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Expanding Newton Mechanics with Neutrosophy and Quad-

stage Method ──New Newton Mechanics Taking Law of 

Conservation of Energy as Unique Source Law 

Fu Yuhua 
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Abstract. Neutrosophy is a new branch of philosophy, 

and "Quad-stage" (Four stages) is the expansion of 

Hegel’s triad thesis, antithesis, synthesis of development. 

Applying Neutrosophy and "Quad-stage" method, the 

purposes of this paper are expanding Newton Mechanics 

and making it become New Newton Mechanics (NNW) 

taking law of conservation of energy as unique source law. 

In this paper the examples show that in some cases other 

laws may be contradicted with the law of conservation of 

energy. The original Newton's three laws and the law of 

gravity, in principle can be derived by the law of 

conservation of energy. Through the example of free 

falling body, this paper derives the original Newton's 

second law by using the law of conservation of energy, 

and proves that there is not the contradiction between the 

original law of gravity and the law of conservation of 

energy; and through the example of a small ball rolls along 

the inclined plane (belonging to the problem cannot be 

solved by general relativity that a body is forced to move 

in flat space), derives improved Newton's second law and 

improved law of gravity by using law of conservation of 

energy. Whether or not other conservation laws (such as 

the law of conservation of momentum and the law of 

conservation of angular momentum) can be utilized, 

should be tested by law of conservation of energy. When 

the original Newton's second law is not correct, then the 

laws of conservation of momentum and angular 

momentum are no longer correct; therefore the general 

forms of improved law of conservation of momentum and 

improved law of conservation of angular momentum are 

presented. In the cases that law of conservation of energy 

cannot be used effectively, New Newton Mechanics will 

not exclude that according to other theories or accurate 

experiments to derive the laws or formulas to solve some 

specific problems. For example, with the help of the result 

of general relativity, the improved Newton's formula of 

universal gravitation can be derived, which can be used to 

solve the problem of advance of planetary perihelion and 

the problem of deflection of photon around the Sun. 

Again, according to accurate experimental result, the 

synthesized gravitational formula (including the effects of 

other celestial bodies and sunlight pressure) for the 

problem of deflection of photon around the Sun is 

presented. Unlike the original Newton Mechanics, in New 

Newton Mechanics, for different problems, may have 

different laws of motion, different formulas of gravity, as 

well as different expressions of energy. For example, for 

the problem of a small ball rolls along the inclined plane, 

and the problem of advance of planetary perihelion, the 

two formulas of gravity are completely different. 

Keywords: Neutrosophy, "Quad-stage" (Four stages), law of conservation of energy, unique source law, New Newton Mechanics

1 Introduction 

As a new branch of philosophy, Neutrosophy studies 

the origin, nature, and scope of neutralities, as well as their 

interactions with different ideational spectra. According to 

Neutrosophy that there is a 3D Neutrosophic Space, where 

each dimension of the space represents respectively the  

truth (T), the falsehood (F), and the indeterminacy (I) of 

the statement under consideration. More information about 

Neutrosophy may be found in references [1,2]. Quad-stage 

is introduced in reference [3], it is the expansion of Hegel’s 

triad-stage (triad thesis, antithesis, synthesis of 

development). The four stages are “general theses”, 

“general antitheses”, “the most important and the most 
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complicated universal relations”, and “general syntheses”. 

In quad-stage method, “general theses” may be considered 

as the notion or idea <A> in neutrosophy; “general 

antitheses” may be considered as the notion or idea <Anti-

A> in neutrosophy; “the most important and the most 

complicated universal relations” may be considered as the 

notion or idea <Neut-A> in neutrosophy; and “general 

syntheses” are the final results. The different kinds of 

results in the above mentioned four stages can also be 

classified and induced with the viewpoints of neutrosophy. 

Thus, the theory and achievement of neutrosophy can be 

applied as many as possible, and the method of quad-stage 

will be more effective. The combination of Neutrosophy 

and quad-stage will be a powerful method to realize many 

innovations in areas of science, technology, literature and 

art. Therefore, this paper expands Newton Mechanics with 

Neutrosophy and Quad-stage Method and creates New 

Newton Mechanics (NNW) taking law of conservation of 

energy as unique source law. 

One of the development trends of natural science is 

using fewer laws to solve increasing problems. In this 

process, according to the viewpoint of neutrosophy, some 

laws will play the increasingly great roles; some laws will 

play the smaller roles, or even disappear from the ranks of 

laws; and the middle ones will be improved and expanded 

to play the greater roles. 

As expanding Newton mechanics with neutrosophy 

and quad-stage, the whole process can be divided into the 

following four stages.  

The first stage (stage of “general theses”), for the 

beginning of development, the thesis (namely Newton 

mechanics) should be widely, deeply, carefully and 

repeatedly contacted, explored, analyzed, perfected and so 

on. 

Regarding the advantages of Newton mechanics, that 

will not be repeated here, while we should stress the 

deficiencies of Newton mechanics. 

As well-known, Newton mechanics cannot be used to 

solve the problem of advance of planetary perihelion and 

the problem of deflection of photon around the Sun. For 

other perspectives on Newton mechanics, we will discuss 

in detail below, in order to avoid duplication. 

The second stage, for the appearance of opposite 

(antithesis), the antithesis should be also widely, deeply, 

carefully and repeatedly contacted, explored, analyzed, 

perfected and so on. 

There are many opposites (antitheses) to Newton 

mechanics. For example: special and general theory of 

relativity, "theory of everything", law of conservation of 

energy, and so on, this paper focuses on the problems 

related to law of conservation of energy. 

The third stage is the one that the most important and 

the most complicated universal relations. The purpose of 

this provision stage is to establish the universal relations in 

the widest scope.  

To link and combine Newton mechanics with law of 

conservation of energy, as well as the brilliant 

achievements of modern science and technology, then 

Newton mechanics can be expanded and developed 

effectively and successfully in the maximum area. 

The fourth stage, to carry on the unification and 

synthesis regarding various opposites and the suitable 

pieces of information, factors, and so on; and reach one or 

more results to expand Newton mechanics which are the 

best or agreed with some conditions; this is the stage of 

“general syntheses”. 

Now we discuss the law of conservation of energy. Its 

main contents are as follows: In a closed system, the total 

energy of this system remains unchanged. 

Because the law of conservation of energy is the most 

important one in natural sciences, it should play an 

increasingly great role. For this reason and according to the 

principle of the uniqueness of truth, this paper presents the 

New Newton Mechanics (NNM) taking law of 

conservation of energy as unique source law with 

Neutrosophy and Quad-stage Method.  

In the area of Newton Mechanics, there should be one 

truth only. Other so-called truth, either it can be derived by 

the unique truth, or we can prove that in certain cases it is 

not true. As well-known, when Newton founded the 

classical mechanics, four laws were proposed, they were 

Newton's three laws and the law of gravity. If the law of 

conservation of energy is choosing as the unique source 

law, that in principle, all the Newton's four laws can be 

derived according to the law of conservation of energy; 

after studying carefully we found that this may indeed be 

the real case. In addition, in the areas such as physics, 

mechanics, engineering and so on, there are three very 

important laws: the law of conservation of energy, the law 

of conservation of momentum and the law of conservation 

of angular momentum. If we believe that the law of 

conservation of energy is the truth, then for the law of 

conservation of momentum and the law of conservation of 

angular momentum, either they can be derived by the law 

of conservation of energy, or we can prove that in certain 

cases they are not true. We believe that the true situation is 

the latter, namely, the law of conservation of momentum 

and the law of conservation of angular momentum are not 

true in some cases (or their results are contradicted to the 

law of conservation of energy). Of course, we can also find 

that in some cases, these two laws still can be used. Taking 

the example that a man walks along the car located on the 

horizontal smooth rail, we can see that at present in the 

area of Newton mechanics, some people do not notice the 

case of the contradiction between the law of conservation 

of energy and the law of conservation of momentum. 

2 New three laws of motion and new law of 
gravity (formula) created by law of conservation 
of energy for New Newton Mechanics  

4
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The original Newton's three laws of motion (partial 

theses) are as follows. 

Newton's First Law of Motion: Every object in a state of 

uniform motion (or at rest) tends to remain in that state 

of motion (or at rest) unless an external force is applied 

to it. For short: rest remains rest, and moving remains 

moving.  

Newton's Second Law of Motion: The relationship 

between an object's mass m, its acceleration a, and the 

applied force F is F = ma. The direction of the force is 

the same as the direction of the acceleration.   

Newton's Third Law of Motion: For every action there is 

an equal and opposite reaction.   

The original Newton’s law of gravity (partial theses): 

The attractive force between two objects is as follows 

2r

GMm
F      （1） 

While through the stage of “general antitheses” and the 

stage of “the most important and the most complicated 

universal relations”, for NNM, taking law of conservation 

of energy as unique source law, then we have the following 

NNM’s three laws of motion and law of gravity. 

NNM's First Law of Motion: Every object in a state of 

uniform motion (or in a state of uniform rotation, or at 

rest) tends to remain in that state of motion (or in a state 

of uniform rotation, or at rest) unless an external force is 

applied to it; otherwise the law of conservation of energy 

will be destroyed. For short: rest remains rest, moving 

remains moving, and rotating remains rotating.  

NNM's Second Law of Motion: The relationship between 

an object's mass m, its acceleration a, and the applied 

force F is a function that should be derived by law of 

conservation of energy. The direction of the force is the 

same as the direction of the acceleration. In general, the 

function can be written as the form of variable dimension 

fractal: 
 1maF , where:   is a constant or a 

variable. For different problems, the forms of second law 

may be different. 

NNM's Third Law of Motion: In general, for every 

action there is an equal and opposite reaction. In special 

case, the function relationship between action and 

reaction should be derived by law of conservation of 

energy. The improved form of the original Newton’s 

third law ( BAAB FF  ) is as follows: 
 1

BAAB FF , 

where:   is a constant or a variable. For different 

problems, the forms of third law may be different.  

NNM’s law (formula) of gravity: The attractive force 

between two objects is a function that should be derived 

by law of conservation of energy, or experimental data; 

or derived with the help of other theories. For different 

problems, the forms of law (formula) of gravity may be 

different. The results of original Newton’s law of gravity 

are only accurate in the cases that two objects are relative 

static or running the straight line between one center and 

another center, and the like; for other cases its results are 

all approximate. In general, NNM’s law (formula) of 

gravity may be taken as the form that adding the 

amending term to original Newton’s law of gravity, or 

the following form of variable dimension fractal: 




2r

GMm
F          （2） 

where:   is a constant or a variable. 

Now for an example, a NNM’s law (formula) of gravity 

(an improved Newton’s law of gravity) and a NNM's 

second law of motion (an improved Newton’s second 

law of motion), they are suitable for this example only, 

are derived simultaneously by law of conservation of 

energy. 

Firstly, through “universal relations”, the variational 

principles established by the law of conservation of 

energy can be given with least squares method (LSM). 

Supposing that the initial total energy of a closed system 

equals )0(W , and for time t  the total energy equals 

)(tW , then according to the law of conservation of 

energy: 

  )0(W = )(tW    （3） 

This can be written as: 

WR = 01
)0(

)(


W

tW
       （4） 

According to LSM, for the interval [ 21 , tt ]，we can 

write the following variational principle: 

5
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 
2

1

0

2 min

t

t

W dtR   （5） 

where: 0min  denotes the minimum value of functional 

Π  and it should be equal to zero. 

It should be noted that, in many cases )(tW  is 

approximate, and WR  is not identically equal to zero, 

therefore Eq.(5) can be used to solve the problem. 

Besides the time coordinate, another one can also be 

used. For example, for interval [ 21 , xx ], the following 

variational principle can be given according to the law of 

conservation of energy: 

 
2

1

0

2 min

x

x

W dxR  （6） 

The above-mentioned principles are established by using 

the law of conservation of energy directly. Sometimes, a 

certain principle should be established by using the law 

of conservation of energy indirectly. For example, a 

special physical quantity Q  may be interested，not only 

it can be calculated by using the law of conservation of 

energy, but also can be calculated by using other laws 

(for this paper they are the law of gravity, and Newton’s 

second law). For distinguishing the values, let’s denote 

the value given by other laws as Q，while denote the 

value given by the law of conservation of energy as 

'Q ，then the value of WR  can be redefined as follows: 

WR = 01
'


Q

Q
          （7） 

Substituting Eq.（7）into Eqs.（5）and（6），as 'Q  

is the result calculated with the law of conservation of 

energy, it gives the variational principle established by 

using the law of conservation of energy indirectly. 

Otherwise, it is clear that the extent of the value of Q

accords with 'Q . Substituting the related quantities into 

Eq.（5）or Eq.（6），the equations derived by the 

condition of an extremum can be written as follows: 

0









ii ka
       （8） 

After solving these equations, the improved law of gravity, 

and Newton’s second law can be reached at once. 

According to the value of Π , the effect of the solution can 

be judged. The nearer the value of Π  is to zero, the better 

the effect of the solution. It should be noted that besides of 

solving equations, optimum-seeking methods could also be 

used for finding the minimum and the constants to be 

determined. In fact, the optimum seeking method will be 

used in this paper. 

Now we solve an example. As shown in Fig.1, supposing 

that the small ball rolls along a long incline from A to B. 

Its initial velocity is zero and the friction and the rotational 

energy of small ball are neglected.  

   Fig.1  A small ball rolls from A to B 

Supposing that circle 'O  denotes the Earth, M denotes 

its mass;  m denotes the mass of the small ball (treated 

as a mass point P), O’A is a plumb line, coordinate x is 

orthogonal to O’A, coordinate y is orthogonal to 

coordinate x (parallel to O’A), BC is orthogonal to O’A. 

The lengths of OA, OB, BC, and AC are all equal to H, 

and O’C equals the radius R of the Earth. In this 

example, the value of 
2

Pv  which is the square of the 

velocity for the ball located at point P  is investigated. 

To distinguish the quantities, denote the value given by 

the improved law of gravity and improved Newton’s 

second law as 
2

Pv ，while 
2

P'v  denotes the value given 

by the law of conservation of energy，then Eq.（6）can 

be written as 






0

0

2

2

2

min)1
'

(
H P

P dx
v

v
       （9） 

   Supposing that the improved law of gravity and 

improved Newton’s second law can be written as the 

following constant dimension fractal forms 

Dr

GMm
F      （10） 

 1maF      （11） 

6
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where: D and   are constants. 

Now we calculate the related quantities according to the 

law of conservation of energy.  From Eq.(10), the 

potential energy of the small ball located at point P is 

1

')1( 


D

POrD

GMm
V      （12） 

According to the law of conservation of energy, we can 

get 







2

1

'

'
2

1

)1(
PD

AO

mv
rD

GMm
1

')1(  D

POrD

GMm
  （13） 

And therefore 

]
)(

11
[

1

2
'

11

'

2

 





DD

PO

P
HRrD

GM
v       （14） 

Now we calculate the related quantities according to the 

improved law of gravity and improved Newton’s second 

law.  Supposing that the equation of rolling line is  

Hxy    （15） 

For the ball located at point P, 

adtdv /   （16） 

because 

  
v

dx

v

ds
dt

2


Therefore 

 dxavdv 2       （17） 

According to the improved law of gravity, the force 

along to the tangent is 

2

1

'

D

PO

a
r

GMm
F          （18） 

According to the improved Newton’s second law, for 

point P, the acceleration along to the tangent is 

   1/1

'

1/1 )
2

()(
D

PO

a

r

GM

m

F
a   （19） 

From Eq.（17）, it gives 

dx
yHRxH

GM
vdv

D
2}

2])()[(
{ 1/1

2/22






（20） 

Substituting Eq.(15) into Eq.(20), and for the two sides, 

we run the integral operation from A to P, it gives 

dx
xRxH

GM
v

D

x

H

P

P

 




 
1/1/1

2/22

2 )2(}
])()[(

{2

（21） 

then the value can be calculated by a method of 

numerical integral. 

The given data are assumed to be: for Earth, 

GM=3.99×1014m3/s2; the radius of the Earth

R=6.37×106m, H=R/10, try to solve the problem shown

in Fig. 1, find the solution for the value of 
2

Bv ，and 

derive the improved law of gravity and the improved 

Newton’s second law. Firstly, according to the original 

law of gravity, the original Newton’s second law (i.e., let 

D =2 in Eq.(10),  =0 in Eq.(11)) and the law of 

conservation of energy, all the related quantities can be 

calculated, then substitute them into Eq.(9), it gives  

0 =571.4215 

Here, according to the law of conservation of energy, it 

gives 
2'Bv =1.0767×107，while according to the original

law of gravity, and the original Newton’s second law, it 

gives vB

2
=1.1351×107，the difference is about 5.4 %.

For the reason that the value of 0Π  is not equal to zero, 

then the values of D  and   can be decided by the 

optimum seeking method. At present all the optimum 

seeking methods can be divided into two types, one type 

may not depend on the initial values which program may 

be complicated, and another type requires the better 

initial values which program is simple. One method of 

the second type, namely the searching method will be 

used in this paper. 
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Firstly, the value of D  is fixed so let D =2，then search 

the value of  ，as  =0.0146, the value of Π  reaches 

the minimum 139.3429；then the value of   is 

fixed，and search the value of D，as D =1.99989, the 

value of Π  reaches the minimum 137.3238；then the 

value of D  is fixed，and search the value of  ，as 

 =0.01458, the value of Π  reaches minimum 137.3231. 

Because the last two results are highly close, the searching 

can be stopped, and the final results are as follows  

D=1.99989，ε=0.01458， =137.3231

Here the value of Π  is only 24% of 0Π . While 

according to the law of conservation of energy, it gives 
2'Bv =1.0785×107，according to the improved law of

gravity and the improved Newton’s second law, it gives 
2

Bv =1.1073×107, the difference is about 2.7 % only.

The results suitable for this example with the constant 

dimension fractal form are as follows 

The improved law of gravity reads 

99989.1r

GMm
F         (22) 

The improved Newton’s second law reads 

01458.1maF    (23) 

The above mentioned results have been published on 

reference [1]. 

According to the results for the example shown in Fig.1, it 

can be said that we could not rely on any experimental 

data, only apply the law of conservation of energy to 

derive the improved law of gravity, and improved 

Newton's second law; and demonstrate that the original 

Newton’s law of gravity and Newton's second law are all 

tenable approximately for this example. So, can only apply 

the law of conservation of energy to derive that these two 

original laws or demonstrate they are tenable accurately in 

some cases? The answer is that in some cases we can 

indeed derive the original Newton's second law and prove 

the original Newton’s law of gravity is tenable accurately. 

Now, in the case that a small ball free falls (equivalent to 

free fall from A to C in Fig. 1), we derive the original 

Newton's second law and prove the original Newton’s law 

of gravity is tenable accurately. Assuming that for the 

original law of gravity and Newton's second law, the 

related exponents are unknown, only know the forms of 

these two formulas are as follows: 
Dr

GMm
F  , 

'DmaF  ; where: D and D’ are undetermined constants. 

As shown in Fig.1, supposing that a small ball free falls 

from point A to point C. Similar to the above derivation, 

when the small ball falls to point P (point P is not shown in 

Fig.1), the value of 
2

Pv  calculated by the undetermined 

Newton's second law and the law of gravity, as well as the 

value of 
2'Pv  calculated by the law of conservation of

energy are as follows: 

]
)(

11
[

1

2
'

11

'

2

 





DD

PO

P
HRrD
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v    

    dyyHRGMv DD

y

D

P

p

'/

0

'/12 )()(2      

}])[(
'/1

1
{)(2

0

'/1'/12
py

DDD

P yHR
DD

GMv 




]
)(

11
[

1)'/(

)(2
1)'/(1)'/(

'

'/1
2

 





DDDD

PO

D

P
HRrDD

GM
v  

Let 
2'2

PP vv  , then we should have: '/11 D , and 

1)'/(1  DDD ; these two equations all give: 

1'D , this means that for free fall problem, by using the 

law of conservation of energy, we strictly derive the 

original Newton's second law maF  . 

Here, although the original law of gravity cannot be 

derived (the value of D may be any constant, certainly 

including the case that D=2), we already prove that the 

original law of gravity is not contradicted to the law of 

conservation of energy, or the original law of gravity is 

tenable accurately. For the example shown in Fig.1 that a 

small ball rolls along the inclined plane, in order to obtain 

the better results, we discuss the variable dimension fractal 

solution with Eq.(4) that is established by the law of 

conservation of energy directly. 

Supposing that the improved Newton’s second law and 

the improved law of gravity with the form of variable 

dimension fractal can be written as follows: 
 1maF , uk1 ; 

 2/ rGMmF , 

uk2 ; where: u  is the horizon distance that the 

small ball rolls （ Hxu  ）. 
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With the similar searching method, the values of 21, kk

can be determined, and the results are as follows 

u81085.8  ， u131071.2 

The results of variable dimension fractal are much better 

than that of constant dimension fractal. For example, the 

final 
4108662.5 Π , it is only 0.019% of 

0Π (3.1207). While according to the law of conservation 

of energy, it gives 
2'Bv =1.0767×107，according to the

improved law of gravity and the improved Newton’s 

second law, it gives 
2

Bv =1.0777×107, the difference is

about 0.093 % only. The results suitable for this example 

with the variable dimension fractal form are as follows 

The improved law of gravity reads 

ur

GMm
F

131071.22 
       (24) 

The improved Newton’s second law reads 

umaF
81085.81      (25) 

where: u  is the horizon distance that the small ball rolls 

（ Hxu  ） 

There is another problem should also be discussed. That 

is the improved kinetic energy formula. As well-known, 

the kinetic energy formula has been modified in the 

theory of relativity, now we improve the kinetic energy 

formula with the law of conservation of energy. 

Supposing that the improved kinetic energy formula is 

 2

2

1
mvEd , uk3 ；where: u  is the horizon 

distance that the small ball rolls （ Hxu  ）. 

