If  NB G  has no Lagrange neutrosophic 

subbigroup then  NB G is called Lagrange free neutro-

sophic bigroup. 

Definition 9 Let       1 2 1 2, ,NB G B G B G   

be a neutrosophic bigroup. Suppose 

    1 2 1 2, ,P P G P G      and 
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    1 2 1 2, ,K K G K G      be any two neutro-

sophic subbigroups. we say  P   and  K   are conjugate if 

each   iP G   is conjugate with    , 1,2iK G i   , then

we say  P   and  K   are neutrosophic conjugate sub-

bigroups of  NB G  .

Definition 10 A set   , ,G I  with two binary

operations `   ' and `  ' is called a strong neutrosophic 

bigroup if 

1) 1 2 ,G I G I G I      

2)  1 ,G I   is a neutrosophic group and 

3)  2 ,G I is a neutrosophic group. 

Example 3 Let   1 2, ,G I    be a strong neutro-

sophic bigroup where 

 0,1,2,3,4, ,2 ,3 ,4G I Z I I I I I     .

Z I   under `   ' is a neutrosophic group and 

 0,1,2,3,4, ,2 ,3 ,4I I I I   under multiplication modulo

5   is a neutrosophic group. 

 Definition 11 A subset  H    of a strong neutrosoph-

ic bigroup   , ,G I   is called a strong neutrosoph-

ic subbigroup if  H   itself is a strong neutrosophic 

bigroup under `   ' and `  ' operations defined on 

G I  . 

Definition 12 Let   , ,G I   be a strong neutro-

sophic bigroup of finite order. Let  H    be a strong 

neutrosophic subbigroup of   , ,G I   . If

   /o H o G I  then we call H, a Lagrange strong

neutrosophic subbigroup of G I  . If every strong 

neutrosophic subbigroup of  G I  is a Lagrange 

strong neutrosophic subbigroup then we call  G I  a 

Lagrange strong neutrosophic bigroup. 

 Definition 13 If the strong neutrosophic bigroup has at 

least one Lagrange strong neutrosophic subbigroup then 

we call  G I   a weakly Lagrange strong neutrosophic 

bigroup. 

 Definition 14 If G I   has no Lagrange strong neu-

trosophic subbigroup then we call  G I  a Lagrange 

free strong neutrosophic bigroup. 

Definition 15 Let   , ,G I   be a strong neutro-

sophic bigroup with 1 2G I G I G I      . 

Let  , ,H   be a neutrosophic subbigroup where

1 2H H H  . We say  H   is a neutrosophic normal 

subbigroup of  G   if both 
1H   and 

2H   are neutrosoph-

ic normal subgroups of  1G I   and  2G I   re-

spectively. 

 Definition 16 Let 1 2 , ,G G G    , be a neutro-

sophic bigroup. We say two neutrosophic strong sub-

bigroups 1 2H H H   and 1 2K K K   are conju-

gate neutrosophic subbigroups of 

1 2G I G I G I      if 1H  is conjugate to 

1K  and 2H  is conjugate to 2K  as neutrosophic sub-

groups of 1G I  and 1G I  respectively. 

Definition 17 Let  1, ,..., NG I    be a nonempty 

set with N -binary operations defined on it. We say 

G I  is a strong neutrosophic N -group if the follow-

ing conditions are true. 

1)  1 2 ... NG I G I G I G I         where 

iG I  are proper subsets of G I  . 

2)  ,i iG I   is a neutrosophic group, 

1,2,...,i N . 

3) If in the above definition we  have

a. 1 2 1... ...k k NG I G G I G I G I G          

b.  ,i iG    is a group for some i or 

4)  ,j jG I   is a neutrosophic group for some 

j . Then we call G I  to be a neutrosophic N -

group. 

Example 4 Let  

 1 2 3 4 1 2 3 4, , , ,G I G I G I G I G I            

be a neutrosophic  4 -group where 

 1 1,2,3,4, ,2 ,3 ,4G I I I I I 

neutrosophic group under multiplication modulo 5 .  

 2 0,1,2, ,2 ,1 ,2 ,1 2 ,2 2G I I I I I I I     

a neutrosophic group under multiplication modulo 3 ,  



58 Neutrosophic Sets and Systems, Vol. 2, 2014 

 Mumtaz Ali, Florentin Smarandache, Muhammad Shabir and Munazza Naz, Soft Neutrosophic Bigroup and Soft Neutro-

sophic N-group 

3G I Z I   ,  a neutrosophic group under addi-

tion and     4 , : , 1, ,4,4G I a b a b I I   ,

component-wise multiplication modulo  5 .

Hence G I  is a strong neutrosophic 4 -group. 

Example 5 Let  

 1 2 3 4 1 2 3 4, , , ,G I G I G I G G          

be a neutrosophic 4 -group, where 

 1 1,2,3,4, ,2 ,3 ,4G I I I I I   a neutrosophic

group under multiplication modulo 5 .  

 2 0,1, ,1G I I I    ,a neutrosophic group under

multiplication modulo 2 .  3 3G S   and  4 5G A , the 

alternating group. G I  is a neutrosophic 4 -group. 

Definition 18 Let 

 1 2 1... , ,...,N NG I G I G I G I         

  be a neutrosophic N -group. A proper subset 

 1, ,..., NP     is said to be a neutrosophic sub N -group 

of G I   if  1 ... NP P P    and each   ,i iP 

is a neutrosophic subgroup (subgroup) of 

 , ,1i iG i N    . 

It is important to note  , iP   for no i  is a neutrosophic

group. 

 Thus we see a strong neutrosophic N -group can have 3   

types of subgroups viz. 

1) Strong neutrosophic sub N -groups.

2) Neutrosophic sub N -groups.

3) Sub N -groups.

 Also a neutrosophic N -group can have two types of sub 

N -groups. 

1) Neutrosophic sub N -groups.

2) Sub N -groups.

 Definition 19 If G I  is a neutrosophic N -group 

and if G I   has a proper subset T such that T  is a 

neutrosophic sub  N -group and not a strong neutrosophic 

sub N -group and    /o T o G I   then we call  T

a Lagrange sub  N -group. If every sub  N -group of 

G I   is a Lagrange sub  N -group then we call  

G I   a Lagrange  N  -group. 

 Definition 20 If G I   has atleast one Lagrange sub 

N -group then we call  G I   a weakly Lagrange neu-

trosophic N-group. 

 Definition 21 If G I   has no Lagrange sub  N -

group then we call  G I   to be a Lagrange free  N -

group. 

 Definition 22 Let 

 1 2 1... , ,...,N NG I G I G I G I         

be a neutrosophic  N  -group. Suppose 

 1 2 1... , ,...,N NH H H H       and  

 1 2 1... , ,...,N NK K K K       are two sub  N -

groups of G I  , we say K  is a conjugate 

to H or H is conjugate to K  if each iH   is conjugate to 

iK     1,2,...,i N   as subgroups of  iG  . 

 2.2 Soft Sets 
  Throughout this subsection U refers to an initial uni-

verse, E  is a set of parameters, ( )PU  is the power set of

U , and  A E  . Molodtsov defined the soft set in the

following manner: 

Definition 23 A pair ( , )F A  is called a soft set over U
where F is a mapping given by  : ( )F A PU .

In other words, a soft set over  U  is a parameterized fami-

ly of subsets of the universe  U . For  x A  , ( )F x
may be considered as the set of  x -elements of the soft set

( , )F A  , or as the set of e-approximate elements of the

soft set. 

Example 6  Suppose that U  is the set of shops. E is the

set of parameters and each parameter is a word or sentence. 

Let  

high rent,normal rent,

in good condition,in bad condition
E  . 

Let us consider a soft set ( , )F A which describes the at-

tractiveness of shops that Mr.Z  is taking on rent. Suppose

that there are five houses in the universe  

1 2 3 4 5{ , , , , }U s s s s s  under consideration, and that

1 2 3{ , , }A x x x  be the set of parameters where

1x   stands for the parameter 'high rent,

2x   stands for the parameter 'normal rent,
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3x   stands for the parameter 'in good condition.

Suppose that 

1 1 4( ) { , }F x s s  ,

2 2 5( ) { , }F x s s ,

3 3 4 5( ) { , , }.F x s s s
The soft set ( , )F A  is an approximated family

{ ( ), 1,2,3}iF e i of subsets of the set U which gives

us a collection of approximate description of an object. 

Then ( , )F A  is a soft set as a collection of approxima-

tions over  U , where

21 1  { , }) ,( high rex nt s sF

2 2 5( )   { , },F x normal rent s s

3 3 4 5( )    { , , }.F x in good condition s s s

Definition 24 For two soft sets ( , )F A  and  ( , )H B  over

U , ( , )F A  is called a soft subset of  ( , )H B  if

1. A B   and

2. ( ) ( )F x H x , for all  x A  .

This relationship is denoted by ( , ) ( , )F A H B . Simi-

larly ( , )F A  is called a soft superset of ( , )H B  if

( , )H B  is a soft subset of ( , )F A  which is denoted by

( , ) ( , )F A H B .

Definition 25 Two soft sets ( , )F A  and ( , )H B  over

U are called soft equal if ( , )F A  is a soft subset of

( , )H B  and ( , )H B  is a soft subset of ( , )F A .

Definition 26  Let ( , )F A  and ( , )K B  be two soft sets

over a common universe U such that  A B  .

Then their restricted intersection is denoted by 

( , ) ( , ) ( , )RF A K B H C  where ( , )H C  is de-

fined as  ( ) ( ) )H c F c c for all

c C A B  .

Definition 27  The extended intersection of two soft sets 

( , )F A  and  ( , )K B  over a common universe U is the

soft set  ( , )H C  , where  C A B  , and for all

c C  , ( )H c  is defined as

( ) if c ,

( ) ( ) if c ,

( ) ( ) if c .

F c A B

H c G c B A

F c G c A B

We write  ( , ) ( , ) ( , )F A K B H C  .

Definition 28 The restricted union of two soft sets  

( , )F A  and ( , )K B  over a common universe U is the

soft set  ( , )H C , where  C A B  , and for all

c C  , ( )H c  is defined as  ( ) ( ) ( )H c F c G c
for all  c C  . We write it as

 
( , ) ( , ) ( , ).RF A K B H C
Definition 29 The extended union of two soft sets  

( , )F A  and ( , )K B  over a common universe U is the

soft set  ( , )H C , where  C A B  , and for all

c C  ,  ( )H c   is defined as

( ) if c ,

( ) ( ) if c ,

( ) ( ) if c .

F c A B

H c G c B A

F c G c A B

We write  ( , ) ( , ) ( , )F A K B H C  .

2.3 Soft Groups 

Definition 30  Let ( , )F A  be a soft set over G . Then

( , )F A  is said to be a soft group over G  if and only if

( )F x G  for all  x A  .

Example 7  Suppose that 

3 { ,(12),(13),(23),(123),(132)}.G A S e

Then ( , )F A  is a soft group over 3S where

( ) { },

(12) { ,(12)},

(13) { ,(13)},

(23) { ,(23)},

(123) (132) { ,(123),(132)}.

F e e

F e

F e

F e

F F e

Definition 31  Let ( , )F A  be a soft group overG . Then

1. ( , )F A  is said to be an identity soft group

over G  if  ( ) { }F x e  for all x A ,

where  e   is the identity element of G  and

2. ( , )F A  is said to be an absolute soft group if

( )F x G   for all x A  .

3 Soft Neutrosophic Bigroup 

Definition 32 Let 

      1 2 1 2, ,NB G B G B G   
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be a neutrosophic bigroup and let   ,F A   be a soft set

over  NB G  . Then   ,F A   is said to be soft neutro-

sophic bigroup over  NB G   if and only if   F x  is a

subbigroup of  NB G   for all  x A . 

Example 8 Let  

      1 2 1 2, ,NB G B G B G   

be a neutrosophic bigroup, where 

   1 0,1,2,3,4, ,2 ,3 ,4B G I I I I

 is a neutrosophic group under multiplication modulo  5  .  

   12

2 : 1B G g g    is a cyclic group of order  12.  

Let        1 2 1 2, ,P G P G P G      be a neutro-

sophic subbigroup where     1 1,4, ,4P G I I   and 

   2 4 6 8 10

2 1, , , , ,P G g g g g g  . 

Also        1 2 1 2, ,Q G Q G Q G      be another

neutrosophic subbigroup where     1 1,Q G I   and 

   3 6 9

2 1, , ,Q G g g g  . 

Then   ,F A   is a soft neutrosophic  bigroup over

 NB G  , where

   

   

2 4 6 8 10

1

3 6 9

2

1,4, ,4 ,1, , , , ,

1, ,1, , , .

F e I I g g g g g

F e I g g g





Theorem 1 Let   ,F A   and   ,H A   be two soft

neutrosophic bigroup over  NB G  . Then their intersec-

tion     , ,F A H A   is again a soft neutrosophic

bigroup over   NB G  . 

 Proof Straight forward. 

Theorem 2 Let   ,F A   and   ,H B   be two  soft

neutrosophic bigroups over   NB G   such that

A B    , then their union is soft neutrosophic bigroup 

over   NB G  . 

 Proof Straight forward. 

Proposition 1 The extended union of two soft neutro-

sophic  bigroups   ,F A   and   ,K D   over  NB G

is not a soft neutrosophic  bigroup over   .NB G

To prove it, see the following example. 

Example 9 Let       1 2 1 2, ,NB G B G B G     ,

where     1 1,2,3,4 ,2 ,3 ,4B G I I I I   and 

 2 3B G S . 

Let        1 2 1 2, ,P G P G P G      be a neutro-

sophic subbigroup where     1 1,4, ,4P G I I   and 

    2 , 12P G e  . 

Also        1 2 1 2, ,Q G Q G Q G      be another 

neutrosophic subbigroup where     1 1,Q G I   and 

      2 , 123 , 132Q G e  . 

Then   ,F A   is a soft neutrosophic bigroup over

 NB G  , where

    

      

1

2

1,4, ,4 , , 12

1, , , 123 , 132 .

F x I I e

F x I e





Again let        1 2 1 2, ,R G R G R G     be anoth-

er neutrosophic subbigroup where     1 1,4, ,4R G I I

and      2 , 13R G e  . 

Also        1 2 1 2, ,T G T G T G      be a neutro-

sophic subbigroup where     1 1,T G I   and 

    2 , 23 .T G e

Then   ,K D   is a soft  neutrosophic bigroup over

 NB G  , where 

    

    

2

3

1,4, ,4 , , 13 ,

1, , , 23 .

K x I I e

K x I e





The extended union       , , ,F A K D H C    such 

that  C A D    and for 2x C  , we have 

            2 2 2 1,4, ,4 , , 13 123 , 132H x F x K x I I e  

  is not a subbigroup of  NB G .
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Proposition 2 The extended intersection of two soft neu-

trosophic bigroups   ,F A   and   ,K D   over

 NB G   is again a soft neutrosophic bigroup over 

 NB G .

 Proposition 3 The restricted union of two soft neutro-

sophic bigroups  ,F A  and  ,K D   over  NB G   is

not a soft neutrosophic  bigroup over  NB G .

 Proposition 4 The restricted intersection of two soft 

neutrosophic bigroups   ,F A   and   ,K D   over

 NB G   is a soft neutrosophic bigroup over  NB G .

 Proposition 5 The  AND   operation of two soft neu-

trosophic bigroups over  NB G   is again soft neutro-

sophic bigroup over  NB G . 

Proposition 6 The  OR   operation of two soft neutro-

sophic bigroups over   NB G   may not be a soft nuetro-

sophic bigroup. 

Definition 33 Let   ,F A   be a soft neutrosophic

bigroup over  NB G . Then

1)  ,F A   is called identity  soft neutrosophic  bigroup

if     1 2,F x e e  for all  x A , where  1e   and 

2e  are the identities of   1B G   and   2B G  re-

spectively. 

2)  ,F A  is called Full-soft neutrosophic  bigroup if

   NF x B G   for all  x A .

 Theorem 3 Let  NB G  be a neutrosophic bigroup of 

prime order  P , then   ,F A   over   NB G  is either

identity soft neutrosophic bigroup or Full-soft  neutrosoph-

ic bigroup. 

Definition 34 Let  ,F A  and   ,H K  be two soft

neutrosophic bigroups over  NB G . Then   ,H K  is

soft neutrosophi  subbigroup of   ,F A   written as

   , ,H K F A , if

1) K A ,

2)    K x F x   for all  x A .

 Example 10 Let 

      1 2 1 2, ,B G B G B G     where 

 1

0,1,2,3,4, ,2 ,3 ,4 ,1 ,2 ,3 ,4 ,

1 2 ,2 2 ,3 2 ,4 2 ,1 3 ,2 3 ,

3 3 ,4 3 ,1 4 ,2 4 ,3 4 ,4 4

I I I I I I I I

B G I I I I I I

I I I I I I

    
 

       
       

  

be a neutrosophic group under multiplication modulo  5   

and     16

2 : 1B G g g   a cyclic group of order 

16 .  Let        1 2 1 2, ,P G P G P G     be a neu-

trosophic subbigroup where 

   1 0,1,2,3,4, ,2 ,3 ,4P G I I I I

and  

be another neutrosophic subbigroup where 

   2 4 6 8 10 12 14

2 , , , , , , ,1P G g g g g g g g  . 

Also        1 2 1 2, ,Q G Q G Q G   

     1 0,1,4, ,4Q G I I

 and 

   4 8 12

2 , , ,1Q G g g g  . 

Again let       1 2 1 2, ,R G R G R G     be a neu-

trosophic subbigroup where 

   1 0,1,R G I   and     8

2 1,R G g . 

Let   ,F A be a soft neutrsophic  bigroup  over  NB G

where 

   

   

   

2 4 6 8 10 12 14

1

4 8 12

2

8

3

0,1,2,3,4, ,2 ,3 ,4 , , , , , , , ,1 ,

0,1,4, ,4 , , , ,1 ,

0,1, , ,1 .

F x I I I I g g g g g g g

F x I I g g g

F x I g







Let   ,H K  be another  soft neutrosophic  bigroup over

 NB G , where

   

   

4 8 12

1

8

2

0,1,2,3,4, , , ,1 ,

0,1, , ,1 .

H x g g g

H x I g





Clearly     , , .H K F A

 Definition 35 Let  NB G  be a neutrosophic bigroup.

Then   ,F A  over  NB G  is called commutative  soft  

neutrosophic  bigroup if and only if   F x  is a commuta-

tive subbigroup of  NB G   for all  .x A
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Example 11 Let        1 2 1 2, ,B G B G B G   

be a neutrosophic bigroup where     10

1 : 1B G g g 

be a cyclic group of order 10  and 

   2 1,2,3,4, ,2 I,3 ,4B G I I I  be a neutrosophic 

group under mltiplication modulo 5 . 

Let        1 2 1 2, ,P G P G P G     be a commuta-

tive neutrosophic subbigroup where     5

1 1,P G g

and     2 1,4, ,4P G I I  . Also 

      1 2 1 2, ,Q G Q G Q G     be another commu-

tative neutrosophic subbigroup where 

   2 4 6 8

1 1, , , ,Q G g g g g  and     2 1,Q G I . 

Then   ,F A  is commutative soft neutrosophic bigroup

over  NB G  , where 

   

   

5

1

2 4 6 8

2

1, ,1,4, ,4 ,

1, , , , ,1, .

F x g I I

F x g g g g I





Theorem 4 Every commutative soft neutrosophic 

bigroup   ,F A   over  NB G  is a soft neutrosophic

bigroup but the converse is not true. 

Theorem 5 If   NB G  is commutative neutrosophic 

bigroup. Then   ,F A  over  NB G   is commutative 

soft neutrosophic bigroup but the converse is not true. 

 Theorem 6 If  NB G  is cyclic neutrosophic bigroup. 

Then   ,F A  over  NB G  is commutative  soft neu-

trosophic  bigroup. 

Proposition 7 Let  ,F A  and  ,K D  be two commu-

tative  soft neutrosophic  bigroups over   NB G . Then

1) Their extended union     , ,F A K D  over 

 NB G  is not commutative  soft  neutrosophic

bigroup over  NB G .

2) Their extended intersection     , ,F A K D  over 

 NB G  is commutative  soft  neutrosophic  bigroup

over  NB G .

3) Their restricted union     , ,RF A K D   over 

 NB G  is not commutative  soft  neutrosophic

bigroup over  NB G .

4) Their restricted intersection     , ,RF A K D

over  NB G  is commutative  soft  neutrosophic

bigroup over    .NB G

Proposition 8 Let  ,F A  and  ,K D  be two com-

mutative soft neutrosophic  bigroups over  NB G . Then 

1) Their  AND  operation    , ,F A K D  is com-

mutative soft neutrosophic  bigroup over  NB G .

2) Their OR  operation    , ,F A K D  is not com-

mutative  soft  neutrosophic  bigroup over  NB G .

Definition 36 Let  NB G be a neutrosophic bigroup. 

Then  ,F A  over  NB G  is called cyclic  soft neutro-

sophic bigroup if and only if   F x  is a cyclic sub-

bigroup of  NB G   for all  .x A

Example 12 Let        1 2 1 2, ,B G B G B G   

be a neutrosophic bigroup where    10

1 : 1B G g g 

be a cyclic group of order 10  and 

   2 0,1,2, ,2 ,1 ,2 ,1 2 ,2 2B G I I I I I I    

be a neutrosophic group under multiplication modulo 3 . 

Le       1 2 1 2, ,P G P G P G      be a cyclic neu-

trosophic subbigroup where     5

1 1,P G g  and 

 1,1 I .

Also        1 2 1 2, ,Q G Q G Q G     be another

cyclic neutrosophic subbigroup where 

   2 4 6 8

1 1, , , ,Q G g g g g  and 

   2 1,2 2 .Q G I   

Then  ,F A  is cyclic soft neutrosophic bigroup over

  ,NB G  where 
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   

   

5

1

2 4 6 8

2

1, ,1,1 ,

1, , , , ,1,2 2 .

F x g I

F x g g g g I

 

 

Theorem 7 If  NB G  is a cyclic neutrosophic soft 

bigroup, then  ,F A  over  NB G  is also cyclic soft 

neutrosophic bigroup. 

Theorem 8 Every cyclic  soft neutrosophic  bigroup 

 ,F A  over  NB G is a  soft neutrosophic  bigroup but 

the converse is not true. 

Proposition 9 Let  ,F A  and  ,K D  be two cyclic

soft neutrosophic  bigroups over    .NB G  Then 

1) Their extended union     , ,F A K D   over 

 NB G  is not cyclic soft  neutrosophic bigroup over 

  .NB G

2) Their extended intersection     , ,F A K D  over 

 NB G  is cyclic  soft neutrosophic bigroup over

  .NB G

3) Their restricted union     , ,RF A K D   over

 NB G is not cyclic  soft neutrosophic  bigroup over

  .NB G

4) Their restricted intersection     , ,RF A K D

over  NB G  is cyclic  soft neutrosophic  bigroup 

over    .NB G

Proposition 10 Let  ,F A  and  ,K D  be two cyclic

soft  neutrosophic  bigroups over   .NB G  Then

1) Their AND  operation    , ,F A K D  is cyclic

soft  neutrosophic  bigroup over    .NB G

2) Their OR  operation    , ,F A K D  is not cyclic

soft neutrosophic bigroup over    .NB G

 Definition 37 Let  NB G be a neutrosophic bigroup.

Then  ,F A  over  NB G  is called normal  soft neutro-

sophic bigroup if and only if   F x  is normal subbigroup

of  NB G  for all  .x A

Example 13 Let        1 2 1 2, ,B G B G B G   

be a neutrosophic  bigroup, where 

 
2 2

1 2 2

, , , , , , ,

, , , ,

e y x x xy x y I
B G

Iy Ix Ix Ixy Ix y

  
  
  

 is a neutrosophic group under multiplaction  and 

   6

2 : 1B G g g   is a cyclic group of order 6 . 

Let       1 2 1 2, ,P G P G P G     be a normal

neutrosophic subbigroup where     1 ,P G e y  and 

   2 4

2 1, ,P G g g  . 

Also       1 2 1 2, ,Q G Q G Q G     be another 

normal neutrosophic subbigroup where 

   2

1 , ,Q G e x x  and     3

2 1, .Q G g  

Then   ,F A  is a normal soft neutrosophic  bigroup over

 NB G  where 

   

   

2 4

1

2 3

2

, ,1, , ,

, , ,1, .

F x e y g g

F x e x x g





 Theorem 9 Every normal soft neutrosophic  bigroup 

 ,F A  over  NB G  is a  soft neutrosophic  bigroup but 

the converse is not true. 

Theorem 10 If  NB G is a normal neutrosophic

bigroup. Then  ,F A  over  NB G  is also normal soft 

neutrosophic bigroup. 

Theorem 11 If  NB G is a commutative neutrosophic

bigroup. Then  ,F A  over  NB G  is normal soft neu-

trosophic bigroup. 

 Theorem 12 If  NB G is a cyclic neutrosophic

bigroup. Then  ,F A  over  NB G  is normal soft neu-

trosophic bigroup. 

Proposition 11 Let  ,F A  and  ,K D  be two nor-

mal soft neutrosophic bigroups over   .NB G  Then

1) Their extended union     , ,F A K D   over 

 NB G is not normal soft neutrosophic  bigroup over
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  .NB G

2) Their extended intersection     , ,F A K D  over 

 NB G  is normal soft neutrosophic  bigroup over

  .NB G

3) Their restricted union    , ,RF A K D   over

 NB G  is not normal soft neutrosophic bigroup over

  .NB G

4) Their restricted intersection     , ,RF A K D

over  NB G  is normal soft neutrosophic bigroup 

over    .NB G

Proposition 12 Let  ,F A  and  ,K D  be two nor-

mal soft neutrosophic bigroups over   .NB G  Then

1) Their AND  operation    , ,F A K D  is normal

soft neutrosophic bigroup over    .NB G

2) Their OR  operation    , ,F A K D  is not nor-

mal soft neutrosophic  bigroup over   .NB G

Definition 38 Let  ,F A  be a soft neutrosophic bigroup

over  NB G . If for all x A  each   F x  is a La-

grange subbigroup of  NB G , then   ,F A  is called

Lagrange soft neutosophic bigroup over   .NB G

Example 14 Let        1 2 1 2, ,B G B G B G   

be a neutrosophic bigroup, where 

 
2 2

1 2 2

, , , , , , ,

, , , ,

e y x x xy x y I
B G

Iy Ix Ix Ixy Ix y

  
  
  

is a neutrosophic symmetric group of  and 

   2 0,1, ,1B G I I    be a neutrosophic group under ad-

dition modulo 2 . Let 

      1 2 1 2, ,P G P G P G       be a neutrosophic 

subbigroup where     1 ,P G e y  and 

   2 0,1P G  . 