With the similar searching method, we can get: 
13

3 1095.9 k , then the improved kinetic energy 

formula with variable dimension fractal form reads 

u

d mvE
131095.92

2

1 

Because the effect of improvement is very small (the 

value of Π  is only improved from 
4108662.5   into 

4108634.5  ), therefore these results should be for 

reference only. 

3 With the help of general relativity and 
accurate experimental data to derive the 
improved Newton's formula of universal 
gravitation 

We already point out that, according to Neutrosophy and 

Quad-stage Method, various results can be reached. Prof. 

Hu Ning derived an equation according to general 

relativity, with the help of Hu's equation and Binet’s 

formula, we get the following improved Newton's formula 

of universal gravitation[2] 

42

22

2

3

rc

mpMG

r

GMm
F     （26）

where: G is gravitational constant, M and m are the 

masses of the two objects, r is the distance between the 

two objects, c is the speed of light, p is the half normal 

chord for the object m moving around the object M along 

with a curve, and the value of p is given by: p = a(1-e2) 

(for ellipse), p = a (e2-1) (for hyperbola), p = y2/2x (for 

parabola).

It should be noted that, this improved Newton's formula 

of universal gravitation can also be written as the form of 

variable dimension fractal. 

Suppose 

 
42

22

2

3

rc

mpMG

r

GMm

r

GMm
D



It gives r
rc

GMp

r
D ln/)

31
ln(

422


For the problem of gravitational defection of a photon orbit 

around the Sun, M=1.99×1030kg, r0=6.96×108m,

c=2.9979×108m/s, then we have: 1.954997≤D≤2. 

The improved Newton’s universal gravitation 

formula (Eq.(26)) can give the same results as given by 

general relativity for the problem of planetary advance of 

perihelion and the problem of gravitational defection of a 

photon orbit around the Sun. 

9
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For the problem of planetary advance of perihelion, the 

improved Newton’s universal gravitation formula reads 

42

222

2

)1(3

rc

emaMG

r

GMm
F


    （27） 

For the problem of gravitational defection of a photon 

orbit around the Sun, the improved Newton’s universal 

gravitation formula reads 

4

2

0

2

5.1

r

GMmr

r

GMm
F     （28） 

where： 0r  is the shortest distance between the light and

the Sun, if the light and the Sun is tangent, it is equal to 

the radius of the Sun. 

The funny thing is that, for this problem, the maximum 

gravitational force given by the improved Newton’s 

universal gravitation formula is 2.5 times of that given by 

the original Newton’s law of gravity. 

Although the deflection angles given by Eq.(26) and 

Eq.(28) are all exactly the same as given by general 

relativity, they have still slight deviations with the 

precise astronomical observations. What are the reasons? 

According to “universal relations”, the answer is that the 

deflection angle not only is depended on the gravitational 

effect of the Sun, but also depended on the gravitational 

effects of other celestial bodies, as well as the influences 

of sunlight pressure and so on. If all factors are taken into 

account, not only general relativity can do nothing for 

this problem, but also for a long time it could not be 

solved by theoretical method. Therefore, at present the 

only way to solve this problem is based on the precise 

observations to derive the synthesized gravitational 

formula (including the effects of other celestial bodies 

and sunlight pressure) for the problem of deflection of 

photon around the Sun. 

As well-known, the deflection angle 0  given by general

relativity or the improved Newton's formula of universal 

gravitation is as follows 

0 =1.75”

Adding an additional term to Eq.(28), it gives the 

synthesized gravitational formula between the photon 

and the Sun as follows 

F
GMm

r

GMp

c r

wG M p

c r
   2 2 2

2 2 2

4 41
3

( )（29） 

where: w is a constant to be determined. 

Now we determine the value of w according to accurate 

experimental data. Firstly the problem of deflection of 

photon around the Sun as shown in Fig.2 will be solved 

with Eq.(29). The method to be used is the same as 

presented in references [2] and [3]. 

     Fig. 2  Deflection of photon around the Sun 

Supposing that m represents the mass of photon. Because 

the deflection angle is very small, we can assume that x=r0; 

thus on point (x, y), its coordinate can be written as 

（r0，y）, then the force acted on photon reads

2/122

0

0

)( yr

Fr
Fx


       （30） 

whrer：The value of F is given by Eq.(29). 

 Because 

dyF
cv

dy
FdtFmv x

y

xxx  
1

 （31） 

Hence 

v
GMr

c

dy

r y

G M pr

c

dy

r yx   




 

 
2 60

0

2 2 3 2

0

2 2

0

3

0

2 2 5 2

0
( ) ( )/ /

   





2 3 3 2

0

5

0

2 2 7 2

0

wG M p r

c

dy

r y( ) /   （32） 

Because 
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dy

r y r( ) /

0

2 2 3 2

0 0

2

1






 ， 
4

00

2/522

0 3

2

)( ryr

dy





，  

6

00

2/722

0 15

8

)( ryr

dy





Therefore 

  v
GM

cr

G M p

c r

wG M p

c rx    
2 4 16

150

2 2

3

0

3

3 3 2

5

0

5             

Because 

  tg
v

c

x

By using the half normal chord given in reference [2], it 

gives 

p
c r

GM


2

0

2

2

 Then the deflection angle is as follows 

    
4

1
152

0

GM

c r

w
   （33） 

where: r0 is the radius of Sun. Because 

0 2

0

4


GM

c r
        （34） 

  Then, it gives 

  0 1
15

( )
w

      （35） 

   Thus the value of w can be solved as follows 

w  15 1
0

( )



      （36） 

Now we can determine the value of w according to the 

experimental data.  

Table 1 shows the experimental data of radio astronomy 

for the deflection angle of photon around the Sun (taken 

from reference [4]). 

Table 1. The experimental data of radio astronomy for 

the deflection angle of photon around the Sun 

Year    Observer          Observed value / ” 

1969             G.A.Seielstud et al    1.77±0.20 

1969             D.O.Muhleman et al     1.82+0.24
-0.17 

1969          I.I.Shapiro         1.80±0.2 

1970             R.A.Sramak     1.57±0.08 

1970             J.M.Hill         1.87±0.3 

1972         1.82±0.14 

1974        1.73±0.05 

1975       1.78±0.02 

Now we choose the experimental data in 1975, it gives 

1.76≤φ≤1.80 

Then, we have 

0.08571≤w ≤0.42857 

Taking the average value, it gives 

w=0.25714 

Thus, according to the experimental data, the synthesized 

gravitational formula can be decided. 

4 Contradiction between the law of 
conservation of energy and the law of 
conservation of momentum as well as the 
law of conservation of angular momentum 

According to Neutrosophy, any law may be in three states: 

correct, wrong, and it is correct under certain conditions. 

As well-known, unlike the law of conservation of energy, 

the law of conservation of momentum and the law of 

conservation of angular momentum are only correct under 
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certain conditions. For example, considering friction force 

and the like, these two laws will not be correct. 

Now we point out further that for NNM the law of 

conservation of momentum as well as the law of 

conservation of angular momentum will be not correct 

under certain conditions (or their results contradict with the 

law of conservation of energy). As well-known, in order to 

prove the law of conservation of momentum as well as the 

law of conservation of angular momentum, the original 

Newton's second law should be applied. However, as we 

have made clear, the original Newton's second law will not 

be correct under certain conditions, for such cases, these 

two laws also will not correct. 

Here we find another problem, if the original three 

conservation laws are all correct, therefore for certain 

issues, the law of conservation of energy and the other two 

conservation laws could be combined to apply. While for 

NNM, if the other two conservation laws cannot be 

applied, how to complement the new formulas to replace 

these two conservation laws? The solution is very simple: 

according to the law of conservation of energy, for any 

time, the derivatives of total energy )(tW  should be all 

equal to zero, then we have 

0
)(


n

n

dt

tWd
           ,3,2,1n        （37） 

In addition, running the integral operations to the both 

sides of Eq.(3), it gives 

    tW )0( = dttW
t

)(
0         （38） 

Now we illustrate that, because there is one truth only, 

even within the scope of original classical mechanics, the 

contradiction could also appear between the law of 

conservation of energy and the law of conservation of 

momentum.  

As shown in Fig.3, a man walks along the car located on 

the horizontal smooth rail, the length of the car equals L, 

the mass of the man is 1m  and the car is 2m . At 

beginning the man and the car are all at rest, then the man 

walks from one end to the other end of the car, try to 

decide the moving distances of the man and the car. This 

example is taken from references [5]. 

Fig.3  A man walks along the car located on the horizontal 

smooth rail. 

As solving this problem by using the original classical 

mechanics, the law of conservation of momentum will be 

used, it gives  

    02211  vmvm          

However, at beginning the man and the car are all at rest, 

the total energy of the system is equal to zero; while once 

they are moving, they will have speeds, and the total 

energy of the system is not equal to zero; thus the law of 

conservation of energy will be destroyed. For this paradox, 

the original classical mechanics looks without seeing. In 

fact, considering the lost energy of the man and applying 

the law of conservation of energy, the completely different 

result will be reached. 

As the original law of conservation of momentum 

( ConstPPt  0 ) and the law of conservation of 

angular momentum ( ConstLLt  0 ) are not correct, 

we can propose their improved forms of variable 

dimension fractal. The improved law of conservation of 

momentum: 
 1

0PPt
 (  is a constant or a variable), 

and the improved law of conservation of angular 

momentum: 
 1

0LLt
 (  is a constant or a variable). 
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Abstract. The purpose of this paper is to introduce and 

study the characteristic function of a neutrosophic set. 

After given the fundamental definitions of neutrosophic 

set operations generated by the characteristic function of 

a neutrosophic set (  for short), we obtain several

properties, and discussed the relationship between 

neutrosophic sets generated by Ng  and others. Finally, 

we introduce the neutrosophic topological spaces 

generated by . Possible application to GIS topology

rules are touched upon. 

Keywords: Neutrosophic Set; Neutrosophic Topology; Characteristic Function. 

1 Introduction 

Neutrosophy has laid the foundation for a whole family 
of new mathematical theories generalizing both their 
classical and fuzzy counterparts, such as a neutrosophic set 

theory. After the introduction of the neutrosophic set 
concepts in [2-13]. In this paper we introduce definitions 
of neutrosophic sets by characteristic function. After given 
the fundamental definitions of neutrosophic set operations 
by , we obtain several properties, and discussed the 
relationship between neutrosophic sets and others. Added 

to, we introduce the neutrosophic topological spaces 
generated by Ng . 

2 Terminologies 

We recollect some relevant basic preliminaries, and in 

particular, the work of  Smarandache in [7- 9], Hanafy,  

Salama et al. [2- 13]  and  Demirci in [1]. 

3 Neutrosophic Sets generated by Ng

 We shall now consider some possible definitions for basic 

concepts of the neutrosophic sets generated by  and its 

operations. 

3.1 Definition 

    Let X is a non-empty fixed set. A  neutrosophic set 

( NS for short) A  is an object having the form

  )(),(),(, xxxxA AAA  where    xx AA  ,  and  A
x

which represent the degree of member ship function 

(namely  xA ), the degree of indeterminacy (namely

 xA ), and the degree of non-member ship (namely

 A
x ) respectively of each element Xx  to the set 

A .and  let IXg A  ]1,0[]1,0[: be reality function, 

then  321 ,,,)(  xNgNg AA  is said to be the

characteristic function of  a  neutrosophic  set on X  if 



 


otherwise    0

)(,,)( if  1
)(

32)(1 


xx
Ng

AxAA
A

 Where   321 ,,,  x .  Then the object 

)(),(),(,)( )()()( xxxxAG AGAGAG  is a 

neutrosophic set generated by  where 

 })(1
sup

)(   AAG Ng

 })(sup
2)(    AAG Ng  

 })(sup
3)(    AAG Ng

3.1 Proposition 

1) ).()( BGAGBA Ng 
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2) )()( BGAGBA Ng 

3.2 Definition 

  Let A be neutrosophic set of   X. Then the neutrosophic 

complement of A generated by denoted by 
NgcA      

iff   cAG )( may be defined as the following: 

)( 1cNg )(),(),(, xxxx A
c

A
c

A
c 

)( 2cNg )(),(),(, xxxx AAA 

)( 3cNg )(),(),(, xxxx AA
c

A 

3.1 Example. Let  }{xX  , ,6.0,7.0,5.0,xA   

1ANg ,  0ANg .    Then  6.0,7.0,5.0,)( xAG 

Since our main purpose is to construct the tools for 

developing neutrosophic set and neutrosophic topology, we 

must introduce the )0( NG and )1( NG  as follows  )0( NG  may  

be  defined as: 

i) 1,0,0,)0( xG N 

ii) 1,1,0,)0( xG N 

iii) 0,1,0,)0( xG N 

iv) 0,0,0,)0( xG N 

)1( NG  may be defined as:

i) 0,0,1,)1( xG N 

ii) 1,0,1,)1( xG N 

iii) 0,1,1,)1( xG N 

iv) 1,1,1,)1( xG N 

We will define the following operations intersection and 

union for neutrosophic sets generated by Ng   denoted by 

Ng and 
Ng respectively. 

3.3 Definition.  Let two neutrosophic sets 

)(),(),(, xxxxA AAA   and 

)(),(),(, xxxxB BBB   on X, and 

)(),(),(,)( )()()( xxxxAG AGAGAG  , 

)(),(),(,)( )()()( xxxxBG BGBGBG  .Then 

BA Ng   may be  defined as three types: 

i) Type  )( BAG

)()(),()(,)( )()()()()()( xxxxx BGAGBGAGBGAG  

ii) Type II:

 )( BAG

)()(),()(,)( )()()()()()( xxxxx BGAGBGAGBGAG   . 

ii) Type III:
 )( BAG

)()(),()(,)( )()()()()()( xxxxx BGAGBGAGBGAG  

BA Ng  may  be  defined as two types: 

Type I : 

 )( BAG

)()(),()(,)( )()()()()()( xxxxx BGAGBGAGBGAG   ii) 

Type II: 

 )( BAG

)()(),()(,)( )()()()()()( xxxxx BGAGBGAGBGAG  

. 3.4 Definition 

Let a neutrosophic set )(),(),(, xxxxA AAA   and 

)(),(),(,)( )()()( xxxxAG AGAGAG  . Then 

(1) ANg]    [ )(1),(),(: )()()( xxxx AGAGAG  

(2)  ANg

)(),(),(1: )()()( xxxx AGAGAG 

3.2 Proposition  
For all two neutrosophic sets A and B on X generated 

by Ng, then the following are true

1)   .cNgcNgcNg
BABA   

2)   .cNgcNgcNg
BABA   

We can easily generalize the operations of intersection and 

union in definition 3.2 to arbitrary family of neutrosophic 

subsets generated by Ng as follows:

3.3 Proposition. 

Let  JjA j :  be arbitrary family of neutrosophic

subsets in X generated by two types , then 

a) j
Ng A   may be defined as : 

1) Type I :

 )( jAG )(),(),( )()()( xxx
jAGjAGjAG   , 

2) Type II:

 )( jAG )(),(),( )()()( xxx
jAGjAGjAG   , 

b) j
Ng A   may be defined as : 

1)  )( jAG )(),(),( )()()( xxx
jAGjAGjAG   or 
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2)  )( jAG )(),(),( )()()( xxx
jAGjAGjAG   . 

3.4 Definition 

 Let f. X  Y be a mapping . 

(i) The image of a neutrosophic set A generated 

by  on X under f is a neutrosophic set B on Y 

generated by  , denoted by f (A) whose reality 

function    gB : Y x  I  I=[0, 1] satisfies the property 

 })(1

sup
)(









A

BG

Ng  

 })(sup
2)(    ABG Ng  

 })(sup
3)(    ABG Ng  

(ii) The preimage of a neutrosophic set B on Y 

generated by  under f is a neutrosophic set A on X 

generated by , denoted by  f -1 (B) , whose reality

function  gA :  X x  [0, 1] [0, 1]  satisfies the 

property G(A) = G ( B ) o f  

3.4 Proposition  

Let  JjA j :  and  JjB j : be families of neutrosophic

sets on X and Y generated by , respectively. Then for a 

function f: X  Y, the following properties hold: 

(i) If  Aj 
Ng  Ak ;i , jJ, then  f ( Aj ) 

Ng  f(Ak) 

(ii) If  Bj 
Ng  Bk , for j , K  J, then 

f -1( Bj )
Ng f -1 (BK)

(iii) f -1 ( j
Ng

jEJ

B  ) 
Ng Ng

jEJ
 f -1 (Bj)

3.5 Proposition  

 Let A and B be neutrosophic sets on X and Y generated 

by , respectively. Then, for a mappings f : X → Y , we 

have : 

(i) A 
Ng  f -1  ( f ( A ) ) ( if f  is injective the 

equality holds ) .  

(ii) f ( f -1 ( B ) ) 
Ng B ( if  f  is surjective the 

equality holds ) . 

(iii) [ f -1 (B) ] Ngc  
Ng f -1 ( BN gc ) .

3.5 Definition . Let X be a nonempty set, Ψ a family of 

neutrosophic sets generated by  and let us use the 

notation  

G ( Ψ ) = { G ( A ) : AΨ } . 

If  ( X , G ( Ψ )= N )  is a neutrosophic  topological space 

on X is Salama’s sense [3] , then we say that Ψ is a 

neutrosophic topology on X generated by  and the pair 

( X , Ψ ) is said to be a neutrosophic  topological space 

generated by  ( ngts , for short ). The elements in Ψ are 

called genuine neutrosophic open sets. also , we define the 

family  

G ( Ψc ) = { 1- G ( A ) : A  Ψ } .

3.6 Definition 

 Let ( X , Ψ ) be a ngts . A neutrosophic set C in X 

generated by  is said to be a neutrosophic closed set 

generated by , if 1- G( C ) G ( Ψ ) = N .

3.7 Definition 

 Let ( X , Ψ ) be a ngts and A a neutrosophic set on X 

generated by . Then the neutrosophic interior of A 

generated by , denoted by, ngintA, is a set 

characterized by G(intA) = int
)(G

G(A) , where int
)(G

denotes the interior operation in neutrosophic topological 

spaces generated by .Similarly, the neutrosophic 

closure of A generated by , denoted by  ngclA , is a 

neutrosophic set characterized by G(ngclA)= cl
G )(

G(A) 

, where cl
G )(

denotes the closure operation in 

neutrosophic topological spaces generated by . 

The neutrosophic interior gnint(A)  and the genuine  

neutrosophic closure gnclA generated by  can be 

characterized by :  

gnintA Ng  Ng { U : U  Ψ and U Ng  A } 

gnclA 
Ng  

Ng  { C : C is neutrosophic closed 

generated by  and A 
Ng  C } 

Since : G ( gnint A ) = { G (U) : G (U)  G ( Ψ ) , G (

U )   G (A) }

G ( gncl A ) = ∩ { G ( C ) : G ( C )  G  ( Ψc ) , G (A) 
G(C) }. 
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3.6 Proposition .  For any neutrosophic set A generated 

by  on a NTS ( X , Ψ ) , we have 

(i) cl ANgc 
Ng  ( int A )Ngc 

(ii)  Int ANgc 
Ng  ( cl A )Ngc 
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Abstract. In this paper we extend the theory of 

neutrosophy to study left almost semigroup shortly LA-

semigroup. We generalize the concepts of LA-semigroup 

to form that for neutrosophic LA-semigroup. We also 

extend the ideal theory of LA-semigroup to neutrosophy 

and discuss different kinds of neutrosophic ideals. We 

also find some new type of neutrosophic ideal which is 

related to the strong or pure part of neutrosophy. We 

have given many examples to illustrate the theory of 

neutrosophic LA-semigroup and display many properties 

of neutrosophic LA-semigroup in this paper. 

Keywords: LA-semigroup,sub LA-semigroup, ideal, neutrosophic LA-semigroup, neutrosophic sub LA- semigroup, neutrosophic 

ideal.

1 Introduction 

    Neutrosophy is a new branch of philosophy which 

studies the origin and features of neutralities in the nature. 

Florentin Smarandache in 1980 firstly introduced the 

concept of neutrosophic logic where each proposition in 

neutrosophic logic is approximated to have the percentage 

of truth in a subset T, the percentage of indeterminacy in a 

subset I, and the percentage of falsity in a subset F so that 

this neutrosophic logic is called an extension of fuzzy 

logic. In fact neutrosophic set is the generalization of 

classical sets, conventional fuzzy set  1 , intuitionistic

fuzzy set  2 and interval valued fuzzy set  3 . This

mathematical tool is used to handle problems like 

imprecise, indeterminacy and inconsistent data etc. By 

utilizing neutrosophic theory, Vasantha Kandasamy and 

Florentin Smarandache dig out neutrosophic algebraic 

structures in 11 . Some of them are neutrosophic fields,

neutrosophic vector spaces, neutrosophic groups, 

neutrosophic bigroups, neutrosophic N-groups, 

neutrosophic semigroups, neutrosophic bisemigroups, 

neutrosophic N-semigroup, neutrosophic loops, 

neutrosophic biloops, neutrosophic N-loop, neutrosophic 

groupoids, and neutrosophic bigroupoids and so on. 

  A left almost semigroup abbreviated as LA-semigroup is 

an algebraic structure which was introduced by M .A. 

Kazim and M. Naseeruddin  3 in 1972. This structure is

basically a midway structure between a groupoid and a 

commutative semigroup. This structure is also termed as 

Able-Grassmann’s groupoid abbreviated as AG -groupoid 

 6 . This is a non associative and non commutative

algebraic structure which closely resemble to commutative 

semigroup. The generalization of semigroup theory is an 

LA-semigroup and this structure has wide applications in 

collaboration with semigroup. We have tried to develop the 

ideal theory of LA-semigroups in a logical manner. Firstly, 

preliminaries and basic concepts are given for LA-

semigroups. Section 3 presents the newly defined notions 

and results in neutrosophic LA-semigroups. Various types 

of ideals are defined and elaborated with the help of 

examples. Furthermore, the homomorphisms of 

neutrosophic LA-semigroups are discussed at the end. 

2 Preliminaries 

Definition 1. A groupiod  ,S   is called a left

almost semigroup  abbreviated as LA-semigroup if 

the left  invertive law holds, i.e.   
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   a b c c b a      for all , ,a b c S .

Similarly  ,S   is called right almost semigroup

denoted as RA-semigroup if the right invertive law 

holds, i.e.  

   a b c c b a      for all , ,a b c S .

Proposition 1. In an LA-semigroup S , the medial 

law holds. That is 

       ab cd ac bd  for all , , ,a b c d S .

Proposition 2. In an LA-semigrup S , the following 

statements are equivalent: 

1)    ab c b ca

2)    ab c b ac . For all , ,a b c S .

Theorem 1.  An  LA-semigroup S  is a semigroup if 

and only if    a bc cb a , for all , ,a b c S .

Theorem 2. An  LA-semigroup with left identity 

satisfies the following Law, 

       ab cd db ca  for all , , ,a b c d S .

Theorem 3. In an LA-semigroup S , the following 

holds,    a bc b ac  for all , , .a b c S
.

Theorem 4. If an LA-semigroup S  has a right 

identity, then S  is a commutative semigroup. 

Definition 2. Let S be an LA-semigroup and H  be a 

proper subset of S . Then H is called sub LA-

semigroup of S if .H H H .

Definition 3. Let S  be an LA-semigroup and K  be 

a  subset of S . Then K  is called Left (right) ideal of 

S  if  ,SK K
,
 KS K .

If K  is both left and right ideal, then K  is called a 

two sided  ideal or simply an ideal of S . 

Lemma 1. If K is a left ideal of an LA-semigroup S

with left identity e , then aK  is a left ideal of S for 

all a S . 

Definition 4. An ideal P  of an LA-semigroup S  

with left identity e  is called prime ideal if AB P

implies either  

A P  or B P , where ,A B  are  ideals of S . 

Definition 5.  An LA-semigroup S  is called fully 

prime  LA-semigroup if all of its ideals are prime  

ideals. 

Definition 6 An ideal P is called semiprime ideal if 

.T T P implies T P  for any ideal T  of S . 

Definition 7. An LA-semigroup S  is called fully 

semiprime  LA-semigroup if every ideal of S  is 

semiprime  ideal. 

Definition 8. An ideal R of an LA-semigroup S  is 

called strongly irreducible ideal if for any ideals 

,H K  of S , H K R   implies H R  or 

K R . 

Proposition 3. An ideal K  of an LA-semigroup S is 

prime  ideal if and only if it is semiprime and strongly 

irreducible  ideal of S . 

Definition 9. Let S  be an LA-semigroup and Q  be a 

non-empty subset of S . Then Q  is called Quasi ideal 

of S  if QS SQ Q  . 

Theorem 5. Every left  right  ideal of an LA-

semigroup S  is a quasi-ideal of S . 

Theorem 6. Intersection of two quasi ideals of an 

LA-semigroup is again a quasi ideal. 
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Definition 10. A sub LA-semigroup B  of an LA-

semigroup is called  bi-ideal of S  if  BS B B .

Definition 11. A non-empty subset A  of an LA-

semigroup S   is termed as generalized bi-ideal of S

if  AS A A .

Definition 12. A non-empty subset L  of an LA-

semigroup S  is called interior ideal of S  if 

 SL S L .

Theorem 7. Every ideal of an LA-semigroup S  is an 

interior  ideal. 

3  Neutrosophic LA-semigroup 

Definition 13. Let   ,S  be an LA-semigroup and

let   : ,S I a bI a b S    . The neutrosophic

LA-semigroup is generated by S  and I under   

denoted as    ,N S S I   , where I is called

the neutrosophic element with property 
2I I . For 

an integer n , n I and nI are neutrosophic elements 

and 0. 0I  .
1I 
, the inverse of I is not defined and

hence does not exist. 

Example 1. Let  1,2,3S  be an LA-semigroup

with the following table 

* 1 2 3 

1 1 1 1 

2 3 3 3 

3 1 1 1 

Then the neutrosophic LA-semigroup 

   1,2,3,1 ,2 ,3N S S I I I I    with the

following table 

* 1 2 3 1I 2I 3I 

1 1 1 1 1I 1I 1I 

2 3 3 3 3I 3I 3I 

3 1 1 1 1I 1I 1I 

1I 1I 1I 1I 1I 1I 1I 

2I 3I 3I 3I 3I 3I 3I 

3I 1I 1I 1I 1I 1I 1I 

Similarly we can define neutrosophic RA-semigroup 

on the same lines. 

Theorem 9. All neutrosophic LA-semigroups 

contains corresponding LA-semigroups. 

Proof :  straight forward. 

Proposition 4. In a neutrosophic LA-semigroup 

 N S , the medial law holds. That is

       ab cd ac bd  for all  , , ,a b c d N S .

Proposition 5. In a neutrosophic LA-semigrup 

 N S , the following statements are equivalent.

1)    ab c b ca

2)    ab c b ac . For all  , ,a b c N S .

Theorem 9.  A neutrosophic LA-semigroup  N S

is a    neutrosophic semigroup if and only if 

   a bc cb a , for all  , ,a b c N S .

Theorem 10. Let  1N S  and  2N S  be two

neutrosophic LA-semigroups. Then their cartesian 

product    1 2N S N S  is also a neutrosophic LA-

semigroups. 

Proof : The proof is obvious. 
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Theorem 11. Let 1S  and 2S  be two LA-semigroups. 

If 
1 2S S  is an LA-semigroup, then

   1 2N S N S  is also a neutosophic LA-

semigroup. 

Proof : The proof is straight forward. 

Definition 14. Let  N S be a neutrosophic LA-

semigroup. An element  e N S  is said to be left

identity if e s s   for all  s N S . Similarly  e  is

called right identity if s e s  . 

e  is called two sided identity or simply identity if e

is left as well as right identity. 

Example 2. Let 

   1,2,3,4,5,1 ,2 ,3 ,4 ,5N S S I I I I I I  

with left identity 4, defined by the following  

multiplication table. 

. 1 2 3 4 5 1I 2I 3I 4I 5I 

1 4 5 1 2 3 4I 5I 1I 2I 3I 

2 3 4 5 1 2 3I 4I 5I 1I 2I 

3 2 3 4 5 1 2I 3I 4I 5I 1I 

4 1 2 3 4 5 1I 2I 3I 4I 5I 

5 5 1 2 3 4 5I 1I 2I 3I 4I 

1I 4I 5I 1I 2I 3I 4I 5I 1I 2I 3I 

2I 3I 4I 5I 1I 2I 3I 4I 5I 1I 2I 

3I 2I 3I 4I 5I 1I 2I 3I 4I 5I 1I 

4I 1I 2I 3I 4I 5I 1I 2I 3I 4I 5I 

5I 5I 1I 2I 3I 4I 5I 1I 2I 3I 4I 

Proposition 6. If  N S  is a neutrosophic LA-

semigroup with left identity e , then it is unique. 

Proof : Obvious. 

Theorem10. A neutrosophic LA-semigroup with left 

identity satisfies the following Law,  

       ab cd db ca  for all  , , ,a b c d N S .

Theorem 11. In a neutrosophic LA-semigroup 

 N S , the following holds,

   a bc b ac  for all  , ,a b c N S .

Theorem 12. If a neutrosophic LA-semigroup 

 N S  has a right identity, then  N S  is a

commutative semigroup. 

Proof.  Suppose that e  be the right identity of 

 N S .  By definition ae a  for all  a N S .So

   . .ea e e a a e e a    for all  a N S .

Therefore e is the two sided identity. Now let 

 ,a b N S , then    ab ea b ba e ba   and

hence  N S  is commutative. Again let

 , ,a b c N S , So

       ab c cb a bc a a bc   and hence

 N S is commutative semigroup.

Definition 15. Let  N S  be a neutrosophic LA-

semigroup and  N H  be a proper subset of  N S .

Then  N H is called a neutrosophic sub LA-

semigroup if   N H  itself is a neutrosophic LA-

semigroup under the operation of  N S .

Example 3. Let 

   1,2,3,1 ,2 ,3N S S I I I I  

21



Neutrosophic Sets and Systems, Vol. 3, 2014 

 Mumtaz Ali, Muhammad Shabir, Munazza Naz, and Florentin Smarandache, Neutrosophic Left Almost Semiroup 

be a neutrosophic LA-semigroup as in example (1). 

Then  1 , 1,3 , 1,1I , 1,3,1 ,3I I  etc are

neutrosophic sub LA-semigroups but  2,3,2 ,3I I  is

not neutrosophic sub LA-semigroup of  N S .

Theorem 13 Let  N S  be a neutrosophic LA-

semigroup and  N H  be a proper subset of  N S .

Then  N H is a neutrosophic sub LA-semigroup of

 N S  if      .N H N H N H .

Theorem 14 Let H be a sub LA-semigroup of an

LA-semigroup  S , then  N H  is aneutrosophic sub

LA-semigroup of the neutrosophic LA-semigroup 

 N S , where  N H H I  .

Definition 16. A neutrosophic sub LA-semigroup 

 N H  is called strong neutrosophic sub LA-

semigroup or pure neutrosophic sub LA-semigroup if 

all the elements of  N H are neutrosophic elements.

Example 4. Let 

   1,2,3,1 ,2 ,3N S S I I I I    be a

neutrosophic LA-semigroup as in example (1). Then 

 1 ,3I I  is a strong neutrosophic sub LA-semigroup

or pure neutrosophicsub  LA-semigroup of  N S .

Theorem 15. All strong neutrosophic sub LA-

semigroups or pure neutrosophic sub LA-semigroups 

are trivially neutrosophic sub LA-semigroup but the 

converse is not true. 

Example 5. Let 

   1,2,3,1 ,2 ,3N S S I I I I    be a

neutrosophic LA-semigroup as in example (1). Then 

 1 , 1,3  are neutrosophic sub LA-semigroups but

not strong neutrosophic sub LA-semigroups or pure 

neutrosophic sub LA-semigroups  of   .N S

Definition 17 Let  N S  be a neutrosophic LA-

semigroup and  N K  be a subset of  N S . Then

 N K  is called Left (right)  neutrosophic ideal of

 N S  if

     N S N K N K
,
{      N K N S N K }.

If  N K  is both left and right neutrosophic ideal,

then  N K  is called a two sided neutrosophic ideal

or simply a neutrosophic ideal. 

Example 6. Let  1,2,3S  be an LA-semigroup

with the following table. 

* 1 2 3 

1 3 3 3 

2 3 3 3 

3 1 3 3 

Then the neutrosophic LA-semigroup 

   1,2,3,1 ,2 ,3N S S I I I I    with the

following table. 

* 1 2 3 1I 2I 3I 

1 3 3 3 3I 3I 3I 

2 3 3 3 3I 3I 3I 

3 1 3 3 1I 3I 3I 

1I 3I 3I 3I 3I 3I 3I 

2I 3I 3I 3I 3I 3I 3I 

3I 1I 3I 3I 1I 3I 3I 
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Then clearly    1 3,3N K I  is a neutrosophic left

ideal and    2 1,3,1 ,3N K I I  is a neutrosophic

left as well as right ideal. 

Lemma 2. If  N K  be a neutrosophic left ideal of a

neutrosophic LA-semigroup  N S  with left identity

e , then  aN K  is a neutrosophic left ideal of

 N S for all  a N S .

Proof : The proof is satraight forward. 

Theorem 16.  N K   is a neutrosophic ideal of  a

neutrosophic LA-semigroup  N S  if K is an ideal

of an LA-semigroup S , where  N K K I  .

Definition 18 A neutrosophic ideal  N K  is called

strong neutrosophic ideal or pure neutrosophic ideal 

if all of its elements are neutrosophic elements. 

Fxample 7. Let  N S  be a neutrosophic LA-

semigroup as in example  5 , Then  1 ,3I I  and

 1 ,2 ,3I I I  are strong neutrosophic ideals or pure

neutrosophic ideals of  N S .

Theorem 17. All strong neutrosophic ideals or pure 

neutrosophic ideals are neutrosophic ideals but the 

converse is not true. 

To see the converse part of above theorem, let us take 

an example. 

Example 7 Let 

   1,2,3,1 ,2 ,3N S S I I I I    be as in

example  5  . Then    1 2,3,2 ,3N K I I  and 

   2 1,3,1 ,3N K I I  are neutrosophic ideals of 

 N S  but clearly these are not strong neutrosophic

ideals or pure neutrosophic ideals. 

Definition 19 : A neutorophic ideal  N P  of a

neutrosophic LA-semigroup  N S  with left identity

e  is called prime neutrosophic ideal if 

     N A N B N P  implies either

   N A N P  or    N B N P , where

   ,N A N B  are neutrosophic ideals of  N S .

Example 8. Let 

   1,2,3,1 ,2 ,3N S S I I I I    be as in

example  5 and let    2,3,2 ,3N A I I  and

   1,3,1 ,3N B I I  and    1,3,1 ,3N P I I  are

neutrosophic ideals of  N S . Then clearly

     N A N B N P  implies    N A N P  but

 N B is not contained in  N P . Hence  N P is a

prime neutrosophic ideal of  N S .

Theorem 18. Every prime neutrosophic ideal is a 

neutrosophic ideal but the converse is not true. 

Theorem19. If P is a prime ideal of an LA-semigoup 

S , Then  N P  is prime neutrosophic ideal of

 N S  where  N P P I  .

Definition 20.  A neutrosophic LA-semigroup 

 N S  is called fully prime neutrosophic LA-

semigroup if all of its neutrosophic ideals are prime 

neutrosophic ideals. 

Definition 21. A prime neutrosophic ideal  N P  is

called strong prime neutrosophic ideal or pure 

neutrosophic ideal if x  is neutrosophic element for 

all  x N P .

Example 9. Let 

   1,2,3,1 ,2 ,3N S S I I I I    be as in

example  5 and let    2 ,3N A I I  and
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   1 ,3N B I I  and    1 ,3N P I I  are

neutrosophic ideals of  N S . Then clearly

     N A N B N P  implies    N A N P  but

 N B is not contained in  N P . Hence  N P is a

strong prime neutrosophic ideal or pure neutrosophic 

ideal of  N S .

Theorem 20. Every prime strong neutrosophic ideal 

or pure neutrosophic ideal is neutrosophic ideal but 

the converse is not true. 

Theorem 21. Every prime strong neutrosophic ideal 

or pure neutrosophic ideal is a prime neutrosophic 

ideal but the converse is not true. 

For converse, we take the following example. 

Example 10. In example  6 ,    1,3,1 ,3N P I I

is a prime neutrosophic ideal but it is not strong 

neutrosophic ideal or pure neutrosophic ideal. 

Definition 22. A neutrosophic ideal  N P is called

semiprime  neutrosophic ideal if 

     .N T N T N P implies    N T N P  for

any neutrosophic ideal  N T  of  N S .

Example 11. Let  N S  be the neutrosophic LA-

semigroup of example  1  and let    1,1N T I

and    1,3,1 ,3N P I I  are neutrosophic ideals of

 N S . Then clearly  N P  is a semiprime

neutrosophic ideal of  N S .

Theorem 22. Every semiprime neutrosophic ideal is 

a neutrosophic ideal but the converse is not true. 

Definition 23. A neutrosophic semiprime ideal 

 N P  is said to be strong semiprime neutrosophic

ideal or pure semiprime neutrosophic ideal if every 

element of  N P  is neutrosophic element.

Example 12. Let  N S  be the neutrosophic LA- 

semigroup of example  1  and let    1 ,3N T I I

and    1 ,2 ,3N P I I I  are neutrosophic ideals of

 N S . Then clearly  N P  is a strong semiprime

neutrosophic ideal or pure semiprime neutrosophic 

ideal of  N S .

Theorem 23. All strong semiprime neutrosophic 

ideals or pure semiprime neutrosophic ideals are 

trivially neutrosophic ideals but the converse is not 

true. 

Theorem 24. All strong semiprime neutrosophic 

ideals or pure semiprime neutrosophic ideals are 

semiprime neutrosophic ideals but the converse is not 

true. 

Definition 24. A neutrosophic LA-semigroup  N S

is called fully semiprime neutrosophic LA-semigroup 

if every neutrosophic ideal of  N S  is semiprime

neutrosophic ideal. 

Definition 25. A neutrosophic ideal  N R of a

neutrosophic LA-semigroup  N S  is called strongly

irreducible neutrosophic ideal if for any neutrosophic 

ideals    ,N H N K  of  N S ,

     N H N K N R   implies    N H N R

or    N K N R .

Example 13. Let 

   1,2,3,1 ,2 ,3N S S I I I I    be as in

example  5 and let    2,3,2 ,3N H I I  ,

   1 ,3N K I I  and    1,3,1 ,3N R I I  are
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neutrosophic ideals of  N S . Then clearly

     N H N K N R   implies    N K N R

but  N H is not contained in  N R . Hence

 N R is a strong irreducible neutrosophic ideal of

 N S .

Theorem 25. Every strongly irreducible neutrosohic 

ideal is a neutrosophic ideal but the converse is not 

true. 

Theorem 26. If R is a strong irreducible 

neutrosophic ideal of an LA-semigoup S , Then 

 N I  is a strong irreducible neutrosophic ideal of

 N S  where  N R R I  . 

Proposition 7. A neutrosophic ideal  N I  of a

neutrosophic LA-semigroup  N S is prime

neutrosophic ideal if and only if it is semiprime  and 

strongly irreducible neutrosophic ideal of  N S .

Definition 26. Let  N S  be a neutrosophic ideal

and  

 N Q  be a non-empty subset of  N S . Then

 N Q  is called quasi neutrosophic ideal of  N S  if

         N Q N S N S N Q N Q  .

Example 14. Let 

   1,2,3,1 ,2 ,3N S S I I I I    be as in

example  5  . Then     3,3N K I  be a non-

empty subset of  N S  and

     3,3N S N K I ,      1,3,1 ,3N K N S I I

and their intersection is    3,3I N K . Thus

clearly  N K  is quasi neutrosophic ideal of  N S .

Theorem27. Every left  right  neutrosophic ideal

of a neutrosophic LA-semigroup  N S  is a quasi

neutrosophic ideal of  N S .

Proof : Let  N Q  be a left neutrosophic ideal of a

neutrosophic LA-semigroup  N S , then

     N S N Q N Q  and so

             N S N Q N Q N S N Q N Q N Q   

which proves the theorem. 

Theorem 28. Intersection of two quasi neutrosophic 

ideals of a neutrosophic LA-semigroup is again a 

quasi neutrosophic ideal. 

Proof : The proof is straight forward. 

Definition 27. A quasi-neutrosophic ideal  N Q  of

a neutrosophic LA-semigroup  N Q  is called quasi-

strong neutrosophic ideal or quasi-pure neutosophic 

ideal if all the elements of  N Q  are neutrosophic

elements. 

Example 15. Let 

   1,2,3,1 ,2 ,3N S S I I I I    be as in

example  5  . Then    1 ,3N K I I  be a quasi-

neutrosophic ideal of  N S . Thus clearly  N K  is

quasi-strong neutrosophic ideal or quasi-pure 

neutrosophic ideal of  N S .

Theorem 29. Every quasi-strong neutrosophic ideal 

or quasi-pure neutrosophic ideal is qausi-

neutrosophic ideal but the converse is not true. 

Definition 28. A neutrosophic sub LA-semigroup 

 N B  of a neutrosophic LA-semigroup is called  bi-

neutrosophic ideal of  N S  if

        N B N S N B N B .
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Example 16.  Let 

   1,2,3,1 ,2 ,3N S S I I I I    be a

neutrosophic LA-semigroup as in example  (1)  and 

   1,3,1 ,3N B I I  is a neutrosophic sub LA-

semigroup of  N S . Then Clearly  N B  is a bi-

neutrosophic ideal of  N S .

Theorem 30. Let B be a bi-ideal of an LA-

semigroup S , then  N B  is bi-neutrosophic ideal of

 N S  where  N B B I  .

Proof : The proof is straight forward. 

Definition 29. A bi-neutrosophic ideal  N B  of a

neutrosophic LA-semigroup  N S  is called bi-

strong neutrosophic ideal or bi-pure neutrosophic 

ideal if every element of  N B  is a neutrosophic

element. 

Example 17.  Let 

   1,2,3,1 ,2 ,3N S S I I I I    be a

neutrosophic LA-semigroup as in example  (1)  and 

   1 ,3N B I I  is a bi-neutrosophic ideal of

 N S . Then Clearly  N B  is a bi-strong

neutrosophic ideal or bi-pure neutosophic ideal of 

 N S .

Theorem 31.  All bi-strong neutrosophic ideals or bi-

pure  neutrosophic ideals are bi-neutrosophic ideals 

but the converse is not true. 

Definition 30. A non-empty subset  N A  of a

neutrosophic LA-semigroup  N S  is termed as

generalized bi-neutrosophic ideal of  N S  if

        N A N S N A N A .

Example 18. Let 

   1,2,3,1 ,2 ,3N S S I I I I    be a

neutrosophic LA-semigroup as in example  (1)  and 

   1,1N A I  is a non-empty subset of  N S .

Then Clearly  N A  is a generalized bi-neutrosophic

ideal of  N S .

Theorem 32. Every bi-neutrosophic ideal of a 

neutrosophic LA-semigroup is generalized bi-ideal 

but the converse is not true. 

Definition 31. A generalized bi-neutrosophic ideal 

 N A  of a neutrosophic LA-semigroup  N S  is

called generalized bi-strong neutrosophic ideal or 

generalized bi-pure neutrosophic ideal of  N S  if

all the elements of  N A  are neutrosophic elements.