Also        1 2 1 2, ,Q G Q G Q G     be another

neutrosophic subbigroup where     1 ,Q G e Iy  and 

   2 0,1 .Q G I 

Then   ,F A  is Lagrange soft neutrosophic  bigroup over

 NB G ,  where

   

   

2

2

, ,0,1 ,

, ,0,1 .

F x e y

F x e yI I



 

Theorem 13 If  NB G  is a Lagrange neutrosophic 

bigroup, then  ,F A  over  NB G  is Lagrange soft neu-

trosophic bigroup. 

Theorem 14 Every Lagrange soft neutrosophic  bigroup 

 ,F A  over  NB G  is a soft neutrosophic  bigroup but 

the converse is not true. 

Proposition 13 Let  ,F A  and  ,K D  be two La-

grange soft neutrosophic bigroups over  NB G  . Then

1) Their extended union     , ,F A K D   over 

 NB G is not Lagrange soft neutrosophic bigroup 

over    .NB G

2) Their extended intersection    , ,F A K D  over 

 NB G  is not Lagrange soft neutrosophic bigroup

over   .NB G

3) Their restricted union     , ,RF A K D   over

 NB G  is not Lagrange soft neutrosophic bigroup

over    .NB G

4) Their restricted intersection     , ,RF A K D

over  NB G  is not Lagrange soft neutrosophic 

bigroup over    .NB G

Proposition 14 Let  ,F A  and  ,K D  be two La-

grange soft neutrosophic bigroups over   .NB G  Then

1) Their AND  operation     , ,F A K D  is not La-

grange soft neutrosophic bigroup over    .NB G

2) Their OR  operation    , ,F A K D  is not La-

grange soft neutrosophic bigroup over    .NB G
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Definition 39 Let  ,F A  be a soft neutrosophic

bigroup over   .NB G  Then   ,F A   is called weakly

Lagrange soft neutosophic bigroup over  NB G  if at-

least one  F x  is a Lagrange subbigroup of   ,NB G

for some  .x A  

Example 15 Let       1 2 1 2, ,B G B G B G   

be a neutrosophic bigroup, where 

 1

0,1,2,3,4, ,2 ,3 ,4 ,1 ,2 ,3 ,4 ,

1 2 ,2 2 ,3 2 ,4 2 ,1 3 ,2 3 ,

3 3 ,4 3 ,1 4 ,2 4 ,3 4 ,4 4

I I I I I I I I

B G I I I I I I

I I I I I I

    
 

       
       

  is a neutrosophic group under multiplication modulo 5  

and    10

2 : 1B G g g   is a cyclic group of order 

10 . Let        1 2 1 2, ,P G P G P G     be a neu-

trosophic subbigroup where    1 0,1,4, ,4P G I I

and    2 4 6 8

2 , , , ,1 .P G g g g g  Also 

      1 2 1 2, ,Q G Q G Q G     be another neutro-

sophic subbigroup where     1 0,1,4, ,4Q G I I  and 

   5

2 ,1 .Q G g Then   ,F A  is a weakly Lagrange

soft neutrosophic bigroup over   ,NB G  where 

   

   

2 4 6 8

1

5

2

0,1,4, ,4 , , , , ,1 ,

0,1,4, ,4 , ,1 .

F x I I g g g g

F x I I g





 Theorem 15 Every weakly Lagrange soft neutrosophic 

bigroup  ,F A  over  NB G is a soft neutrosophic

bigroup but the converse is not true. 

Proposition 15 Let  ,F A  and  ,K D  be two weak-

ly Lagrange soft neutrosophic bigroups over    .NB G

Then 

1) Their extended union     , ,F A K D over

 NB G  is not weakly Lagrange soft neutrosophic

bigroup over   .NB G

2) Their extended intersection     , ,F A K D  over 

 NB G  is not weakly Lagrange soft neutrosophic

bigroup over   NB G . 

3) Their restricted union    , ,RF A K D over

 NB G is not weakly Lagrange soft neutrosophic

bigroup over    .NB G

4) Their restricted intersection    , ,RF A K D

over  NB G is not weakly Lagrange soft neutrosoph-

ic bigroup over   .NB G

Proposition 16 Let  ,F A  and  ,K D  be two weak-

ly Lagrange soft neutrosophic bigroups over   .NB G

Then 

1) Their AND  operation     , ,F A K D  is not

weakly Lagrange soft neutrosophic bigroup over 

  .NB G

2) Their OR operation    , ,F A K D  is not weakly

Lagrange soft neutrosophic bigroup over   .NB G

Definition 40 Let  ,F A  be a soft neutrosophic

bigroup over  NB G . Then  ,F A  is called Lagrange

free soft neutrosophic bigroup if each  F x is not La-

grange subbigroup of   ,NB G for all .x A

Example 16 Let        1 2 1 2, ,B G B G B G   

be a neutrosophic  bigroup, where 

   1 0,1, ,1B G I I   is a neutrosophic group under 

addition modulo 2  of order 4  and 

   12

2 : 1B G g g   is a cyclic group of order  12.  

Let       1 2 1 2, ,P G P G P G     be a neutro-

sophic subbigroup where     1 0,P G I  and 

   4 8

2 , ,1P G g g . Also 

      1 2 1 2, ,Q G Q G Q G     be another neutro-

sophic subbigroup where     1 0,1Q G I   and 

   3 6 9

2 1, , ,Q G g g g . Then  ,F A  is Lagrange

free soft neutrosophic bigroup over  NB G ,  where 

   

   

4 8

1

3 6 9

2

0, ,1, , ,

0,1 ,1, , , .

F x I g g

F x I g g g



 
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Theorem 16 If  NB G is Lagrange free neutrosophic 

bigroup, and then  ,F A  over  NB G  is Lagrange free 

soft neutrosophic bigroup. 

Theorem 17 Every Lagrange free soft neutrosophic 

bigroup  ,F A  over  NB G  is a soft neutrosophic

bigroup but the converse is not true. 

Proposition 17 Let  ,F A  and  ,K D be two La-

grange free soft neutrosophic bigroups over   .NB G

Then 

1) Their extended union     , ,F A K D over 

 NB G  is not Lagrange free soft neutrosophic

bigroup over   .NB G

2) Their extended intersection     , ,F A K D

over  NB G  is not Lagrange free soft neutro-

sophic bigroup over  NB G .

3) Their restricted union    , ,RF A K D over 

 NB G is not Lagrange free soft neutrosophic

bigroup over   .NB G

4) Their restricted intersection    , ,RF A K D

over  NB G is not Lagrange free soft neutro-

sophic bigroup over   .NB G

Proposition 18 Let  ,F A  and  ,K D  be two La-

grange free soft neutrosophic  bigroups over   .NB G

Then 

1) Their AND  operation    , ,F A K D  is not La-

grange free soft neutrosophic bigroup over   .NB G

2) Their OR  operation    , ,F A K D  is not La-

grange free soft neutrosophic bigroup over   .NB G

Definition 41 Let  NB G be a neutrosophic bigroup. 

Then  ,F A  is called conjugate soft neutrosophic

bigroup over  NB G if  and only if  F x is neutrosophic

conjugate subbigroup of  NB G  for all  .x A  

Example 17 Let       1 2 1 2, ,B G B G B G     be

a soft neutrosophic bigroup, where 

   2 2

1 , , , , ,B G e y x x xy x y

 is Klien 4 -group and 

 2

0,1,2,3,4,5, ,2 ,3 ,4 ,5 ,

1 ,2 ,3 ,...,5 5

I I I I I
B G

I I I I

 
  

    
 

be a neutrosophic group under addition modulo  6 . 

Let       1 2 1 2, ,P G P G P G     be a neutrosoph-

ic subbigroup of   ,NB G  where     1 ,P G e y  and 

   2 0,3,3 ,3 3 .P G I I   Again 

let       1 2 1 2, ,Q G Q G Q G    be another neu-

trosophic subbigroup of   ,NB G   where 

   2

1 , ,Q G e x x   and

   2 0,2,4,2 2 ,4 4 ,2 ,4 .Q G I I I I    Then 

 ,F A is conjugate soft neutrosophic bigroup over

  ,NB G  where

   

   
1

2

2

, ,0,3,3 ,3 3 ,

, , ,0,2,4,2 2 ,4 4 ,2 ,4 .

F x e y I I

F x e x x I I I I

 

  

Theorem 18 If  NB G is conjugate neutrosophic 

bigroup, then  ,F A  over  NB G is conjugate soft neu-

trosophic bigroup. 

Theorem 19 Every conjugate soft neutrosophic bigroup 

 ,F A  over  NB G  is a soft neutrosophic bigroup but 

the converse is not true. 

Proposition 19 Let  ,F A and  ,K D be two conju-

gate soft neutrosophic bigroups over   .NB G  Then 

1) Their extended union    , ,F A K D  over 

 NB G is not conjugate soft neutrosophic bigroup

over   .NB G

2) Their extended intersection     , ,F A K D  over 

 NB G is conjugate soft neutrosophic bigroup over 

  .NB G
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3) Their restricted union    , ,RF A K D   over

 NB G is not conjugate soft neutrosophic bigroup

over    .NB G

4) Their restricted intersection

   , ,RF A K D over  NB G is conjgate soft 

neutrosophic bigroup over   .NB G

Proposition 20 Let  ,F A and  ,K D be two conju-

gate soft neutrosophic bigroups over    .NB G  Then

1) Their AND  operation    , ,F A K D  is conju-

gate soft neutrosophic bigroup over    .NB G

2) Their OR  operation    , ,F A K D  is not conju-

gate soft neutrosophic bigroup over    .NB G

3.3 Soft Strong Neutrosophic Bigroup 

Definition 42 Let  1 2, ,G I   be a strong neutro-

sophic bigroup. Then  ,F A  over  1 2, ,G I    is 

called soft strong neutrosophic bigroup if and only if 

 F x  is a strong neutrosophic subbigroup of

 1 2, ,G I    for all .x A  

Example 18 Let  1 2, ,G I   be a strong neutro-

sophic bigroup, where 1 2G I G I G I    

with 1G I Z I    , the neutrosophic group un-

der addition and   2 0,1,2,3,4, ,2 ,3 ,4G I I I I I 

a neutrosophic group under multiplication modulo 5.   Let 

1 2H H H  be a strong neutrosophic subbigroup of 

 1 2, , ,G I    where  1 2 ,H Z I    is a 

neutrosophic subgroup and  2 0,1,4, ,4H I I  is a neu-

trosophic subgroup. Again let 1 2K K K  be another 

strong neutrosophic subbigroup of   1 2, , ,G I  

where  1 3 ,K Z I    is a neutrosophic subgroup 

and  2 0,1, ,2 ,3 ,4K I I I I is a neutrosophic subgroup. 

Then clearly  ,F A  is a soft strong neutrosophic bigroup

over   1 2, , ,G I    where 

   

   

1

2

0, 2, 4,...,1,4, ,4 ,

0, 3, 6,...,1, ,2 ,3 ,4 .

F x I I

F x I I I I

  

  

 Theorem 20 Every soft strong neutrosophic bigroup 

 ,F A is a soft neutrosophic bigroup but the converse is

not true. 

Theorem 21 If  1 2, ,G I   is a strong neutro-

sophic bigroup, then  ,F A over  1 2, ,G I    is 

soft strong neutrosophic bigroup. 

Proposition 21 Let  ,F A  and  ,K D  be two soft

strong neutrosophic bigroups over   1 2, ,G I   . 

Then 

1) Their extended union    , ,F A K D over 

 1 2, ,G I    is not soft strong neutrosophic 

bigroup over  1 2, , .G I    

2) Their extended intersection     , ,F A K D  over 

 1 2, ,G I   is soft strong neutrosophic bigroup 

over   1 2, , .G I    

3) Their restricted union    , ,RF A K D   over 

 1 2, ,G I    is not soft strong neutrosophic 

bigroup over   1 2, , .G I    

4) Their restricted intersection     , ,RF A K D

over  1 2, ,G I   is soft strong neutrosophic 

bigroup over   1 2, , .G I    

Proposition 22 Let   ,F A  and  ,K D be two soft

strong neutrosophic bigroups over   1 2, ,G I   . 

Then 

1) Their AND  operation    , ,F A K D  is soft

strong neutrosophic bigroup over   1 2, , .G I    

2) Their OR  operation    , ,F A K D  is not soft

strong neutrosophic bigroup over   1 2, , .G I    

Definition 43 Let  1 2, ,G I    be a strong neutro-

sophic bigroup. Then  ,F A  over   1 2, ,G I    is 



68 Neutrosophic Sets and Systems, Vol. 2, 2014 

 Mumtaz Ali, Florentin Smarandache, Muhammad Shabir and Munazza Naz, Soft Neutrosophic Bigroup and Soft Neutro-

sophic N-group 

called Lagrange soft strong neutrosophic bigroup if and 

only if  F x is Lagrange subbigroup of

 1 2, ,G I    for all  .x A  

Example 19 Let  1 2, ,G I    be a strong neutro-

sophic bigroup of order 15 , where 

1 2G I G I G I      with 

 1 0,1,2,1 , ,2 ,2 ,2 2 ,1 2 ,G I I I I I I I       

the neutrosophic group under mltiplication modulo 3  and 

 2 2

2 3 , , , , ,G I A I e x x I xI x I     .  Let

1 2H H H   be a strong neutrosophic subbigroup of 

 1 2, , ,G I    where  1 1,2 2H I   is a neutro-

sophic subgroup and  2

2 , ,H e x x  is a neutrosophic 

subgroup. Again let 1 2K K K  be another strong neu-

trosophic subbigroup of   1 2, , ,G I    where 

 1 1,1K I   is a neutrosophic subgroup and 

 2

2 , ,K I xI x I is a neutrosophic subgroup. Then 

clearly  ,F A is Lagrange soft strong neutrosophic

bigroup over   1 2, , ,G I    where 

   

   

2

1

2

2

1,2 2 , , , ,

1,1 , , , .

F x I e x x

F x I I xI x I

 

 

 Theorem 22 Every Lagrange soft strong neutrosophic 

bigroup  ,F A  is a soft neutrosophic bigroup but the

converse is not true. 

Theorem 23 Every Lagrange soft strong neutrosophic 

bigroup  ,F A  is a soft strong neutrosophic bigroup but

the converse is not true. 

Theorem 24 If  1 2, ,G I    is a Lagrange strong 

neutrosophic bigroup, then  ,F A  over

 1 2, ,G I    is a Lagrange soft strong neutrosophic 

soft bigroup. 

Proposition 23 Let  ,F A  and  ,K D  be two La-

grange soft strong neutrosophic bigroups over  

 1 2, , .G I    Then 

1) Their extended union    , ,F A K D  over 

 1 2, ,G I    is not  Lagrange soft strong neu-

trosophic bigroup over   1 2, , .G I    

2) Their extended intersection     , ,F A K D  over 

 1 2, ,G I   is not Lagrange soft strong neutro-

sophic bigroup over   1 2, , .G I    

3) Their restricted union    , ,RF A K D   over 

 1 2, ,G I    is not Lagrange soft strong neutro-

sophic bigroup over   1 2, , .G I    

4) Their restricted intersection     , ,RF A K D

over  1 2, ,G I   is not Lagrange soft strong 

neutrosophic bigroup over   1 2, , .G I    

Proposition 24 Let  ,F A  and  ,K D  be two La-

grange soft strong neutrosophic bigroups over  

 1 2, , .G I     Then

1) Their AND  operation    , ,F A K D  is not La-

grange soft strong neutrosophic bigroup over

 1 2, , .G I  

2) Their OR  operation    , ,F A K D  is not La-

grange soft strong neutrosophic bigroup over

 1 2, , .G I  

Definition 44 Let  1 2, ,G I   be a strong neutro-

sophic bigroup. Then  ,F A  over   1 2, ,G I    is

called weakly Lagrange soft strong neutrosophic bigroup if 

atleast one  F x  is a Lagrange subbigroup of

 1 2, ,G I    for some .x A  

Example 20 Let  1 2, ,G I    be a strong neutro-

sophic bigroup of order 15 , where 

1 2G I G I G I      with 

 1 0,1,2,1 , ,2 ,2 ,2 2 ,1 2 ,G I I I I I I I       

the neutrosophic under mltiplication modulo 3 and 
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 2 2

2 , , , , ,G I e x x I xI x I   .   Let

1 2H H H   be a strong neutrosophic subbigroup of 

 1 2, , ,G I    where  1 1,2, ,2H I I  is a neu-

trosophic subgroup and  2

2 , ,H e x x  is a neutrosoph-

ic subgroup. Again let 1 2K K K   be another strong 

neutrosophic subbigroup of   1 2, ,G I   , where

 1 1,1K I   is a neutrosophic subgroup and 

 2

2 , , ,K e I xI x I  is a neutrosophic subgroup. 

Then clearly  ,F A  is weakly Lagrange soft strong neu-

trosophic bigroup over   1 2, , ,G I    where 

   

   

2

1

2

2

1,2, ,2 , , , ,

1,1 , , , , .

F x I I e x x

F x I e I xI x I



 

Theorem 25 Every weakly Lagrange soft strong neutro-

sophic bigroup  ,F A  is a soft neutrosophic bigroup but

the converse is not true. 

 Theorem 26 Every weakly Lagrange soft strong neutro-

sophic bigroup  ,F A is a soft strong neutrosophic

bigroup but the converse is not true. 

Proposition 25 Let  ,F A  and  ,K D  be two weak-

ly Lagrange soft strong neutrosophic bigroups over  

 1 2, ,G I   . Then

1) Their extended union    , ,F A K D  over 

 1 2, ,G I    is not  weakly Lagrange soft 

strong neutrosophic bigroup over   1 2, , .G I    

.

2) Their extended intersection     , ,F A K D  over 

 1 2, ,G I   is not weakly Lagrange soft strong 

neutrosophic bigroup over  1 2, , .G I    

3) Their restricted union    , ,RF A K D   over 

 1 2, ,G I    is not weakly Lagrange soft strong 

neutrosophic bigroup over   1 2, , .G I    . 

4) Their restricted intersection     , ,RF A K D

over   1 2, ,G I   is not weakly Lagrange soft 

strong neutrosophic bigroup over   1 2, , .G I    

Proposition 26 Let  ,F A  and  ,K D  be two weak-

ly Lagrange soft strong neutrosophic bigroups over 

 1 2, ,G I   . Then 

1) Their AND  operation    , ,F A K D  is not

weakly Lagrange soft strong neutrosophic bigroup

over  1 2, , .G I    .

2) Their OR  operation    , ,F A K D is not weakly

Lagrange soft strong neutrosophic bigroup over

 1 2, , .G I    

Definition 45 Let  1 2, ,G I    be a strong neutro-

sophic bigroup. Then  ,F A  over   1 2, ,G I    is 

called Lagrange free soft strong neutrosophic bigroup if 

and only if  F x   is not Lagrange subbigroup of

 1 2, ,G I    for all  .x A  

Example 21 Let  1 2, ,G I    be a strong neutro-

sophic bigroup of order  15 , where 

1 2G I G I G I      with 

 1 0,1,2,3,4, ,2 ,3 ,4 ,G I I I I I   the neutrosoph-

ic under mltiplication modulo 5  and 

 2 2

2 , , , , , ,G I e x x I xI x I   a neutrosophic sym-

metric group .  Let 1 2H H H    be a strong neutro-

sophic subbigroup of   1 2, , ,G I    where 

 1 1,4, ,4H I I  is a neutrosophic subgroup and 

 2

2 , ,H e x x  is a neutrosophic subgroup. Again let 

1 2K K K    be another strong neutrosophic sub-

bigroup of   1 2, , ,G I    where 

 1 1, ,2 ,3 ,4K I I I I is a neutrosophic subgroup and 

 2

2 , ,K e x x  is a neutrosophic subgroup. 

Then clearly  ,F A  is Lagrange free soft strong neutro-

sophic bigroup over  1 2, , ,G I    where 
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   

   

2

1

2

2

1,4, ,4 , , , ,

1, ,2 ,3 ,4 , , , .

F x I I e x x

F x I I I I e x x





 Theorem 27 Every Lagrange free soft strong neutro-

sophic bigroup  ,F A  is a soft neutrosophic bigroup but

the converse is not true. 

Theorem 28 Every Lagrange free soft strong neutrosoph-

ic bigroup  ,F A  is a soft strong neutrosophic bigroup

but the converse is not true. 

Theorem 29 If  1 2, ,G I    is a Lagrange free 

strong neutrosophic bigroup, then  ,F A   over

 1 2, ,G I    is also Lagrange free soft strong neu-

trosophic bigroup. 

Proposition 27 Let  ,F A  and  ,K D  be weakly

Lagrange free soft strong neutrosophic bigroups over  

 1 2, , .G I    Then 

1) Their extended union    , ,F A K D  over 

 1 2, ,G I    is not Lagrange free soft strong 

neutrosophic bigroup over   1 2, , .G I    

2) Their extended intersection     , ,F A K D

over  1 2, ,G I   is not Lagrange free soft

strong neutrosophic bigroup over   1 2, , .G I    

3) Their restricted union    , ,RF A K D   over 

 1 2, ,G I    is not Lagrange free soft strong 

neutrosophic bigroup over   1 2, , .G I    

4) Their restricted intersection     , ,RF A K D

over   1 2, ,G I    is not Lagrange free soft 

strong neutrosophic  bigroup over

 1 2, , .G I  

Proposition 28 Let  ,F A  and  ,K D  be two La-

grange free soft strong neutrosophic  bigroups over  

 1 2, , .G I    Then

1) Their AND  operation    , ,F A K D  is not La-

grange free soft strong neutrosophic bigroup over

 1 2, , .G I  

2) Their OR  operation    , ,F A K D  is not La-

grange free soft strong neutrosophic bigroup over

 1 2, , .G I  

Definition 46 Let  1 2, ,G I   be a strong neutro-

sophic bigroup. Then  ,F A  over  1 2, ,G I   is

called soft normal strong neutrosophic bigroup if and only 

if  F x  is normal strong neutrosophic subbigroup of

 1 2, ,G I   for all  .x A

 Theorem 30 Every soft normal strong neutrosophic 

bigroup  ,F A  over  1 2, ,G I    is a soft neutro-

sophic bigroup but the converse is not true. 

 Theorem 31 Every soft normal strong neutrosophic 

bigroup  ,F A  over  1 2, ,G I   is a soft strong 

neutrosophic bigroup but the converse is not true. 

Proposition 29 Let  ,F A  and  ,K D  be two soft

normal strong neutrosophic  bigroups over  

 1 2, ,G I   . Then 

1) Their extended union    , ,F A K D  over 

 1 2, ,G I    is not soft normal strong neutro-

sophic bigroup over   1 2, , .G I    

2) Their extended intersection     , ,F A K D

over  1 2, ,G I    is soft normal strong neutro-

sophic bigroup over   1 2, , .G I    

3) Their restricted union    , ,RF A K D   over 

 1 2, ,G I   is not soft normal strong neutro-

sophic bigroup over   1 2, , .G I    

4) Their restricted intersection     , ,RF A K D

over  1 2, ,G I    is soft normal strong neutro-

sophic bigroup over   1 2, , .G I    

Proposition 30 Let  ,F A  and  ,K D  be two soft
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normal strong neutrosophic bigroups over 

 1 2, , .G I   Then

1) Their AND  operation     , ,F A K D  is soft

normal strong neutrosophic bigroup over

 1 2, , .G I  

2) Their OR  operation    , ,F A K D  is not soft

normal strong neutrosophic bigroup over

 1 2, , .G I    

Definition 47 Let  1 2, ,G I    be a strong neutro-

sophic bigroup. Then  ,F A  over   1 2, ,G I    is 

called soft conjugate strong neutrosophic bigroup if and 

only if   F x  is conjugate neutrosophic subbigroup of

 1 2, ,G I    for all  .x A

 Theorem 32 Every soft conjugate strong neutrosophic 

bigroup  ,F A  over  1 2, ,G I     is a soft neutro-

sophic bigroup but the converse is not true. 

 Theorem 33 Every soft conjugate strong neutrosophic 

bigroup   ,F A  over  1 2, ,G I     is a soft strong 

neutrosophic bigroup but the converse is not true. 

Proposition 31 Let  ,F A  and  ,K D  be two soft

conjugate strong neutrosophic bigroups over  

 1 2, , .G I    Then 

1) Their extended union    , ,F A K D  over 

 1 2, ,G I    is not soft conjugate strong neu-

trosophic bigroup over   1 2, , .G I    

2) Their extended intersection     , ,F A K D  over 

 1 2, ,G I    is soft conjugate strong neutro-

sophic bigroup over   1 2, , .G I    

3) Their restricted union    , ,RF A K D   over 

 1 2, ,G I    is not soft conjugate strong neu-

trosophic bigroup over   1 2, , .G I    

4) Their restricted intersection     , ,RF A K D

over  1 2, ,G I    is soft conjugate strong neu-

trosophic bigroup over   1 2, , .G I    

Proposition 32 Let  ,F A  and  ,K D  be two soft

conjugate strong neutrosophic bigroups over  

 1 2, , .G I   Then

1) Their AND  operation    , ,F A K D  is soft

conjugate strong neutrosophic bigroup over

 1 2, , .G I  

2) Their OR operation     , ,F A K D  is not soft

conjgate strong neutrosophic  bigroup over

 1 2, , .G I  

4.1 Soft Neutrosophic N-Group 

Definition 48 Let  1, ,..., NG I    be a neutro-

sophic N -group. Then  ,F A  over

 1 2, ,...,G I    is called soft neutrosophic  N -

group if and only if  F x  is a sub N -group of

 1 2, ,...,G I    for all  .x A  

 Example 22 Let 

 1 2 3 1 2 3, , ,G I G I G I G I         

be a neutrosophic 3 -group, where 1G I Q I  

a neutrosophic group under multiplication. 

 2 0,1,2,3,4, ,2 ,3 ,4G I I I I I   neutrosophic

group under multiplication modulo 5  and 

 3 0,1,2,1 ,2 , ,2 ,1 2 ,2 2G I I I I I I I     

a neutrosophic group under multiplication modulo  3.  Let 

 
     

1 1
,2 , , 2 , ,1 , 1,4, ,4 , 1,2, ,2 ,

2 2

nn

nn
P I I I I I I

I

    
   
    

      \ 0 , 1,2,3,4 , 1,2T Q  and

      \ 0 , 1,2, ,2 , 1,4, ,4X Q I I I I  are sub 3 -

groups. 

Then  ,F A  is clearly soft neutrosophic 3 -group over

 1 2 3 1 2 3, , , ,G I G I G I G I         

where 
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 
 

     

        

        

1

2

3

1 1
,2 , , 2 , ,1 , 1,4, ,4 , 1,2, ,2 ,

2 2

\ 0 , 1,2,3,4 , 1,2 ,

\ 0 , 1,2, ,2 , 1,4, ,4 .

nn

nn
F x I I I I I I

I

F x Q

F x Q I I I I

    
   
    





Theorem 34 Let  ,F A  and  ,H A  be two soft neu-

trosophic N -groups over   1, ,..., NG I   . Then 

their intersection     , ,F A H A  is again a soft neu-

trosophic N -group over   1, ,..., NG I   . 

 Proof The proof is straight forward. 

Theorem 35 Let  ,F A  and  ,H B  be two soft neu-

trosophic N -groups over   1, ,..., NG I    such

that  ,A B     then their union is soft neutrosophic 

N -group over   1, ,..., .NG I  

 Proof The proof can be established easily. 

Proposition 33 Let  ,F A and  ,K D be two soft

neutrosophic N -groups over   1, ,..., .NG I    

Then 

1) Their extended union     , ,F A K D   is not soft 

neutrosophic N -group over   1, ,..., .NG I    

2) Their extended intersection     , ,F A K D is 

soft neutrosophic N -group over

 1, ,..., .NG I  

3) Their restricted union    , ,RF A K D  is not soft 

neutrosophic N -group over   1, ,..., .NG I    

4) Their restricted intersection     , ,RF A K D  is 

soft neutrosophic N -group over

 1, ,..., .NG I  

Proposition 34 Let  ,F A and  ,K D be two soft

neutrosophic N -groups over  

 1, ,..., .NG I   Then

1) Their AND  operation    , ,F A K D  is soft

neutrosophic N -group over   1, ,..., .NG I    

2) Their OR operation    , ,F A K D  is not soft

neutrosophic N -group over   1, ,..., .NG I    

Definition 49 Let  ,F A   be a soft neutrosophic N -

group over  1, ,..., NG I   . Then 

1)  ,F A  is called identity soft neutrosophic N -group

if    1,..., NF x e e  for all ,x A  where 

1,..., Ne e  are the identities of 

1 ,..., NG I G I   respectively. 

2)  ,F A  is called Full soft neutrosophic N -group if

   1, ,..., NF x G I     for all  .x A  

Definition 50 Let  ,F A  and  ,K D  be two soft neu-

trosophic N -groups over   1, ,..., .NG I   Then

 ,K D is soft neutrosophic  sub N -group of  ,F A

written as     , ,K D F A , if

1) ,D A

2)    K x F x for all  .x A

Example 23 Let  ,F A be as in example 22. Let

 ,K D  be another soft neutrosophic soft N -group over

 1 2 3 1 2 3, , , ,G I G I G I G I           

where 

     

        

1

2

1
,2 , 1,4, ,4 , 1,2, ,2 ,

2

\ 0 , 1,4 , 1,2 .

n

n
K x I I I I

K x Q

  
   

  



Clearly    , , .K D F A

Thus a soft neutrosophic N -group can have two types of 

soft neutrosophic sub N -groups, which are following 

Definition 51 A soft neutrosophic sub N -group  

 ,K D  of a soft neutrosophic N -group  ,F A   is

called soft strong neutrosophic sub N -group if 

1) ,D A

2)  K x  is neutrosophic sub N -group of   F x  for
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all  .x A  

 Definition 52 A soft neutrosophic sub N -group 

 ,K D  of a soft neutrosophic N -group   ,F A  is

called soft sub N -group if 

1) ,D A

2)  K x  is only sub N -group of  F x  for all

.x A

Definition 53 Let  1, ,..., NG I   be a neutro-

sophic N -group. Then  ,F A  over

 1, ,..., NG I    is called soft Lagrange neutrosoph-

ic N -group if and only if  F x  is Lagrange sub N -

group of  1, ,..., NG I    for all .x A  

 Example 24 Let 

 1 2 3 1 2 3, , ,G I G I G G         be neutro-

sophic N -group, where   1 6G I Z I   is a 

group under addition modulo 6  , 2 4G A  and 

12

3 : 1 ,G g g   a cyclic group of order 12,  

  60.o G I 

Take  1 2 3 1 2 3, , , ,P P I P P       a neutro-

sophic sub 

 3 -group where 

 1 0,3,3 ,3 3 ,T I I I  

2

1234 1234 1234 1234
, , , ,

1234 2143 4321 3412
P

        
         

        

 6

3 1, .P g  Since P is a Lagrange neutrosophic sub 3 -

group where order of  10.P   

Let us Take   1 2 3 1 2 3, , , ,T T I T T      

where 1 2 2{0,3,3 ,3 3 },T I I I T P       and 

 3 6 9

3 , , ,1T g g g  is another Lagrange sub 3 -group 

where    12.o T 

Let  ,F A  is soft Lagrange neutrosophic N -group over

 1 2 3 1 2 3, , ,G I G I G G        , where

 

 

6

1

3 6 9

2

1234 1234 1234 1234
0,3,3 ,3 3 ,1, , , , , ,

1234 2143 4321 3412

1234 1234 1234 1234
0,3,3 ,3 3 ,1, , , , , , , .

1234 2143 4321 3412

F x I I g

F x I I g g g

        
         

        

        
         

        
Theorem 36 Every soft Lagrange neutrosophic N -group 

 ,F A over  1, ,..., NG I    is a soft neutrosoph-

ic N -group but the converse is not true. 

Theorem 37 If  1, ,..., NG I    is a Lagrange 

neutrosophic N -group, then  ,F A   over

 1, ,..., NG I   is also soft Lagrange neutrosoph-

ic N -group. 

Proposition 35 Let  ,F A  and  ,K D be two soft

Lagrange neutrosophic N -groups over  

 1, ,..., .NG I   Then 

1) Their extended union    , ,F A K D is not soft 

Lagrange neutrosophic N -group over

 1, ,..., .NG I  

2) Their extended intersection     , ,F A K D is 

not soft Lagrange neutrosophic N -group over

 1, ,..., .NG I  

3) Their restricted union    , ,RF A K D is not soft 

Lagrange neutrosophic N -group over

 1, ,..., .NG I  

4) Their restricted intersection     , ,RF A K D is 

not soft Lagrange neutrosophic N -group over

 1, ,..., .NG I  

Proposition 36 Let  ,F A  and  ,K D  be two soft

Lagrange neutrosophic N -groups over  

 1, ,..., .NG I    Then

1) Their AND  operation    , ,F A K D  is not soft

Lagrange neutrosophic N -group over

 1, ,..., .NG I  

2) Their OR operation    , ,F A K D  is not soft

Lagrange neutrosophic N -group over

 1, ,..., .NG I  
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Definition 54 Let  1, ,..., NG I    be a neutro-

sophic N -group. Then  ,F A  over

 1, ,..., NG I    is called soft weakly Lagrange neu-

trosophic N -group if atleast one   F x  is Lagrange sub

N -group of   1, ,..., NG I    for some .x A  

 Examp 25 Let 

 1 2 3 1 2 3, , ,G I G I G G         be neutro-

sophic N -group, where  1 6G I Z I   is a 

group under addition modulo 6  , 2 4G A  and 

12

3 : 1 ,G g g   a cyclic group of order 12,  

  60.o G I 

Take  1 2 3 1 2 3, , , ,P P I P P       a neutro-

sophic sub 

 3 -group where 

 1 0,3,3 ,3 3 ,T I I I  

2

1234 1234 1234 1234
, , , ,

1234 2143 4321 3412
P

        
         

        

 6

3 1, .P g  Since P is a Lagrange neutrosophic sub 3 -

group where order of  10.P   

Let us Take   1 2 3 1 2 3, , , ,T T I T T      

where 1 2 2{0,3,3 ,3 3 },T I I I T P       and 

 4 8

3 , ,1T g g  is another Lagrange sub 3 -group. 

Then  ,F A  is soft weakly Lagrange neutrosophic N -

group over  

 1 2 3 1 2 3, , ,G I G I G G        , where

 

 

6

1

4 8

2

1234 1234 1234 1234
0,3,3 ,3 3 ,1, , , , , ,

1234 2143 4321 3412

1234 1234 1234 1234
0,3,3 ,3 3 ,1, , , , , , .

1234 2143 4321 3412

F x I I g

F x I I g g

        
         

        

        
         

        

Theorem 38 Every soft weakly Lagrange neutrosoph-

ic N -group  ,F A  over   1, ,..., NG I   is a soft 

neutrosophic N -group but the converse is not tue. 

Theorem 39 If  1, ,..., NG I    is a weakly La-

grange neutrosophi N -group, then  ,F A   over

 1, ,..., NG I    is also soft weakly Lagrange neu-

trosophic N -group. 

Proposition 37 Let  ,F A and  ,K D be two soft

weakly Lagrange neutrosophic N -groups over  

 1, ,..., .NG I   Then 

1. Their extended union    , ,F A K D is not

soft weakly Lagrange neutrosophic N -group over

 1, ,..., .NG I  

2. Their extended intersection

   , ,F A K D is not soft weakly Lagrange 

neutrosophic N -group over

 1, ,..., .NG I    

3. Their restricted union    , ,RF A K D is not

soft weakly Lagrange neutrosophic N -group over 

 1, ,..., .NG I  

4. Their restricted intersection

   , ,RF A K D is not soft weakly Lagrange 

neutrosophic N -group over

 1, ,..., .NG I    

Proposition 38 Let  ,F A  and  ,K D be two soft

weakly Lagrange neutrosophic N -groups over  

 1, ,..., NG I   . Then 

1) Their AND  operation    , ,F A K D  is not soft

weakly Lagrange neutrosophic N -group over

 1, ,..., .NG I  

2) Their OR operation    , ,F A K D  is not soft

weakly Lagrange neutrosophic N -group over

 1, ,..., .NG I  

Definition 55 Let  1, ,..., NG I   be a neutro-

sophic N -group. Then  ,F A  over

 1, ,..., NG I    is called soft Lagrange free neutro-
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sophic N -group if  F x  is not Lagrange sub N -group

of   1, ,..., NG I    for all  .x A  

 Example 26 Let 

 1 2 3 1 2 3, , ,G I G I G G         be neutro-

sophic 3 -group, where  1 6G I Z I   is a 

group under addition modulo 6  , 
2 4G A  and 

12

3 : 1 ,G g g   a cyclic group of order 12,  

  60.o G I 

Take  1 2 3 1 2 3, , , ,P P I P P       a neutro-

sophic sub 3 -group where 

 1 0,2,4 ,P 

2

1234 1234 1234 1234
, , , ,

1234 2143 4321 3412
P

        
         

        

 6

3 1, .P g  Since P is a Lagrange neutrosophic sub 3 -

group where order of  10.P   

Let us Take   1 2 3 1 2 3, , , ,T T I T T      

where 1 2 2{0,3,3 ,3 3 },T I I I T P       and 

 4 8

3 , ,1T g g  is another Lagrange sub 3 -group. 

Then  ,F A  is soft Lagrange free neutrosophic 3 -group

over   1 2 3 1 2 3, , ,G I G I G G        , 

where 

 

 

6

1

4 8

2

1234 1234 1234 1234
0,2,4,1, , , , , ,

1234 2143 4321 3412

1234 1234 1234 1234
0,3,3 ,3 3 ,1, , , , , ,

1234 2143 4321 3412

F x g

F x I I g g

        
         

        

        
         

        
 Theorem 40 Every soft Lagrange free neutrosophic N -

group  ,F A  over   1, ,..., NG I    is a soft neu-

trosophic N -group but the converse is not true. 

Theorem 41 If  1, ,..., NG I    is a Lagrange 

free neutrosophic N -group, then  ,F A   over

 1, ,..., NG I    is also soft Lagrange free neutro-

sophic N -group. 

Proposition 39 Let  ,F A  and  ,K D be two soft

Lagrange free neutrosophic N -groups over  

 1, ,..., .NG I   Then

1) Their extended union    , ,F A K D is not 

soft Lagrange free neutrosophic N -group over

 1, ,..., .NG I  

2) Their extended intersection

   , ,F A K D is not soft Lagrange free 

neutrosophic N -group over

 1, ,..., .NG I    

3) Their restricted union    , ,RF A K D is not 

soft Lagrange free neutrosophic N -group over

 1, ,..., .NG I  

4) Their restricted intersection

   , ,RF A K D is not soft Lagrange free 

neutrosophic N -group over

 1, ,..., .NG I    

Proposition 40 Let  ,F A  and  ,K D  be two soft

Lagrange free neutrosophic N -groups over  

 1, ,..., .NG I    Then

1) Their AND  operation    , ,F A K D  is not

soft  Lagrange free neutrosophic N -group over

 1, ,..., .NG I  

2) Their OR operation    , ,F A K D  is not

soft Lagrange free neutrosophic N -group over

 1, ,..., .NG I    

Definition 56 Let  1, ,..., NG I    be a neutro-

sophic N -group. Then  ,F A  over

 1, ,..., NG I    is called soft normal neutrosoph-

ic N -group if  F x  is normal sub N -group of

 1, ,..., NG I    for all .x A  

 Example 27 Let 

 1 1 2 3 1 2 3, , ,G I G I G G I         be 

a soft neutrosophic N  -group, where 

 2 2 2 2

1 , , , , , , , , , , ,G I e y x x xy x y I yI xI x I xyI x yI 
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is a neutrosophic group under multiplaction, 

 6

2 : 1 ,G g g   a cyclic group of order 6  and

 3 8 1, , , , , , ,G I Q I i j k I iI jI kI           

  is a group under multiplication. Let 

 1 2 3 1 2 3, , , ,P P I P P I         a normal 

sub 3 -group where  1 , , , ,P e y I yI  2 4

2 1, ,P g g

and  3 1, 1 .P    Also

 1 2 3 1 2 3, , ,T T I T T I         be another 

normal sub 3 -group where 

   2 3

1 2, , , , 1,T I e I xI x I T g    and 

 3 1, .T I i     Then  ,F A  is a soft normal neu-

trosophic N -group over 

 1 1 2 3 1 2 3, , , ,G I G I G G I          

where 
   

   

2 4

1

2 3

2

, , , ,1, , , 1 ,

, , , ,1, , 1, .

F x e y I yI g g

F x e I xI x I g i

 

  

Theorem 42 Every soft normal neutrosophic N -group 

 ,F A  over  1, ,..., NG I    is a soft neutrosoph-

ic N -group but the converse is not true. 

Proposition 41 Let  ,F A  and  ,K D  be two soft

normal neutrosophic N -groups over  

 1, ,..., .NG I    Then 

1) Their extended union    , ,F A K D is not soft 

normal neutrosophic soft N -group over

 1, ,..., .NG I  

2) Their extended intersection     , ,F A K D is 

soft normal neutrosophic N -group over

 1, ,..., .NG I  

3) Their restricted union    , ,RF A K D  is not soft 

normal neutrosophic N -group over

 1, ,..., .NG I  

4) Their restricted intersection     , ,RF A K D  is 

soft normal neutrosophic N -group over

 1, ,..., .NG I  

Proposition 42 Let  ,F A  and  ,K D  be two soft

normal neutrosophic N -groups over 

 1, ,..., .NG I   Then

1) Their AND operation    , ,F A K D  is soft nor-

mal neutrosophic N -group over

 1, ,..., .NG I  

2) Their OR  operation    , ,F A K D  is not soft

normal neutrosophic N -group over

 1, ,..., .NG I  

Definition 56 Let  1, ,..., NG I    be a neutro-

sophic N -group. Then  ,F A  over

 1, ,..., NG I    is called soft conjugate neutrosoph-

ic N -group if  F x  is conjugate sub N -group of

 1, ,..., NG I    for all .x A

 Theorem 43 Every soft conjugate neutrosophic N -

group  ,F A  over  1, ,..., NG I    is a soft neu-

trosophic N -group but the converse is not true. 

Proposition 43 Let  ,F A  and  ,K D  be two soft

conjugate neutrosophic N -groups over  

 1, ,..., NG I   . Then 

1) Their extended union    , ,F A K D  is not  soft 

conjugate neutrosophic N -group over

 1, ,..., .NG I  

2) Their extended intersection     , ,F A K D  is 

soft conjugate neutrosophic N -group over 

 1, ,..., .NG I    

3) Their restricted union    , ,RF A K D  is not soft 

conjugate neutrosophic N -group over

 1, ,..., .NG I  

4) Their restricted intersection     , ,RF A K D  is 

soft conjugate neutrosophic N -group over

 1, ,..., .NG I  

Proposition 44 Let  ,F A  and ( , )K D  be two soft

conjugate neutrosophic N -groups over  
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 1, ,..., .NG I    Then

1) Their AND  operation    , ,F A K D  is soft

conjugate neutrosophic N -group over

 1, ,..., .NG I  

2) Their OR  operation    , ,F A K D  is not soft

conjugate neutrosophic N -group over

 1, ,..., .NG I  

4.2 Soft Strong Neutrosophic N-Group 

Definition 57 Let  1, ,..., NG I    be a neutro-

sophic  N -group. Then  ,F A  over

 1, ,..., NG I    is called soft strong neutrosophic 

N -group if and only if  F x is a strong neutrosophic

sub N -group for all x A . 

 Example 28 Let 

 1 2 3 1 2 3, , ,G I G I G I G I         

  be a neutrosophic 3 -group, where 

 1 2 0,1, ,1G I Z I I I     ,  a neutrosophic

group under multiplication modulo  2 .  

 2 ,1,2,3,4, ,2 ,3 ,4G I O I I I I   , neutrosophic

group under multiplication modulo 5  and 

 3 0,1,2, ,2G I I I   ,a neutrosophic group under

multiplication modulo 3 . Let 

 
     

1 1
,2 , , 2 , ,1 , 1,4, ,4 , 1,2, ,2 ,

2 2

nn

nn
P I I I I I I

I

    
   
    

and       \ 0 , 1,2, ,2 , 1,X Q I I I  are neutrosophic

sub 3 -groups.  

Then  ,F A  is clearly soft strong neutrosophic 3 -group

over  

 1 2 3 1 2 3, , ,G I G I G I G I          ,

where 

 
 

     1

1 1
,2 , , 2 , ,1 , 1,4, ,4 , 1, ,

2 2

nn

nn
F x I I I I I

I

    
   
    

        2 \ 0 , 1,2, ,2 , 1,F x Q I I I
. 

 Theorem 44 Every soft strong neutrosophic soft N -

group  ,F A  is a soft neutrosophic N -group but the

converse is not true. 

Theorem 89  ,F A  over  1, ,..., NG I     is soft 

strong neutrosophic N -group if   1, ,..., NG I    is 

a strong neutrosophic N -group. 

Proposition 45 Let  ,F A  and  ,K D  be two soft

strong neutrosophic N -groups over  

 1, ,..., NG I    . Then 

1) Their extended union    , ,F A K D  is not soft 

strong neutrosophic N -group over

 1, ,..., NG I    .

2) Their extended intersection    , ,F A K D  is 

not soft strong neutrosophic N -group over

 1, ,..., NG I    . 

3) Their restricted union    , ,RF A K D  is not soft 

strong neutrosophic N -group over 

 1, ,..., NG I    . 

4) Their restricted intersection    , ,RF A K D  is 

not soft strong neutrosophic N -group over

 1, ,..., NG I   . 

Proposition 46 Let  ,F A  and  ,K D  be two soft

strong neutrosophic N -groups over 

 1, ,..., NG I    . Then

1) Their AND operation    , ,F A K D is not soft

strong neutrosophic N -group over

 1, ,..., NG I   . 

2) Their OR  operation    , ,F A K D  is not soft

strong neutrosophic N -group over

 1, ,..., NG I   . 

Definition 58  

Let  ,F A and  ,H K be two soft strong neutrosophic

N -groups over  1, ,..., NG I   . Then  ,H K  is

called soft strong neutrosophic sub x A -group 

of  ,F A  written as    , ,H K F A  , if
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1) ,K A

2)  K x  is  soft neutrosophic soft sub N -group of

 F x  for all x A .

Theorem 45 If  1, ,..., NG I    is a strong neutro-

sophic N -group. Then every soft neutrosophic sub N -

group of  ,F A  is soft strong neutosophic sub N -group.

Definition 59 Let  1, ,..., NG I    be a strong 

neutrosophic N -group. Then  ,F A  over

 1, ,..., NG I    is called soft Lagrange strong neu-

trosophic N -group if  F x is a Lagrange neutrosophic

sub N -group of  1, ,..., NG I     for all x A .

 Theorem 46 Every soft Lagrange strong neutrosophic 

N -group  ,F A  over  1, ,..., NG I    is a soft

neutrosophic soft N -group but the converse is not true. 

 Theorem 47 Every soft Lagrange strong neutrosoph-

ic N -group  ,F A  over  1, ,..., NG I    is a soft

srtong neutrosophic N -group but the converse is not tue. 

Theorem 48 If  1, ,..., NG I    is a Lagrange 

strong neutrosophic N -group, then  ,F A

over  1, ,..., NG I    is also soft Lagrange strong

neutrosophic N -group. 

Proposition 47 Let  ,F A  and  ,K D be two soft

Lagrange strong neutrosophic N -groups over  

 1, ,..., .NG I   Then 

1) Their extended union    , ,F A K D is not

soft Lagrange strong neutrosophic N -group over

 1, ,..., .NG I  

2) Their extended intersection

   , ,F A K D is not soft Lagrange strong 

neutrosophic N -group over

 1, ,..., .NG I    

3) Their restricted union    , ,RF A K D is not

soft Lagrange strong neutrosophic N -group over 

 1, ,..., .NG I  

4) Their restricted intersection

   , ,RF A K D is not soft Lagrange strong 

neutrosophic N -group over

 1, ,..., .NG I    

Proposition 48 Let  ,F A  and  ,K D  be two soft

Lagrange strong neutrosophic N -groups over  

 1, ,..., .NG I    Then

1) Their AND  operation    , ,F A K D  is not

soft  Lagrange strong neutrosophic N -group

over   1, ,..., .NG I  

2) Their OR operation    , ,F A K D  is not

soft Lagrange strong neutrosophic N -group over

 1, ,..., .NG I  

Definition 60 Let  1, ,..., NG I   be a strong 

neutrosophic N -group. Then  ,F A   over

 1, ,..., NG I    is called soft weakly Lagrange 

strong neutrosophic soft N -group if atleast 

one  F x  is a Lagrange neutrosophic sub N -group

of  1, ,..., NG I    for some x A .

Theorem 49 Every soft weakly Lagrange strong neutro-

sophic N -group  ,F A  over  1, ,..., NG I    is a 

soft neutrosophic soft N -group but the converse is not 

true. 

 Theorem 50 Every soft weakly Lagrange strong neutro-

sophic N -group  ,F A  over  1, ,..., NG I    is a 

soft strong neutrosophic N -group but the converse is not 

true. 

Proposition 49 Let  ,F A  and  ,K D be two soft

weakly Lagrange strong neutrosophic N -groups over  

 1, ,..., .NG I   Then 

1) Their extended union    , ,F A K D is not 

soft weakly Lagrange strong neutrosophic N -

group over   1, ,..., .NG I  

2) Their extended intersection

   , ,F A K D is not soft weakly Lagrange 

strong  neutrosophic N -group over
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 1, ,..., .NG I  

3) Their restricted union    , ,RF A K D is not 

soft weakly Lagrange strong neutrosophic N -

group over   1, ,..., .NG I  

4) Their restricted intersection

   , ,RF A K D is not soft weakly Lagrange 

strong  neutrosophic N -group over

 1, ,..., .NG I    

Proposition 50 Let  ,F A  and  ,K D  be two soft

weakly Lagrange strong neutrosophic N -groups over  

 1, ,..., .NG I    Then

1) Their AND  operation    , ,F A K D  is not

soft  weakly Lagrange strong neutrosophic N -

group over   1, ,..., .NG I  

2) Their OR operation    , ,F A K D  is not

soft weakly Lagrange strong neutrosophic N -

group over  1, ,..., .NG I  

Definition 61 Let  1, ,..., NG I   be a strong neu-

trosophic N -group. Then  ,F A over

 1, ,..., NG I    is called soft Lagrange free strong 

neutrosophic N -group if  F x  is not Lagrange neutro-

sophic sub N -group of  1, ,..., NG I    for all N . 

 Theorem 51 Every soft Lagrange free strong neutro-

sophic N -group  ,F A  over  1, ,..., NG I    is a 

soft neutrosophic N -group but the converse is not true. 

 Theorem 52 Every soft Lagrange free strong neutro-

sophic N -group  ,F A  over  1, ,..., NG I    is a 

soft strong neutrosophic N -group but the converse is not 

true. 