Example 19. Let 

   1,2,3,1 ,2 ,3N S S I I I I    be

a neutrosophic LA-semigroup as in example  (1)  and 

   1 ,3N A I I  is a generalized bi-neutrosophic

ideal of  N S . Then clearly  N A  is a generalized

bi-strong neutrosophic ideal or generalized bi-pure 

neutrosophic ideal of  N S .

Theorem 33. All generalized bi-strong neutrosophic 

ideals or generalized bi-pure neutrosophic ideals are 

generalized bi-neutrosophic ideals but the converse is 

not true. 

Theorem 34. Every bi-strong neutrosophic ideal or 

bi-pureneutrosophic ideal of a neutrosophic LA-

semigroup is generalized bi-strong neutrosophic ideal 

or generalized bi-pure neutrosophic ideal but the 

converse is not true. 
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Definition 32. A non-empty subset  N L  of a

neutrosophic LA-semigroup  N S  is called interior

neutrosophic ideal of  N S  if

        N S N L N S N L .

Example 20.  Let 

   1,2,3,1 ,2 ,3N S S I I I I    be a

neutrosophic LA-semigroup as in example  (1)  and 

   1,1N L I  is a non-empty subset of  N S .

Then Clearly  N L  is an interior neutrosophic ideal

of  N S .

Theorem 35. Every neutrosophic ideal of a 

neutrosophic LA-semigroup  N S  is an interior

neutrosophic ideal. 

Proof : Let  N L  be a neutrosophic ideal of a

neutrosophic LA-semigroup  N S , then by

definition       N L N S N L  and

     N S N L N L . So clearly

        N S N L N S N L  and hence  N L  is

an interior neutrosophic ideal of  N S .

Definition 33. An interior neutrosophic ideal  N L

of a neutrosophic LA-semigroup  N S  is called

interior strong neutrosophic ideal or interior pure 

neutrosophic ideal if every element of  N L  is a

neutrosophic element. 

Example 21.  Let 

   1,2,3,1 ,2 ,3N S S I I I I    be a

neutrosophic LA-semigroup as in example  (1)  and 

   1 ,3N L I I  is a non-empty subset of  N S .

Then Clearly  N L  is an interior strong

neutrosophic ideal or interior pure neutrosophic ideal 

of  N S .

Theorem 36. All interior strong neutrosophic ideals 

or interior pure neutrosophic ideals are trivially 

interior neutrosophic ideals of a neutrosophic LA-

semigroup  N S  but the converse is not true.

Theorem 37. Every strong  neutrosophic ideal or 

pure neutosophic ideal of a neutrosophic LA-

semigroup  N S  is an interior strong neutrosophic

ideal or interior pure neutrosophic ideal. 

Neutrosophic homomorphism 

 Definition 34. Let ,S T be two LA-semigroups and 

: S T  be a mapping from S  to T .  Let  N S

and  N T  be the corresponding neutrosophic LA-

semigroups of S  and T respectively.  Let 

   : N S N T   be another mapping from

 N S  to  N T . Then   is called neutrosophic

homomorphis if   is homomorphism from S to T . 

Example 22. Let Z  be an LA-semigroup under the 

operation a b b a    for all ,a b Z . Let Q  be 

another LA-semigroup under the same operation 

defined above. For some fixed non-zero rational 

number x , we define : Z Q  by   /a a x 

where a Z . Then   is a homomorphism from Z

to Q .  Let  N Z  and  N Q  be the corresponding

neutrosophic LA-semigroups of Z and Q  

respectively.  Now Let    : N Z N Q  be a map

from neutrosophic LA-semigroup  N Z  to the

neutrosophic LA-semigroup  N Q . Then clearly 

is the corresponding neutrosophic homomorphism  of 

 N Z  to  N Q  as   is homomorphism.
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Theorem 38. If   is an isomorphism, then   will be 

the neutrosophic isomorphism. 

Proof : It’s easy. 

Conclusion 

In this paper we extend the neutrosophic group and 

subgroup,pseudo neutrosophic group and subgroup to  soft 

neutrosophic  group and  soft neutrosophic subgroup and 

respectively soft pseudo neutrosophic group and soft 

pseudo neutrosophic  subgroup. The normal neutrosophic 

subgroup is extended to soft  normal neutrosophic 

subgroup. 

We showed all these by giving various examples in order 

to illustrate the soft part of the neutrosophic notions used. 
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Abstract: The objective of this paper is to study 

neutrosophic hypercompositional structures 

( )H I  arising from the hypercompositions derived

from the binary relations τ on a neutrosophic set 

( )H I .  We give the characterizations of τ that make 

( )H I 

hypergroupoids,quasihypergroups, semihypergroups, 

neutrosophic hypergroupoids, neutrosophic 

quasihypergroups, neutrosophic semihypergroups and 

neutrosophic hypergroups. 
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1 Introduction 

The concept of hyperstructure together with the 
concept of hypergroup was introduced by F. Marty at the 
8th Congress of Scandinavian Mathematicians held in 
1934. A comprehensive review of the concept can be 
found in [5, 6, 12].  The concept of neutrosophy was  

introduced by F. Smarandache in 1995 and the concept of 
neutrosophic algebraic structures was introduced by F. 
Smarandache and W.B. Vasantha Kandasamy in 2006. A 
comprehensive review of neutrosophy and neutrosophic 
algebraic structures can be found in [1, 2, 3, 4, 15, 24 , 25]. 

One of the techniques of constructing hypergoupoids, 

quasi hypergroups, semihypergroups and hypergroups is to 
endow a nonempty set H with a hypercomposition derived 
from the binary relation ρ on H that give rise to a 
hypercompositional structure Hρ. In this paper, we consider 
binary relations τ on a neutrosophic set H(I) that define 
hypercompositional structures ( )H I  .Hypercompositions

in H(I) considered in this paper are in the sense of 
Rosenberg [22], Massouros and Tsitouras [16, 17], Corsini 
[8, 9], and De Salvo and Lo Maro [13, 14]. We give the 
characterizations of τ that make ( )H I  hypergroupoids,
quasihypergroups, semihypergroups, neutrosophic  
hypergroupoids, neutrosophic quasihypergroups,  

neutrosophic semihypergroups, and neutrosophic  
hypergroups.   

2 Preliminaries 

Definition 2.1. Let H be a non-empty set, and 

: *( )H H P H  be a hyperoperation. 
(1) The couple ( , )H is called a hypergroupoid. For 

any two non-empty subsets A and B of H and 
x H , we define 

,

, { }
a A b B

A B a b A x A x
 

  and 

{ }x B x B  

(2) A hypergroupoid ( , )H is called a 
semihypergroup if for all a,b,c of H we have 

( )a b c  ( )a b c , which means that  

.
u a b v b c

u c a v
 

  

A hypergroupoid ( , )H is called a 
quasihypergroup if for all a of H we have 

a H H a H  . This condition is also 

called the reproduction axiom.  
(3) A hypergroupoid ( , )H which is both a 

semihypergroup and a quasihypergroup is called a 
hypergroup. 

Definition 2.2. Let ( , )G  be any group and let 

( )G I G I  . The couple ( ( ), )G I  is called a 

neutrosophic group generated by G and I under the binary 
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operation  . The indeterminancy factor I is such that 

I I I  . If   is ordinary multiplication, then 

*...* nIastI I I I  and if   is ordinary addition, then 

...I I I I nI     for  n . 

If abba  for all , ( ),a b G I we say that G(I) is 

commutative. Otherwise, G(I) is called a non-commutative 

neutrosophic group. 

Theorem 2.3. [24] Let G(I) be a neutrosophic group. 
Then,  

(1) G(I) in general is not a group; 

(2)  G(I) always contain a group. 

Example 1. [3] Let G(I)={e, a, b, c, I, aI, bI, cI} be a set, 

where a2=b2=c2=e, bc=cb=a, ac=ca=b, ab=ba=c. Then  

(G(I),.) is a commutative neutrosophic group. 

Definition 2.4. [4] Let ( , )H be any hypergroup and let 

( ) {( , ) : , }.H I H I a bI a b H    The couple  

( ( ), )H I  is called a neutrosophic hypergroup generated 

by H and I under the hyperoperation . 

 For all (a,bI),(c,dI) ( ),H I the composition of elements 

of H(I) is defined by 

( , ) ( , ) {( , ) : ,a bI c dI x yI x a c   

}.y a d b c b d       

Example 2. [4] Let H(I)={a,b,(a,aI),(a,bI),(b,aI), (b,bI)} be 

a set and let  be a hyperoperation on H defined in the 
table below. 

a b (a,aI) (a,bI) (b,aI) (b,bI) 

a a b (a,aI) (a,bI) (b,aI) (b,bI) 

b b a 

b 

(b,bI) (b,aI) 

(b,bI) 

(a,bI) 

(b,bI) 

(a,aI) 

(a,bI) 

(b,aI) 

(b,bI) 

(a,aI) (a,aI) (b,bI) (a,aI) (a,aI) 

(b,bI) 

(b,aI) 

(b,bI) 

(b,bI) 

(a,bI) (a,bI) (b,aI) 

(b,bI) 

(a,aI) 

(a,bI) 

(a,aI) 

(a,bI) 

(b,aI) 

(b,bI) 

(b,aI) 

(b,bI) 

(b,aI) (b,aI) (b,bI) 

(a,bI) 

(b,aI) 

(b,bI) 

(b,aI) 

(b,bI) 

(a,aI) 

(a,bI) 

(b,aI) 

(b,bI) 

(a,aI) 

(a,bI) 

(b,aI) 

(b,bI) 

(b,bI) (b,bI) (a,aI) 

(a,bI) 

(b,aI) 

(b,bI) 

(b,bI) (b,aI) 

(b,bI) 

(a,aI) 

(a,bI) 

(b,aI) 

(b,bI) 

(a,aI) 

(a,bI) 

(b,aI) 

(b,bI) 

Then ( ( ), )H I  is a neutrosophic hypergroup. 

Definition 2.5. Let H be a nonempty set and let ρ be a 

binary relation on H. 

(1) 
2 {( , ) : ( , ), ( , ) ,x y x z z y      for 

some }.z H  

(2) An element  x H is called an outer element of ρ 

if 
2( , )z x   for some .z H Otherwise, x is 

called an inner element. 

(3) The domain of ρ is the set 

( ) { : ( , ) ,D x H x z    for some 

}.z H  

(4) The range of ρ is the set   

30



Neutrosophic Sets and Systems, Vol. 3, 2014 

 A.A.A. Agboola, S.A. Akinleye, Neutrosophic Hypercompositional Structures defined by Binary Relations 

( ) { : ( , ) ,R x H z x    for some }.z H  

In [22], Rosenberg introduced in H the hypercomposition 

{ : ( , ) }x x z H x z    and 

x y x x y y   (1) 

and proved the following: 

Proposition 2.6. [22] ( , )H H  is a hypergroupoid if 

and only if ( )H D  .  

Proposition 2.7. [22]  H
is a quasihypergroup if and

only if 

(1) ( )H D  . 
(2) ( )H R  . 

Proposition 2.8. [22] H
 is a semihypergroup if and only

if 

(1) ( )H D  . 

(2) 
2  . 

(3) 
2( , )a x  implies that ( , )a x   whenever x 

is an outer element of ρ. 

Proposition 2.9. [22] H
 is a hypergroup if and only if

(1) ( )H D  . 
(2) ( )H R  . 

(3) 
2  . 

(4) 
2( , )a x  implies that ( , )a x   whenever x 

is an outer element of ρ. 

In [17], Massouros and Tsitouras noted that 

whenever x is an outer element of ρ, then it can be deduced 

from condition (2) and (3) (conditions (3) and (4)) of 

Proposition 2.8 (Proposition 2.9) that ( , )a x   if and 

only if 
2( , )a x   for some a H  . Hence, they 

restated Propositions 2.8 and 2.9 in the following 

equivalent forms: 

Proposition 2.10. [17] H
 is a semihypergroup if and

only if 

(1) ( )H D  . 

(2) 
2( , )a x  if and only if ( , )a x   for all 

a H whenever x is an outer element of ρ. 

Proposition 2.11. [17] H
 is a semihypergroup if and

only if 

(1) ( )H D  . 

(2) ( )H R  . 

(3) 
2( , )a x  if and only if ( , )a x   for all 

a H whenever x is an outer element of ρ. 

If H is a nonempty set and ρ is a binary on H, 
Massouros and Tsitouras [17] defined hypercomposition  
on H as follows: 

{ : ( , ) }x x z H z x    and 
x y x x y y           (2) 
and stated that: 

Proposition 2.12. [17] If ρ is symmetric, then the 
hypercompositional structures ( , )H and  

( , )H coincide. 

Following Rosenberg’s terminology in [22],  
Massouros and Tsitouras established the following: 

Definition 2.13. [17] 

(1) For ( , )a b  , a is called a predecessor of b and 
b a successor of a.  

(2) An element x of H is called a predecessor outer 

element of ρ if 
2( , )x z  for some z H . 

Using hypercomposition , Massouros and 

Tsitouras established the following: 

Proposition 2.14. [17] ( , )H H  is hypergroupoid if 

and only if ( ).H R    

Proposition 2.15. [17] ( , )H H  is quasihypergroup if 

and only if 

(1) ( )H D  . 
(2) ( )H R  . 

Proposition 2.16. [17] ( , )H H  is 

semihypergroup if and only if 

(1) ( )H R  . 

(2) 
2( , )x y  if and only if ( , )x y   for all 

y H whenever x is a predecessor outer 

element of ρ. 

Proposition 2.17. [17] ( , )H H  is hypergroup if 

and only if 

(1) ( )H D  . 
(2) ( )H R  . 

(3) 
2( , )x y  if and only if ( , )x y   for all 

y H whenever x is a predecessor outer 

element of ρ. 

If H is a nonempty set and ρ is a binary relation on H, 
Corsini [8, 9] introduced in H the hypercomposition: 

{ : ( , )x y z H x z     and 
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( , )z y  for some }.z H                           (3) 

It is clear that ( , )H   is a partial hypergroupoid and it is a 

hypergroupoid if for each pair of elements ,x y H , 

there exists z H such that ( , )x z  and ( , )z y  . 

Equivalently, ( , )H   is a hypergroupoid if and only if 

2 2H  .  

If H
 is the hypercompositional structure defined by

equation (3) , Massouros and Tsitouras [16] proved the 

following: 

Proposition 2.18. [16] H
 is a quasihypergroup if and

only if ( , )x y   for all ,x y H .

Lemma 2.19. [16] If H
 is a semihypergroup and

( , )z z   for some z H , then ( , )s z  implies

that ( , )z s  . 

Corrolary 2.20. [16] If H
 is a semihypergroup and ρ is

not reflexive, then ρ is not symmetric. 

Lemma 2.21. If H
 is a semihypergroup then ρ is

reflexive. 

Proposition 2.22. [16] H
 is a semihypergroup if and

only if ( , )x y   for all ,x y H .

Definition 2.23. A hyperoperation   defined through ρ is 

said to be a total hypercomposition if and only if 

( , )x y   for all ,x y H . In other words,   is said 

to be a total hypercomposition if x y H   for all 

,x y H . 

Remark 1. If a hypercompositional structure H
 is

endowed with the total hypercomposition  , then 

( , )H   is a hypergroup. 

Theorem 2.24. [16] The only semihypergroup and the 

only quasihypergroup defined by the binary relation ρ is 

the total hypergroup. 

If H is a nonempty set and ρ is a binary relation on H, 

De Salvo and Lo Faro [13, 14] introduced in H the 

hypercomposition: 

{ : ( , )x y z H x z      

( , )x y   for some }.z H  

They characterized the relations ρ which give 

quasihypergoups, semihypergroups and hypergroups. 

3 Neutrosophic Hypercompositional Structures  

3.1 Neutrosophic Hypercompositional Structures 
of Rosenberg Type 

Let τ be a binary relation on H(I) and let 
H

  . For 

all ( , ), ( , ) ( )a bI c dI H I , define hypercomposition on 

H(I) as follows: 

( , ) ( , ) {( , ) ( ) : ,a bI a bI x yI H I x a a  

}y a a b b     

{( , ) ( ) : ( , ) ,x yI H I a x     

( , )a y  or ( , ) }b y  . 

(5)

( , ) ( , ) {( , ) ( ) : ,a bI c dI x yI H I x a a c c   

}y a a b b c c d d   

{( , ) ( ) : ( , ) ,x yI H I a x     

or ( , ) , ( , )c x a y    

or ( , )b y  or ( , )c y  or ( , ) }.d y    (6) 

Let ( ) ( ( ), )H I H I  be a hypercompositional 
structure arising from the hypercomposition defined by 
equation (6). 

Proposition 3.1.1. ( )H I  is a hypergroupoid if and only

if Hρ is a hypergroupoid. 

Proof. Suppose that Hρ is a hypergroupoid. Then 

( )H D  and from equation (6) we have 

( , ) ( , ) ( )a bI c dI H I  for all 

( , ), ( , )a bI c dI ( )H I . Hence ( )H I  is a 

hypergroupoid. The converse is obvious. 

Proposition 3.1.2. ( )H I  is a quasihypergroup if and

only if Hρ is a quasihypergroup. 

Proof. Suppose that Hρ is a quasihypergroup. Then 

( ) ( )H D R   . Let ( , ) ( , ) ( , )x yI a bI c dI for 

an arbitrary ( , ) ( )c dI H I . Then 

( , ) ( ) {( , ) ( , )}a bI H I a bI c dI   
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{( , ) ( ) : ( , ) ,x yI H I a x   

or ( , ) , ( , )c x a y    

or ( , )b y  or ( , )c y  or ( , ) }.d y   

( )H I 

Similarly, it can be shown that 
( ) ( , )H I a bI  ( )H I  for all ( , ) ( )a bI H I .

Hence ( ( ) , )H I  is a quasihypergroup. The converse 
is obvious.  

Lemma 3.1.1. If ρ is not reflexive, then  

( , )a bI  ( , ) ( , )a bI a bI for all ( , ) ( )a bI H I . 

Proof. Suppose that ρ is not reflexive and suppose 
that ( , )a bI  ( , ) ( , )a bI a bI for all ( , ) ( )a bI H I . 
Assuming that ( , )a b  , we have from equation (5): 

( , ) ( , ) {( , ) ( ) : ( , ) ,a bI a bI a bI H I a a   
( , )a b  or ( , ) }b b   

    
a contradiction. Hence ( , )a bI  ( , ) ( , )a bI a bI . 

Proposition 3.1.3. ( )H I   is a semihypergroup if ρ is

reflexive and symmetric.  

Proof. Suppose that ρ is reflexive and symmetric. Let 

( , ), ( , ) ( )a bI b aI H I be arbitrary and let ( , )x a  , 

( , )x b   and ( , )y a  . Then ( , ) ( , )b aI a bI  

(( , ) ( , ))b aI a bI implies that 

( , ) (( , ) ( , )) {( , ) ( ) : ( , )a bI b aI a bI b aI H I a b   
or ( , )x b  , ( , ) , ( , )a a b a   or 

( , )x a  or ( , ) }y a   

(( , ) ( , )) ( , ).a bI b aI a bI  

This shows that 

( , ) (( , ) ( , ))b aI a bI b aI ( , )a bI . Since (a,bI) 
and (b,aI) are arbitrary, it follows that ( )H I   is a

semihypergroup. 

The following results are immediate from the 

hypercomposition defined by equation (6): 

Proposition 3.1.4. (1) ( )H I  is a neutrosophic
hypergroupoid if and only if Hρ is a hypergroupoid. 

(2) ( )H I  is a neutrosophic semihypergroup if and
only if Hρ is a semihypergroup. 

(3) ( )H I  is a neutrosophic hypergroup if and only if
Hρ is a hypergroup. 

3.2 Neutrosophic Hypercompositional Structures 
of Massouros and Tsitouras Type 

Let τ be a binary relation on H(I) and let 
H

  . For 

all ( , ), ( , ) ( )a bI c dI H I , define hypercomposition on 

H(I) as follows: 

( , ) ( , ) {( , ) : ,a bI a bI x yI x a a   

 }y a a b b 
 

 
{( , ) : ( , ) ,x yI x a  

 

( , )y a  or ( , ) }y b 
           (7)

( , ) ( , ) {( , ) : ,a bI c dI x yI x a a c c    

}y a a b b c c d d   
 

    
{( , ) : ( , ) ,x yI x a  

 

or ( , ) ,x c   ( , )y a  or 

( , )y b  or ( , )y c  or ( , ) }y d        (8) 

( ) ( ( ), )H I H I  be a hypercompositional structure 
arising from the hypercomposition defined by equation (8). 

Proposition 3.2.1. If ρ is symmetric, then  

hypercompositional structure ( ( ), )H I   coincide with 

hypercompositional structure ( ( ), )H I . 

Proof. This follows directly from equations (6) and (8).   

Proposition 3.2.2. ( )H I  is a hypergroupoid if and only
if Hρ is a hypergroupoid. 

Proof. Suppose that Hρ is a hypergroupoid. Then 

( )H R  and from equation (8) we have 

( , ) ( , ) ( )a bI c dI H I  for all 

( , ), ( , )a bI c dI ( )H I . Hence ( )H I   is a 
hypergroupoid. The converse is obvious.  

Proposition 3.2.3. ( )H I  is a quasihypergroup if and
only if Hρ is aquasi hypergroup. 

Proof. Suppose that Hρ is a quasihypergroup. Then 

( ) ( )H D R   . Let ( , ) ( , ) ( , )x yI a bI c dI for 
an arbitrary ( , ) ( )c dI H I . Then    

( , ) ( ) {( , ) ( , )}a bI H I a bI c dI   

 {( , ) ( ) : ( , )x yI H I x a     

or ( , ) ,x c   ( , )y a  or 

( , )y b  or ( , )y c  or ( , ) }y d     

  ( )H I 

Similarly, it can be shown that 
( ) ( , ) ( )H I a bI H I  for all ( , ) ( )a bI H I . 