Theorem 53 If  1, ,..., NG I    is a Lagrange 

free strong neutrosophic N -group, then  ,F A  over

 1, ,..., NG I    is also soft Lagrange free strong 

neutrosophic N -group. 

Proposition 51 Let  ,F A  and  ,K D be two soft

Lagrange free strong neutrosophic N -groups over  

 1, ,..., .NG I   Then 

1) Their extended union    , ,F A K D is not

soft Lagrange free strong neutrosophic N -group

over   1, ,..., .NG I  

2) Their extended intersection

   , ,F A K D is not soft Lagrange free 

strong  neutrosophic N -group over

 1, ,..., .NG I    

3) Their restricted union    , ,RF A K D is not

soft Lagrange free strong neutrosophic N -group 

over   1, ,..., .NG I  

4) Their restricted intersection

   , ,RF A K D is not soft Lagrange free 

strong  neutrosophic N -group over

 1, ,..., .NG I    

Proposition 52 Let  ,F A  and  ,K D  be two soft

Lagrange free strong neutrosophic N -groups over  

 1, ,..., .NG I    Then

1) Their AND  operation    , ,F A K D  is not

soft Lagrange free strong neutrosophic N -group

over   1, ,..., .NG I  

2) Their OR operation    , ,F A K D  is not

soft Lagrange free strong neutrosophic N -group

over  1, ,..., .NG I  

Definition 62 Let N  be a strong neutrosophic N -group. 

Then  ,F A  over  1, ,..., NG I    is called sofyt 

normal strong neutrosophic N -group if  F x  is normal

neutrosophic sub N -group of  1, ,..., NG I    for

all x A . 

Theorem 54 Every soft normal strong neutrosophic N -

group  ,F A  over  1, ,..., NG I    is a soft neutro-

sophic N -group but the converse is not true. 

 Theorem 55 Every soft normal strong neutrosophic N -

group  ,F A  over  1, ,..., NG I    is a soft strong 

neutrosophic N -group but the converse is not true. 

Proposition 53 Let  ,F A  and  ,K D be two soft
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normal strong neutrosophic N -groups over 

 1, ,..., .NG I   Then

1) Their extended union    , ,F A K D is not 

soft normal strong neutrosophic N -group over

 1, ,..., .NG I  

2) Their extended intersection

   , ,F A K D is soft normal strong  neutro-

sophic N -group over   1, ,..., .NG I    

3) Their restricted union    , ,RF A K D is not 

soft normal strong neutrosophic N -group over 

 1, ,..., .NG I    

4) Their restricted intersection

   , ,RF A K D is soft normal strong  neu-

trosophic N -group over   1, ,..., .NG I    

Proposition 54 Let  ,F A  and  ,K D  be two soft

normal strong neutrosophic N -groups over  

 1, ,..., .NG I    Then

1) Their AND  operation    , ,F A K D  is soft

normal strong neutrosophic N -group over

 1, ,..., .NG I  

2) Their OR operation    , ,F A K D  is not

soft normal strong neutrosophic N -group over

 1, ,..., .NG I    

Definition 63 Let  1, ,..., NG I   be a strong neu-

trosophic N -group. Then  ,F A over

 1, ,..., NG I    is called soft conjugate strong neu-

trosophic N -group if  F x  is conjugate neutrosophic

sub N -group of  1, ,..., NG I    for all x A .

 Theorem 56 Every soft conjugate strong neutrosophic 

N -group  ,F A  over  1, ,..., NG I    is a soft

neutrosophic N -group but the converse is not true. 

Theorem 57 Every soft conjugate strong neutrosophic 

N -group  ,F A  over  1, ,..., NG I    is a soft

strong neutrosophic N -group but the converse is not true. 

Proposition 55 Let  ,F A  and  ,K D be two soft

conjugate strong neutrosophic N -groups over  

 1, ,..., .NG I   Then

1) Their extended union    , ,F A K D is not

soft conjugate strong neutrosophic N -group over

 1, ,..., .NG I  

2) Their extended intersection

   , ,F A K D is soft conjugate strong  neu-

trosophic N -group over   1, ,..., .NG I    

3) Their restricted union    , ,RF A K D is not 

soft conjugate strong neutrosophic N -group over 

 1, ,..., .NG I    

4) Their restricted intersection

   , ,RF A K D is soft conjugate strong  neu-

trosophic N -group over   1, ,..., .NG I    

Proposition 56 Let  ,F A  and  ,K D  be two soft

conjugate strong neutrosophic N -groups over  

 1, ,..., .NG I    Then

1) Their AND  operation    , ,F A K D  is soft

conjugate strong neutrosophic N -group over

 1, ,..., .NG I  

2) Their OR operation    , ,F A K D  is not

soft conjugate strong neutrosophic N -group over

 1, ,..., .NG I  

Conclusion 
  This paper is about the generalization of soft neutrosophic 
groups. We have extended the concept of soft neutrosophic 

group and soft neutrosophic subgroup to soft neutrosophic 
bigroup and soft neutrosophic N-group. The notions of soft 

normal neutrosophic bigroup, soft normal neutrosophic N-

group, soft conjugate neutrosophic bigroup and soft conju-
gate neutrosophic N-group are defined. We have given var-

ious examples and important theorems to illustrate the as-
pect of soft neutrosophic bigroup and soft neutrosophic N-

group. 
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Abstract. The study deals with the enduring conflict between 
India and Pakistan over Jammu and Kashmir since 1947. The 
ongoing conflict is analyzed as an enduring rivalry; characterized 
by three major wars (1947-48), 1965, 1971, low intensity 
military conflict (Siachen), mini war at Kargil (1999), internal 
insurgency, cross border terrorism. We examine the progress and 
the status of the dispute, as well as the dynamics of the India 
Pakistan relationship by considering the influence of USA and 
China in crisis dynamics. We discuss the possible solutions 
offered by the various study groups and persons. Most of the 
studies were done in crisp environment. Pramanik and Roy (S. 
Pramanik and T.K. Roy, Game theoretic model to the 

Jammu-Kashmir conflict between India and Pakistan. 
International Journal of Mathematical Archive (IJMA), 
4(8) (2013), 162-170.) studied game theoretic model toJammu 
and Kashmir conflict  in crisp environment. In the present study 
we have extended the concept of the game theoric model of the 
Jammu and Kashmir conflict in neutrosophic envirorment. We 
have explored the possibilities and developed arguments for an 
application of principle of neutrosophic game theory to 
understand properly of the Jammu and Kashmir conflict in terms 
of goals and strategy of either side. Standard 2×2 zero-sum game 
theoretic model used to identify an optimal solution. 

Keywords: Conflict resolution, game theory, Jammu and Kashmir conflict, neutrosophic membership function, optimal solution sad-
dle point, zero-sum game.

1 Introduction 

The purpose of this study is to develop neutrosophic game 
theoretic model to India-Pakistan (Indo-Pak) crisis 
dynamics and contribute to the neutrosophic analysis of 
conflicts and their neutrosophic resolution. M. Intriligator 
[1] reviewed mathematical approaches to the study of 
conflict resolutions in crisp environment.  He prepared a 
list of primary methodological thrusts as differential 
equations, decision and control theory, game and 
bargaining theory, uncertainty analysis, stability theory, 
action-reaction models and organization theory. 
Anandalingam and Apprey [2] proposed multilevel 
mathematical programming model in order to develop a 
conflict resolution theory based on the integration of non-
cooperative game within a mathematical paradigm. They 
postulated conflict problem as a Stackelberg [3] 
optimization with leaders and followers. However, the 
model is suitable only for the normal version of 
information distribution [4] when the strategy of all lower-
level players is completely known to the leader. Yakir 
Plessner [5] employed the game theoretic model to resolve 
the conflict between Israel and the Palestinians.  Pramanik 
and Roy [6] studied game theoretic model to the J&K 
conflict between India and Pakistan in crisp environment. 
But the situation and relation between India and Pakistan 
are not static but dynamic and neutrosophic in nature. So 
new approach is required to deal with the conflict.  

Our contribution to the literature is to discuss briefly the 
genesis of the conflict and apply neutrosophic game theory 
for conflict resolution. 

Rest of the paper is organized in the following way. 
Section 2 presents some basics of  neutrosophy and 
neutrosophic sets and their operations. Section 3 describes 
a brief history and the genesis of Jammu and Kashmir 
conflict. Section 4 is devoted to formulation neutrosophic 
game theoretic model to Jammu and Kashmir conflict 
between India and Pakistan. Section 5 presents concluding 
remarks. 

2. Basics of neutrosophy and neutrosophic sets
In this section, we present some basic definitions of 
neutrosophy, and neutrosophic  sets and their operations 
due to Smrandache [7] and Wang et al.[8].  
 Definition 1. Neutrosophy: A new branch of philosophy, 
introduced by Florentin Smarandache that presents the 
origin, nature, and scope of neutralities, as well as their 
interactions with different ideational spectra. 
Neutrosophy is the basis of  neutrosophic set, neutrosophic 
probability, and neutrosophic statistics. 
Definition 2. Infinitesimal number:  ε is said to be 
infinitesimal number if and only if for all positive integers 
n,  ε  < 1/n        
Definition 3. Hyper-real number: Let ε > 0 be an 
infinitesimal number. The hyper-real number set is an 
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extension of the real number set, which includes classes of 
infinite numbers and classes of infinitesimal numbers.  
Definition 4. Non-standard finite number: 1+ = 1+ ε , 
where “1” is its standard part and “ ε ” its - non-standard 
part 
 Definition 5. Non-standard finite number: -0 = 0- ε , and 
“0” is standard part and “ ε ” is its non-standard part. 
Definition 6. A non-standard unit interval: A non-standard 
unit interval can be defined as ||--0, 1+-||. Here -0 is  non-
standard number infinitely small but less than 0 and 1+ is 
non-standard number infinitely small but greater than 1. 
Main Principle: Between an idea < ψ > and its opposite 
<Anti- ψ >, there is a continuum-power spectrum of neu-
tralities <Neut- ψ >.  
Fundamental Thesis: Any idea <X> is T% true, I% inde-
terminate, and F% false, where T, I, F belong to subset of 
nonstandard unit interval ||-0, 1+|| and their sum is not 
restricted to 100%. 
Definition 7. Let X be a space of points (objects) with 
generic element in X denoted by x. Then a neutrosophic set 
A in X is characterized by a truth membership function TA, 
an indeterminacy membership function IA and a falsity 
membership function FA. The functions TA, IA and FA are 
real standard or non-standard subsets of] 0-, 1+[ i.e. 
TA : X → ]0-, 1+[ ; IA : X → ]0-, 1+[;  FA : X → ]0-, 1+[    

It should be noted that there is no restriction on the sum of 
TA(x), IA(x), FA(x) i.e.  0- ≤TA(x) + IA(x) +FA(x) ≤  3+.  

Definition 8. The complement of a neutrosophic set A is 
denoted by cA and is defined by  

=)x(T cA
 )x(T}1{ A−+ ; )x(I}1{)x(I AcA

−= + ; 

)x(F}1{)x(F AcA
−= +

Definition 9. A neutrosophic set A is contained in the other 
neutrosophic set B, A ⊆ B if and only if the following result 
holds. 

)x(Tinf)x(Tinf BA ≤ , )x(Tsup)x(Tsup BA ≤        (1) 
)x(Iinf)x(Iinf BA ≥ , )x(Isup)x(Isup BA ≥   (2) 
)x(Finf)x(Finf BA ≥ , )x(Fsup)x(Fsup BA ≥      (3) 

for all x in X. 
Definition 10. Single-valued neutrosophic set (SVNS): Let 
X be a universal space of points (objects) with a generic 
element of X denoted by x. A single-valued neutrosophic 
set X⊂~
N is characterized by a true membership function

)x(T ~
N

, a falsity membership function )x(F ~
N

and an 
indeterminacy function )x(I ~

N
with ),x(T ~

N
),x(I ~

N
 ∈)x(F~
N

 
[0, 1] for all x in X.  
When X is continuous a SVNSs, N

~
can be written as 

∫=
x

~~~ ,x)x(F),x(I),x(T
~

NNN
N .Xx∈∀  

and when X is discrete a  SVNSs N
~

can be written as 

∑ x/)x(F),x(I),x(T
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1i
~~~

=
=

NNN
N , .Xx∈∀  

SVNS is an instance of neutrosophic set that can be used in 
real life situations like decision making, scientific and en-
gineering applications. In case of SVNS, the degree of the 
truth membership ),x(T ~

N
the indeterminacy membership 

)x(I ~
N

 and the falsity membership )x(F ~
N

 values belong to 
[0, 1]. 
It should be noted that for a SVNS ,N

~

3≤)x(Fsup)x(Isup)x(Tsup≤0 ~~~
NNN

++ , .Xx∈∀        (4) 
and for a neutrosophic set, the following relation holds 

,3≤)x(Fsup+)x(Isup+)x(Tsup≤0 +
~~~

-
NNN

.Xx∈∀     (5)   

Definition 11. The complement of a neutrosophic set N
~

 is 
denoted by c~

N and is defined by 
=)x(T ~cN

 )x(F ~
N

; =)x(I ~cN
 1 )x(I ~

N
− ; =)x(F~cN

)x(T ~
N

Definition 12. A SVNS A
~
N  is contained in the other 

SVNS B
~
N , denoted as A

~
N  ⊆ B

~
N , if and only if 

)x(T≤)x(T
B

~
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~
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B

~
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~
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Definition 13. Two SVNSs A
~
N  and B

~
N  are equal, i.e. 

A
~
N  = B

~
N , if and only if A

~
N ⊆ B

~
N  and A

~
N ⊇  B

~
N . 

Definition 14. Union: The union of two SVNSs A
~
N  and 

B
~
N  is a SVNS C

~
N , written as C

~
N = A

~
N ∪ B

~
N . Its truth 

membership, indeterminacy-membership and falsity mem-
bership functions are related  as follows: 

))x(T),x(T(max=)x(T
B

~
A

~
C

~
NNN

;

))x(I),x(I(max=)x(I
B

~
A

~
C

~
NNN

; 

))x(F),x(F(min=)x(F
B

~
A

~
C

~
NNN

for all x in X. 

Definition 15. Intersection: The intersection of two SVNSs 

A
~
N  and B

~
N  is a SVNS C

~
N , written as C

~
N = A

~
N  ∩ B

~
N , 

whose truth membership, indeterminacy-membership and 
falsity membership functions are related  as follows: 

))x(T),x(T(min=)x(T
B

~
A

~
C

~
NNN

; 

))x(I),x(I(min=)x(I
B

~
A

~
C

~
NNN

; 

))x(F),x(F(max=)x(F
B

~
A

~
C

~
NNN

for all x in X. 

3. Brief history and the genesis of Jammu and
Kashmir conflict 
It is said that Kashmir is more beautiful than the heaven, 
and the benefactor of the supreme blessing and happiness. 
The account of Kashmir is found in the oldest extant book- 
“Nilamat Purana”. Kalhan, Kashmir’s greatest historian 
scholarly depicted the history of Kashmir starting just 
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before the great Mahabharata War. According to Kalhan, 
the Mauryan emperor Ashoka annexed Kashmir in 250 
B.C. He embraced Buddhism after the Kalinga war. He 
made it a state religion. He built many Bihars, temples 
specially Shiva temple. According to Chinese traveler, 
Huen Tsang over five thousand Buddhist Monks settled 
down in Kashmir during the reign of Ashoka. After the fall 
of Maurya dynasty, it is believed that Kashmir for over two 
hundred years was ruled by Indo-Greek Kings before the 
start of "Turushka" (Kushan ) rule in the state. Thus, the 
people of Kashmir came in contact with the Greeks. The 
reflection of which is found on the beautiful architectural 
and sculptural style of old Kashmiri temples, and the 
coinage of the later Kashmiri kings.  
The zenith of Buddhist power in Kashmir was reached in 
the reign of king Kanishka. Influenced by Indian culture, 
Kanishka adopted Buddhism and made it the state religion. 
During his reign, it is believed that the forth Buddhist 
Council was held at Kundalavana in Kashmir. It was 
enthusiastically attended by a large number of scholars, 
theoreticians, and commentators. . During his reign, 
Buddhism propagated in Tibet, China and Central Asia. 
However, Buddhism was followed by a revival of 
Hinduism and Hindu rulers ruled Kashmir up to 1320.  
Rinchan (1320-1323) ascended the throne on 6th October 
1320. He was the first converted Islam ruler in the history 
of Kashmir. Shah Mir ascended the throne with the title of 
Sultan Shamsuddin (1339-1342) in 1339 A.D. and Shah-
Mir dynasty (1339-1561) ruled the state for 222 years. 
Shah Mir dynasty is one of the most important in the 
annals of Kashmir, in as much as Islam was firmly 
established here. During Chak rule (1561-1586) Sunnni 
Muslims and Hindus alike were persecuted.   
Akbar, the Mughal Emperor annexed Kashmir in 1586. It 
is important to note that under the Mughal reign (1586-
1752), people got slight relief and lived honorably. 
However, the Mughal used forced labor in their visits to 
Kashmir in terms of a huge retinue of unpaid laborers to 
carry their goods and other supplies for the journey. 
Afghan rule (1752-1819) succeeded in maintaining their 
suzerainty over Kashmir for a span of sixty-seven years. 
The Afghans were highly unscrupulous in the employment 
of forced labor. The common Kashmirian people were 
tired of their ferocity, barbarity and persecution. It is true 
history of Kashmir that all sections of people suffered 
during Afghan rule but the principal victims of these cruel 
were the peasants. During this era all cruel and inhuman 
measures of Afghan rulers could not put an end the basic 
tradition of Kashmiri. 
The reign of Sikh Power (1819-1846) in Kashmir lasted for 
only 27 years. It is to be noted that the Sikhs continued 
with the practice of forced labor in order to transport of 
goods and materials. According to Lawrence [9], "to all 
classes in Kashmir to see the downfall of the evil rule of 
Pathan, and to none was the relief greater than to the 

peasants who had been cruelly fleeced by the rapacious 
sardars of Kabul. I do not mean to suggest that the Sikh 
rule was benign or good, but it was at any rate better that 
that of the Pathans.”   

3.1 Dogra rule (1846-1947) 

Dogra dynesty played an in important role in developing 
Jammu and Kahmir State.   
3.1.1 Gulab Singh (1846-1857) 
The State of Jammu was conferred on Gulab Singh with 
the title of Raja by Maharaja Ranjit Singh of Punjab in 
1820. He annexed Ladakh in September 1842. Some parts 
of Gilgit and Baltistan were invaded before 1846. The 
State of Jammu and Kashmir (J&K) is founded through 
Amritsar treaty in 1846 between the East India Company 
and Raja Gulab Singh who buys Kashmir Valley from the 
East India Company for Rs. 7.5 million and annexes it to 
Jammu and Ladakh already under his rule. Thus the Dogra 
dynesty establishes in 1846. Gulab Singh conquered 
Muzaffarabad in 1854.  
3.1.2 Ranbir Singh (1857-1885) 
Ranbir Singh (1857-1885) ascended the throne after his 
father death in 1857 A.D., who ruled from 1857 to 1885 
A.D. Lord Northbook’s Government recommended for a 
political officer to reside permanently at the Maharaja’s 
Court in September 26, 1873 A.D. A British Resident 
remained permanently at the court of Maharaja relating to 
the external relations of British India from 1873.  
3.1.3  Maharaja Pratap Singh (1885-1925) 
Maharaja Pratap Singh (1885-1925) ascended the throne 
after his father death in 1885. During his rule, British 
power was deeply interested in Kashmir and through 
British Resident Maharaja Pratap Singh was kept under 
pressure. In September 1885 during the initial stage of 
Pratap Singh’s rule, the British Government changed the 
status of the British officer Special Duty in Kashmir to that 
of a political Resident. Pratap Singh's Address in Durbar 
October 19, 1885 revealed that the position of political 
officer in Kashmir has been placed on the same footing 
with that of Residents in other Indian States in subordinate 
alliance with the Government. British Government of India 
disposed Maharaja in 1889. Maharaja was offered an 
allowance, which was ungenerously described as sufficient 
for dignity but not for extravagance, would be made to him. 
No specific period was set for this arrangement to come to 
an end. Colonel Nisbet, Resident of Kashmir became the 
virtual ruler because although the Council of minister 
would have full powers of administration, they would be 
expected to exercise those powers under the guidance of 
the British Resident. Without consulting with him, Council 
would not take any important decision and the Council 
would follow Resident’s advice whenever it was offered.  
In 1889, the British Government instituted Gilgit Agency 
under the direct rule of British political agent. Colonel 
Algeron Durand [10], the first British Agent in Gilgit 
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records the Russian influence for creation of Gilgit Agency 
in his Book, “The Making of a Frontier”. He remarked in a 
statement “Why it has been asked should it be worth our 
while to interfere there whatever happened? The answer is 
of course Russia…Expensive as the Gilgit game might 
have been, it was worth the Candle.”  Viceroy Lord 
Curzon reinstated Maharaja Pratap Singh in power in 1905 
A.D. The State Council is abolished in May 1906 A.D.  

 3.1.4 Hari Singh (1925-1947) 
Hari Singh (1925-1947) ascended the throne after his 
grandfather, Pratap Singh’s death in 1925.  During his rule 
the agitation against the Dogra rule started mainly against 
the misrule, corrupt administration, autocratic rule, 
repression on the subjects at the slightest excuse and lack 
of administrative efficiency. Maharaja Hari ruthlessly 
crushed a mass uprising in 1931. Hari Singh constituted 
Grievances Enquiry Commission headed by B .J. Glancy 
on 12 November 1931 for a probe into the complaints of 
the people of Kashmir. In April 1932, the commission 
recommended its suggestions. Among these 
recommendations, the important one was the step to be 
taken for propagating education for Kashmiri Muslims. 
The Commission recommended to give payment [11] 
Kashmiri people for Government work. In the order dated 
31 May 1932, Maharaja Hari Singh accepted the 
recommendation of the President of the Kashmir 
Constitutional Reforms Committee, B. J. Glancy and 
appointed a Franchise Committee to put forward tentative 
suggestion regarding the important question of the 
franchise and the composition of the assembly.   In this 
background All Jammu and Kashmir Muslim Conference 
(AJKMC) was formed under the leadership of Sheikh 
Abdullah in 1932 in October in Srinagar. The conference 
held from 15 to 17 October 1932.   
In 1934, the Muslim Conference demonstrated its secular 
view when it forwarded memorandum drafted by Ghulam 
Abbus to the Maharaja demanding early implementation of 
the report of Glancy Commission and specifically urged 
for a system of joint electorates in the State. In 1934, 
Maharaja introduced a Legislative Assembly. However 35 
of its 75 members were to be nominated. 8 per cent of the 
population was allowed to cast vote. To become a voter 
literacy and property qualifications were specified. The 
Assembly enjoyed only consultative powers.  Maharaja 
further reformed making the provision for Council of 
Ministers and a judicial and legislative branch of public 
administration in 1939.  However, Maharaja enjoyed most 
of the decision powers under the new reforms.   
On 26 March 1938 Sheik Abdullah iterated two important 
points: i) to put an end communalism by ceasing to think in 
terms of Muslims-non-Muslims when discussing political 
problems. ii) Universal suffrage on the basis of joint 
electorate.  It is to be noted that the national demand issued 
in August 1938 was signed among others by Pandit Jia Lal 

Kilam, Pandit Lal Saraf, Pandit Kasyap Bandhu. Under the 
leadership of Sheik Abdullah AJKMC felt the necessity of 
common platform to struggle against the rule of Maharaja. 
After series of discussions and debates, the working 
committee of AJKMC took the historic decision of re-
christening to Jammu and Kashmir National Conference 
(or simply National Conference) on 24 June 1938. On 27 
April 1939, National Conference came into being. Its 
secular credentials set a new pace for the politics of Jammu 
Kashmir.  National Conference [12] consisted of many 
leaders of minority communities like Hindu, Sikh etc 
during 1940s. 

In the history of India subcontinent, the Pakistan resolution 
demanding the creation of an independent state comprised 
of all regions in which Muslims are the majority is passed 
at Iqbal Park, Lahore on March 23, 1940 by Muslim 
League. 

The secularization of Kashmir politics and redefinition of 
the goal helped immensely National Conference to come in 
close contact with the Indian National Congress. In 1942 
‘New Kashmir’ manifesto was formulated under the 
leadership of Dr. N. N. Raina by a brilliant group of young 
communist operating within the National Conference who 
were mostly responsible for introducing the nationalist 
movement to the concept of socialist pattern of society 
based on equality, democracy and free from exploitation. It 
consists of two parts: a) the constitution of the state; b) the 
National Economic Plan. Under the sound leadership of 
Abdullah, National Conference led a powerful mass 
movement in order to find a new political and economic 
order in Kashmir and other parts of Jammu region. The 
National Conference started agitation against the Dogra 
rule in 1945.  In the grave political situation, offering him 
all charges, Ram Chandra Kak was appointed as Prime 
Minister in order to bring the agitation in control. In May 
1946 National Conference launched “Quit Kashmir” 
movement following the “Quit India Movement” in 1942 
led by the Indian National Congress. Mohamod Ali Jinnah 
was not interested in the ‘Quit Kashmir Movement’[13] 
rather blamed the movement as act of Gundas. In March 
1946 Crisps Mission came to visit India. Sheikh Abdullah 
sent a telegram by demanding freedom of people of 
Kashmir on withdrawal of British power from India.   
Prime Minister of J&K Ram Chandra Kak declared 
emergency to crackdown the movement. Abdullah was 
arrested on 20 May 1946. The State Government employed 
a wave of arrests and a policy of repression throughout the 
State. The people protested strongly and several agitated 
Kashmiri people were killed and injured due to clash with 
armed forces of Maharaja. The Indian National Congress 
and the All India States peoples’ Conference supported 
National Conference strongly. Sheik Abdullah was 
imprisoned for three years for antinational activities. 
National Conference was banned. In January 1947, 
National Conference boycotted elections because of 
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repression. Muslim Conference grabbed the opportunity 
and won 16 out of 21 Muslim seats.  
3.2 Muslim Conference  
Muslim Conference did not support the ‘Quit Kashmir’ 
agitation. Muslim Conference discouraged the people of 
Kashmir from joining the agitation in the same tune of 
Muslim League.  On 30 May 1946, Chaudhury Gulam 
Abbas the President of Muslim Conference stated that the 
agitation had started at Congress leaders’ behest in order to 
“restore the lost prestige of the Nationalist.” The Muslim 
Conference adopts the Azad Kashmir Resolution on 26 
July 1946 calling for the end of autocratic Dogra rule in the 
region and claiming the right to elect their own constituent 
assembly. He said that the primary task [14]was to restore 
the unity of the Muslim nation and there be “no other place 
for an honest and self-respecting Muslim but in his own 
organization.”  On 25 October 1946, State Government 
arrested and detained four top leaders of Muslim 
Conferences. 

3.3 British Cabinet Mission 
In March 1946, The British Cabinet Mission held 
conference about a week at Simla with four representatives, 
two each of the Congress and the Muslim Leagues and the 
conference broke down on the issue of Pakistan and parity 
in the proposed interim government.  On 16 May 1946, the 
Cabinet Mission announced their own proposals, the 
essence of which was the creation of a Constituent 
Assembly to frame the Constitution of India, which was to 
be based on the principle that the Center would control 
only three subjects, viz., Defense, Foreign Affairs and 
Communications and the creation of three group of 
provinces-two of the areas claimed by Muslim League for 
Pakistan in the east and the west and the third of the rest of 
the subcontinent [15]. 

3.4 Interim Government announced 

On 25 June 1946, the Congress Working Committee 
announced their rejection of the plan of Interim 
Government. On June 26, 1946, Lord Wavell announced 
that he would set up a temporary ‘caretaker’ Government 
of officials to carry on in the interim period.   

In July 1946, the Muslim League withdrew its acceptance 
of the Cabinet Mission’s plan and resolved that “now the 
time has come for the Muslim nation to resort to direct 
action to achieve Pakistan, to assert their just rights, to 
vindicate their honor and to get rid of the present British 
slavery and the contemplated future ‘caste- Hindu 
domination” at a meeting in Bombay.  

Accepting the invitation from the Viceroy to constitute an 
interim Government, on 6 August 1946, Jawaharlal Nehru 
formed it, which consisted of six Hindus, including one 
Depressed Class member, three Muslims of whom two 
belonged neither to the Congress nor to the League, one 

Sikh, one Christian-and one Parsee. It started functioning 
on 2nd September 1946. The League joined the Interim 
Government in the last week of October 1946 but was not 
prepared to join the Constituent Assembly, which led every 
day a more and more difficult and delicate on account of 
the differences between the cabinet ministers of Congress 
and the Muslim League.  0n 26 November 1946, Mr. Atlee 
invited Lord Wavell and representatives of the Congress 
and the Muslim League to meet in London to attempt to 
resolve the deadlock The discussions were held from 3 to 6 
December 1946 but did not yield any agreed settlement. 
The first meeting of the Constituent Assembly of India was 
held in on 11 December 1946. The Muslim League 
boycotted it and it developed a stake in sabotaging the 
Assembly’s work.    
On 20 February 1947, Prime Minister Atlee declared that 
Britain would transfer power by June 1948, by which time 
the Congress and the Muslim League were supposed to re-
solve their differences. On 24 March Mountbatten was 
sworn in as Viceroy and Governor General of India in 
place of Wavell. After negotiations with the leaders of dif-
ferent political parties, Viceroy, Lord Mountbatten an-
nounced that long before June 1948, the Dominions of In-
dia and Pakistan would be created and that the question of 
Indian states would be dealt with in the light of the Cabinet 
Mission's memorandum [16] of 12 May 1946.To approve 
the Mountbatten plan accepted by British Cabinet, a confe-
rence between Mountbatten and representatives of the 
Congress and the Muslim League was held on 2 June 1947. 
On 3 June 1947 a White paper was issued which stated the 
detail procedure of the partition of India. Regarding the 
Princely States it declared that British policy towards In-
dian States contained in the Cabinet Mission’s memoran-
dum [17] of 12th may, 1946 remained unchanged. 

3.5 Partition Plan accepted by Congress  
On 14 June 1947, in a historic session of All India 
Congress Committee (AICC) in New Delhi, Pandit Ballabh 
Pant moved the resolution dealing with the Mountbatten 
plan for partition British India. Mahatma Gandhi 
intervened in the debate in the second day and expressed 
that he was always against the partition but situation had 
changed and appealed to support the resolution. On 15 
June 1947, the resolution was passed with 29 votes in favor 
and 15 against.  
Mr. Jinnah clearly expressed Muslim League view [18] on 
the question of Princely States on 17 June 1947 by saying 
"Constitutionally and legally the Indian states will be 
independent sovereign states on the termination of 
paramountcy and they will be free to decide for themselves 
and adopt any course they like; it is open to them to join 
the Hindustan Constitutional Assembly or decide to remain 
independent. In case they opt for independence they would 
enter into such agreements or relationships with Hindustan 
or Pakistan as they may choose".  

3.6 Partition and riots 
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 Calcutta, capital of Bengal witnessed a beginning of 
holocaust on an unprecedented scale on 16 August 1946, 
which was declared a public holiday by the Muslim 
League Government of Bengal. It was estimated that 
Jinnah’s direct action [18] caused death of more than 5000 
lives, and over 15000 people were injured, besides 100000 
being rendered homeless. After a fortnight 560 people 
were killed in Bombay. After Calcutta, on October 1946, 
serious anti- Hindu riots erupted in Noakhali in East 
Bengal followed by massacred of Muslims in Bihar   The 
chain reaction of riots started in the Punjab causing large 
scale killings of Hindus, Sikhs, and Muslims shortly 
afterwards.  

3.7 Development in Jammu and Kashmir 

Based on two-nation theory, India was partitioned into 
Pakistan and India in August 14, 1947. The princely states 
were offered the right under the ‘Indian Independent Act 
1947’ and ‘Government of Indian Act 1935’ [19]  to 
accede either to India or Pakistan or remain independent. It 
seemed that Hari Singh, the then Maharaja of Jammu and 
Kashmir hoped to create independent Kingdom or 
autonomy from India and Pakistan. He did not accede to 
either of two successor dominions at the time of accession. 
All Jammu and Kashmir Rajya Hindu Sabha passed a 
resolution [20] expressing its faith in Maharaja Hari Singh 
and extended its “support to whatever he was doing or 
might do on the issue of accession” in 1947. On 15 June 
1947, an important resolution [21] regarding the princely 
states saying the lapse of paramountcy does not lead to the 
independence of the princely states was adopted by AICC 
unanimously. Contrary to this, Mr. Jinnah clearly 
expressed the view [18] of Muslim League on the question 
of Princely States on 17 June 1947 by saying 
"Constitutionally and legally the Indian states will be 
independent sovereign states on the termination of 
paramountcy and they will be free to decide for themselves 
and adopt any course they like; it is open to them to join 
the Hindustan Constitutional Assembly or the Pakistan 
Constituent Assembly, or decide to remain independent. In 
the last case, they enter into such agreements or 
relationship with Hindusthan or Pakistan as they may 
choose ". 

On 19 July 1947, the working committee of Muslim 
Conference passed a modified resolution [22] in favor of 
independence, which respectfully and fervently appealed to 
the Maharaja to declare internal autonomy of the state and 
accede to Pakistan regarding to defense, communication 
and external affairs. Khurshid Ahmad, Jinnah’s personal 
Secretary during his stay in Kashmir on the crucial days 
for the question of accession gave Maharaja assurance [23] 
that “Pakistan would not touch a hair of his head or take 
away a iota of his power”. Before partition British 
Government restored the Gilgit area, an important strategic 

region, hitherto administered by a British agency, to J&K 
without taking the verdict of the local people. 

3.8 Standstill Agreement  
Pakistan became independent on 14 august 1947. India and 
few princely states, which did not join either of India or 
Pakistan, became independent on 15 August 1947. In this 
way J&K attained the status of independent on 15 August 
1947. On 15 August post offices in J&K hoisted the 
Pakistani flags. Maharaja Hai Singh signed a standstill 
agreement with Pakistan on 16 August 1947 with regard to 
State’s postal services, railways, and communications and 
hoped to sign similar agreement with India with regard to 
external affairs, control of state forces, defense etc. India 
[23] did not show any interest in  the acceptance of the 
offer of standstill agreement. . On 18 August 1947 a 
controversy came into light when Sir Cyril Radcliffe 
awarded a portion of Muslim majority Gurudaspur District 
to India causing fundamental differences in J&K’s 
geopolitical situation. The subcontinent experienced 
communal riots during these days. By this time, Muslim 
majority Poonch estate within the Jammu region 
experienced serious troubles with regard to some local 
demands like the rehabilitation of 60,000 demobilized 
soldiers of the British army belonging to the area. The 
agitation finally transformed into communal form having 
mixed with other issues. The state army refused to fire on 
the demonstrators with whom they had religious and ethnic 
ties. The agitation turned to the form of armed revolt 
because of mass desertion from army. The supply of arms 
and ammunition and other assistance from outside the 
border magnified the revolt. The Kashmir Socialist party 
passed a resolution on 18 September 1947 to join Pakistan 
and not India. The party impressed on Maharaja that 
without any further unnecessary delay he should make an 
announcement accordingly. It is to be noted here that a 
convention of Muslim Conference workers formally asked 
for accession to Pakistan on 22 September 1947.  
Maharaja Hari Singh released Sheikh Abdullah from 
prison along with some other National Conference workers 
on 29 September 1947 but he did not release the workers 
of Muslim Conference due to grave situation of the state. 
Pakistan termed Abdullah’s release as a conspiracy 
because workers of Muslim Conference were not 
simultaneously released. By October, communal riots 
spread all over J&K. The mass infiltration baked by 
Pakistani army jeopardized the environment of the state.  
Pakistan violated the standstill agreement by stopping 
regular supply of food, salt, petrol and essential 
commodities from Pakistan. The communication system 
controlled by Pakistani Government did not render proper 
service.  

On 21 October 1947, Pakistan decided to settle the future 
of Kashmir with the power of gun suspecting that Mahara-
ja was likely to accede to India. Jinnah, the Governor Gen-

87 



 Neutrosophic Sets and Systems, Vol. 2, 2013 
 
 

 Surapati Pramanik, Tapan Kumar Roy, Neutrosophic Game Theoretic Approach to Indo-Pak Conflict over Jammu-Kashmir 
 

eral of Pakistan personally authorized a plan [25] to launch 
“a clandestine invasion by a force comprised of Pathan 
(Afghan) tribesmen, ex-servicemen and soldiers on leave”. 
It was witnessed that charges and counter charges were 
being made by both the government of J&K and Pakistan 
during the month of October and finally On 22 October 
1947, 2000 tribesmen from Northwest Frontier Province 
(NWFP) of Pakistan and other Pakistani nationals fully 
armed with modern arms, under the command of trained 
generals, started invasion to capturing the state’s territory. 
The Muslims in the Western part of Kashmir established 
their own independent (Azad) Kashmir Government on 24 
October 1947.  The State forces were wiped out in fighting. 
The tribesmen resorted to “indiscriminate slaughter of both 
Hindus and Muslims”[26]. They reached within 15 miles 
from capital Srinagar.  Under this great emergency of the 
situation, Maharaja sought Indian military assistance in his 
letter dated 26 October 1947 along with the ‘Instrument of 
Accession’ [27] to Mountbatten, the Governor General of 
India. Thereafter the Maharaja signed the instrument of 
accession, which the Governor General Mountbatten 
accepted on 27 October 1947 by adding that the question 
of accession [28] should be settled by a referendum. Indian 
forces [29] airlifted at Srinagar almost at the crucial 
moment, for, “a few minutes later the airfield might well 
have been in enemy hands”.  Members of the National 
Conference provided logistical support for the Indian 
forces. Infuriated by Indian intervention, on 27 October 
1947, Pakistani Governor General, Mohammed Ali Jinnah 
ordered Lt. General Sir Douglas Gracey, Chief of the 
Pakistani Army, to send Pakistani regular troops to 
Kashmir, but Field Marshall Auchinleck, the Supreme 
Commander of the transition period succeeded in 
persuading him to withdraw his orders. A message [30] 
was sent to the Governor General and the Prime Minister 
of India to go to Lahore for discussion regarding Kashmir.  

3.9 Indo-Pak talks 

On 1 November 1947, at a meeting of Governors General 
of India and Pakistan at Lahore, Mountbatten offered to re-
solve the J&K issue by holding referendum. Rejecting the 
Mountbatten formula, M.A. Jinnah remarked that a plebis-
cite was “redundant and undesirable”. H.V. Hodson [31] 
has recorded in his book, The Great Divide, that M.A. Jin-
nah “objected that with Indian troops present and Sheikh 
Abdullah in power the people would be frightened to vote 
for Pakistan”. Jinnah proposed a simultaneous withdrawal 
of all forces- the Indian troops and the invading forces. 
Here it is interesting to note that when he was asked how 
anyone could guarantee that the latter would also be with-
drawn, Jinnah [30] replied “If you do this I will call the 
whole thing off”. In connection with the steps to ascertain 
the wishes of the people of J&K, Mountbatten was in favor 
of a plebiscite under the auspices of United Nations while 
M. L. Jinnah proposed that he and Mountbatten should 

have plenary power to control and supervise the plebiscite.  
Ultimately, the first direct bilateral talks broke down. 
On 1 January 1948, based on the advice of Mountbatten, 
India lodged a complaint with the Security Council 
invoking articles 35 of Chapter VI of the UN Charter to 
“recommend appropriate procedures or methods of 
adjustment” for the pacific settlement of disputes and not 
for “action” with respect to acts of aggression as provided 
for in Chapter VII of the Charter [32]. India reiterated her 
pledge of her conditional commitment to a plebiscite under 
international auspices once the aggressor was evicted.     
Pakistan contradicted the validity of the Maharaja’s 
accession to India [33], and urged the Security Council to 
appoint a commission for securing a cease-fire and 
ensuring withdrawal of outside forces, and conducting a 
plebiscite in order to determine the future of J&K. 

3.10 Role of the United Nation  Security Council 
(UNSC)  
Both India and Pakistan denied implementing the UN reso-
lutions [34-36] for a free and impartial plebiscite in order 
to put an end to the situation for the accession of J&K. 
Having taken note of the developments in J&K, the United 
Nations Commission for India and Pakistan UNCIP sub-
mitted a draft resolution [36] consisting of three parts to 
the council on 13 August 1948. 
Part I of the resolution comprised of instruction for a cea-
sefire.  
Part II of the resolution dealt with the principle of a truce 
agreement which called for Pakistan to withdraw tribes-
men, Pakistani nationals not normally resident therein who 
had entered the State of J&K for the purpose of fighting, to 
evacuate the territory occupied by Pakistan and after the 
notice of the implementation of the above stipulation by 
the UNCIP India was to withdraw the bulk of her forces in 
stages from J&K leaving minimum strength with the ap-
proval of the commission in order to ensure law, order and 
peace in the State. 
  Part III of the resolution appeared to be important as it 
clearly expressed that both the Government of India and 
the Government of Pakistan reaffirm their wish that the 
future status of the State of J&K shall be determined in 
accordance with the will of the people.  
The second resolution [37] specified the basic principle of 
plebiscite was formally adopted on 5 January 1949 after 
acceptance of India and Pakistan on 23 and 25 December 
1948 respectively. 
An important development occurred when both India and 
Pakistan agreed to the cease-fire line in 1949. This enabled 
the UN to finally send a Military observer Group to super-
vise the line [38]. The ceasefire came into effect on 1 Jan-
uary 1949. The most important long- term outcome of the 
first Indo-Pak war was the creation of ceasefire line. Thus 
UNCIP succeeded in implementing the important provi-
sion of Part I of the resolution. In order to monitor to the 
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 ceasefire line (CFL), the UNCIP sent a Monitoring Group 
for India and Pakistan (UNMGIP) to J&K on 24 January 
1949 relying on its resolution of 13 august 1948. In Kara-
chi on 27 July 1949, the military representatives of India 
and Pakistan, duly authorized, approved CFL and thus ap-
proved the presence of UNMGIP [39]. 
 
In March 1949, the conflicting attitudes came into light as 
India and Pakistan expressed their viewpoints before the 
truce subcommittee of the UNCIP. On 15 April 1949, 
UNCIP transmitted to the governments of India and Pakis-
tan its own proposals [40], which were: 
i) to create a cease-fire line, eliminating all no 

man’s lands and based on the factual position of  
the troops  in January 1949. 

ii)   to draw a phased program of withdrawal of Pa-
kistani troops to be completed in seven weeks, 
and the withdrawal of all Pakistani nationals. 

iii)   to ask Indian forces also to withdraw in accor-
dance with a phased program after the withdrawn 
of tribesmen and Pakistani national and after the 
declaration of UNCIP’s satisfaction regarding the 
troops withdrawal of Pakistan. 

iv) to release all prisoners of war within one month. 
v) to repeal all emergency laws.  
vi)  to release all political prisoners.  
Both India and Pakistan [41] could not accept the propos-
als because of their own interest. 
The UNCIP proposed arbitration on the issues regarding 
the part II of the resolution in a letter to the two Govern-
ments on 26 August 1949 and named Fleet Admiral Ches-
ter Nimitz as the Arbitrator.  Pakistan accepted the propos-
al on 7 September 1949 but India rejected this proposal of 
arbitration. The Czechoslovak representative of the UN-
CIP, Dr. Oldrich Chyle (Chyle took the post after resigna-
tion of Korbel) criticized the UNCIP’s work [42]. Accord-
ing to him, the arbitration move was a pre-planned attempt 
on the part of the USA and UK to intervene in the dispute. 
 
On 17 December 1949, the UNSC named its president 
General A. G. L. McNaughton of Canada as the Informal 
Mediator [43], instead of commission to negotiate a demi-
litarization plan in consultation with India and Pakistan. He 
submitted his proposal on 22 December 1949. Pakistan ac-
cepted the proposals, suggesting minor amendments while 
India suggested major amendments: one calling for the 
disbanding and disarming of Azad forces, and the other 
dealing with the return of the Northern Areas to India for 
purposes of defense and administration of J&K.  Pakistan 
was unable to accept Indian amendments [44] as a clear re-
jection of the proposals. Pakistan agreed to simultaneous 
demilitarization but Indian rejected it on the grounds of the 
legal and moral aspects of the plan. 
The UNSC adopted another resolution introduced by C. 
Blanco of Cuba on behalf of four powers Cuba, Norway, 
UK and USA on 14 March 1950, which called upon the 

two nations, without prejudice to their rights or claims to 
prepare and execute within the stipulated period of five 
months for the demilitarization of J&K based on proposals 