Hence ( )H I   is a quasihypergroup. The converse is
obvious. 

Lemma 3.2.1. If ρ is not reflexive, then 

( , )a bI  ( , ) ( , )a bI a bI  for all ( , ) ( )a bI H I . 

Proof. The same as the proof of Lemma 3.1.1. 

Proposition 3.2.4. ( )H I  is a semihypergroup if ρ is
reflexive and symmetric.  
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Proof. This follows from Proposition 3.1.3 and Proposition 
3.2.1. 

Proposition  3.2.5. (1) ( )H I  is a neutrosophic
hypergroupoid if and only if Hρ is a hypergroupoid. 

(2) ( )H I  is a neutrosophic semihypergroup if and
only if Hρ is a semihypergroup. 

(3) ( )H I  is a neutrosophic hypergroup if and only if
Hρ is a hypergroup. 

3.3 Neutrosophic Hypercompositional Structures 
of Corsini Type 

Let τ be a binary relation on H(I) and let 
H

  . For 

all ( , ), ( , ) ( )a bI c dI H I , define hypercomposition on 

H(I) as follows: 

( , ) ( , ) {( , ) ( ) : ,a bI c dI x yI H I x a a    

}y a d b c b d       

{( , ) ( ) : ( , ) ,x yI H I a x     

and ( , ) ,[( , )x c a y    

and ( , ) ]y d  or[( , )b y  and ( , ) ]y c    

or [( , )b y  and ( , ) ]}.y d    (9) 

Let ( ) ( ( ), )H I H I   be a hypercompositional 
structure arising from the hypercomposition defined by 
equation (9). 

Proposition 3.3.1. ( )H I  is a hypergroupoid if and only

if Hρ is a hypergroupoid. 

Proof. Suppose that Hρ is a hypergroupoid. Then H2=ρ2.
Since 

2( , ), ( , ), ( , ), ( , )a c a d b c b d  from equation (9), 
it follows that ( , ) ( , ) ( )a bI c dI H I   for all 

( , ), ( , )a bI c dI ( )H I . Hence ( )H I   is a
hypergroupoid. The converse is obvious.   

Proposition 3.3.2. ( )H I  is a quasihypergroup if and
only if Hρ is a quasihypergroup. 

Proof. Suppose that Hρ is a quasihypergroup. Then 

( , )x y  for all ,x y H . Let  

( , )x yI  ( , ) ( , )a bI c dI for an arbitrary  

( , ) ( )c dI H I . Then    

( , ) ( ) {( , ) ( , )}a bI H I a bI c dI    

{( , ) ( ) : ( , ) ,x yI H I a x     

and ( , ) ,[( , )x c a y    

and ( , ) ]y d  or[( , )b y  and ( , ) ]y c    

or [( , )b y  and ( , ) ]}.y d   
( )H I 

Similarly, it can be shown that 
( ) ( , ) ( )H I a bI H I   for all ( , ) ( )a bI H I . 

Hence ( )H I   is a quasihypergroup. The converse is
obvious. 

Proposition 3.3.3. ( )H I  is a neutrosophic 

quasihypergroup if and only if Hρ is aquasihypergroup. 

Proof. Follows directly from equation (9). 

Lemma 3.3.1. If ρ is not reflexive and symmetric, then 
(1) ( , ) ( , ) ( , )a bI a bI a bI   

for all ( , ) ( )a bI H I . 
(2) ( , ) ( , ) ( , )b aI a bI a bI 

for all ( , ), ( , ) ( )a bI b aI H I . 
(3) ( , ) ( , ) ( , )a aI a bI a bI   

for all ( , ), ( , ) ( )a aI a bI H I . 
(4) ( , ) ( , ) ( , )a bI a bI a bI   

for all ( , ), ( , ) ( )a bI b aI H I . 
(5) ( , ) ( , ) ( , )b aI a bI b aI   

for all ( , ), ( , ) ( )a bI b aI H I . 
(6) ( , ) ( , ) ( , )a aI a bI b aI   

for all ( , ), ( , ), ( , ) ( )a aI a bI b aI H I . 

Proof. (1) Suppose that ρ is not reflexive and symmetric 
and suppose that ( , )a bI  ( , ) ( , )a bI a bI . Then 

( , ) ( , ) {( , ) ( ) : ( , ) ,a bI a bI a bI H I a a         

( , )b b 
 

or [( , )a b  and 

( , ) ]b b  or [( , )b b  and ( , ) ]a b 
    

a contradiction. Hence ( , )a bI  ( , ) ( , )a bI a bI . 
Using similar argument, (2), (3), (4), (5) and (6) can be 
established.  

Proposition 3.3.4. ( )H I   is a semihypergroup if ρ is
reflexive and symmetric.  

Proof. Suppose that ρ is reflexive and symmetric. Let 

( , ), ( , ) ( )a bI b aI H I be arbitrary and let ( , )x a  , 

( , )x b  , ( , )y b  and ( , )b a  . Then 

( , ) ( , )a bI a bI   (( , ) ( , ))b aI a bI implies that 
 ( , ) (( , ) ( , )) {( , ) ( ) :a bI b aI a bI a bI H I   

( , )x a  and ( , ) ,[( , )a a x b   and 

( , ) ]b b  or [( , )y a  and ( , ) ]b a  or 

[( , )y b  and ( , ) ]}b b   

(( , ) ( , )) ( , ).a bI b aI a bI    
This shows that 

( , ) (( , ) ( , ))b aI a bI b aI  ( , )a bI . Since (a,bI) and 
(b,aI) are arbitrary, it follows that ( )H I   is a

semihypergroup. 

Corollary 3.3.1. ( )H I  is a semihypergroup if and only if
Hρ is a semihypergroup. 

Proposition 3.3.5. If any pair of elements of Hρ does not 

belong to ρ, then ( )H I   is not a semihypergroup.
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3.1 Neutrosophic Hypercompositional Structures 
of De Salvo and Lo Faro Type 

Let τ be a binary relation on H(I) and let 
H

  . For 

all ( , ), ( , ) ( )a bI c dI H I , define hypercomposition on 

H(I) as follows: 

( , ) ( , ) {( , ) ( ) : ,a bI c dI x yI H I x a c    

}y a d b c b d       

{( , ) ( ) : ( , ) ,x yI H I a x     

or ( , ) , ( , )x c a y    

or ( , )b y  or ( , )y c  or ( , ) }.y d      (10) 

Let ( ) ( ( ), )H I H I   be a hypercompositional 
structure arising from the hypercomposition defined by 
equation (10). 

Proposition 3.4.1. If ρ is symmetric, then  

hypercompositional structures ( ( ), )H I  , ( ( ), )H I
and ( ( ), )H I coincide.    

Proof. Follows directly from equations (6), (8) and (10). 

Proposition 3.4.2. ( )H I  is a hypergroupoid if and only

if Hρ is a hypergroupoid. 

Proof. Suppose that Hρ is a hypergroupoid. Then H=D(ρ) 
or H=R(ρ) and from equation (10) we have  
( , ) ( , ) ( )a bI c dI H I   for all

( , ), ( , )a bI c dI ( )H I . Hence ( )H I   is a
hypergroupoid. The converse is obvious.   

Proposition 3.4.3. ( )H I  is a quasihypergroup if and
only if Hρ is a quasihypergroup. 

Proof. The same as the proof of Proposition 3.2.3. 

Lemma 3.4.1. If ρ is not reflexive and symmetric, then 

(1) ( , ) ( , ) ( , )a bI a bI a bI 
for all ( , ) ( )a bI H I . 

(2) ( , ) ( , ) ( , )b aI a bI a bI   
for all ( , ), ( , ) ( )a bI b aI H I . 

(3) ( , ) ( , ) ( , )a aI a bI a bI   
for all ( , ), ( , ) ( )a aI a bI H I . 

(4) ( , ) ( , ) ( , )a bI a bI a bI   
for all ( , ), ( , ) ( )a bI b aI H I . 

(5) ( , ) ( , ) ( , )b aI a bI b aI   
for all ( , ), ( , ) ( )a bI b aI H I . 

(6) ( , ) ( , ) ( , )a aI a bI b aI   
for all ( , ), ( , ), ( , ) ( )a aI a bI b aI H I . 

Proof. (1) Suppose that ρ is not reflexive and symmetric 
and suppose that ( , )a bI  ( , ) ( , )a bI a bI . Then 

( , ) ( , ) {( , ) ( ) : ( , ) ,a bI a bI a bI H I a a    
( , )a b  or  ( , )b b 

 
or ( , ) }b a 

    
a contradiction. Hence ( , )a bI  ( , ) ( , )a bI a bI . 

Using similar argument, (2), (3), (4), (5) and (6) can be 
established.  

Proposition 3.4.4. ( )H I   is a semihypergroup if ρ is

reflexive and symmetric.  

Proof. Suppose that ρ is reflexive and symmetric. Let 

( , ), ( , ) ( )a bI b aI H I be arbitrary and let ( , )a x  , 

( , )b x  , ( , )b y  and ( , )a b  . Then 

( , ) ( , )a bI a bI   (( , ) ( , ))b aI a bI implies that 

 ( , ) (( , ) ( , )) {( , ) ( ) :a bI b aI a bI a bI H I   
( , )a a  or ( , )a x  , ( , )a b  or 

( , )b y  or ( , )b b  or ( , ) }b x   

(( , ) ( , )) ( , ).a bI b aI a bI    
This shows that 

( , ) (( , ) ( , ))a bI a bI b aI  ( , )a bI . Since (a,bI) and 

(b,aI) are arbitrary, it follows that ( )H I   is a
semihypergroup. 

The following results are immediate from the 
hypercomposition defined by equation (10): 

Proposition  3.4.5. (1) ( )H I  is a neutrosophic
hypergroupoid if and only if Hρ is a hypergroupoid. 

(2) ( )H I  is a neutrosophic semihypergroup if and
only if Hρ is a semihypergroup. 

(3) ( )H I  is a neutrosophic hypergroup if and only if
Hρ is a hypergroup. 
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Abstract. In this article, we shall define the addition and 

multiplication of two neutrosophic fuzzy matrices. Thereafter, 

some properties of addition and multiplication of these matrices 

are also put forward. 

Keywords: Neutrosophic fuzzy matrice, Neutrosophic Set.

1 Introduction 

Neutrosophic sets  theory was proposed by Florentin 

Smarandache [1] in 1999, where each element had three 

associated defining functions, namely the membership 

function (T), the non-membership (F) function and the 

indeterminacy function (I) defined on the universe of 

discourse X, the three functions are completely 

independent. The theory has been found extensive 

application in various field [2,3,4,5,6,7,8,9,10,11]  for 

dealing with indeterminate and inconsistent information in 

real world.Neutrosophic set is a part of neutrosophy which 

studied the origin, nature and scope of neutralities, as well 

as their interactions with ideational spectra. The 

neutrosophic set generalized the concept of classical fuzzy 

set [12, 13], interval-valued fuzzy set, intuitionistic fuzzy 

set [14, 15], and so on.  

   Also as we know, matrices play an important role in 

science and technology. However, the classical matrix 

theory sometimes fails to solve the problems involving 

uncertainties, occurring in an imprecise environment. In 

[17] Thomason, introduced the fuzzy matrices to represent 

fuzzy relation in a system based on fuzzy set theory and 

discussed about the convergence of powers of fuzzy 

matrix. In 2004, W. B. V. Kandasamy  and F. 

Smarandache  introduced fuzzy relational maps and 

neutrosophic relational maps. 

Our aim ,In this paper is  to propose another type of fuzzy 

neutrosophic matrices ,called “square neutrosophic fuzzy 

matrices”,  whose entries is of the form a+Ib (neutrosophic 

number) , where a,b are the elements of [0,1] and I is an 

indeterminate such that =I, n being a positive integer. In 

this study we will focus on square neutrosophic fuzzy 

matrices.The paper unfolds as follows. The next section 

briefly introduces some definitions related to neutrosophic 

set, neutrosophic matrices, Fuzzy integral neutrosophic 

matrices and fuzzy matrix. Section 3 presents a new type of 

fuzzy neutrosophic matrices and investigated some 

properties such as addition and multiplication. Conclusions 

appear in the last section. 

2 Preliminaries 

In this section we recall some concept such as , 

neutrosophic set, neutrosophic matrices and fuzzy 

neutrosophic matrices proposed by W. B. V. Kandasamy 

and F. Smarandache  in their books [16 ] , and also  the 

concept of fuzzy matrix . 

Definition 2.1 (Neutrosophic Sets).[1] 

Let U be an universe of discourse then the neutrosophic set 

A is an object having the form  

A = {< x: , , >,x  U}, where the 

functions T, I, F : U→ ]−0, 1+[  define respectively the 

degree of membership (or Truth) , the degree of 

indeterminacy, and the degree of non-membership (or 

37



Neutrosophic Sets and Systems, Vol. 3, 2014 

Mamouni Dhar , Said Broumi, Florentin Smarandache, A Note on Square Neutrosophic Fuzzy Matrices

Falsehood) of the element x U to the set A with the 

condition.  

     −0 ≤  + + ≤ 3+.  

From philosophical point of view, the neutrosophic set 

takes the value from real standard or non-standard subsets 

of ]−0, 1+[. So instead of ]−0, 1+[ we need to take the 

interval [0, 1] for technical applications, because ]−0, 

1+[will be difficult to apply in the real applications  such as 

in scientific and engineering problems.  

Definition 2.2 (Neutrosophic matrix) [16]. 

Let = {(  ) /   K(I)}, where K (I), is  a 

neutrosophic field. We call  to be the neutrosophic 

matrix. 

Example 1: Let Q(I) = 〈Q ∪ I 〉be the neutrosophic field 

=

 denotes the neutrosophic matrix, with entries from 

rationals and the indeterminacy. 

Definition 2.3   (Fuzzy integral neutrosophic matrices) 

Let N = [0, 1]   I  where I is the indeterminacy. The m ×n 

matrices = {(  ) /   [0, 1] I}  is called the 

fuzzy integral neutrosophic matrices. Clearly the class of m 

×n matrices is contained in the class of fuzzy integral 

neutrosophic matrices. 

 An integral fuzzy neutrosophic row vector is a 1 × n 

integral fuzzy neutrosophic matrix, Similarly an integral 

fuzzy neutrosophic column vector is a m ×1 integral fuzzy 

neutrosophic matrix. 

Example 2 : Let  =

A is a 3 ×3 integral fuzzy neutrosophic matrix. 

Definition 2.5  (Fuzzy neutrosophic matrix) [16] 

Let = [0, 1] ∪ nI / n  (0, 1]}; we call the set  to be 

the fuzzy neutrosophic set. Let  be the fuzzy 

neutrosophic set. = {(  ) /   } we call the 

matrices with entries from  to be the  fuzzy neutrosophic 

matrices. 

Example 3: Let = [0,1] ∪{nI/ n  (0,1]} be the set 

P = 

is a 3 ×3 fuzzy neutrosophic matrix 

Definition 2.6 (Fuzzy matrix) [17] 

A fuzzy matrix is a matrix which has its elements from the 

interval [0, 1], called the unit fuzzy interval. A m x n  

fuzzy matrix for which m = n (i.e the number of rows is 

equal to the number of columns) and whose  elements 

belong to the unit interval [0, 1]  is called a fuzzy square 
matrix of order n. A fuzzy square matrix of order two is 

expressed in the following way 

A= , where the entries a,b,c,d all belongs to the 

interval [0,1]. 

3 Some Properties of Square Neutrosophic Fuzzy 

Matrices 

In this section ,we define a new type of fuzzy neutrosophic 

set and define some operations on this neutrosophic  fuzzy  

matrice. 

3.1 .Definition (Neutrosophic Fuzzy Matrices) 

Let A be a neutrosophic fuzzy matrices,  whose entries is 

of the form a+Ib (neutrosophic number) , where a,b are the 

elements of [0,1] and I is an indeterminate such that =I, n 

being a positive integer. 

A=

3.2.Arithmetic with Square  Neutrosophic Fuzzy 

Matrices 

In this section we shall define the addition and 

multiplication of neutrosophic fuzzy matrices along with 

some properties associated with such matrices. 
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3.2.1. Addition Operation of two Neutrosophic Fuzzy 

Matrices 

Let us consider two neutrosophic fuzzy matrices as  

A=  B=

Then we would like to define the addition of these two 

matrices as  

[ ]ijA B C 

Where 

It is noted that the matrices defined by our way is reduced 

to fuzzy neutrosophic matrix when a = 

Properties 1 

The following properties can be found to hold in cases of 

neutrosophic fuzzy matrix multiplication 

(i) A+B = B+A 

(ii) (A+B)+C = A+(B+C) 

3.2.2  Multiplication Operation of Neutrosophic Fuzzy 

Matrices 

Let us consider two neutrosophic fuzzy matrices as 

[ ]ij ijA a Ib   and [ ]ij ijB c Id  . Then we shall 

define the multiplication of these two neutrosophic fuzzy 

matrices as  

[max min( , ) max min( , )]ij ji ij jiAB a c I b d  . It can 

be defined in the following way: 

If the above mentioned neutrosophic fuzzy matrices are 

considered then we can define the product of the above 

matrices as 

A B = [ , where 

It is important to mention here that if the multiplication of 

two neutrosophic fuzzy matrices is defined in the above 

way then the following properties can be observed to hold: 

Properties 

(i) AB BA    

(ii) A(B+C)=AB+AC 

2.4.1 Numerical Example 

Let us consider three neutrosophic fuzzy matrices as 

 A=

B=

C= 

B+C = 

A (B +C)= 

Let us take 

A (B +C) =  , where 

max{min(0.1, 0.4), min(0.4,0.6)}+I max{min(0.3, 

0.6), min(0.1, 0.8)} 

   = max(0.1, 0.4) + I max (0.3, 0.1) 

  = 0.4 + I 0.3 

max{min(0.1, 0.5), min(0.4,0.9)}+I max{min(0.3, 

0.4), min(0.1, 0.2)} 

   = max(0.1, 0.4) + I max (0.3, 0.1) 
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   = 0.4 + I 0.3 

 max{min(0.2, 0.4), min(0.1,0.6)}+I max{min(0.4, 

0.6), min(0.7, 0.8)} 

   = max(0.2, 0.1) + I max (0.4, 0.7) 

   = 0.2 + I 0.7 

 max{min(0.2, 0.5), min(0.1,0.9)}+I max{min(0.4, 

0.4), min(0.7, 0.2)} 

   = max(0.2, 0.1) + I max (0.4, 0.2) 

    = 0.2 + I 0.4 

Therefore we have 

  A (B + C)= 

Now we shall see what happens to AB+BC 

Then let us calculate AB 

A B = 

Let is now consider 

A B= , where 

 max{min(0.1, 0.2), min(0.4,0.3)}+I max{min(0.3, 

0.3), min(0.1, 0.8)} 

   = max(0.1, 0.3) + I max (0.3, 0.1) 

   = 0.3 + I 0.3 

max{min(0.1, 0.5), min(0.4,0.9)}+I max{min(0.3, 

0.4), min(0.1, 0.1)} 

   = max(0.1, 0.4) + I max (0.3, 0.1) 

   = 0.4 + I 0.3 

 max{min(0.2, 0.2), min(0.1,0.3)}+I max{min(0.4, 

0.3), min(0.7, 0.8)} 

    = max(0.2, 0.1) + I max (0.3, 0.7) 

   = 0.2 + I 0.7 

max{min(0.2, 0.5), min(0.1,0.9)}+I max{min(0.4, 

0.4), min(0.7, 0.1)} 

   = max(0.2, 0.1) + I max (0.4, 0.1) 

   = 0.2 + I 0.4 

 Let us consider A C= , where 

 max{min(0.1, 0.4), min(0.4,0.6)}+I max{min(0.3, 

0.6), min(0.1, 0.2)} 

   = max(0.1, 0.4) + I max (0.3, 0.1) 

  = 0.4 + I 0.3 

 max{min(0.1, 0.5), min(0.4,0.3)}+I max{min(0.3, 

0.3), min(0.1, 0.2)} 

   = max(0.1, 0.3) + I max (0.3, 0.1) 

   = 0.3 + I 0.3 

 max{min(0.2, 0.4), min(0.1,0.6)}+I max{min(0.4, 

0.6), min(0.7, 0.2)} 

   = max(0.2, 0.1) + I max (0.4, 0.2) 

   = 0.2 + I 0.2 

max{min(0.2, 0.5), min(0.1,0.3)}+I max{min(0.4, 

0.3), min(0.7, 0.2)} 

     = max(0.2, 0.1) + I max (0.3, 0.2) 

      = 0.2 + I 0.3 

Thus we have 

= (0.3 + I 0.3) + (0.4 + I 0.3) 

  = 0.4 + I 0.3 

= (0.4+ I 0.3) + (0.3 + I 0.3) 

  = 0.4 + I 0.3 

= (0.2+ I 0.7) + (0.2 + I 0.2) 

  = 0.2+ I 0.7 

= (0.2+ I 0.4) + (0.2 + I 0.3) 

40



Neutrosophic Sets and Systems, Vol. 3, 2014 

Mamouni Dhar , Said Broumi, Florentin Smarandache, A Note on Square Neutrosophic Fuzzy Matrices

=0.2+ I 0.4 

Thus, we get, A B + A C= 

From the above results, it can be established that 

A (B+C) = AB + AC 

4. Conclusions

According the newly defined addition and multiplication 

operation of neutrosophic fuzzy matrices, it can be seen that some 

of the properties of arithmetic operation of these matrices are 

analogous to the classical matrices. Further some future works are 

necessary to deal with some more properties and operations of 

such kind of matrices. 
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Abstract. In this paper, we present multi-attribute  

decision-making problem with neutrosophic assessment.  