of McNaughton and for self determination [45] through an 
impartial plebiscite. The resolution terminated the UNCIP 
and transferred their powers and responsibilities to a UN 
representative.  

3.10.1 Dixon mediation 
Sir Owen Dixon, UN Representative submitted his rec-
ommendations to the UN on 15 September 1950. He sug-
gesting a unique proposal [46] limiting the plebiscite only 
to the Kashmir Valley claimed by both by Pakistan due to 
its Muslim majority and the waters of Jhelum. India and 
Pakistan rejected the plan. 
UN representatives worked to negotiate for free and impar-
tial plebiscite in J&K until 1953 but their efforts brought 
no fruit. The UN continued its efforts for a plebiscite [47], 
but all attempts of UN failed due to the conflicting and di-
vergent attitude of the Governments of India and Pakistan 
towards the dispute and the cold war [18].  The fifth report 
of Dr. Frank P. Graham [48] suggested direct negotiations 
between India and Pakistan.  Thus the UN attempts at solv-
ing the problem of J&K came to end which reflected the 
limitations of the UN. 
The armies of India and Pakistan waged an inconclusive 
war (1947-48) for over a year in J&K. The Indian army 
occupied almost two third of J&K remaining 1/3 portion 
was under the control of Pakistan which is called Azad 
Kashmir or Pakistan occupied Kashmir (POK).  

3.11 Indo-Pak negotiation (1962-1963) 
India experienced a huge defeat in 1962 war against China. 
The J&K dispute became the subject of Indo-Pak negotia-
tion in late 1962 but no agreement could be signed for res-
olution of J& K question despite six round talks between 
an Indian delegation headed by Swaran Singh and a Pakis-
tani delegation headed by Z.A. Bhutto from 27 December 
1962 and 16 May 1963. 

3.12 Sino-Pak border agreement 1963 
On 2 March 1963, the Sino-Pakistan Border Agreement 
was signed in Peking and they had agreed that after the set-
tlement of the Kashmir dispute between Pakistan and In-
dia, the sovereign authority concerned would reopen nego-
tiations with China on the boundary as described in Ar-
ticle. By this agreement Pakistan [49] succeeded in stabi-
lizing Pakistan’s position regarding Kashmir in the eyes of 
Chinese Government and compelling her “to reject une-
quivocally the contention that Kashmir belonged to India”.   

3.13 The Kutch conflict- a low intensity war   
In 19 April 1965, Pakistani permanent representative [50] 
in UN made claims about 8960 square kilometers area of 
Rann. Pakistani claim to the Rann of Kutch was based on 
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the fact that the Rann was a lake and according to 
international law [51], the boundary line between India and 
Pakistan must be drawn through the middle of the Rann. 
On other hand India argued that the Rann of Kutch was a 
“marsh” land rather than a lake. India asked Pakistan to 
restore the status quo ante. Tikka Khan, in command of the 
18 Infantry Division, did painstakingly prepare for the 
operations and succeeded in advancing inside Indian 
territories in strength, causing to the fall of the Indian 
forward post hastily positioned there. India and Pakistan 
fought a low intensity war. The important aspect of the 
conflict lies in the historic fact that both India and Pakistan 
accepted a ceasefire and arbitration on British intervention. 
On the other hand, India captured some Pakistani Posts in 
the Kargil area of Ladakh. The Kutch dispute [52] was 
referred to a tribunal comprising of three members, one 
nominated by India, another by Pakistan and a Chairman 
chosen by the UN Secretary General. After a long 
deliberation the tribunal awarded Pakistan 317 square 
miles out of 3500 square miles claimed by her. India left 
the occupied posts of Pakistan in Kargil. 

3.14 Indo-Pak war in 1965  
The Pakistani Government was greatly emboldened by 
presumably military success in the Rann of Kutch in 1965.
In August 1965 infiltration had started in Jammu and 
Kashmir to wage what Zulfikar Ali Bhutto called a “war of 
liberation”. On 10 August 1965, Z. A. Bhutto [53] publicly 
declared his country’s full support to the people of Kash-
mir but denied his country’s involvement in the Kashmir 
trouble. On 1 September, 1965 Indian forces crossed the 
international border and sealed the borders of Kashmir. On 
4 September, Malaysia moved a resolution co-sponsored 
by Bolivia, the Ivory Cost, Jordan, the Netherlands, and 
Uruguay proposing an immediate ceasefire in Kashmir 
without calling Pakistan as an aggressor in the UNSC [54]. 
But it did not succeed in stopping the fighting. Ayub Khan 
backed the infiltration with a full-fledged attack in the 
Chhamb sector by crossing the international border, lead-
ing to effective progress to reach Jaurian. On 5 September 
1965, Indian forces launched three-pronged thrust in of 
West Pakistan in Lahore Sector and in Sialkot sector a day 
later. Following this development, Malaysian representa-
tive submitted another resolution [55] supported by Boli-
via, the Ivory Cost, Jordan, the Netherlands, and Uruguay 
calling upon both the countries to cease hostilities and 
withdraw their troops to the positions held by 5 August 
1965, which was passed unanimously on 5 September 
1965. The goodwill mission to India and Pakistan by the 
U.N. Secretary General, U Thant did not succeed. Both 
countries were requested by U Thant to stop fighting with-
out imposing any condition on each other [56]. India ac-
cepted unconditional ceasefire but President Ayub Khan 
[57] imposed certain pre-conditions: (i) Withdrawal of all 
forces of both India and Pakistan (ii) Induction of foreign 
forces, preferably Afro-Asian under UN auspicious, (iii) 

Holding a Plebiscite in Kashmir within three months of the 
cease fire. 
Armies of both the countries engaged in large -
scale combat in a series of sharp and intense actions along 
the ceasefire line in J&K and the international border in 
Punjab, Rajasthan, and Gujarat by employing import 
weaponry system but outmoded war stretegies. They 
reached to the point of exhaustion, battle fatigue. The 
representative of the Netherlands moved the draft 
resolution [58], which was accepted, by both India and 
Pakistan in the UNSC on 20 September 1965. It was 
adopted by ten votes to nil, with Jordan abstaining. On 20 
September 1965, the super power USA concurred with 
USSR in the Security Council on calling ceasefire within 
48 hours. Pakistan and India accepted the call [59] on 21 
and 22 September 1965 respectively. The ceasefire, the 
UN enforced became effective at 03:30 hours of 23 
September 1965. Both India and Pakistan lost nearly 3000 
people each in the war. Economy of both the countries 
suffered a setback. 
  Although fighting ended inconclusive both India and 
Pakistan claimed victories,. China identified India as an 
aggressor and supported the Kashmiri’s right of self-
determination.  

3.15 Tashkent agreement 1966 
The Tashkent Declaration was signed between Indian 
Prime Minister L. B. Shastri and Pakistani President after 
six days of hard bargaining on 10 January 1966. They 
agreed that all armed personnel of the two countries should 
be drawn not later than 25 February 1966 to the position 
they held prior to 5 August 1965, and both sides should 
observe the ceasefire terms on the ceasefire line. They 
affirmed to employ peaceful means to solve their conflicts. 
Neither side was allowed to enjoy the gains of war. 
Pakistan was not even mentioned as the aggressor nor did 
it admit having engineered the infiltration in J&K. 

3.16 Indo-Pak war in 1971  
In the general election held in Pakistan in 7 December 
1970, the Awami League led by Mujibur Rehman secured 
majority in the national assembly by winning 158 seats out 
of 300 seats. He demanded complete autonomy for East 
Pakistan. The East Pakistanis formed Mukti Bahini 
(Liberation Force) and civil war erupted in East Pakistan. 
India supported the Movement. Pakistan used armed forces 
to curve the movement. The fighting forced 10 million 
East Pakistanis to flee in Indian territories. India accused 
the Government of Pakistan of committing brutal genocide 
in the East Pakistan. India asked Pakistan to negotiate with 
Rehaman for a political settlement. On 3 December 1971, 
Pakistan launched attack on Indian airfields along the 
frontier of Punjab, Rajasthan, and J&K [60]. On the other 
hand, Pakistan alleged that Indian forces attacked on 21 
November 1971 in the south- eastern sector of East 
Pakistan. India is the first country who recognized formally 
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 the birth of Bangladesh [61] on 6 December 1971 . The 
Indian Army along with the Mukti Bahini (Liberation 
Army) fought the Pakistani armed forces. The news of 
sending a naval task force from the US Seven Fleet [62] to 
the Bay of Bengal from the Indo-China theatre caught 
much attention. But the USSR [63] confirmed India that 
the Soviet powerful naval fleet would follow the Seven 
Fleet. On 15 December 1971 the Indian army reached the 
outskirts of Dacca. On 16 December 1971, 9000 Pakistani 
forces along with their commander General Niazi 
surrendered to the Joint Command of India and 
Bangladesh. India declared a unilateral ceasefire [64] 
effective from 20:00 hours on 17 December 1971 and 
Yahya Khan accepted it. Yahya Khan had to resign 
because of huge defeat in East Pakistan. He handed power 
to Z.A. Bhutto.  Although  India and Pakistan fought a 
third war over East Pakistan, J&K dispute was only a 
peripheral issue but vital one in the case of J&K. At time 
of ceasefire, India occupied 204. 7 sq kms of territory of 
Pakistan administered Kashmir, 957.31 sq km of Punjab 
and 12198.84 sq kms of Kutch while Pakistan occupied 
134.58 sq kms of territory of Indian administered J&K in 
the Chhamb sector, 175.87 sq kms in Punjab and 1.48 sq 
kms in Rajasthan [65].  

3.17 Role of UN  
The UN intervened to arrange cease-fires during the war 
1971. USSR exercised her veto power several times in 
favor of India. The Secretary General [66] was authorized 
to appointment, if necessary, a special representative to 
help in the solution of humanitarian problem. The issue of 
Indo-Pak conflict came to an end on 25 December 1971 
with the appointment by U Thant, the Secretary General, of 
V. W. Guicciardi, as Secretary General’s special 
representative for humanitarian problems in India and 
Pakistan. 

3.18 Simla agreement 1972 
The Prime Minister of India and President of Pakistan had 
talks in Simla from 28 June 1972 to 2 July 1972 and signed 
the Simla Agreement [67] on 2 July, 1972.  By signing the 
agreement, both India and Pakistan committed themselves 
to settling their differences through bilateral negotiations 
or by any other peaceful means mutually agreed upon 
between them.  Hopefully, they also agreed that in “Jammu 
and Kashmir, the line of control (LOC) resulting from the 
cease-fire of December 17, 1971, shall be respected by 
both sides without prejudice to the recognized position of 
either side”.  
The Simla Agreement was ratified by both countries [68] 
and it came into force on 5 August 1972. To delineate the 
line of control General Bhagat and General Hamid Khan 
had to hold ten meetings between 10 August to 7 
December 1972. On 11 December 1972, they [69] met at 
Suchetgarh and jointly signed 19 maps delineating the line 
of control from Chhamb to Turtuk, covering about 800 

kilometers. Both the Governments approved the 
delineation [70] almost next day. On completion of 
adjustment in the line of control, India and Pakistan 
withdrew troops from the occupied territories in order to 
restore the status quo ante on the international border on 20 
December 1972. Pakistan [71] has recognized Bangladesh 
in February 1974. The issue regarding prisoner of wars 
[72] closed with the repatriation of the last group along 
with Gen. Niazi at Wagah on 29 April 1974. East Pakistan 
crisis reflected that the two-nation theory failed miserably 
in the subcontinent.   

3.19 The conflict at Siachen (1984 onwards) 
The conflict between India & Pakistan over Siachen origi-
nated due to the non-demarcations on the western side of 
the map beyond a grid point known as NJ 9842.  The CFL, 
which was established because of the first Indo-Pak war of 
1947-48 and the intervention of the UN, runs along the in-
ternational Indo-Pak border and then north and northeast 
until map grid-point NJ 9842, located near the Shyok River 
at the base of the Saltoro mountain range. Unfortunately, it 
was not delineated beyond the grid point known as NJ 
9842 as far as the Chinese border but both countries agreed 
vaguely that the CFL extends to the terminal point NJ 
9842, and "thence north to the Glaciers". After second In-
do-Pak war in 1965, obeying the Tashkent Agreement both 
countries withdrew forces along the 1949 CFL. After third 
Indo-Pak war 1971, the Simla Agreement of 1972 created 
a new LOC based on December 1971 cease-fire. However, 
the Siachen Glacier region was left un-delineated where no 
hostilities occurred. The authorities of both countries 
showed no interest to clarify the position of the LOC 
beyond NJ 9842. Due to lack of strategic viewpoint and se-
riousness the LOC was poorly described as running from 
Nerlin (inclusive to India), Brilman (inclusive to Pakistan), 
up to Chorbat La in the Turtok sector. In April 1984, In-
dian army occupied key mountain Passes and established 
permanent posts at the Siachen heights. Indian troops 
brought control over two out of three passes on the Sia-
chen, Sia La and Bilfond La, while the third pass, Gyong 
La remained under Pakistan's control. The Indian forces 
are permanently deployed all along the 110-km long Ac-
tual Ground Position Line (AGPL). Armies of both India 
and Pakistan fight in lethal 10-22000 foot altitude in Sia-
chen Glacier.  Pakistan retaliates in the world’s highest war 
zone.  

3.20 Kashmir insurgency in Indian administered 
Kashmir  
The assembly elections in J&K on 23 March 1987 were 
partly manipulated and rigged which the National 
Conference-Congress coalition won a landslide victory. 
The opposition party Muslim United Front (MUF) called 
the victory as blatantly fraudulent and rigged. A large 
number young people of Kashmir were alienated by this 
perception.  State Government of J&K witnessed various 
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demonstration and agitation between mid-1987 and mid-
1989 based manifestation of an accumulated anger 
comprised of many components such as administrative (the 
curtail number of Offices that move to the winter capital 
Jammu), the regional autonomy, economic policy (increase 
of power tariffs), religious sentiments, civil liberties 
(custodian death), and anti-India demonstration of 14 and 
15 August, 26 October (accession day) and 26 January. On 
8 December 1989, the militants kidnapped Rubaiye Sayeed, 
daughter of Indian Home Minster Mufti Mohammed 
Sayeed. The prestige of Farooq Abdullah led State 
Government suffered serious setbacks for repression of  
any form of protest Farooq Abdullah’s resignation with the 
appointment of Jagmohan as Governor for the second time 
on 19 January 1990, brought Central Government into 
direct confrontation with the various rebel groups. At 5 a. 
m. on 20 January 1990, Indian paramilitary forces cracked
down on a part of Srinagar city and began the most intense 
house-to-house search and rounded up over three hundred 
people. Most of them, however, were later released and 
arrested persons complained to be beaten up or dragged out 
of their houses. People got frightened first, but discovering 
the courage of desperation, the people started pouring out 
into the street defying the curfew, to protest against the 
alleged excessive use of force in search operation in next 
day. The administration got completely unnerved and gave 
orders to fire at when most of the groups of demonstrators 
converged at Gau Kadal. The number of deaths [73, 74] is 
disputed; however, the press reported 35 dead. Then the 
implicit support for the separatists for independence 
transformed into explicit due to mainly the high-handed 
searches ordered by Jagmohan, the Governor of J&K. On 
19 February 1990 Governor dissolved the State assembly 
and Governor rule was imposed. The Jagmohan regime 
[13] witnessed sadly the exodus of almost the entire small 
Kashmiri Pandit community from the valley and 20000 
thousand Muslim had been forced to migrate. The State 
assembly election of 1990 resulted in Abdullah downfall 
following the outbreak of a Muslim uprising. During the 
1990s, several new militant groups were formed, having 
radical Islamic views. The large numbers of Islamic Jihadis, 
who had fought in Afghanistan against the Soviet Union in 
the 1980s, joined the movement  
Many  umbrella groups were responsible for the uprising in 
J&K. Among them, the first umbrella group is tied to the 
Jammu and Kashmir Liberation Front (JKLF). They 
demaned independent Kashmir. The second group 
comprised of Muslim fundamentalists and  has links with 
the fundamentalist Pakistan party, Jammait-I- Islam. No 
doubt the group has a pro-Pakistan Orientation. The third 
group is Jammu and Kashmir People`s League that has a 
pro-Pakistan orientation. The groups demanded plebiscite 
so that people of J&K could exercise their right of self 
determination. India adopted a multiple prolonged 
approach to deal with the insurgency in J&K. In 1990, the 
then Governor Jagmohan announced the implementation of 
Armed Forces Special Powers Act of 1958 (AFSPA) for 

J&K and J&K Disturbed Areas Act  to put down the 
militancy. Indian security forces allegedly committed a 
series of human right abuses [75]  in J&K. It is observed 
that the encounter between Indian security forces and the 
militants caused more than 50, 000 deaths [75] including 
many hundreds of innocent civilians. Kashmiri militants 
have been also accused of killing moderate Muslim leaders, 
Hindus, bombing passenger busses and railway bridges 
and public establishments. In September 1996, National 
Conference had won a landslide victory in J&K Assembly 
election, although the 30-disparate party coalition, known 
as All-Party Hurriyat Conference (APHC) did boycott the 
election. Indian authorities formed several Muslim 
counterinsurgency groups to combat the insurgency along 
with Indian security forces. Due to the acute failure of 
Indian authorities to address the socio-economic problems 
and ambition of autonomy to some extent of the people of 
J&K and Pakistan’s active role in fostering cross border 
terrorism, the situation in J&K becomes more complex and 
volatile and neutrosophic in nature.  

3.21 Nuclear rivalry between India and Pakistan 
India had conducted her first nuclear device in 1974. In 
May 1998, India conducted several nuclear tests in the 
desert of Rajasthan. Pakistan got the opportunity to con-
duct nuclear test, and hopefully grabbed the opportunity 
and conducted six tests in Baluchistan in order to balancing 
nuclear power with India. The arm race between Indo-Pak 
caught international attention. The UNSC condemned both 
the countries for conducting nuclear tests and urged them 
to stop all nuclear weapons program.  On 23 September 
1998, new development occurred following at UN General 
Assembly session. Both India and Pakistan agreed to try to 
resolve the Kashmir question peacefully and to focus on 
trade and “people to people contact”. Pakistan sent her 
cricket team in India as goodwill gesture on November 
1998 after a decade absence. On the other hand, India 
agreed to buy sugar and powder from Pakistan. In Febru-
ary 1999, bus service between New Delhi to Lahore 
started. Accepting an invitation from Sharif, Vajpayee vi-
sited Lahore by bus. His visit to Pakistan is known as bus 
diplomacy. It drew much attention and at end of the sum-
mit they issued Lahore Declaration that was backed by 
Memorandum of Understanding (MOU) [76]. 

3.22 Kargil conflict in 1999 
In May 1999, Pakistan –backed militants together with Pa-
kistani regular forces crossed the LOC and infiltrated into 
India-held Kargil region of North Kashmir. The militants 
occupied covertly more than thirty well-fortified positions 
the most inhospitable frigidly cold ridges at an altitude of 
16000 -18000 feet, in the Great Himalayan range facing 
Dras, Kargil, Batalik and the Mushko Valley sectors. India 
retaliated by launching air attacks known as ‘Operation Vi-
jay (victory) on 26 May 1999. India identified Pakistan as 
an aggressor that violated the LOC. As the battle turned 
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more intense, the Clinton administration intervened to help 
defuse the conflict. It was witnessed that on 15 June Clin-
ton made separate telephonic conversations with both the 
Prime Ministers of India and Pakistan. He asked Sharif to 
withdraw infiltrators from across the LOC. He cordially 
appreciated Vajpayee for his display of restraint in the con-
flict. Pakistan was isolated from world community regard-
ing the Kargil-issue, only Saudi Arabia and United Emi-
rates supported Pakistan. On 4 July 1999, Sharif and Clin-
ton held a three-hour meeting and issued a joint communi-
qué in which Sharif agreed to withdraw the intruders.  On 
11 July 1999, in accordance with the agreement the infil-
trators started retreating from Kargil as India set 16 July, 
1999 as the dead line for the total withdrawal. On 12 July 
1999, Sharif defended his 4 July agreement with Mr. Clin-
ton and defended his Kargil policy that designed to draw 
the international attention of the international community 
to Kashmir issue.  In the war [77], India lost more than 400 
forces. 670 intruders and 30 Pakistani regular forces were 
also killed excluding the injured. 

3.23 Agra summit (14-16 July 2001) 
Agra Summit was held between the Indian Prime Minister 
Atal Behari Vajpayee and Pakistan's President Pervez Mu-
sharraf in Agra, from July 14 to 16, 2001. The summit be-
gan amid high hopes of resolving various disputes between 
the two countries including complex J&K issue. Both sides 
remained inflexible on the core issue of J&K and ultimate-
ly the bilateral summit failed to produce any formal 
agreement.  

3.24 The threat of war between India and Pakistan and 
the role of Bush administration 
 On 13 December 2001, five militants attacked Indian na-
tional parliament house causing the deaths of 13 people in-
cluding five terrorists.  India held Pakistan responsible for 
the incidence. India immediately reacted by deploying a si-
zeable force along the LOC in J&K. Pakistan followed 
suit, until both nations had aligned a vast array of troops 
and weapons against one another. Armies of both countries 
frequently exchanged of artillery fires. The mobilization of 
troops sparked worldwide fears of a deadly military con-
flict between India and Pakistan. 
In order to defuse the growing tensions Bush Administra-
tion took initiatives and succeeded in getting both sides to 
make conciliatory move. On 12 January 2002, in his ad-
dress to his nation, Musharraf committed Pakistan’s “polit-
ical, diplomatic and moral” support to the struggle of 
people of Kashmir. He went on to criticize the Pakistani 
militant Islamic groups for i) creating violent activities, ii) 
aggravating internal instability, iii) harboring sectarianism 
in Pakistan politics iv) creating war like situation against 
India. He banned two militant groups, the Lasker-e-Toiba 
and Jais-e- Mohammed. In the following weeks, 2,000 ac-
tivists of the banned militant groups were arrested in Pakis-

tan. Musharraf regime closed down some of militants 
groups’ offices and recruiting centers. India welcomed 
these measures cautiously and the tension was somewhat 
defused. On May 14, 2002, three militants disguised in In-
dian Army uniforms shot passengers indiscriminately on a 
public bus and then killed 40 people (mostly wives and 
children of army personnel) including eight bus passengers 
at Kaluchak of Jammu before militants were gunned down. 
India reacted by threatening to strike at the terrorist camps 
situated in POK and took tough stand declaring some 
measures: i) expelled the Ambassador of Pakistan to India, 
ii) withdrew her diplomatic personnel from Pakistan, iii)
imposed ban on Pakistani commercial air flights from In-
dian air space, iv) mobilized 100000 Indian forces close to 
LOC. 
On 22 May 2002, on his visit to the frontlines in J&K, 
Vajpayee called for a “decisive battle”.  Pakistani authority 
declared that it would defend Pakistani administered 
Kashmir by any cost. Musharraf mobilized 50,000 troops 
to the borders. On 27 May 2002, Musharraf [78] warned 
India by declaring, “if war is thrust upon us, we will re-
spond with full might”. 
Even Pakistan threatened to use nuclear weapons against 
India. This threat drew pointed attention to the USA and 
UK. The British Foreign Secretary, Jack Straw and US 
Deputy of Secretary, Richard Armitage and Defense Secre-
tary, Donald Ramsfeld rushed to both India and Pakistan in 
May-June 2002 in order to defuse tension. They were suc-
cessful in their mission to defuse tension and succeeded in 
getting promise from Musharraf to stop cross-border infil-
tration into J&K. After witnessing a slowdown in infiltra-
tion, India tried to improve her relation with Pakistan by 
reestablishing diplomatic ties, recalling her naval ships to 
their Bombay base, and opening her airspace to Pakistani 
commercial flights.
3.25 Musharraf’s proposals for J&K resolution 
On 25 October 2004, while addressing an ‘Iftar party’, 
President Musharraf announced an important declaration 
regarding settlement of the J&K acceptable to Pakistan, 
India and people of J&K. He remarked that the solution 
would have to be met thee steps: 
i) Both sides should identify the regions on both

sides of LOC,
ii) Demilitarize these regions,
iii) Determine their status through independence or

joint control or UN mandate.
He opinioned that Pakistanis demand for a plebiscite was 
impractical while India’s offer for making LOC a perma-
nent border was unacceptable. The Musharraf’s an-
nouncements drew much attention but Indian Prime Minis-
ter M. Singh refused to comment describing them as “of 
the cut remarks”.  
President Musharraf [79] proposed four point solutions re-
garding the resolution of J&K disputes as follows:  
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i) troops will be withdrawn from the region in a 
staggered manner  

ii) the border will remain unchanged, however  
people will be allowed to move freely in the re-
gion 

iii) self governance or autonomy but not indepen-
dence  

iv) a joint management mechanism will be created 
with India, Pakistan and Kashmiri Representa-
tives 

On 5 December 2006, during an interview with NDTV 
President Musharraf opinioned that Pakistan is prepared to 
give up her claim on Kashmir, also ready to give up her old 
demand for a plebiscite and forget all UN resolution if In-
dia accepts the four-point resolution of Kashmir dispute of-
fered by him. He remarked that Pakistan is absolutely 
against the independence of Kashmir so is India.  He stated 
that for compromise solution both countries would have to 
give up their positions and step back. 
On 31 December 2006, G. N. Azad, the Chief Minister of 
J&K stated that ‘joint mechanism” is possible in the field 
of trade, water, tourism and culture, and this could lead the 
way for a resolution to the longstanding Kashmir problem.  
On 8 January 2007, he further stated that the latest four 
point-solution offered by President Musharraf should not 
be put aside without discussing positively.   
On 19 January 2007, following the meeting with Indian 
External Affairs Minister, Chief Minister, G. N. Azad of 
J&K said “The date for the composite dialogue has been 
fixed for 13-14 March 2007 and I am sure all outstanding 
issues and proposals floated from time to time by President 
Musharraf will be discussed.” On the same day APHC 
leader Mirwaiz Umar Farooq told the BBC that the next 
three months would be crucial. 
On 2 February 2007, President Musharraf said: “We can-
not take people on board who believe in confrontation and 
who think that only militancy solves the problem”. On 3 
February 2007, Indian Prime Minister M. Singh welcomed 
President Musharraf’s statement that militancy or violence 
cannot resolve the Kashmir issue. On 4 February 2007, In-
dian External Affairs Minister, Pranab Mukherjee com-
mented on Musharraf’s proposals: “It is good. Everybody 
should advise terrorists to give up violence and join the 
process of dialogue.”  The idea of four point resolution was 
purely personal that did not have the mandate.  However, 
Musharraf had to resign from his post for internal problem. 
His endeavor to resolve the J&K problem failed due to no 
response from India.   

3.26 Terror attack at Mumbai 

On 26 November 2008, Mumbai, the capital of Maharastra 
and financial capital of India witnessed deadly terror at-
tacks. India adopted a tougher-than –usual stand against 
Pakistan in the wake of the Mumbai terror attack and de-
manded to hand over 20 terrorists including Pakistan-based 

underworld Dawood Ibrahim and Jaish-e-Mohammad chief 
Maulana Masood Azhar staying in Pakistan. . To defuse 
the tension between India and Pakistan, Secretary of State 
of the USA, Condoleeza Rice visited Indian subcontinent. 
Ultimately USA succeeded in defusing the tension. 

3.27 Is China a third party in J&K conflict? 
Indian stand on the question is contradictory, ambiguous 
and unclear and neutrosophic in nature. India strongly ob-
jected the border agreement between Pakistan and China 
signed in 1963 by which China gained 2700 square miles 
of the Pakistan occupied Kashmir. Based on the Simla 
Agreement 1972 between India and Pakistan, India strong-
ly is of the opinion that J&K problem is a bilateral dispute. 
Third party involvement is not welcomed by India to re-
solve the issue. However, Pakistan wants that China would 
play a definite role to resolve the J&K conflict. China 
adopts a neutral role as seen in the Kargil conflict in 1999.  
So, depending upon Simla Agreement, Indian point of 
view and present status, J&K conflict is considered as a bi-
lateral problem between India and Pakistan. 

3.28 Internal development in Indian administered J&K 
Special status was conferred on J&K under Article 370 of 
Indian Constitution [80]. Constituent Assembly was 
elected by J&K on 31 October, 1951. The accession of 
J&K to India was ratified by the State’s Constituent As-
sembly in 1954. The Constituent Assembly also ratified the 
Maharaja’s accession of 1947 in 17 November 1956. In 
1956, the category of part B was abolished and J&K was 
included as one of the States of India under article 1. On 
January 26, 1957 Constituent Assembly dissolves itself.  
On 30 March 1965, article 249 of Indian Constitution ex-
tended to J&K whereby the Central Government at New 
Delhi could legislate on any matter enumerated in state list. 
Designation like Prime Minister and Sarder-i-Riyasat are 
replaced by Chief Minster and Governor respectively. In 
1964, decision to extend Articles 356 and 357 of the Union 
Constitution of India to J&K announced.  On 12 February 
1975, Chief Minister Abdullah signed Kashmir Accord 
that affirmed its status as a constituent unit of the India and 
the State J&K will be governed by Article 370 of the Con-
stitution of India.  

3.29 Development of Pakistan administered 
Jammu and Kashmir  
Azad Kashmir was established on 24 October 1947. The 
UNCIP resolution depicts the status of Azad Kashmir as  
neither a sovereign state nor a province of Pakistan, but 
rather a "local authority" with responsibility over the area 
assigned to it under the ceasefire agreement. The "local 
authority" or the provisional government of  Azad Kashmir  
had handed over matters related to defense, foreign affairs, 
negotiations with the UNCIP and coordination of all affairs 
relating to Gilgit and Baltistan to Pakistan under the 
Karachi Agreement [81] of April 28, 1949.  
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 Zulfiqar Ali Bhutto’s government virtually annexed the 
POK by promulgating the Azad Jammu and Kashmir Act 
of 1974. Azad Kashmir adopts Islam as the state religion 
vide Article 3. The constitution prohibits activities 
prejudicial or detrimental to the ideology of the State's 
accession to Pakistan (Article 7). It disqualifies non-
Muslims from election to the Presidency and prescribed in 
the oath of office the pledge 'to remain loyal to the country 
and the cause of accession of the State of Jammu and 
Kashmir to Pakistan'. It provides two executive forums, 
namely the Azad Kashmir government in Muzaffarabad 
and the Azad Kashmir council in Islamabad. The Pakistan 
government can dismiss any elected government in Azad 
Kasmir irrespective of the support it may enjoy in the Azad 
Kasmir Legislative Assembly [82] by applying the Section 
56 of the constitution,. The Northern Areas have the status 
of a Federally Administered Area.  

3.30 The Indo-Pak conflict over Jammu 
and Kashmir 
The conflict was based on the neutrosophic explanation 
and understanding of the neutrosophic situation in India 
and Pakistan. From Pakistani point of view, she hoped 
J&K was going to accede to Pakistan as the majority of the 
population being Muslims. If Junagadh, despite its Muslim 
rulers’ accession to Pakistan, belonged to India because of 
its Hindu majority, then Kashmir surely belonged to Pakis-
tan. Princely state Hydrabad became Independent on 15 
August 1947 like J&K. But India invaded it because of 
Hindu majority.  Pakistan regarded the Accession of J&K 
as a coerced attempt to force the hand of Maharaja. Popu-
lar outbursts took place but J&K had acceded to India, be-
cause the ruler was a Hindu. From Indian point of view, 
J&K had acceded to her.  Armed Pakistani raiders having 
Pakistani complicity and support invaded some portion of 
J&K. Both the countries failed to implement the UN reso-
lutions. The plebiscite has never been held. India viewed 
that that the time has changed. India strongly argues that 
legislative measures subsequently legitimized the question 
of accession. After Simla Agreement, J&K problem be-
came bilateral issue and its solution should be based on 
Simla Agreement 1972.  

4 Neutrosophic game theoretic model formulation 
of the Indo-Pak conflict over Jammu and Kashmir 

Following the above discussion and based on Simla 
Agreement 1972 , game theoretic model  is formulated. 
The problem is modeled as a standard two person (2×2) 
zero-sum game. 

 
 
 
 
 

Table 1: Payoff matrix  
                                                    Pakistan  
                                         I            II 