We assume that the information about attribute weights 

is incompletely known or completely unknown. The 

ratings of alternatives with respect to each attributes are 

considered as single-valued neutrosophic set to catch up 

imprecise or vague information. Neutrosophic set is 

characterized by three independent degrees namely truth-

membership degree (T), indeterminacy-membership 

degree (I), and falsity-membership degree (F). The 

modified grey relational analysis method is proposed to 

find out the best alternative for multi-attribute decision-

making problem under neutrosophic environment. We 

establish a deviation based optimization model based on 

the ideal alternative to determine attribute weight in 

which the information about attribute weights is  

incompletely known. Again, we solve an optimization 

model with the help of Lagrange functions to find out the 

completely unknown attributes weight. By using these 

attributes weight we calculate the grey relational 

coefficient of each alternative from ideal alternative for 

ranking the alternatives. Finally, an illustrative example 

is provided in order to demonstrate its applicability and  

effectiveness of the proposed approach.

Keywords: Neutrosophic set; Single-valued neutrosophic set; Grey relational analysis; Multi-attribute decision making; Unknown 

weight information. 

1 Introduction 

In the real world problem, we often encounter different 

type of uncertainties that cannot be handled with classical 

mathematics. In order to deal differen types of uncertainty, 

Fuzzy set due to Zadeh [1] is very useful and effective. It 

deals with a kind of uncertainty known as “fuzziness”. 

Each real value of [0, 1] represents the membership degree 

of an element of a fuzzy set i.e partial belongingness is 

considered. If ]1,0[)x(A  is the membership degree of an 

element x of a fuzzy set A, then (1- )x(A ) is assumed as 

the non-membership degree of that element. This is not 

generally hold for an element with incomplete information. 

In 1986, Atanassov [2] developed the idea of intuitionistic 

fuzzy set (IFS). An element of intuitionistic fuzzy set A 

characterized by the membership degree ]1,0[)x(A   as 

well as non-membership degree ]1,0[)x(A   with some 

restriction .1≤)x(ν+)x(μ≤0 AA Therefoe certain amount 

of indeterminacy or incomplete information 

 )x()x(1 AA  remains by default. However, one may 

also consider the possibility 1)x()x( AA  , so that 

inconsistent beliefs are also allowed. In this case, an 

element may be regarded as both member and non-member 

at the same time. A set connected with this features is 

called Para-consistent Set [3].  Smarandache [3-5] 

introduced the concept of neutrosophic set (NS) which is 

actually generalization of different type of FSs and IFSs. 

Consider an example, if ]1,0[)x(A  is a membership 

degree, ]1,0[)x(A  is a non-membership degree of an 

element x of a set A, then fuzzy set can be  expressed as A= 

))x(1,0),x(/(x AA  and IFS can be represented as A 

= ))x(ν),x(ν -)x(μ -1),x(μ/(x AAAA
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with 1)x()x(0 AA  . The main feature of      

neutrosophic set is that every element of the universe has 

not only a certain degree of truth (T) but also a falsity    

degree (F) and indeterminacy degree (I). These three     

degrees have to consider independently from each other. 

Another interesting feature of neutrosophic set is that we 

do not even assume that the incompleteness or  

indeterminacy degree is always given 

by  )x()x(1 AA  .

Multiple attribute decision-making (MADM) problem in 

the area of operation research, management science,  

economics, systemic optimization, urban planning and 

many other fields has gained very much attention to the      

researchers during the last several decades. These         

problems generally consist of choosing the most desirable 

alternative that has the highest degree of satisfaction from 

a set of alternatives with respect to their attributes. In this 

approach the decision makers have to provide qualitative 

and/or quantitative assessments for determining the  

performance of each alternative with respect to each 

attribute, and the relative importance of evaluation 

attribute.  

There are many MADM methods available in the literature 

in crisp environment such as TOPSIS (Hwang & Yoon 

[6]), PROMETHEE (Brans et al. [7]), VIKOR (Opricovic 

[8-9]), and ELECTRE (Roy [10]) etc. However it is not 

always possible to evaluate the importance of attributes 

weights and the ratings of alternatives by using crisp 

numbers due to un-availability of complete information 

about attribute values. Chen [11] extended the classical 

TOPSIS by  developing a methodology for solving multi-

criteria decision-making problems in fuzzy environment. 

Zeng [12] solved fuzzy MADM problem with known 

attribute weight by using expected value operator of fuzzy 

variables. However, fuzzy set can only focus on the 

membership grade of vague parameters or events. It fails to 

handle  non-membership degree and indeterminacy degree 

of  imprecise parameters. Boran et al. [13] extended the 

TOPSIS method for multi-criteria intuitionistic      

decision-making problem. Xu and Hu [14] developed two 

projection models for MADM problems with intuitionistic 

fuzzy information.  Xu [15] studied MADM problem with 

interval-valued intuitionistic fuzzy decision-making by 

using distance measure.   

In IFS the sum of membership degree and non-

membership degree of a vague parameter is less than unity. 

Therefore, a certain amount of incomplete information or 

indeterminacy arises in an intuitionistic fuzzy set. It cannot 

handle all types of uncertainties successfully in different 

real physical problems. Hence further generalizations of 

fuzzy set as well as intuitionistic fuzzy sets are required. 

Neutrosophic set information is helpful to handling 

MADM for the most general ambiguity cases, including 

paradox. The assessment of attribute values by the decision 

maker takes the form of single-valued neutrosophic set 

(SVNS) which is defined by Wang et al. [16]. Ye [17] 

studied multi-criteria decision-making problem under 

SVNS environment. He proposed a method for ranking of 

alternatives by using weighted correlation coefficient. Ye 

[18] also discussed single-valued neutrosophic cross     

entropy for multi-criteria decision-making problems. He 

used similarity measure for interval valued neutrosophic 

set for solving multi-criteria decision-making problems. 

Grey relational analysis (GRA) is widely used for MADM 

problems. Deng [19-20] developed the GRA method that is 

applied in various areas, such as economics, marketing, 

personal selection and agriculture. Zhang et al. [21]     

discussed GRA method for multi attribute decision-making 

with interval numbers. An improved GRA method  

proposed by Rao & Singh [22] is applied for making a 

decision in manufacturing situations. Wei [23] studied the 

GRA method for intuitionistic fuzzy multi-criteria  

decision-making. Biswas et al. [24] developed an entropy 

based grey relational analysis method for multi-attribute 

decision-making problem under single valued neutrosophic 

assessments. 

The objective of this paper is to study neutrosophic 

MADM with unknown weight information using GRA. 

The rest of the paper is organized as follows. Section 2 

briefly presents some preliminaries relating to 

neutrosophic set and single-valued neutrosophic  

set. In Section 3, Hamming distance between two  

single-valued neutrosophic sets is defined. Section 4  

is devoted to represent the new model of MADM  

with SVNSs based on modified GRA. In section 5,  

an illustrative example is provided to show the  

effectiveness of the proposed model. Finally, section  

6 presents the concluding remarks. 
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2 Preliminaries of Neutrosophic sets and Single 
valued neutrosophic set 

In this section, we provide some basic definition about 

neutrosophic set due to Smrandache [3], which will be 

used to develop the paper.  

Definition 1 Let X be a space of points (objects) with 

generic element in X denoted by x. Then a neutrosophic set 

A in X is characterized by a truth membership function TA, 

an indeterminacy membership function IA and a falsity 

membership function FA. The functions TA, IA and FA are 

real standard or non-standard subsets of] 0-, 1+[ that is   TA

: X ]0-, 1+[ ; IA : X ]0-, 1+[;  FA : X ]0-, 1+[

It should be noted that there is no restriction on the sum of 

TA(x), IA(x), FA(x) i.e.  0- TA(x) + IA(x) +FA(x)   3+.

Definition 2 The complement of a neutrosophic set A is 

denoted by cA and is defined by 

)x(T cA
 )x(T}1{ A

; )x(I}1{)x(I AcA
 

; 

)x(F}1{)x(F AcA
 

Definition 3 A neutrosophic set A is contained in the other 

neutrosophic set B, A B if and only if the following result 

holds. 

)x(Tinf)x(Tinf BA  , )x(Tsup)x(Tsup BA        (1) 

)x(Iinf)x(Iinf BA  , )x(Isup)x(Isup BA         (2) 

)x(Finf)x(Finf BA  , )x(Fsup)x(Fsup BA           (3) 

for all x in X. 

3 Some basics of single valued neutrosophic sets 

(SVNSs) 

In this section we provide some definitions, operations and 

properties about single valued neutrosophic sets due to 

Wang et al. [17]. It will be required to develop the rest of 

the paper.  

Definition 4 (Single-valued neutrosophic set). Let X be a 

universal space of points (objects), with a generic element 

of X denoted by x. A single-valued neutrosophic set 

X⊂
~
N is characterized by a true membership 

function )x(T ~
N

, a falsity membership function )x(F ~
N

and 

an indeterminacy function )x(I ~
N

with ),x(T ~
N

),x(I ~
N

 

)x(F~
N

 [0, 1] for all x in X. 

When X is continuous a SVNSs, N
~

can be written as 


x

~~~ ,x)x(F),x(I),x(T
~

NNN
N .Xx  

and when X is discrete a  SVNSs N
~

can be written as 

∑ x/)x(F),x(I),x(T
~ m

1i

~~~




NNN

N , .Xx

Actually, SVNS is an instance of neutrosophic set that can 

be used in real life situations like decision making, 

scientific and engineering applications. In case of SVNS, 

the degree of the truth membership ),x(T ~
N

the 

indeterminacy membership )x(I ~
N

 and the falsity 

membership )x(F ~
N

 values belong to [0, 1] instead of non-

standard unit interval] 0-, 1+ [as in the case of ordinary 

neutrosophic sets. 

 It should be noted that for a SVNS ,N
~

3≤)x(Fsup)x(Isup)x(Tsup≤0 ~~~
NNN

 , .Xx      (4) 

and for a neutrosophic set, the following relation holds 

,3≤)x(Fsup+)x(Isup+)x(Tsup≤0 +
~~~

-

NNN
.Xx    (5) 

Definition 5 The complement of a neutrosophic set N
~

 is 

denoted by 
c~
N and is defined by 

)x(T ~cN
 )x(F ~
N

; =)x(I ~cN
 1 )x(I ~

N
 ; =)x(F~cN

)x(T ~
N

Definition 6 A SVNS A

~
N  is contained in the other SVNS 

B

~
N , denoted as A

~
N  ⊆ B

~
N , if and only if 

)x(T≤)x(T
B

~
A

~
NN

; )x(I)x(I
B

~
A

~
NN

 ; )x(F≥)x(F
B

~
A

~
NN

.Xx  

Definition 7 Two SVNSs A

~
N  and B

~
N  are equal, i.e. A

~
N

= B

~
N , if and only if A

~
N ⊆ B

~
N  and A

~
N  B

~
N . 

Definition 8 (Union) The union of two SVNSs A

~
N  and 

B

~
N  is a SVNS C

~
N , written as C

~
N = A

~
N ∪ B

~
N . Its truth 

membership, indeterminacy-membership and falsity 

membership functions are related to those of A

~
N  and 

B

~
N by 
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))x(T),x(T(max=)x(T
B

~
A

~
C

~
NNN

;

))x(I),x(I(max=)x(I
B

~
A

~
C

~
NNN

; 

))x(F),x(F(min=)x(F
B

~
A

~
C

~
NNN

for all x in X. 

Definition 9 (Intersection) The intersection of two SVNSs 

A

~
N  and B

~
N  is a SVNS C

~
N , written as C

~
N = A

~
N  ∩ B

~
N , 

whose truth membership, indeterminacy-membership and 

falsity membership functions are related to those of A

~
N

and B

~
N  by ))x(T),x(T(min=)x(T

B
~

A
~

C
~

NNN
; 

))x(I),x(I(min=)x(I
B

~
A

~
C

~
NNN

; 

))x(F),x(F(max=)x(F
B

~
A

~
C

~
NNN

for all x in X. 

4 Distance between two neutrosophic sets. 

Similar to fuzzy or intuitionistic fuzzy set, the general 

SVNS having the following pattern  

}.∈x:))x(F),x(I),x(T/(x{(
~

~~~ X
NNN

N   For finite SVNSs 

can be represented by the ordered tetrads: 

))}x(F),x(I),x(T/(x...,

)),x(F),x(I),x(T/(x{(
~

m~m~m~m

1~1~1~1

NNN

NNN
N 

, X∈x∀

Definition 10 Let 

))}x(F),x(I),x(T/(x...,

)),x(F),x(I),x(T/(x{(
~

n
A

~n
A

~n
A

~n

1
A

~1
A

~1
A

~1A

NNN

NNN
N 

 and 
))}x(F),x(I),x(T/(x...,

)),x(F),x(I),x(T/(x{(
~

n
B

~n
B

~n
B

~n

1
B

~1
B

~1
B

~1B

NNN

NNN
N 

  (6) 

be two SVNSs in X = {x1, x2,…, xn). 

Then the Hamming distance between two SVNSs A

~
N and 

B

~
N is defined as follows: 

∑

)x(F)x(F

)x(I)x(I)x(T)x(T

d
n

1i

1
B

~1
A

~

1
B

~1
A

~1
B

~1
A

~

B,A~

~~


































NN

NNNN

N
NN  (7) 

and normalized Hamming distance between two SVNSs 

A

~
N and B

~
N is defined as follows: 

 ∑ )x(F)x(F)x(I)x(I)x(T)x(T
n3

1

d

n

1i
1

B
~1

A
~1

B
~1

A
~1

B
~1

A
~

B,A~
N

~~














NNNNNN

N
NN

(8)     with the following two properties   

1. ( ) n3≤
~~

d≤0 B,A~ NN
N

     (9) 

2. ( ) 1≤
~~

d≤0 B,A~
N NN
N

       (10) 

5 GRA based single valued neutrosophic multiple 

attribute decision-making problems with 

incomplete weight information. 

Consider a multi-attribute decision-making problem 

with m alternatives and n attributes. Let A1, A2, ..., 

Am be a discrete set of alternatives, and  C1, C2, ..., Cn 

be  the set of attributes. The rating provided by the 

decision maker, describes the performance of 

alternative Ai against attribute Cj. The values 

associated with the alternatives for MADM problems 

can be presented in the following decision matrix     

Table 1. Decision matrix of attribute values

      C1    C2        ...      Cn 

nm
ijdD


 =   

m

2

1

A

.

.

A

A

























mn2m1m

n22221

n11211

d...dd

............

............

d...dd

d...dd

      (11) 

The weight ]1,0[w j   ( j = 1, 2, ..., n) reflects the 

relative importance of attribute Cj  ( j = 1, 2, ..., m) to 

the decision-making process such that  


n

1j
j .1w S is a 

set of known weight information that can be 

represented by the   following forms due to Park et al. 

[25], Park and Kim [26], Kim et al. [27], Kim and 

Ahn [28], and Park [29]. 

Form 1.  A weak ranking: ji ww  , for i  j; 

Form 2. A strict ranking: 0,ww iiji  , for i 

 j; 
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Form 3. A ranking of differences: lkji wwww  , 

for lkj  ; 

Form 4. A ranking with 

multiples: ,ww jji  ]1,0[j  , for i  j; 

 Form 5. An interval form: ,w iiii 

.10 iii   

GRA is one of the derived evaluation methods for 

MADM based on the concept of grey relational 

space. The first step of GRA method is to create a 

comparable sequence of the performance of all 

alternatives.  This step is known as data pre-

processing. A reference sequence (ideal target      

sequence) is defined from these sequences. Then, the 

grey relational coefficient between all comparability 

sequences and the reference sequence for different 

values of  distinguishing coefficient are calculated. 

Finally, based on these grey relational coefficients, 

the grey relational degree      between the reference 

sequence and every comparability sequences is 

calculated. If an alternative gets the highest grey 

relational grade with the reference sequence, it means 

that the comparability sequence is most similar to the  

reference sequence and that alternative would be the 

best choice (Fung [30]). The steps of improved GRA 

method under SVNS are described below.  

Step 1. Determine the most important criteria. 

Generally, there are many criteria or attributes in 

decision-making problems, where some of them are 

important and others may not be so important. So it is 

crucial to select the proper criteria or attributes for 

decision-making situation. The most important 

attributes may be chosen with the help of experts’ 

opinions or by some others method that are 

technically sound. 

Step 2. Construct the decision matrix with SVNSs 

Assume that a multiple attribute decision making 

problem have m alternatives and n attributes. The 

general form of decision matrix as shown in Table1 

can be presented after data pre-processing. The 

original GRA method can  effectively deal with 

quantitative attributes. However, there exist some 

difficulties in the case of qualitative  attributes. In the 

case of a qualitative attribute, an  assessment value 

may be taken as SVNSs. In this paper we assume that 

the ratings of alternatives Ai (i = 1, 2,…m ) with 

respect to attributes  Cj (j = 1, 2,…n) are SVNSs. 

Thus the neutrosophic values associated with the    

alternatives for MADM problems can be represented 

in the following decision matrix: 

 Table 2. Decision matrix with SVNS 

nm
ijijij~ F,I,TD




N

   C1  C2   Cn 

=

m

2

1

A

.

.

A

A





























mnmnmn2m2m2m1m1m1m

n2n2n2222222212121

n1n1n1121212111111

F,I,T...F,I,TF,I,T

............

............

F,I,T...F,I,TF,I,T

F,I,T...F,I,TF,I,T

       (12) 

In this matrix
nm

ijijij~ F,I,TD



N

, Tij, Iij and  Fij denote the 

degrees of truth membership, degree of 

indeterminacy and degree of falsity membership of 

the alternative Ai with respect to attribute Cj. These 

three degrees for SVNS satisfying the following 

properties: 

1. 1T0 ij  , 1I0 ij  , 1F0 ij   

2. 3FIT0 ijijij  . 

Step 3. Determine the ideal neutrosophic estimates 

reliability solution (INERS) and the ideal 

neutrosophic estimates un-reliability solution 

(INEURS) for neutrosophic decision matrix. 

 The ideal reliability estimation can be easily 

determined due to Biswas et al. [24]. 

Definition 11 The ideal neutrosophic estimates 

reliability solution (INERS) ]q,...,q,q[Q
n

~
2

~
1

~~
 
NNNN

 is 

a solution in which every component +

j

+

j

+

j

+

j
~ F,I,T=q
N

, 

where },T{max=T ij
i

+

j }I{minI ij
i

j 
 and }F{minF ij

i
j  in 

the neutrosophic decision matrix
nm

ijijij~ F,I,TD



N

. 
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Definition 12 The ideal neutrosophic estimates un-

reliability solution (INEURS) 

]q,...,q,q[Q
n

~
2

~
1

~~
 
NNNN

can be taken as a solution in the 

form   jjjj
~ F,I,Tq
N

, where 

},T{minT ij
i

j 
}I{maxI ij

i
j 
 and }F{maxF ij

i
j 
 in the 

neutrosophic decision matrix 
nm

ijijij~ F,I,TD



N

. 

Step 4. Calculate the neutrosophic grey relational 

coefficient of each alternative from INERS and 

INEURS. 

Grey relational coefficient of each alternative from 

INERS is defined as: 

ij
ji

ij

ij
ji

ij
ji

ij
maxmax

maxmaxminmin











 , where 

ij
 =  

ij
~

j
~ q,qd

NN

 , i= 1, 2,…,m. and j=1, 2,…,n.   (13) 

Grey relational coefficient of each alternative from 

INEURS is defined as: 

ij
ji

ij

ij
ji

ij
ji

ij
maxmax

maxmaxminmin











 , where    

ij
 =  

j
~

ij
~ q,qd

NN
, i = 1, 2,…,m. and j = 1, 2,…,n.  (14) 

 is the distinguishing coefficient or the identification 

coefficient, [0,1]. Smaller value of distinguishing 

coefficient will yield in large range of grey relational 

coefficient. Generally,   = 0.5 is considered for 

decision- making situation. 

Step 5. Determine the weights of criteria. 

In the decision-making process, decision maker may 

often feel that the importance of the attributes is not 

same. Due to the complexity and uncertainty of real 

world decision-making problems, the information 

about attribute weights is usually incomplete. The 

estimation of the attribute weights plays an important 

role in MADM. Therefore, we need to determine 

reasonable attribute weight for making a reasonable 

decision. Many methods are available to determine 

the unknown attribute weight in the literature such as 

maximizing deviation method (Wu and Chen [31]), 

entropy method (Wei and Tang [32]; Xu and Hui 

[33]), optimization method (Wang and Zhang [34-

35]) etc. In this paper, we use optimization method to 

determine unknown attribute weights for 

neutrosophic MADM. 