                         I 1 -1
                       II 0 -1
India                III 0 -1 
                       IV 1 0

 
Pakistan strategy vector: 
i) Full compliance with Simla Agreement 1972,  
ii)  Partial or non-compliance with Simla agreement 1972 
India’s strategy vector: 
i) Make territorial concessions, 
ii) Accept the third party mediation ( USA),  
iii) Apply the strategy of all-out military campaign,  
iv) Continue fencing along the LOC (see Fig. 1). 

 
 
Fig.1 Photograph of fence along LOC 

The above payoff matrix has been constructed with 
reference to the row player i.e. India. In the process of 
formulating the payoff matrix, it is assumed that the  
combination (I, I) will hopefully resolve the conflict while 
the combination (IV, II) will basically imply a status quo 
with continuing conflict. If Pakistan can get India to either 
make territorial concessions (Muslims dominated Kashmir 
valley or other important stragic areas of J&K such Kargil) 
or accept the third party mediation  like USA without fully 
complying with the Simla Agreement i.e. strategy 
combinations (I, II) and (II, II), then it reflects that 
Pakistan will be benefited but India will be loser.  If India 
accepts the third party mediation and Pakistan agrees to 
comply fully with the Simla Agreement, then though it 
potentially ends the conflict, there should be a political 
jeopardy in India as a result of lack of strategic and 
political concensus among the political parties  and so the 
strategy combination (II, I) is not a favorable payoff for 
India. If India employs an all-out military campaign, an 
devastating war seems to occur as both the countries are 
capable of using nuclear powers i.e. strategy combination 
(III, I) would not produce  a positive payoff for either side.  
If there occurs a unexpected  and sudden change of mind 
set up for J&K within the Pakistani leaderships (from 
inside or outside pressure) and Pakistan chooses to fully 
abide by the Simla Agreement 1972 considering LOC as 
the permanent international border i.e. strategy 
combination (IV, I) will bring a potential end to the 
conflict as both countries may think that they will be loser  
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and winner at the same time (neutrosophically true) in the 
sense that  they will not get the whole J&K but Pakistan 
can cansole her saying that she has gained one third of 
J&K while India may think she gained two third of J&K.  
In the payoff matrix (see Table 1), all the elements of the 
first, second and third rows are less than or equal to the 
corresponding elements of the forth row, therefore from 
the game theory  [83] point of view, forth row dominates 
the first three rows. On the other hand, every element of 
the first column is greater than the corresponding elements 
of the second column, therefore, first column is dominated 
by second column.  It shows that the above game has a 
saddle point having the strategy combination (IV, II), 
which reflects that in their very attempt to out-bargain each 
other both countries actually end up continuing the conflict 
indefinitely! Thus the model model offers an equilibrium 
solution.  
In the subcontinent political arena, Pakistani leadership’s 
best interest was to transform the conflict more complex 
and keep the conflict more alive with full strenght to gain 
political support from inside and outside  and ultimately 
compelled India to make territorial or other concessions. 
However, for international pressure mainly from USA, 
Pakistan had to state some overt declaration that negotiated 
settlement over J&K based on Simla Agreement 1972 is 
possible. However, Pakistan covertly continues her sincere 
help to separatist groups by means of monetary, logical, 
psychological and military equipments. By doing so 
Pakistan is now in deep troubal with various militant 
groups and Jihadi groups. She has to deal internal security 
probles caused by Pakistani Taliban groups. Under such 
volatile circumstances, it would be quite impossible for 
Pakistan to chalk out a distinct governing strategy to meet 
with counter strategy. 
Both the countries, in general, played their games under 
international pressure. Although Pakistan signed Lahore 
declaration with India by the then Prime Minister Nawaj 
Sarif, Pakistani military boss Mr. Musharraf occupied 
some heights of Kargil in 1999 to derail the peace process 
and draw international attention to the J&K conflict. An 
important lesson of the Kargil conflict seems to be that no 
military expedition could be a success if it is pursued 
without paying to serious attention to the totality of the 
scenarios having domestic, political, economic, 
geographical, international opinions and sensitivities.  
Another important of Kargil conflict seems that national 
community does not want to military solution relating to 
J&K problem.  However, one positive aspect of the Lahore 
declaration reflects that both the countries are capable of 
transforming the game scenario an open one in the sense 
that the conflicting countries are capable of dynamically 
constructing and formulating objectives and strategies in 
the course of their peaceful, mutual interaction within a 
formally defined socio- political set up.  
During the Agra summit in 2001, when probably President 
Musharraf was thinking to make the conflict very alive 
while offering the impression to the other side (India) that 

they were wholeheartedly seeking strategies to put an end 
the conflict. President Musharraf played very clever and 
diplomatic role by using the media very cautiously and 
cleverly to make the international community and his 
country understand that he tries his level best to reach a 
meaningful, desicive and effective agreement but fails due 
to Indian rigid position regarding J&K issue. He left Agra 
and thereby tried to obtain his acceptance to his own nation 
and international community. This immediately shows why 
such a negotiation would break down at early stage.        
 The government of India and Pakistan are dealing with 
militancy and terrorism in own land. But main issue 
remains the J&K conflict.  

4.1 Case for applying neutrosophic game theory 
It is experienced that none of the strategy vectors available 
to either side will remain temporarily stationary because 
crucial events come into light on the global political arena, 
in general, and the south Asian subcontinent in particular. 
Moreover, there is a broad variety of ambiguities about the 
motives behind Pakistan authority’s primary goals about 
the driving force  behind Pakistan authority’s primary goal 
and the strategies it adopts to achieve that goal.    
Pakistan’s principal ally USA is also a great factor. The 
influence of USA has a great impact on forming strategies.  
The terrorist activities by Pakistan baked terrorist groups 
are sometimes monitored by the wishes of USA. Although 
Pakistan has not hundred percent control over foreign 
mercenaries coming from different part of world namely, 
Saudi Arabia, Afghanistan, Chechnia, Sudan etc. Pakistan 
is constantly trying to bring India under pressure by 
harboring terrorist attacks on Indian ruled Kashmir and 
destabilizing the normalcy in the state in order to 
understand the international community that international 
intervention is requierd to resolve the J&K conflict. It is 
also difficult to state apart a true bargaining strategy from 
one just meant to be a political decay. In the horizon of 
continuous conflict, we believe and advocate an 
application of the conceptual framework of the 
neutrosophic game theory as a generalization of the 
dynamic fuzzy game paradigm.   

It generalized terms, a well-specified dynamic game at a 
particular time t is a particular interaction between decision 
makers with well-defined rules and regulations and roles 
for the decision makers, which remain in place at time t but 
are free to change over time. However, it is likely that the 
decision makers may suffer from the role of ambiguity i.e. 
a typical situation where none of the decision makers are 
exactly sure what to expect from others or what the other 
decision makers expect from them. In the context of indo-
Pak continuing conflict, for example, Pakistan leadership 
would probably not have been sure of its role when Mr. 
Musharraf  met with Indian prime minister Atal Behari 
Vajpayee at the Agra summit to chalk out a peace 
agreement. Mr. Musharuff went to that summit under the 
international pressure or to prove himself to be an efficient 
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leader of Pakistan or against his free will and would have 
liked to avoid Agra if he could because he did not want to 
sign any final agreement on J&K which can be against 
common  feeling of people of Pakistan. Mushauff 
demanded for declaration of J&K to be a disputed territory 
at least. Having no such capitulation forthcoming from 
India, Musharuff left Agra without signing any joint 
statement.       
In this political context, Pakistani leadership’s best interest 
was to keep the conflict alive with full strength ultimately 
compelled India to make territorial or other concession. 
However, for international pressure mainly from USA, 
Pakistan had to offer some overt declaration that 
negotiated settlement over Jammu and Kashmir based on 
Simla Agreement 1972 is possible. Pakistan covertly 
continues her sincere help separatist groups by means of 
monetary, logical, psychological and military equipments. 
Under such volatile circumstances, it would be quite 
impossible to chalk out a distinct governing strategy to 
meet with counter strategy. 
However, both the countries, in general, played their 
games under international pressure. Although Pakistan 
signed Lahore declaration with India by the then Prime 
Minister Nawaj Sarif, Pakistani military boss Mr. 
Musharraf occupied some heights of Kargil in 1999 to 
derail the peace process. An important lesson of the Kargil 
conflict seems to be that no military expedition could be a 
success if it is pursued without paying to serious attention 
to the totality of the scenario having domestic, political, 
economic, geographical, international opinions and 
sensitivities.  Another important of Kargil conflict seems 
that national community does not want to military solution 
relating to Kashmir problem.  However, one positive 
aspect about Lahore declaration or Indo-Pak joint 
declaration indicates they transform the game scenario an 
open one in the sense that the conflicting parties are 
capable of dynamically constructing and formulating 
objectives and strategies in the course of their peaceful, 
mutual interaction within a formally defined socio- 
political set up. 
Thus, the negotiation space may be represented as: 
 NPakistan ∩ NIndia . 
According to the opinion of Burns and Rowzkowska [84] 
each players personal views constitute a deal. The fuzzy 
semantic space comprises of such deals i.e. personal views. 
Personal value judgments, acquired experiences and 
expectations about the possible best or worst outcomes 
from a negotiation are crucial to constitute such views. The 
fuzzy semantic space is a dynamical system and is free to 
modify according to the need and desire of the players and 
practical situations in the light of new information.     
The semantic space however remains fuzzy owing to 
vagueness about the exact objectives and lack of precise 
understanding of the exact stand, which the opponent 
parties have from their viewpoints. That is why none of the 

conflicting parties can effectively read and precisely 
understand each other’s nature of expectations.      
This was reflected in Agra summit when probably 
Musharraf (Pakistan) was thinking in terms of keeping the 
conflict alive while offering the impression to the other 
side (India) that they were wholeheartedly seeking 
strategies to put an end the conflict. Mr. Musharraf played 
very diplomatic role by using the media very cautiously 
and cleverly to make the international community and his 
country understand he tried his level best to reach a fruitful 
agreement but failed and left at midnight and thereby tried 
to obtain his acceptance to his own nation and international 
community. This immediately comes to light why such a 
negotiation would break down at early stage.        
If the Indo-Pak conflict over Jammu and Kashmir is 
constituted as fuzzy dynamic fuzzy bargaining game, the 
players’ fuzzy set judgment functions over expected 
outcomes can be formulated as follows according to the 
rules of well-developed fuzzy set theory due to Zadeh [85] 
For Pakistan, the fuzzy evaluative judgment function at 
time t, ( ) tP,  Jμ  (P, t) will be represented by fuzzy set 
membership function as follows:   

( )

( )

Ο<for x ,0
Ο=for x,5.0

Ο<x<Οfor ,1,5.0∈
=μ

Worst

Worst

BestWorst

t,ΡJ

Here, the symbol BestΟ indicates the best possible outcome 
that Pakistan would expect; which would probably the 
annexation of Jammu-Kashmir to Pakistan according to the 
two-nation theory of Muslim League. Similarly, WorstΟ  
indicates probably the conversion of LOC as the 
permanent international borderline. 
On the other hand, for India the fuzzy evaluative judgment 
function at time t, J (I, t) will be represented by the fuzzy 
set membership function  ( ) t,Ι  Jμ  as follows:  

( )
( )

Worst

Worst

BestWorst

Best
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Θ≤y for ,0
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Here WorstΘ  indicates the worst possible negotiation 
outcome India could expect, which would be coincidence 
with the best-expected outcome for Pakistan.  
It is to be noted that semantic space NPakistan ∩ NIndia is 
more generally framed as a neutrosophic semantic space, 
which considers a three-way generalization of the fuzzy 
semantic space. Since neutrosophic semantic space 
comprises of neutral possibility, it cannot be defuzzified 
into two crisp zero-one states owing to the incorporation of 
an intervening state of “indeterminacy”.  Such 
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indeterminacy would be practically encountered due to the 
fact any mediated, two-way negotiation process is likely to 
become over catalyst by the subjective utility preferences 
of the mediator. 
Let T, I, F represent real subsets of the real standard unit 
interval [0,1]. Statically, T, I, F are subsets while 
dynamically, in the context of a dynamic game, they may 
be considered as set-valued vector functions. If a logical 
proposition is said to be  t % true in T, i % indeterminate in 
I and f % false  in F, then T, I, F are considered as the 
neutrosophic components.  According to Smarandache [7] 
neutrosophic probability is useful to events that are 
shrouded in a veil of indeterminacy like the actual implied 
volatile of long-term options.  Bhattacharya et al.y applied 
the concept of neutrosophic probability in order to  
formulate neutrosophic game theretic model [86] to Israel 
–Palestine conflict. It is worthy of mention that the 
proposed approach uses a subset-approximation for truth-
values, indeterminacy and falsity-values. It is capable of 
providing a better approximation than classical probability 
to uncertain events.     
Therefore, the neutrosophic evaluative function for 
Pakistan at time t, JN(P, t) will be represented by the 
neutrosophic set membership function ( )( )xμ  t,ΡNJ  as 
follows:  
 

( )( )xμ  t,ΡNJ = 
T∈x,O<xfor,0
T∈x,O=xfor,5.

T∈x,O<x<Ofor),1,5(.

Worst

Worst

BestWorst
 

 
     

  
On the other hand, the neutrosophic evaluative judgment 
function for India at time t,  JN(I, t) will be represented by 
the neutrosophic set membership function  ( ) ( )yμ t,ΙNJ as 
follows:  

( ) ( )yμ t,ΙNJ =  
 
 ( )

F∈y ,Θ≤y for ,0
F∈y ,Θ=yfor ,5.0

F∈y ,Θ<y<Θfor ,1,5.0∈
F∈y ,Θ≥yfor ,1
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Worst

BestWorst
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Relying on three-way classification of neutrosophic 
semantic space, it is t %true in sub-space that bilateral 
negotiation will produce a favourable outcome within the 
evaluative judgment space of the Pakistan while it is f % 
false in the sub-space F that the outcome will be favorable 
within the evaluative judgment space of the Pakistan. 
However, there is an i % indeterminacy in sub-space I 
whereby the nature of the outcome may be neither 
favorable nor unfavorable within the evaluative judgment 
space of either competitor.  

5 Conclusion    
We have discussed the crisis dynamics of the continuing 
Indo-Pak conflict over J&K. we have briefly examined the 
efforts made by various study groups and persons and 

India and Pakistan in resolving the conflict and the reasons 
for their failure. We have looked the Indo-Pak relations 
and recent developments and their views on J&K situations. 
Alternative possible solutions are also considered. Most of 
the solutions are either impractical or unacceptable to India, 
Pakistan, and or the various militant groups. Pro Pakistani 
militant groups and Pakistan would opt for free and 
impartial plebiscite. Even some militant groups would 
oppose the plebiscite because the UNSC resolutions do not 
offer them the very option of independence. In the process 
of formulating the payoff matrix for game theory model, 
the combination (I, I) will hopefully resolve the conflict i.e. 
maintaining the status quo along the LOC with some 
border adjustments favorable to Pakistan. Otherwise, the 
the proposed model offers the solution wich state that both 
the countries will continue the conflict indefinitely. The 
application of game theoretic method to the ongoing Indo-
Pak conflict over J&K is based on identifying and 
evaluating the best options that each side has and is trying 
to achieve chosen options. The Simla Agreement 1972 is 
used as an instance with Pakistan being left to choose 
between two mutually exclusive options.  
 The solution reflects the real facts that Pakistan does not 
want to ever agree to have full compliance with the Simla 
Agreement 1972, as she will see always herself worse off 
that way. Realizing that Pakistan will never actually 
comply with Simla Agreement 1972, India will find her 
best interest to continue the status quo with an ongoing 
conflict, as she will see herself ending up on the worse end 
of the bargaining if she chooses to apply any other strategy.  
It is experienced that none of the strategy vectors available 
to either side will remain temporally stationary due to 
action and reaction of militant groups and Indain securty 
forces in J&K. Moreover, there exists a broad variety of 
ambiguities concerning primary goals of the two countries 
and the strategies they adopt to achieve those goals.  
Due to the impact of globalization, people have to interact 
with people from other countries. In the days of cross-
border strategic alliances and emphasis on various groups, 
it would really be tragic if other nations remain standstill 
or ignore the conflict. The government of India fails to 
solve its own problems of northeast states such as 
Nagaland, Assam, Mizoram, and Arunachal Pradesh. On 
the other hand, Pakistan is constantly facing with the 
myriad problems of democracy and absence of it. Pakistan 
fails to curve insurgencies in Balochistan, the largest 
province of Pakistan having resource of natural gas and 
mineral and sparsely populated. We have discussed the 
development of the Jammu and Kashmir conflict. We have 
examined the various efforts by Indo-Pak and other 
countries to resolve the grave conflict. The effect of 
nuclear power acquisition by both the countries,9/11 terror 
attack on USA and USA and its allies invasion in Iraq. The 
most beneficiary party of Jammu and Kashmir conflict is 
the republic of China. It invaded about 38000 square 
kilometers territory from Indian ruled Jammu and Kashmir 
in 1962 war and later Pakistan ceded 5180 square 
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kilometers areas to Beijing under a 1963 pact. The ongoing 
conflict between and Pakistan reflects the fact that both the 
countries are incapable of solving J&K conflict and other 
core issues. At the international level, third party 
arrangements can be established with the participation of 
an intervening state, group of states, or international 
organizations in order to play a crucial role in helping to 
overcome a strategic impasse. The question remains 
whether India and Pakistan would accept third party 
mediation. Limits on international direct intervention in the 
J&K grave conflict have historically had to do with India’s 
insistence that the 1972 Simla   Agreement between India 
and Pakistan is sufficient to deal with the issue bilaterally. 
It is to noted that when well conceived and pragmatic, 
India has come to appreciate mediation by international 
third party specially USA mediation in Kargil crisis in 
1999 and 2001-2002 mobilization crisis. 

( )( )xμ  t,ΡNJ or ( )( )yμ t,ΙNJ  would be interpreted as Pakistan’s 
(or India’s) degree of satisfaction with the negotiation 
based settlement. It is likely that Pakistan authority’s 
ultimate objective is to annex J&K and if that is the case 
then of course there will always be an unbridgeable 
incongruence between  ( )( )xμ  t,ΡNJ  and ( )( )yμ t,ΙNJ due to 
mutually inconsistent evaluative judgment spaces between 
India and Pakistan to the conflict. Therefore, for any form 
of negotiation  in order to produce a positive result, the 
first and foremost requirement should be to make the 
evaluative judgment spaces consistent. On the other hand, 
if the evaluative judgment spaces are inconsistent, the 
negotiation space will generate into a null set at the very 
onset of the bargaining process, thereby pre-empting any 
equilibrium solution different from the status quo. Since 
these spaces are not crisp, according to Reiter [87] they are 
malleable to some extent. Therefore, even while retaining 
their core forms, subtle changes could be induced for 
making these spaces workably consistent. Then the goal of 
the mediator should  be such that it will allow India and 
Pakistan to redefine their primary objectives without 
necessarily feeling that such redefinition itself reflects a 
concession. When this type of redefinition of primary 
objectives has been achieved, the evaluative judgment 
spaces generate a negotiation space that will not become 
null ab initio. However, it should be mentioned that there 
exists also an indeterminate aspect to any process of 
mediated bilateral dialogues between the two countries 
becasue of the catalyzation effect brought about the 
subjective utility preferences of the mediator. 
We build on an earlier attempted justification of a game 
theoretic explanation of the Indo-Pak conflict over J&K by 
Pramanik and Roy [6] and go on to argue in favor of a 
neutrosophic adaptation of the standard 2x2 zero-sum 
game theoretic model in order to identify an optimal 
outcome. We hope that the concept of the interval 
neutrosophic set [88] can be used to formulate interval 
neutrosophic game theoretic model of the Indo-Pak 
conflict in more general way. From ancient period J&K 

was a place of religious center and different people with 
their different faiths live together peacefully. But, poeple 
of J&K are at present neutrosophically divided in the 
question of independent of J&K. The disintegration of 
India based on two nation theory does not provide any 
good for the people of Indian subcontinent. So people of 
Indian subcontinent can neutrosophically hope that India 
and Pakisatn will rethink their decision of partition based 
on vaguely defined two nation theory. Rather India and 
Pakistancan form a union of indepent states by considering 
their origin, culteral heristage, common interest, blood 
relation. If East Germany and West Germany  are able to 
get united,  why not the subcontinent? According to 
neutrosophy nothing is impossible. So according to 
neutrosophy, the resolution of J&K is neutrosophically 
possible.  The present paper provides the conceptual 
framework of neutrosophic game theroetic model of the 
complex J&K conflict hoping that neotrosophic linear 
programming will be able to solve the problem in near 
future. 
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Abstract. In this paper we investigate multi-attribute decision 
making problem with single-valued neutrosophic attribute values. 
Crisp values are inadequate to model real life situation due to 
imprecise information frequently used in decision making       
process. Neutrosophic set is one such tool that can handle these 
situations.  The rating of all alternatives is expressed with       
single-valued neutrosophic set which is characterised by       
truth-membership degree, indeterminacy-membership degree, 
and falsity-membership degree. Weight of each attribute is  
completely unknown to decision maker. We extend the grey    

relational analysis method to neutrosophic environment and 
apply it to multi-attribute decision making problem. Information 
entropy method is used to determine the unknown attribute 
weights. Neutrosophic grey relational coefficient is determined 
by using Hamming distance between each alternative to ideal 
neutrosophic estimates reliability solution and the ideal  
neutrosophic estimates un-reliability solution. Then neutrosophic 
relational degree is defined to determine the ranking order of all 
alternatives. Finally, an example is provided to illustrate the 
application of the proposed method. 

Keywords: Neutrosophic set; Single-valued neutrosophic set; Grey relational analysis; Information Entropy; Multi-attribute decision 
making. 

1 Introduction 
Multiple attribute decision making (MADM) problems in 
the area of operation research, management science,     
economics, systemic optimization, urban planning and 
many other fields have achieved very much attention to the 
researchers during the last several decades. It is often used 
to solve various decision making and/or selection problems. 
These problems generally consist of choosing the most    
desirable alternative that has the highest degree of          
satisfaction from a set of alternatives with respect to their 
attributes. In this approach, the decision makers have to 
provide qualitative and/ or quantitative assessments for   
determining the performance of each alternative with      
respect to each attribute, and the relative importance of 
evaluation attribute.  

In classical MADM methods, such as TOPSIS (Hwang & 
Yoon [1]), PROMETHEE (Brans et al. [2]), VIKOR (Op-
ricovic [3-4]), ELECTRE (Roy [5]) the weight of each at-
tributes and rating of each alternative are naturally     con-
sidered with crisp numbers. However, in real complex 
situation, decision maker may prefer to evaluate the         
attributes by using linguistic variables rather than exact 
values due to his time pressure, lack of knowledge and lack 
of information processing capabilities about the problem 
domain. In such situations, the preference information of 
alternatives provided by the decision maker may be vague, 
imprecise or incomplete.  Fuzzy set (Zadeh [6]) is one of 

such tool that utilizes this impreciseness in a mathematical 
form. MADM with imprecise information can be modelled 
quite well by using fuzzy set theory into the field of 
decision making. 

Bellman and Zadeh [7] first investigated decision making 
problem in fuzzy environment. Chen [8] extended one of 
known classical MADM method, technique for order 
preference by similarity to ideal solution (TOPSIS). He 
developed a methodology for solving multi-criteria 
decision making problems in fuzzy environment. Zeng [9] 
solved fuzzy MADM problem with known attribute weight 
by using expected value operator of fuzzy variables. 
However, fuzzy set can only focus on the membership 
grade of vague parameters or events. It fails to handle non-
membership degree and indeterminacy degree of imprecise 
parameters. 

Atanassov [10] introduced intuitionistic fuzzy set (IFS). It 
is characterized by the membership degree,   
non-membership degree simultaneously. Impreciseness of 
the objectives can be well expressed by using IFS than 
fuzzy sets (Atanassov [11]). Therefore it has gained more 
and more attention  to the researchers. Boran et.al [12] 
extended the TOPSIS method for multi-criteria 
intuitionistic decision making problem. Z.S. Xu[13] 
studied fuzzy multiple attribute decision making problems, 
in which all attribute values are given as intuitionistic 
fuzzy numbers and the preference information on 
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alternatives can be provided by the decision maker. Z. Xu 
[14] proposed a solving method for MADM problem with 
interval-valued intuitionistic fuzzy decision making by 
using distance measure.  

In IFSs, sum of membership degree and non-membership 
degree of a vague parameter is less than unity. Therefore, a 
certain amount of incomplete information or indeterminacy 
arises in an intuitionistic fuzzy set. It cannot handle all 
types of uncertainties successfully in different real physical 
problems such as problems involving incomplete             
information. Hence further generalizations of fuzzy as well 
as     intuitionistic fuzzy sets are required.  

Florentin Smarandache [15] introduced neutrosophic set 
(NS) and neutrosophic logic. It is actually generalization of 
different type of FSs and IFSs. The term “neutrosophy” 
means “knowledge of neutral thought”. This “neutral” 
concept makes the differences between NSs and other sets 
like FSs, IFSs.  Wang et al. [16] proposed single-valued 
neutrosophic set (SVNS) which is a sub-class of NSs. 
SVNS is characterized by truth membership degree (T), 
indeterminacy membership degree (I) and falsity         
membership degree (F) that are independent to each other. 
This is the key characteristic of NSs other than IFSs or 
fuzzy sets. 
Such formulation is helpful for modelling MADM with 
neutrosophic set information for the most general          
ambiguity cases, including paradox. The assessment of   
attribute values by the decision maker takes the form of 
single-valued neutrosophic set. Ye [17] studied multi-
criteria decision making problem under SVNS     
environment. He proposed a method for ranking of           
alternatives by using weighted correlation coefficient. Ye 
[18] also discussed single-valued neutrosophic cross       
entropy for multi-criteria decision making problems. He 
used similarity measure for interval valued neutrosophic 
set for solving multi-criteria decision making problems. 
Grey relational analysis (GRA) is widely used for MADM 
problems. Deng [19-20] developed the GRA method that is 
applied in various areas, such as economics, marketing, 
personal selection and agriculture. Zhang et al. [21]       
discussed GRA method for multi attribute decision making 
with interval numbers. An improved GRA method         
proposed by Rao & Singh [22] is applied for making a    
decision in manufacturing situations. Wei [23] studied the 
GRA method for intuitionistic fuzzy multi-criteria decision 
making. Therefore, it is necessary to pay attention to this 
issue for neutrosophic environment. 

 The aim of this paper is to extend the concept of GRA to 
develop a methodology for solving MADM problems with 
single valued neutrosophic set information. The              
information taken from expert’s opinion about attribute 
values takes the form of single valued neutrosophic set. It 
is assumed that the information about attribute weights is 

completely unknown to decision maker. Entropy method is 
used for determining the unknown attribute weights.  In 
this modified GRA method, the ideal neutrosophic 
estimates reliability solution and the ideal neutrosophic 
estimate un-reliability solution has been developed. 
Neutrosophic grey relational coefficient of each alternative 
is determined to rank the alternatives. 

 In order to do so, the remaining of this paper is organized 
as follows: Section 2 briefly introduce some preliminaries 
relating to neutrosophic set and the basics of single-valued 
neutrosophic set. In Section 3, Hamming distance between 
two single-valued neutrosophic sets is defined. Section 4 
represents the model of MADM with SVNSs and   
discussion about modified GRA method to solve MADM 
problems. In section 5, an illustrative example is provided 
to show the effectiveness of the proposed model. Finally, 
section 6 presents the concluding remarks. 

2 Preliminaries of Neutrosophic sets and Single 
valued neutrosophic set  
Neutrosophic set is a part of neutrosophy, which studies 
the origin, nature, and scope of neutralities, as well as their 
interactions with different ideational spectra (Smarandache 
[15]), and is a powerful general formal framework, which 
generalizes the above mentioned sets from philosophical 
point of view. Smarandache [15] gave the following 
definition of a neutrosophic set. 

2.1 Definition of neutrosophic set 

Definition 1 Let X be a space of points (objects) with 
generic element in X denoted by x. Then a neutrosophic set 
A in X is characterized by a truth membership function TA, 
an indeterminacy membership function IA and a falsity 
membership function FA. The functions TA, IA and FA are 
real standard or non-standard subsets of] 0-, 1+[ that is  
TA : X→ ]0-, 1+[ ; IA : X→ ]0-, 1+[;  FA : X→ ]0-, 1+[        

It should be noted that there is no restriction on the sum of 
TA(x), IA(x), FA(x) i.e.  0- ≤TA(x) + IA(x) +FA(x) ≤  3+     

Definition 2 The complement of a neutrosophic set A is 
denoted by cA and is defined by  

=)x(T cA
 )x(T}1{ A−+ ; )x(I}1{)x(I AcA

−= + ; 

)x(F}1{)x(F AcA
−= +

Definition 3 (Containment) A neutrosophic set A is 
contained in the other neutrosophic set B, A⊆ B if and 
only if the following result holds. 

)x(Tinf)x(Tinf BA ≤ , )x(Tsup)x(Tsup BA ≤    (1) 
)x(Iinf)x(Iinf BA ≥ , )x(Isup)x(Isup BA ≥     (2) 
)x(Finf)x(Finf BA ≥ , )x(Fsup)x(Fsup BA ≥     (3) 

for all x in X. 
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2.2 Some basics of single valued neutrosophic 
sets (SVNSs) 

In this section we provide some definitions, operations and 
properties about single valued neutrosophic sets due to 
Wang et al. [16]. It will be required to develop the rest of 
the paper.  

Definition 4 (Single-valued neutrosophic set). Let X be a 
universal space of points (objects), with a generic element 
of X denoted by x. A single-valued neutrosophic set 

X⊂~
N is characterized by a true membership 
function )x(T ~

N
, a falsity membership function )x(F ~

N
and 

an indeterminacy function )x(I ~
N

with )x(T ~
N

, )x(I ~
N

, 
∈)x(F~

N
 [0, 1] for all x in X.  

When X is continuous a SVNSs N
~

can be written as  

∫=
x