The basic principle of the GRA method is that the 

chosen alternative should have the largest degree of 

grey relation from the INERS. Thus, the larger grey 

relational coefficient determines the best alternative 

for the given weight vector. To obtain the grey 

relational coefficient, we have to calculate weight 

vector of attributes if the information about attribute 

weights is incompletely known. The grey relational 

coefficient between INERS and itself is (1, 1, …, 1), 

similarly, coefficient between INEURS and itself is 

also (1, 1, …, 1).  So the corresponding 

comprehensive deviations are  

  j

n

1j
iji w1)W(d  



  (15) 

  j

n

1j
iji w1)W(d  



   (16) 

Smaller value of (15) as well as (16) indicates the 

better alternative Ai. A satisfactory weight vector W= 

(w1, w2,…, wn) is determined by making smaller all 

the distances   j

n

1j
iji w1)W(d  



 and 

  j

n

1j
iji w1)W(d  



 . We utilize the max-min operator 

developed by Zimmermann and Zysco [36] to 

integrate all the distances   j

n

1j
iji w1)W(d  



  for i = 

1, 2, …, m and   j

n

1j
iji w1)W(d  



  for i = 1, 2, …, m 

separately. Therefore, we can formulate the following 

programming model: 

(M-1a)  















 











SW

m...,2,1iforw1:tosubject

Min

j

n

1j
ij   (17) 
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(M-1b)  















 











SW

m...,2,1iforw1:tosubject

Min

j

n

1j
ij  (18)       

Here  =  







 




j

n

1j
ij

i
w1max   (19) 

and  =  







 




j

n

1j
ij

i
w1max for 1, 2, …, m.   (20) 

Solving these two model (M-1a) and (M-1b), we 

obtain  the optimal solutions )w...,w,w(W n21

   and 

)w...,w,w(W n21

  respectively.  Combinations of 

these two optimal solutions will give us the weight 

vector of the attributes i.e.   W)1(WW  for 

].1,0[       (21) 

If the information about attribute weights is 

completely unknown, we can establish another 

multiple objective programming: 

(M-2) 

  























∑ 1w:tosubject

.m...,,1i,∑ w1)W(dmin

n

1j
j

n

1j

2

jiji

      (22)         

Since each alternative is non-inferior, so there exists 

no preference relation between the alternatives. Then, 

we can aggregate the above multiple objective 

optimization models with equal weights in to the 

following single objective optimization model: 

(M-3) 

  



















 







∑ 1w:tosubject

.m...,,1i,∑∑ w1∑ )W(d)W(dmin

n

1j
j

m

1i

n

1j

2

jij

m

1i
i

(23) 

To solve this model, we construct the Lagrange 

function: 

 )λ,W(L =    









 

 ∑ 1w2∑∑ w1
n

1j
j

m

1i

n

1j

2

jij      (24)  

Where   is the Lagrange multiplier. Differentiating 

equation (24) with respect to wj (j = 1, 2,…, n) and 

 , and putting these partial derivatives equal to zero,

we have the following set of equations: 

02)1(w2
w

),w(L m

1i

2

ijj

j

j
 







   (25) 

 






n

1j
j

j
01w

),w(L
          (26) 

Solving equations (25) and (26), we obtain the 

following relation 

    







 








 














m

1i

2

ij

1
n

1j

1
m

1i

2

ijj 11w     (27) 

Then we get i for i = 1, 2,…, m. 

Similarly, we can find out the attribute weight 

jw

taking into consideration of INERUS as: 

    







 








 














m

1i

2

ij

1
n

1j

1
m

1i

2

ijj 11w      (28) 

Combining (27) and (28), we can determine the j-th 

attribute weight with the help of (21).      

Step 6. Calculate of neutrosophic grey relational 

coefficient (NGRC). 

The degree of neutrosophic grey relational coefficient 

of each alternative from INERS and INEURS are 

calculated by using the following equations: 

∑w
n

1j
ijji



 

(29) 

and  



n

1j
ijji w for i= 1, 2,…,m.    (30) 

Step 7. Calculate the neutrosophic relative 

relational degree (NRD). 

We calculate the neutrosophic relative relational 

degree of each alternative from INERS by employing 

the following equation: 










ii

i
iR , for i = 1, 2,…, m.   (31) 

Step 8. Rank the alternatives. 
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Based on the neutrosophic relative relational degree, 

the ranking order of all alternatives can be 

determined. The highest value of Ri presents the most 

desired alternatives. 

5 . Illustrative Examples  

In this section, neutrosophic MADM is considered to 

demonstrate the application and the effectiveness of 

the proposed approach. Let us consider the decision-

making problem adapted from Ye [37]. Suppose there 

is an investment company, which wants to invest a 

sum of  money in the best option. There is a panel 

with four  possible alternatives to invest the money: 

(1) A1 is a car company; (2) A2 is a food company; 

(3) A3 is a computer company; and (4) A4 is an arms 

company. The investment company must take a 

decision based on the following three criteria: (1) C1 

is the risk analysis; (2) C2 is the growth analysis; and 

(3) C3 is the environmental impact analysis. We 

obtain the following single-valued neutrosophic    

decision matrix based on the experts’ assessment:  

Table3.  Decision matrix with SVNS 

34
ijijij~ F,I,TD




N
= 

 C1    C2     C3

4

3

2

1

A

A

A

A

























2.0,3.0,4.02.0,1.0,6.01.0,0.0,7.0

2.0,3.0,5.03.0,2.0,5.03.0,2.0,3.0

2.0,2.0,5.02.0,1.0,6.02.0,1.0,6.0

5.0,2.0,2.03.0,2.0,4.03.0,2.0,4.0

 (32) 

Information about the attribute weights is partially 

known. The known weight information is given as 

follows:      S = {.30   w1   .35, .36   w2   .48, 

.26   w3   .30} such that wj  0 for j = 1, 2, 3and 

.1w
3

1j
j 



 

Step 1. Determine the ideal neutrosophic estimates 

reliability solution (INERS) from the given decision 

matrix   (see  Table 3) as: 



















 

}F{min},I{min},T{max

,}F{min},I{min},T{max,}F{min},I{min},T{max

]q,q,q[Q

3i
i

3i
i

3i
i

2i
i

2i
i

2i
i

1i
i

1i
i

1i
i

3
~

2
~

1
~~

NNNN

=  2.0,2.0,5.0,2.0,1.0,6.0,1.0,0.0,7.0

Step 2. Similarly, determine the ideal neutrosophic 

estimates un-reliability solution (INEURS) as: 



















 

}F{max},I{max},T{min

,}F{max},I{max},T{min,}F{max},I{max},T{min

]q,q,q[Q

3i
i

3i
i

3i
i

2i
i

2i
i

2i
i

1i
i

1i
i

1i
i

3
~

2
~

1
~~

NNNN

=  5.0,3.0,2.0,3.0,2.0,4.0,3.0,2.0,4.0

Step 3. Calculation of the neutrosophic grey 

relational   coefficient of each alternative from 

INERS and INEURS 

By using equation (13) the neutrosophic grey 

relational  coefficient of each alternative from INERS 

can be obtained as:  


























6666.00000.10000.1

8000.05714.03333.0

0000.10000.15714.0

4000.05000.03636.0

34ij

(33) 

and from equation (14), the neutrosophic grey 

relational coefficient of each alternative from INEUS 

is   


























4111.04667.03333.0

3684.07778.07778.0

3333.04667.04667.0

7778.00000.10000.1

34ij        (34) 

Step 4. Determine the weights of attribute. 

Case 1. Utilizing the model (M-1a) and (M-2b), we 

establish the single objective programming model: 

Case 1a. Min

subject to:  0.6364 w1+ 0.5000 w2+ 0.6000w3 
 ; 

      0.4286 w1 
 ; 
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      0.6667w1+ 0.4286 w2+ 0.2000w3 
 ; 

      0.3334w3 
 ; 

    30   w1   35; 36   w2   48; 26   w3   30; 

   w1+ w2+ w3=1; wj  0, j = 1, 2, 3. 

Case 1b. 

Similarly, Min

subject to:        0.2222w3 
 ; 

     0.5353w1+ 0.5353 w2+ 0.6667 w3 
 ; 

     0.2222w1+ 0.2222 w2+ 0.6316w3 
 ; 

      0.6667 w1+ 0.5353w2+ 0.5889w3 
 ; 

    30   w1   35; 36   w2   48; 26   w3   30; 

   w1+ w2+ w3=1; wj  0, j = 1, 2, 3. 

We obtain the same solution set W+= W-= (0.30, 

0.44, 0.26) after solving Case 1a and Case 1b 

separately. Therefore, the obtained weight vector of 

attributes is W = (0.30, 0.44, 0.26). 

Case 2. If the information about the attribute weights 

is completely unknown, we can use another proposed 

formula given in (27) and (28) to determine the 

weight vector of attributes. The weight vector W
+
= 

(0.1851, 0.4408, 0.3740) is determined from equation 

(27) and W-= (0.3464, 0.4361, 0.2174) from equation 

(28). Therefore, the resulting weight vector of 

attribute with the help of equation (21) (taking 5.0 ) 

is W′= (0.2657, 0.4384, 0.2957). After normalizing, 

we obtain the final weight vector of the attribute as 

W= (0.2657, 0.4385, 0.2958). 

 Step 5. Determine the degree of neutrosophic grey 

relational co-efficient (NGRC) of each alternative 

from INERS and INEUS.  

The required neutrosophic grey relational co-efficient 

of each alternative from INERS is determined by 

using equations (29) with the corresponding obtained 

weight vector W  for Case-1 and Case-2 are presented 

in  Table 4. 

Similarly, the neutrosophic grey relational co-

efficient of each alternative from INEURS is obtained 

with the help of equation (30) for all two cases are 

listed in  Table 4. 

Step 6. Neutrosophic relative degree (NRD) of each 

alternative from INERS can be obtained with the help 

of equation (31) and these are shown in Table 4

Table 4. Calculation of NGRC and NRD of each alternative from neutrosophic estimates reliability solution 

Proposed method   Weight Vector   NGRC from INERS   NGRC from INEURS    NRD from INERS   Ranking Result   Selection 

 0.4331   0.9422    0.3149  

  0.8714   0.4320    0.6686   R4>R2> R3>R1   A4  

  Case-1     (0.30, 0.44, 0.26)   0.5594   0.6714  0.4545  

  0.9133     0.4122  0.6890   

  0.4342    0.9343    0.3173  

 0.8861    0.4272     0.6747    R4>R2> R3>R1    A4  

  Case-2   (0.2657, 0.4385, 0.2958)    0.5758   0.6567  0.4672  

 0.9014     0.4149  0.6847   
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Step 7. From Table 4, we can easily determine the 

ranking order of all alternatives according to the 

values of neutrosophic relational degrees. For case-1, 

we see that A4 i.e. Arms company is the best 

alternative for investment purpose. Similarly, for 

case-2 A4 i.e. Arms company also is the best 

alternative for investment purpose. 

6 Conclusion  

In this paper, we introduce single-valued  

neutrosophic multiple attribute decision-making  

problem with incompletely known or completely  

unknown attribute weight information based on  

modified GRA. In order to determine the  

incompletely known attribute weight minimizing  

deviation based optimization method is used. On the  

other hand, we solve an optimization model to find  

out the completely unknown attributes weight by  

using Lagrange functions. Finally, an illustrative  

example is   provided to show the feasibility of the  

proposed approach and to demonstrate its practicality 

and effectiveness.   However, we hope that the  

concept presented here will create new avenue of  

research in current neutrosophic    decision-making  

arena. The main thrust of the paper will be in the  

field of practical decision-making, pattern    

recognition, medical diagnosis and clustering  

analysis. 
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Abstract. In this paper, we have developed an Excel 

package to be utilized for calculating neutrosophic data 

and analyze them. The use of object oriented  

programming  techniques and concepts as they may 

apply to the design and development a new framework to 

implement neutrosophic data operations, the c# 

programming language, NET Framework and Microsoft 

Visual Studio are  used to implement the neutrosophic 

classes.   We have used Excel as it is a powerful tool that 

is widely accepted and used for statistical analysis. 

Figure 1 shows Class Diagram of the implemented 

package. Figure 2 presents a working example of the 

package interface calculating the complement. Our 

implemented Neutrosophic package can calculate 

Intersection, Union, and Complement of the nuetrosophic 

set. Figure 3 presents our neutrosphic package capability 

to draw figures of presented neutrosphic set. Figure 4 

presents charting of Union operation calculation, and 

figure 5 Intersection Operation. nuetrosophic set are 

characterized by its efficiency as it takes into 

consideration the three data items: True, Intermediate, 

and False. 

Keywords: Neutrosophic Data; Software Programs.

1 Introduction 

The fundamental concepts of neutrosophic set, 
introduced by Smarandache in [8, 9] and Salama at 
el. in [1, 2, 3, 4, 5, 6, 7], provides a natural 
foundation for treating mathematically the 
neutrosophic phenomena which exist pervasively 
in our real world and for building new branches of 
neutrosophic mathematics. In this paper, we have 
developed an Excel package to be utilized for 
calculating neutrosophic data and analyze them. 
We have used Excel as it is a powerful tool that is 
widely accepted and used for statistical analysis. In 

this paper, we have developed an Excel package to be utilized 
for calculating neutrosophic data and analyze them. The use of 
object oriented  programming  techniques and concepts as 
they may apply to the design and development a new 
framework to implement neutrosophic data operations, the c# 
programming language, NET Framework and Microsoft Visual 
Studio are  used to implement the neutrosophic classes. 

2  Related Works 

     We recollect some relevant basic preliminaries, and in 

particular, the work of Smarandache in [8, 9], and Salama 

at el. [ 1, 2, 3, 4, 5, 6, 7 ]. The c# programming language, NET 

Framework and Microsoft Visual Studio are  used to implement 

the neutrosophic classes. 

3 Proposed frameworks 

We introduce the neutrosophic package class diagram : 
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Figure 1: Neutrosophic Package Class Diagram. 

Figure 2: Neutrosophic Package Interface and Calculating Complement.

Figure 3: Neutrosophic Chart 

Figure 4: Neutrosophic Packege Union Chart 

Figure 5: Neutrosophic Packege Intersection Chart 

4  Conclusions and Future Work 
In future studies we will develop some software programs 

to deal with the statistical analysis of the neutrosophic 

data.  
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Abstract. In this paper we extend the theory of 

neutrosophic rings and neutrosophic fields to soft 

sets and construct soft neutrosophic rings and soft 

neutrosophic fields. We also extend  neutrosophic 

ideal theory to form soft neutrosophic ideal over a 

neutrosophic ring and soft neutrosophic ideal of a 

soft neutrosophic ring . We have given many 

examples to illustrate the theory of soft 

neutrosophic rings and soft neutrosophic fields and 

display many properties of of these. At the end of 

this paper we gave soft neutrosophic ring 

homomorphism. 

1 Introduction 

Neutrosophy is a new branch of philosophy which 

studies the origin and features of neutralities in the 

nature. Florentin Smarandache in 1980 firstly 

introduced the concept of neutrosophic logic where 

each proposition in neutrosophic logic is approximated 

to have the percentage of truth in a subset T, the 

percentage of indeterminacy in a subset I, and the 

percentage of falsity in a subset F so that this 

neutrosophic logic is called an extension of fuzzy 

logic. In fact neutrosophic set is the generalization of 

classical sets, conventional fuzzy set, intuitionistic 

fuzzy set and interval valued fuzzy set. This 

mathematical tool is used to handle problems like 

imprecise, indeterminacy and inconsistent data etc. By 

utilizing neutrosophic theory, Vasantha Kandasamy 

and Florentin Smarandache dig out neutrosophic 

algebraic structures.  Some of them are neutrosophic 

fields, neutrosophic vector spaces, neutrosophic 

groups, neutrosophic bigroups, neutrosophic N-groups, 

neutrosophic semigroups, neutrosophic bisemigroups, 

neutrosophic N-semigroup, neutrosophic loops, 

neutrosophic biloops, neutrosophic N-loop, 

neutrosophic groupoids, and neutrosophic bigroupoids 

and so on.  

Molodtsov in  11  laid down the stone foundation of

a richer structure called soft set theory which is free 

from the parameterization inadequacy, syndrome of 

fuzzy se theory, rough set theory, probability theory 

and so on. In many areas it has been successfully 

applied such as smoothness of functions, game theory, 

operations research, Riemann integration, Perron 

integration, and probability. Recently soft set theory 

has attained much attention since its appearance and 

the work based on several operations of soft sets 

introduced in   2,9,10 . Some more exciting

properties and algebra may be found in 1 . Feng et al.

introduced the soft semirings 5 . By means of level

soft sets an adjustable approach to fuzzy soft sets 

based decision making can be seen in 6 . Some other

new concept combined with fuzzy sets and rough sets 

was presented in 7,8 . AygÄunoglu et al. introduced

the Fuzzy soft groups 4 .

   Firstly, fundamental and basic concepts are given for 
neutrosophic rings neutrosohic fields and soft rings. In  
the next section we presents the newly defined notions 
and results in soft neutrosophic rings and neutrosophic 

Keywords: Neutrosophic ring, neutrosophic field,neutrosophic ring homomorphism, soft neutrosophic 

ring, soft neutrosophic field, soft neutrosophic ring homomorphism.
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fields. Various types of soft neutrosophic ideals of 
rings are defined and elaborated with the help of 
examples. Furthermore, the homomorphisms of  soft 
neutrosophic rings are discussed at the end. 

2 Fundamental Concepts 

Neutrosophic Rings and Neutrosophic Fields 

Definition 1.  Let R be any ring. The neutrosophic ring 

R I   is also a ring generated by R  and I  under 

the operations of  R . I   is called the neutrosophic

element with the property  
2I I  . For an integer  n

, n I   and  nI   are neutrosophic elements and

0. 0I  .
1

I  , the inverse of  I   is not defined and

hence does not exist. 

Definition 2.  Let R I  be a neutrosophic ring.  A 

proper subset P  of  R I  is said to be a 

neutrosophic subring if  P  itself is a neutrosophic ring 

under the operations of R I . 

Definition 2.  Let R I  be any neutrosophic ring, 

a non empty subset P  of R I  is defined to be a 

neutrosophic ideal of  R I  if the following 

conditions are satisfied; 

1. P  is a neutrosophic subring of R I . 

2. For every p P  and r R I  , rp  and 

pr P . 

Definition 4. Let K  be a field . We call the field 

generated by K I  to be the neutrosophic field for it 

involves the indeterminacy factor in it. We define 

2I I , 2I I I   i.e., ,...,I I I nI    , and 

if k K  then . ,0 I 0k I kI  . We denote the 

neutrosophic field by ( )K I  which is generated by 

K I  that is ( )K I K I  . K I  denotes 

the field generated by K  and I . 

Definition 5.  Let ( )K I  be a neutrosophic field, 

( )P K I  is a neutrosophic subfield of  P  if  P

itself is a neutrosophic field. 

Soft Sets 

Throughout this subsection  U   refers to an initial

universe,  E   is a set of parameters,  ( )PU   is the

power set of  U  , and  A E  . Molodtsov [12]

defined the soft set in the following manner: 

Definition 6. A pair  ( , )F A   is called a soft set over

U   where  F   is a mapping given by

F : ( )A PU  .In other words, a soft set over  U

is a parameterized family of subsets of the universe  

U  . For  a A  ,  ( )F a   may be considered as the

set of  a  -elements of the soft set  ( , )F A  , or as the

set of  a -approximate elements of the soft set.

Definition 7. For two soft sets  ( , )F A   and  ( , )H B

over  U  ,  ( , )F A   is called a soft subset of  ( , )H B
if 

1) A B   and

2) ( ) ( )F a H a , for all  a A  .

This relationship is denoted by  ( , ) ( , )F A H B  .

Similarly  ( , )F A   is called a soft superset of

( , )H B   if  ( , )H B   is a soft subset of  ( , )F A

which is denoted by  ( , ) ( , )F A H B  .

Definition 8. Two soft sets  ( , )F A   and  ( ,B)H

over  U   are called soft equal if ( , )F A   is a soft

subset of  ( , )H B   and  ( , )H B   is a soft subset of

( , )F A  .

Definition 9.  Let ( , )F A   and  ( , )K B   be two soft

sets over a common universe  U   such that

A B  . Then their restricted intersection is 

denoted by ( , ) (K, ) ( , )RF A B H C   where

( , )H C   is defined as  ( ) ( ) ( )H c F c c   for

all  c C A B  .

Definition 10.  The extended intersection of two soft 

sets  ( , )F A   and  ( , )K B   over a common universe

U   is the soft set  ( , )H C  , where  C A B  ,
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and for all  c C  ,  H c   is defined as

(c) if c

(c) K(c) if c

(c) (c) if c .

F A B

H B A

F A B

We write  ( , ) (K, ) ( , )F A B H C  .

Definition 11.The restricted union of two soft sets  

( , )F A   and  ( , )K B   over a common universe  U

is the soft set  ( , )H C  , where  C A B  , and

for all  c C  ,  H c   is defined as the soft set

( , )H C ( , ) ( , )RF A K B   where

C A B   and  (c) ( ) ( )H F c c   for all

c C  .

Definition 12. The extended union of two soft sets  

( , )F A   and  ( , )K B   over a common universe  U

is the soft set  ( , )H C  , where  C A B  , and

for all  c C  ,  ( )H c   is defined as

(c) if c

(c) K(c) if c

(c) (c) if c .

F A B

H B A

F K A B

We write  ( , ) (K, ) ( , )F A B H C  .

Soft Rings 

Definition 13. Let R  be a ring and let ( , )F A  be a

non-null soft set over R . Then ( , )F A  is called a

soft ring over R  if ( )F a  is a subring of R  ,  for all

a A .

Definition 14. Let  ( , )F A  and ( , )K B  be soft rings

over R . Then ( , )K B  is called a soft sub ring  of

( , )F A , If it satisfies the following;

1. B A
2. ( )K a  is a sub ring of ( )F a , for all

a A .

Definition 15. Let ( , )F A  and ( , )K B  be soft rings

over R . Then ( , )K B  is called a soft ideal  of

,F A , If it satisfies the following;

1. B A
2. ( )K a  is an idela of ( )F a , for all a A .

3 Soft Nuetrosophic Ring 

Definition. Let R I  be a neutrosophic ring and 

( , )F A  be a soft set over R I . Then ( , )F A  is 

called soft neutrosophic ring if and only if ( )F a  is a 

neutrosophic subring of R I for all .a A  

Example. Let Z I  be a neutrosophic ring of 

integers and let ( , )F A  be a soft set over Z I . 

Let 
1 2 3 4{ , , , }A a a a a  be a set of parameters. Then 

clearly ( , )F A  is a soft neutrosophic ring over 

Z I , where 

 1 2( ) 2 , 3F a Z I F a Z I   

   3 45 , 6F a Z I F a Z I    . 

Theorem . Let  ( , )F A   and  H,A   be two soft

neutrosophic  rings  over  R I . Then their

intersection  ( , ) ( , )F A H A   is again a soft

neutrosophic ring over  R I  .

Proof.  The proof is straightforward. 

Theorem.  Let  ( , )F A   and  ( , )H B   be two  soft

neutrosophic rings over R I .  If  

A B , then  ( , ) ( , )F A H B   is a soft

neutrosophic ring over R I .

Proof. This is straightforward. 

Remark. The extended union of two soft  

neutrosophic  rings  ( , )F A   and  ( , )K B   over

R I  is not a soft neutrosophic ring over

R I . 

We check this by the help of following Example. 

Example. Let Z I  be a neutrosophic ring of 

integers. Let ( , )F A  and ( , )K B  be two soft

neutrosophic rings over Z I , where 

1 2 3( ) 2 , ( ) 3 , ( ) 4F a Z I F a Z I F a Z I , 
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And 

1 3( ) 5 , ( ) 7K a Z I K a Z I . 

Their extended union 

( , ) ( , ) ( , )EF A K B H C , where

1( ) 2 5H a Z I Z I , 

2( ) 3H a Z I , 

3( ) 5 7H a Z I Z I . 

Thus clearly 1( ) 2 5H a Z I Z I , 

3( ) 5 7H a Z I Z I  is not a 

neutrosophic rings. 

Remark. The restricted union of two soft neutrosophic  

rings  ( , )F A   and  ( , )K B   over  R I  is not

a soft neutrosophic ring over .R I

Theorem. The  OR   operation of two soft

neutrosophic  rings over  R I  may not be a soft 

neutrosophic  ring over R I . 

 One can easily check these remarks with the help of 

Examples. 

Theorem. The extended intersection of two  soft 

neutrosophic  rings over  R I  is soft 

neutrosophic  ring over  R I . 

Proof. The proof is straightforward. 

Theorem. The restricted intersection of two soft 

neutrosophic rings over  R I  is  soft 

neutrosophic  ring over  R I . 

Proof. It is obvious. 

Theorem. The AND  operation of two  soft

neutrosophic  rings over  R I   is  soft 

neutrosophic  ring over  R I . 

Proof.  Easy. 

Definition. Let ( , )F A  be a soft set over a

neutrosophic ring R I . Then ( , )F A  is called

an absolute soft neutrosophic ring if 

( )F a R I for all .a A

Definition. Let ( , )F A  be a soft set over a

neutrosophic ring R I . Then ( , )F A  is called

soft neutrosophic ideal over R I  if and only if

( )F a  is a neutrosophic ideal over R I .

Example. Let 12Z I  be a neutrosophic ring. Let 

1 2{ , }A a a  be a set of parameters and ( , )F A  be

a soft set over 12Z I . Then clearly ( , )F A  is a

soft neutrosophic ideal over R I , where 

1( ) {0,6,2 , 4 ,6 ,8 ,10 ,6 2 ,...,6 10 }F a I I I I I I I ,

2( ) {0,6,6 ,6 6 }F a I I .

Theorem. Every soft neutrosophic ideal ( , )F A  over

a neutrosophic ring R I  is trivially a soft 

neutrosophic ring. 

Proof. Let ( , )F A  be a soft neutrosophic ideal over a

neutrosophic ring R I . Then by definition

( )F a  is a neutrosophic ideal for all .a A  Since

we know that every neutrosophic  ideal is a 

neutrosophic subring. It follows that ( )F a  is a

neutrosophic subring of R I . Thus by 

definition of soft neutrosophic ring, this implies that 

( , )F A  is a soft neutrosophic ring.

Remark. The converse of the above theorem is not 

true. 

To check the converse, we take the following 

Example. 
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Example. Let 10Z I  be a neutrosophic ring. Let 

1 2{ , }A a a  be a set of parameters and ( ,A)F  be

a soft neutrosophic ring over 10Z I , where

1( ) {0,2, 4,6,8,2 , 4 ,6 ,8 },F a I I I I

2F( ) {0,2 , 4 ,6 ,8 }a I I I I .

Then obviously ( ,A)F  is not a soft neutrosophic

ideal over 10Z I .

Proposition. Let ( , )F A  and ( , )K B  be two soft

neutosophic ideals over a neutrosophic ring 

R I . Then

1. Their extended union ( , ) ( , )EF A K B  is

again a soft neutrosophic ideal over

R I . 

2. Their extended intersection

( , ) ( , )EF A K B  is again a soft

neutrosophic ideal over R I . 

3. Their restricted union ( , ) ( , )RF A K B  is

again a soft neutrosophic ideal over 

R I .

4. Their restricted intersection

( , ) ( , )RF A K B  is again a soft

neutrosophic ideal over R I . 

5. Their OR  operation ( , ) ( , )F A K B  is

again a soft neutrosophic ideal over

R I . 

6. Their AND  operation ( , ) ( , )F A K B
is again a soft neutrosophic ideal over

R I .

Proof. Supoose ( , )F A  and ( , )K B  be two soft

neutrosophic ideals over R I .  Let  

C A B . Then for all  ,c C The extended

union is ( , ) ( , ) ( , )EF A K B H C ,  where

( ), If c ,

(c) ( ), If c ,

( ) ( ), If c .

F c A B

H K c B A

F c K c A B

As union of two neutrosophic ideals is again a 

neutrosophic ideal of R I  .  Hence the extended 

union  ,H C   is a soft neutrosophic ideal over

R I . 

Similarly (2),(3),(4),(5),  and (6)  can be proved

respectively. 

Definition. Let ( , )F A  and ( , )K B  be two soft

neutrosophic rings over R I . Then ( , )K B  is

called soft neutrosophic subring of ( , )F A , if

1. B A , and

2. ( )K a  is a neutrosophic subring of ( )F a  for

all a A .

Example. Let C I  be the neutrosophic ring of

complex numbers. Let 1 2 3{ , , }A a a a  be a set of

parameters. Then ( , )F A  be a soft neutrosophic ring

over C I , where 

1 2( ) , ( ) ,F a Z I F a Q I

3( )F a R I . 

Where ,Z I Q I  and R I  are

neutrosophic rings of integers, rational numbers, and 

real numbers respectively. 

Let 2 3{ , }B a a be a set of parmeters . Let

( , )K B  be the neutrosophic subring of ( , )F A  over

C I , where

2 3K( ) ,K( )a Z I a Q I . 

Theorem. Every soft ring ( , )H B  over a ring R  is a

soft neutrosophic subring of a soft neutrosophic ring 

( , )F A  over the corresponding neutrosophic ring

R I if B A .

Proof. Straightforward. 

Definition. Let ( , )F A  and ( , )K B  be two soft

neutrosophic rings over R I . Then ( , )K B  is

called soft neutrosophic ideal of ( , )F A , if

1. B A , and
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2. ( )K a  is a neutrosophic ideal of ( )F a  for

all a A .

Example. Let 12Z I  be a neutrosophic ring. Let 

1 2{ , }A a a  be a set of parameters and ( , )F A  be

a soft set over 12Z I . Then clearly ( , )F A  is a

soft neutrosophic ring over 

12Z I ,where

1( ) {0,6,2 , 4 ,6 ,8 ,10 ,6 2 ,...,6 10 }F a I I I I I I I ,

2( ) {0,2, 4,6,8,2 I, 4 I,6 I,8 I}F a .

Let 1 2{ , }B a a  be a set of parameters. Then

clearly ( , )H B  is a soft neutrosophic ideal of ( , )F A

over 12Z I , where

1( ) {0,6,6 6 }H a I ,

2( ) {0,2, 4,6,8}H a .

Proposition. All soft neutrosophic ideals are trivially 

soft neutrosophic subrings. 

Proof. Straightforward. 

4 Soft Neutrosophic Field 

Defintion. Let ( )K I K I  be a

neutrosophic field and let ( , )F A  be a soft set over

( )K I . Then ( , )F A  is said to be soft neutrosophic

field if and only if ( )F a  is a neutrosophic subfield of

( )K I  for all a A .

Example. Let C I  be a neutrosophic field of 

complex numbers. Let 1 2{ , }A a a  be a set of

parameters and let ( , )F A  be a soft set of C I . 

Then (F,A)  is called soft neutrosophic field over

C I , where

1 2( ) , ( )F a R I F a Q I . 

Where R I  and Q I  are the neutosophic 

fields of real numbers and rational numbers. 

Proposition. Every soft neutrosophic field is trivially a 

soft neutrosophic ring. 

Proof. The proof is trivial. 

 Remark. The converse of above proposition is not 

true. 

To see the converse, lets take a look to the following 

example. 

 Example. Let Z I  be a neutrosophic ring of 

integers. Let 1 2 3 4{ , , , }A a a a a  be a set of 

parameters and let ( , )F A  be a soft set over 

Z I .  Then ( , )F A  is a soft neutrosophic ring 

over Z I , where 

 1 2( ) 2 , 3F a Z I F a Z I   

   3 45 , 6F a Z I F a Z I    . 

Clearly ( , )F A  is not a soft neutrosophic field. 

Definition. Let ( , )F A  be a soft neutrosophic field 

over a neutrosophic field K I . Then ( , )F A  is 

called an absolute soft neutrosophic field if 

( )F a K I  , for all a A . 

5 Soft Neutrosophic Ring Homomorphism 

Definition. Let ( , )F A  and ( , )K B  be the soft

neutrosophic rings over R I and 
'R I

respectively. Let 
':f R I R I  and 

:g A B  be mappings. Let

( , ) : (F,A) (K,B)f g  be another mapping.

Then ( , )f g  is called a soft neutrosophic ring

homomorphism if the following conditions are hold. 
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1. f  is a neutrosophic ring homomorphism

from R I  to 
'R I .

2. g  is onto mapping from A  to B , and

3. ( ( )) ( ( ))f F a K g a  for all a A .

If f  is an isomorphicm and g is a bijective mapping.

Then ( , )f g  is called soft neutrosophic ring

isomorphism. 

Conclusions 

In this paper we extend the neutrosophic ring, 

neutrosophic field and neutrosophic subring to   soft 

neutrosophic ring, soft neutrosophic field and  soft 

neutrosophic subring respectively. The neutrosophic 

ideal of a ring is extended to soft  neutrosophic ideal. 

We showed all these by giving various examples in 

order to illustrate the soft part of the neutrosophic 

notions used. 
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Abstract. Both neutrosophic sets theory and rough sets 

theory are emerging as powerful tool for managing 

uncertainty, indeterminate, incomplete and imprecise 

information .In this paper we develop an hybrid structure 

called “ rough neutrosophic sets” and studied their 

properties.

Keywords: Rough set, rough neutrosophic set. 

1 Introduction 

In 1982, Pawlak [1] introduced the concept of rough set 

(RS), as a formal tool for modeling and processing 

incomplete information in information systems. There are 

two basic elements in rough set theory, crisp set and 

equivalence relation ,which constitute the mathematical 

basis of RSs. The basic idea of rough set is based upon the 

approximation of sets by a pair of sets known as the lower 

approximation and the upper approximation of a set .Here, 

the lower and upper approximation operators are based on 

equivalence relation. After  Pawlak, there  has been many 

models built upon different aspect, i.e, universe, relations, 

object, operators by many scholars [2, 3,4,5,6,7]. Various 

notions that combine rough sets and fuzzy sets, vague set  

and intuitionistic fuzzy sets are introduced ,such as rough 

fuzzy sets, fuzzy rough sets, generalize fuzzy rough, 

intuitionistic fuzzy rough sets, rough intuitionistic fuzzy 

sets, rough vagues sets. The theory of rough sets is based 

upon the classification mechanism, from which the 

classification can be viewed as an equivalence relation and 

knowledge blocks induced by it be a partition on universe.  

One of the interesting generalizations of the theory of 

fuzzy  sets and intuitionistic fuzzy sets is the theory of 

neutrosophic sets introduced  by F.Smarandache [8,9]. 

Neutrosophic sets described by three functions : a 

membership function  indeterminacy function and a non-

membership function that are independently related. The 

theorie of neutrosophic set have achieved great success in 

various areas such as medical diagnosis [10], database 

[11,12], topology[13],image processing [14,15,16], and 

decision making problem[17]. While the neutrosophic  set 

is a powerful tool to deal with indeterminate and 

inconsistent data, the theory of rough sets is a powerful 

mathematical tool to deal with incompleteness. 

Neutrosophic sets and rough sets are two  different topics 

,none conflicts the other. Recently many researchers 

applied the notion of  neutrosophic sets to relations, group 

theory, ring theory,Soft set theory 

[23,24,25,26,27,28,29,30,31,32] and so on.The main 

objective of this study was to introduce a new hybrid 

intelligent structure called “ rough neutrosophic sets”. The 

significance of introducing hybrid set structures is that the 

computational techniques based on any one of theses 

structures alone will not always yield the best results but a 

fusion of two or more of them can often give better results. 

The rest of this paper is organized as follows. Some 

preliminary concepts required in our work are briefly 

recalled in section 2. In section 3 , the concept of rough 

neutrosophic sets is investigated. Section 4 concludes the 

paper. 

2 .Preliminaries 

In this section we present some preliminaries which will be 

useful to our work in the next section . For more details the 

reader may refer to [1, 8,9,] 

Definition 2.1[8]. Let X be an universe of discourse, with 

a generic element in X denoted by x,  the neutrosophic 

(NS) set  is an object having the form  
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A = {< x: , , >,x X}, where the 

functions , ,  : X→ ]−0, 1+[  define respectively the 

degree of membership (or Truth) , the degree of 

indeterminacy, and the degree of non-membership (or 

Falsehood) of the element x X to the set A with the 

condition.  

   −0 ≤  + + ≤ 3+.   (1)     

From philosophical point of view, the neutrosophic set 

takes the value from real standard or non-standard subsets 

of ]−0, 1+[. So instead of ] −0, 1+[ we need to take the 

interval [0, 1] for technical applications, because ]−0, 1+[ 

will be difficult to apply in the real applications  such as in 

scientific and engineering problems. For two NS , 

 ={ <x ,  , > |  }   

And ={<x ,  , > | } the 

relations are defined as follows: 

i.  if and only if 

,  ,

ii. ,  =

,  =  and  = 

iii. ={ <x ,min(  , , max( 

> |  } 

iv. ={ <x ,max(  , , min( 

> |  } 

v. =={ <x ,  ,1- > | 

 } 

vi.  =(0 , 1, 1) and   =(1 , 0, 0) 

As an illustration ,let us consider the following example. 

Example 2.2 Assume that the universe of discourse 

U={x1,x2,x3},where  characterizes the capability, 

characterizes the trustworthiness and  indicates the 

prices of the objects. It may be further assumed that the 

values of ,  and  are in [0,1] and they are obtained 

from some questionnaires of some experts. The experts 

may impose their opinion in three components viz. the 

degree of goodness,  the degree of indeterminacy and that 

of poorness to explain the characteristics of the objects. 

Suppose A is a neutrosophic set (NS) of U, such that, 

A = {< , (0.3, 0.5 ,0.6) >,< , (0.3, 0.2 ,0.3)>,< 

, (0.3, 0.5 ,0.6)>}, where the degree of goodness of 

capability is 0.3, degree of indeterminacy of capability is 

0.5 and degree of falsity of capability is 0.6 etc. 

Definition 2.3 [1] 

Let U be any non-empty set . Suppose R is an equivalence 

relation over U. For any non-null subset X of U, the sets 

(x)={x:   X} and (x)={x:   X  } 

are called the lower approximation and upper 

approximation, respectively of X, where the pair S = (U,R) 

is called an approximation space. This equivalent relation 

R is called indiscernibility relation. The pair A (X)=  

( (x), (x))  is called the rough set of X in S. Here 

 denotes the equivalence class of R containing x. 

Definition 2.4 [1]. Let A = ( , ) and B = ( , ) be 

two rough sets in the approximation space S = (U, R) . 

Then,  

A ∪ B = ( ∪ ,  ∪ ), 

A ∩ B = (  ∩ ,  ∩ ), 

A ⊂ B if A ∩B = A , 

A = { U –  , U – }. 

3 Rough Neutrosophic  Sets 

In this section we introduce the notion of rough 

neutrosophic sets by combining both rough sets and 

nuetrosophic sets. and some operations viz. union, 

intersection , inclusion and equalities over them. Rough 

neutrosophic set are the generalization of rough fuzzy sets 

[2 ] and rough intuitionistic fuzzy sets [ 22 ]. 

Definition 3.1. Let U be a non-null set and R be an 

equivalence relation on U. Let F be neutrosophic set in U 

with the membership function  ,indeterminacy function 

 and non-membership function  . The lower and the 

upper approximations of F in the approximation (U ,R) 

denoted by  (F) and F) are respectively defined as

follows: 

63



Neutrosophic Sets and Systems, Vol. 3, 2014 

Said Broumi, and Florentin Smarandache, Mamoni Dhar, Rough Neutrosophic  Sets 

 (F)= { <x, (x) , (x) , (x)> | 

 ,x  U}, 

F) ={ <x, (x) , (x) , (x)> 

|  , x  U}, where: 

(x)=

, (x)=  , = , 

(x)=   , (x)=

, = , 

So     0  (x) + (x) + (x) 3 

And    0  (x) + (x) + (x) 3 

Where “  “ and “  “ mean  “max” and “min “ operators 

respectively, ,  and   are the 

membership ,indeterminacy and non-membership of y with 

respect to F. It is easy to see  that F) and (F) are two

neutrosophic sets in U ,thus NS mapping 

 ,  :N(U)  N(U) are, respectively, referred to as the 

upper and lower rough NS approximation operators, and 

the pair ( (F), F)) is called the rough neutrosophic set 

in ( U, R). 

From the above definition , we can see that (F) and 

F) have constant membership on the equivalence clases

of U . if (F) = F) ;i .e =

, =  and = . For any  x  U. we 

call F a definable neutrosophic set in the approximation ( 

U ,R). it is easily to be proved that  Zero  neutrosophic 

set and unite neutrosophic sets are definable 

neutrosophic sets.  Let us consider a simple example in the 

following  

Example 3.2 . Let U = { , , , , , , , } 

be the universe of discourse. Let R be an equivalence 

relation its partition of U is given by 

U/R ={{ , }, { , , }, { }, { , }}. 

Let N(F)  ={( , (0.2, 0.3, 0.4), ( , (0.3, 0.5, 0.4)), ( , 

(0.4, 0.6, 0.2)),( , (0.1, 0.3, 0.5)) be a neutrosophic set of 

U .By the definition 3.1, we obtain: 

(F) ={( , (0.2, 0.5, 0.4)), ( , (0.2, 0.5, 0.4)), ( , (0.4, 

0.6, 0.2))}; 

F) ={( , (0.2, 0.3, 0.4)), ( , (0.2, 0.3, 0.4)), ( ,

(0.4, 0.6, 0.2)),( , (0.1, 0.3, 0.5)), ( , (0.1, 0.3, 0.5))}: 

For another neutrosophic sets 

N(G) ={( , (0.2, 0.3, 0.4), ( , (0.2, 0.3, 0.4)), ( , (0.4, 

0.6, 0.2)} 

The lower approximation and upper approximation of 

N(G) are calculated as 

(G) ={( , (0.2, 0.3, 0.4)), ( , (0.2, 0.3, 0.4)), ( , 

(0.4, 0.6, 0.2))}; 

G) ={( , (0.2, 0.3, 0.4)), ( , (0.2, 0.3, 0.4)), ( ,

(0.4, 0.6, 0.2)) 

Obviously (G) = G) is a definable neutrosophic set in

the approximation space (U, R) 

Definition 3.3. If N(F)= ( (F), F) is a rough

neutrosophic set in (U,R) ,the rough complement of N(F) is 

the rough neutrosophic set denoted   N(F)=(

, ) ,where  ,  are the complements 

of neutrosophic sets  (F) and F) respectively.

 ={ <x,  ,1- (x) , (x) > |  x

U},And 
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F) ={ <x, (x) ,1- (x) , (x)> |  x

U}, 

Definition 3.4. If N( ) and N( ) are two rough 

neutrosophic set  of the neutrosophic sets and 

respectively in U ,then we define the following: 

i. N( ) = N( ) iff ( )= ( ) and 

)= ) 

ii. N( )  N( ) iff    ( ) ( ) and 

) ) 

iii. N( )  N( ) = < ( ) ( ) , 

) ) 

iv. N( )  N( ) = < ( ) ( ) , 

) ) 

v. N( )  N( ) = < ( ) ( ) , )

) 

vi. N( )  N( ) = < ( ) ( ) , )

) 

If N , M, L are rough  neutrosophic set in (U,R) ,then the 

results in the following proposition are straightforward 

from definitions 

Proposition 3.5: 

i. N(  N)=N

ii. N  M =M  , N  M =M 

iii. (N  M )  L= N  (M  L )  and (N  M ) 

L= N  (M  L ) 

iv. (N  M )  L= (N  M ) (N  L )   and (N 

M )  L= (N  M ) (N  L ) 

De Morgan ‘s Laws are satisfied for neutrosophic sets : 

Proposition 3.6 

i. (N( )  N( ))=(  N( ))   (  N( )  

ii. (N( )  N( ))=(  N( )  )  (  N( )  

Proof : 

i. (N( )  N( )) 

=  ( { ( ) ( )}  , { ) )} ) 

= ( { ( ) ( )}}  ,  {{ ) )}) 

=(  , ) 

=  ( } , }) 

= N( ))   (  N( )  

ii. Similar to the proof of (i)

Proposition 3.7: 

If  and  are two neutrosophic sets in U such that 

, then N( )   N( )  

i. N ( N( )  N( ) 

ii. N( N( )  N( ) 

Proof: 

(x) = inf {  (x)  | x } 

        = inf ( max { (x), (x)  | x ) 

 max { inf { (x) | x }, inf { (x) | x 

}} 

= max {  , } 

= (

Similarly , 

 (

 (

Thus,   (  ( )  ( ) 

We can also see that 

 (  