~~~ ,x)x(F),x(I),x(T
~

NNN
N .Xx∈∀  

and when X is discrete a  SVNSs N
~

can be written as 

∑ x/)x(F),x(I),x(T
~ m

1i
~~~

=
=

NNN
N , .Xx∈∀  

Actually, SVNS is an instance of neutrosophic set which 
can be used in real life situations like decision making, sci-
entific and engineering applications. In case of SVNS, the 
degree of the truth membership )x(T ~

N
, the indeterminacy 

membership )x(I ~
N

 and the falsity membership )x(F ~
N

values belong to [0, 1] instead of non standard unit inter-
val] 0-, 1+ [as in the case of ordinary neutrosophic sets. 
 It should be noted that for a SVNS N

~
, 

3≤)x(Fsup)x(Isup)x(Tsup≤0 ~~~
NNN

++ , .Xx∈∀        (4) 
and for a neutrosophic set, the following relation holds 

+
~~~

- 3≤)x(Fsup+)x(Isup+)x(Tsup≤0
NNN

, .Xx∈∀     (5)                                   
For example, suppose ten members of a political party will 
critically review their specific agenda. Five of them agree 
with this agenda, three of them disagree and rest of two 
members remain undecided. Then by neutrosophic notation 
it can be expressed as 3.0,2.0,5.0x . 

Definition 5 The complement of a neutrosophic set N
~

 is 
denoted by c~

N and is defined by 
=)x(T ~cN

 )x(F ~
N

; =)x(I ~cN
 1 )x(I ~

N
− ; =)x(F ~cN

)x(T ~
N

                    

Definition 6 A SVNS A
~
N  is contained in the other SVNS 

B
~
N , denoted as A

~
N  ⊆ B

~
N , if and only if 

)x(T≤)x(T
B

~
A

~
NN

; )x(I)x(I
B

~
A

~
NN

≥ ; )x(F≥)x(F
B

~
A

~
NN

.Xx∈∀  

Definition 7 Two single valued neutrosophic sets A
~
N  and 

B
~
N  are equal, i.e. A

~
N = B

~
N , if and only if A

~
N ⊆ B

~
N  and 

A
~
N ⊇ B

~
N . 

Definition 8 (Union) The union of two SVNSs A
~
N  and 

B
~
N  is a SVNS C

~
N , written as C

~
N = A

~
N ∪ B

~
N . Its truth 

membership, indeterminacy-membership and falsity mem-
bership functions are related to those of A

~
N  and B

~
N by 

))x(T),x(T(max=)x(T
B

~
A

~
C

~
NNN

;

))x(I),x(I(max=)x(I
B

~
A

~
C

~
NNN

; 

))x(F),x(F(min=)x(F
B

~
A

~
C

~
NNN

for all x in X. 

Definition 9 (Intersection) The intersection of two SVNSs 

A
~
N  and B

~
N  is a SVNS C

~
N , written as C

~
N = A

~
N ∩ B

~
N ,

whose truth membership, indeterminacy-membership and 
falsity membership functions are related to those of A

~
N

and B
~
N  by ))x(T),x(T(min=)x(T

B
~

A
~

C
~

NNN
; 

))x(I),x(I(min=)x(I
B

~
A

~
C

~
NNN

; 

))x(F),x(F(max=)x(F
B

~
A

~
C

~
NNN

for all x in X. 

3 Distance between two neutrosophic sets. 

Similar to fuzzy or intuitionistic fuzzy set, the general 
SVNS having the following pattern 

}.∈x:))x(F),x(I),x(T/(x{(
~

~~~ X
NNN

N =  For finite SVNSs 
can be represented by the ordered tetrads:  

))}x(F),x(I),x(T/(x...,

)),x(F),x(I),x(T/(x{(
~

m~m~m~m

1~1~1~1

NNN

NNN
N =

, X∈x∀

Definition 10 Let 

))}x(F),x(I),x(T/(x...,

)),x(F),x(I),x(T/(x{(
~

nA
~nA

~nA
~n

1A
~1A

~1A
~1A

NNN

NNN
N =

 and 
))}x(F),x(I),x(T/(x...,

)),x(F),x(I),x(T/(x{(
~

nB
~nB

~nB
~n

1B
~1B

~1B
~1B

NNN

NNN
N =

  (6) 

be two single-valued neutrosophic sets (SVNSs) in X= {x1, 
x2,…, xn).  
Then the Hamming distance between two SVNSs A

~
N and 

B
~
N is defined as follows: 

∑
)x(F)x(F

)x(I)x(I)x(T)x(T
d

n

1i
1B

~1A
~

1B
~1A

~1B
~1A

~

B,A~
~~

=

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

−+

−+−
=⎟

⎠
⎞

⎜
⎝
⎛

NN

NNNN

N
NN  (7) 

and normalized Hamming distance between two SVNSs 

A
~
N and B

~
N is defined as follows:
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{ }∑ )x(F)x(F)x(I)x(I)x(T)x(T
n3
1

d

n

1i
1B

~1A
~1B

~1A
~1B

~1A
~

B,A~
N

~~

=
−+−+−

=⎟
⎠
⎞

⎜
⎝
⎛

NNNNNN

N
NN

 (8) 
with the following two properties 

1. ( ) n3≤~~
d≤0 B,A~ NN
N

   (9) 

2. ( ) 1≤~~
d≤0 B,A~

N NN
N

 (10) 

  Proof: The proofs are obvious from the basic definition 
of SVNS. 

4 GRA method for multiple attribute decision 
making problem with single valued neutrosophic 
information 

Consider a multi-attribute decision making problem with m 
alternatives and n attributes. Let A1, A2, ..., Am and C1, 
C2, ..., Cn denote the alternatives and attributes respectively. 
The rating describes the performance of alternative Ai 
against attribute Cj. For MADM weight vector W = {w1, 
w2,...,wn} is assigned to the attributes. The weight 0w j >
( j = 1, 2, ..., n) reflects the relative importance of attributes 
Cj  ( j = 1, 2, ..., m) to the decision making process. The 
weights of the attributes are usually determined on     
subjective basis. They represent the opinion of a single  
decision maker or synthesize the opinions of a group of 
experts using a group decision technique, as well. The   
values associated with the alternatives for MADM      
problems presented in the decision table.  

 Table 1 Decision table of attribute values 

 C1        C2        ...      Cn 

 
nmijdD

×
= =   

m

2

1

A

.

.

A

A

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

mn2m1m

n22221

n11211

d...dd

............

............

d...dd

d...dd

    (11) 

GRA is one of the derived evaluation methods for MADM 
based on the concept of grey relational space. The main 
procedure of GRA method is firstly translating the  
performance of all alternatives into a comparability  
sequence. This step is called data pre-processing.   
According to these sequences, a reference sequence (ideal 
target sequence) is defined. Then, the grey relational 
coefficient between all comparability sequences and the 
reference sequence for different values of distinguishing 
coefficient are calculated. Finally, based on these grey re-

lational coefficients, the grey relational degree between the 
reference sequence and every comparability sequences is 
calculated. If an alternative gets the highest grey relational 
grade with the reference sequence, it means that the 
comparability sequence is most similar to the reference 
sequence and that alternative would be the best choice 
(Fung [24]). The steps of improved GRA under SVNS are 
described below: 

Step 1 Determine the most important criteria. 

Generally, there are many criteria or attributes in decision 
making problems where some of them are important and 
others may not be so important. So it is crucial, to select 
the proper criteria or attribute for decision making 
situations. The most important criteria may be chosen with 
help of experts’ opinions or by some others method that 
are technically sound. 

Step 2 Data pre-processing 

Assuming for a multiple attribute decision making problem 
having m alternatives and n attributes, the general form of 
decision matrix can be presented as shown in Table-1. It 
may be mentioned here that the original GRA method can 
effectively deal mainly with quantitative attributes. 
However, there exists some difficulty in the case of 
qualitative attributes. In the case of a qualitative attribute 
(i.e. quantitative value is not available); an assessment 
value is taken as SVNSs.  

Step 3 Construct the decision matrix with SVNSs 

For multi-attribute decision making problem, the rating of 
alternative Ai (i = 1, 2,…m ) with respect to attribute  Cj   
(j = 1, 2,…n) is assumed as SVNS. It can be represented 
with the following looks 

⎭
⎬
⎫

⎩
⎨
⎧

= C∈C:F,I,T
C,...,F,I,T

C,F,I,T
CA j

ininin

n

2i2i2i

2

1i1i1i

1
i . 

= CC:
F,I,T

C
j

ijijij

j ∈ for j = 1, 2,…, n.

Tij, Iij, Fij are the degrees of truth membership, degree of 
indeterminacy and degree of falsity membership of the 
alternative Ai satisfying the attribute Cj, respectively where 

1T0 ij ≤≤ , 1I0 ij ≤≤ , 1F0 ij ≤≤  and 3FIT0 ijijij ≤++≤ .  
The decision matrix can be taken in the form: 
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    Table 2 Decision table with SVNSs 

nmijijij~ F,I,TD
×

=
N

    C1     C2      Cn 

=

m

2

1

A

.

.

A

A

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

mnmnmn2m2m2m1m1m1m

n2n2n2222222212121

n1n1n1121212111111

F,I,T...F,I,TF,I,T

............

............

F,I,T...F,I,TF,I,T

F,I,T...F,I,TF,I,T

  (12) 

Step 4: Determine the weights of criteria. 

In the decision-making process, decision makers may often 
face with unknown attribute weights. It may happens that 
the importance of the decision makers are not equal. 
Therefore, we need to determine reasonable attribute 
weight for making a proper decision. Many methods are 
available to determine the unknown attribute weight in the 
literature such as maximizing deviation method (Wu and 
Chen [25]), entropy method ( Wei and Tang [26]; Xu and 
Hui [27]), optimization method (Wang and Zhang [28-29]) 
etc. In this paper, we propsoe information entropy method. 

4.1 Entropy method:  

Entropy has an important contribution for measuring 
uncertain information (Shannon [30-31]). Zadeh [32] 
introduced the fuzzy entropy for the first time. Similarly 
Bustince and Burrillo [33] introduced the intuitionistic 
fuzzy entropy. Szmidt and Kacprzyk [34] extended the 
axioms of De Luca and Termini’s [35] non-probabilistic 
entropy in the setting of fuzzy set theory into intuitionistic 
fuzzy information entropy. Vlachos and Sergiadis [36] also 
studied intuitionistic fuzzy information entropy. Majumder 
and Samanta [37] developed some similarity and entropy 
measures for SVNSs. The entropy measure can be used to 
determine the attributes weights when it is unequal and 
completely unknown to decision maker. Hwan and Yoon 
(1981) developed a method to determine the attribute 
weights based on information entropy.  

In this paper we propose an entropy method for 
determining attribute weight. According to Majumder and 
Samanta [37], the entropy measure of a SVNS 

)x(F),x(I),x(T 1A
~1A

~1A
~A

~
NNN

N =  is 

( )∑ −+−=
=

m

1i
i

C
A

~iA
~iA

~iA
~Ai )x(I)x(I)x(F)x(T

n
11)

~
(E

NNNN
N  (13) 

which has the following properties: 

1. 0)
~

(E Ai =N if A
~
N is a crisp set and 0)x(I iA

~ =
N

 

Xx∈∀ . 

2. 1)~(E Ai =N if 

5.0,5.0,5.0)x(F),x(I),x(T 1A
~1A

~1A
~ =

NNN
Xx∈∀ . 

3. )
~

(E)
~

(E BiAi NN ≥ if A
~
N is more uncertain than B

~
N i.e. 

)x(F)x(T)x(F)x(T 1B
~1B

~1A
~1A

~
NNNN

+≤+ and

)x(I)x(I)x(I)x(I icB
~iB

~icA
~iA

~
NNNN

−≤−

4. )
~

(E)
~

(E cAiAi NN = Xx∈∀ . 

In order to obtain the entropy value jE of the j-th attribute 
Cj ( j = 1, 2,…, n), equation (13) can be written as : 

( )∑ −+−=
=

m

1i
i

C
ijiijiijiijj )x(I)x(I)x(F)x(T

n
11E

for i = 1, 2,..,m;  j = 1, 2,…,n.
 

         (14)  
It is also noticed that ].1,0[E j ∈  Due to Hwang and Yoon 
[1], and Wang and Zhang [29]  the entropy weight of the j-
th attibute Cj is presented by 

∑ −

−
=

=

n

1j
j

j
j

)E1(

E1
w  (15) 

We get weight vector W= ( w1, w2,…,wn)T of attributes Cj 

(j = 1,2,…, n) with 0w j ≥ and 1w
n

1j
j =∑

=
 

Step 5. Determine the ideal neutrosophic estimates 
reliability solution (INERS) and the ideal neutrosophic 
estimates un-reliability solution (INEURS) for 
neutrosophic decision matrix.  
For a neutrosophic decision making matrix n×mij

~~ ]q[=D
NN

=
n×mijijij F,I,T , Tij, Iij, Fij are the degrees of membership, 

degree of indeterminacy and degree of non membership of 
the alternative Ai of A satisfying the attribute Cj of C. The 
neutrosophic estimate reliability estimation can be easily 
determined from the concept of SVNS cube proposed by 
Dezert [38]. 

Definition 11 From the neutrosophic cube, the 
membership grade represents the estimates reliability. The 
ideal neutrosophic estimates reliability solution (INERS) 

]q,...,q,q[Q
n

~
2

~
1

~~
++++ =
NNNN

 is a solution in which every 

component +
j

+
j

+
j

+
j~ F,I,T=q
N

, where },T{max=T iji

+
j

}I{minI ijij =
+ and }F{minF ijij =+ in the neutrosophic 

decision matrix
nmijijij~ F,I,TD
×

=
N

 for i = 1, 2, .., m;  j = 1, 

2, …, n. 
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Definition 12 Similarly, in the neutrosophic cube 
maximum un-reliability happens when the indeterminacy 
membership grade and the degree of falsity membership 
reaches maximum simultaneously. Therefore, the ideal 
neutrosophic estimates un-reliability solution (INEURS) 

]q,...,q,q[Q
n

~
2

~
1

~~
−−−− =
NNNN

can be taken as a solution in the 

form −−−− = jjjj~ F,I,Tq
N

, where },T{minT ijij =−

}I{max=I ijij and }F{maxF ijij =− in the neutrosophic 

decision matrix 
nmijijij~ F,I,TD
×

=
N

 for i = 1, 2,..,m;  j = 1, 

2,…,n. 

Step 6 Calculate neutrosophic grey relational 
coefficient of each alternative from INERS and 
INEURS. 

Grey relational coefficient of each alternative from INERS 
is: 

ij
ji

ij

ij
ji

ij
ji

ij maxmax

maxmaxminmin
++

++

+

Δρ+Δ

Δρ+Δ
=χ , where 

ij
+Δ = ( )ij~j~ q,qd

NN
+ , for i= 1, 2,…,m. and j=1, 2,…,n.       (16) 

Grey relational coefficient of each alternative from 
INEURS is: 

ij
ji

ij

ij
ji

ij
ji

ij maxmax

maxmaxminmin
−−

−−

−

Δρ+Δ

Δρ+Δ
=χ , where, ij

−Δ = 

( )−
j

~
ij

~ q,qd
NN

, for i= 1, 2,…,m. and j=1, 2,…,n.     (17) 

ρ ∈ [0, 1] is the distinguishable coefficient or the 
identification coefficient used to adjust the range of the 
comparison environment, and to control level of 
differences of the relation coefficients. When ρ =1, the 
comparison environment is unaltered; when ρ = 0, the 
comparison environment disappears. Smaller value of 
distinguishing coefficient will yield in large range of grey 
relational coefficient. Generally, ρ  = 0.5 is considered for 
decision- making situation. 

Step 7. Calculate of neutrosophic grey relational 
coefficient. 

Calculate the degree of neutrosophic grey relational 
coefficient of each alternative from INERS and INEURS 
using the following equation respectively: 

∑w
n

1j
ijji

=

++ χ=χ  (18) 

and ∑ χ=χ
=

−− n

1j
ijji w for i = 1, 2,…, m.       (19) 

Step 8. Calculate the neutrosophic relative relational 
degree. 
We calculate the neutrosophic relative relational degree of 
each alternative from ITFPIS with the help of following 
equations: 

−+

+

χ+χ
χ

=
ii

i
iR , for i = 1, 2,…, m.  (20) 

Step 9. Rank the alternatives. 

According to the relative relational degree, the ranking 
order of all alternatives can be determined. The highest 
value of Ri yields the most important alternative. 

5 . Illustrative Examples   

In this section, a multi-attribute decision-making problem 
is considered to demonstrate the application as well as the 
effectiveness of the proposed method. We consider the de-
cision-making problem adapted from Ye [39]. Suppose 
there is an investment company, which wants to invest a 
sum of money to the best one from these four possible 
alternatives (1) A1 is a car company; (2) A2 is a food 
company; (3) A3 is a computer company; and (4) A4 is an 
arms company. The investment company must take a 
decision according to the following three criteria: (1) C1 is 
the risk analysis; (2) C2 is the growth analysis; and (3) C3 
is the environmental impact analysis. Thus, when the four 
possible alternatives with respect to the above three criteria 
are evaluated by the expert, we can obtain the following 
single-valued neutrosophic decision matrix:       

34ijijij~ F,I,TD
×

=
N

= 
   C1      C2     C3 

4

3

2

1

A

A

A

A

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

2.0,3.0,4.02.0,1.0,6.01.0,0.0,7.0

2.0,3.0,5.03.0,2.0,5.03.0,2.0,3.0

2.0,2.0,5.02.0,1.0,6.02.0,1.0,6.0

5.0,2.0,2.03.0,2.0,4.03.0,2.0,4.0

 (21) 

Step1: Determine the weights of attribute 

Entropy value Ej of the j-th ( j = 1, 2, 3) attributes can be 
determined from SVN decision matrix 

N
~D (21) and 

equation (14) as: E1 = 0.50;  E2 = 0.2733 and E3 = 0.5467. 

Then the corresponding entropy weights w1, w2, w3 of all 
attributes according to equation (15) are obtained by w1 = 

0.2958; w2 = 0.4325 and w3 = 0.2697 such that 1w
3

1j
j =∑

=
.  

Step1: Determine the ideal neutrosophic estimates 
reliability solution (INERS): 
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⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

== ++++

}F{min},I{min},T{max

,}F{min},I{min},T{max,}F{min},I{min},T{max

]q,q,q[Q

3ii3ii3ii

2ii2ii2ii1ii1ii1ii

3
~

2
~

1
~~

NNNN

      

= [ ]2.0,2.0,5.0,2.0,1.0,6.0,1.0,0.0,7.0

Step 2: Determine the ideal neutrosophic estimates        
un-reliability solution (INEURS): 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

== −−−+

}F{max},I{max},T{min

,}F{max},I{max},T{min,}F{max},I{max},T{min

]q,q,q[Q

3ii3ii3ii

2ii2ii2ii1ii1ii1ii

3
~

2
~

1
~~

NNNN

   

= [ ]5.0,3.0,2.0,3.0,2.0,4.0,3.0,2.0,4.0

Step 3: Calculation of the neutrosophic grey relational co-
efficient of each alternative from INERS and INEURS. 

 By using Equation (16) the neutrosophic grey relational 
coefficient of each alternative from INERS can be obtained 

as: [ ]

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=χ
×

+

6666.00000.10000.1

8000.05714.03333.0

0000.10000.15714.0

4000.05000.03636.0

34ij  (22) 

Similarly, from Equation (17) the neutrosophic grey       
relational coefficient of each alternative from INEURS is 

[ ]

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=χ
×

−

4111.04667.03333.0

3684.07778.07778.0

3333.04667.04667.0

7778.00000.10000.1

34ij   (23) 

 Step 4: Determine the degree of neutrosophic grey   
relational co-efficient of each alternative from INERS and 
INEURS. The required neutrosophic grey relational          
co-efficient corresponding to INERS is obtained by using 
equations (18) as: 

43243.01 =χ+ ; 87245.02 =χ+ ; 56222.03 =χ+ ; 

91004.04 =χ+    (24)  

and corresponding to INEURS is obtained with the help of 
equation (19) as:  

9111.01 =χ− ; 4133.02 =χ− ; 6140.03 =χ− ; 

 3978.04 =χ−  (25) 

Step 5: Thus neutrosophic relative degree of each       
alternative from INERS can be obtained with the help of 
equation (20) as: R1= 0.31507; R2= 0.66949; R3= 0.54275 
and R4= 0.68835. 

Step 6: The ranking order of all alternatives can be 
determined according the value of neutrosophic relational 
degree i.e. 1324 RRRR >>> . It is seen that the highest 
value of neutrosophic relational degree is 4R therefore  
 A4 i.e. Arms Company is the best alternative for   
investment purpose. 

6 Conclusion 

In practical applications for MADM process, the  
assessments of all attributes are convenient to use the 
linguistic variables rather than numerical values. In most 
ambiguity cases, SVNS plays an important role to model 
MADM problem. In this paper, we study about SVNS 
based MADM in which all the attribute weight information 
is unknown. Entropy based modified GRA analysis 
method is proposed to solve this MADM problem.   
Neutrosophic grey relation coefficient is proposed for 
solving multiple attribute decision-making problems. 
Finally, an illustrative example is provided to show the 
feasibility of the developed approach. This proposed 
method can also be applied in the application of the 
multiple attribute decision-making with interval valued 
neutrosophic set and to other domains, such as decision 
making, pattern recognition, medical diagnosis and 
clustering analysis. 
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Abstract

   This book is a collection of eleven papers, written by different authors and co-authors (listed in the order of 
the papers): S. Alkhazaleh, E. Marei, S. Broumi, F. Smarandache, R. Sahin, A. A. Salama, V. Kroumov, 
K. Perez-Taruel , M. Leyva-Vazquez, A. A. A. Agboola, B. Davvaz,  W. B. V. Kandasamy, J. Ye, Q. Zhang, 
M. Ali, M. Shabir, M. Naz, S. Pramanik, T. K. Roy, P. Biswas and B. C. Giri.
    In first paper, the author proposed Mappings on Neutrosophic Soft Classes. On Neutrosophic 
Implications are proposed in the second paper. Hierarchical Clustering Algorithms are studied in third 
paper.  In fourth paper Neutrosophic Crisp Sets and Neutrosophic Crisp Topological Spaces are introduced. 
Similarly in fifth paper, Neutrosophic Logic for Mental Model Elicitation and Analysis is discussed. In paper 
six, On Neutrosophic Hypergroups and Neutrosophic Hyperrings are studied by the authors. Neutrosophic 
Lattices are given in seventh paper. Paper eight is about Single Valued Neutrosophic Similarity Measures for 
Multiple Attribute Decision Making. In the next paper Soft Neutrosophic Bigroups and Soft Neutrosophic 
N-groups are discussed.  In thenth paper, Neutrosophic Game Theoretic Approach to Indo-Pak Conflict 
over Jammu-Kashmir is proposed. The authors introduced Entropy Based Grey Relational Analysis Method 
for Multi-Attribute Decision Making under Single Valued Neutrosophic Assessments in the last paper.




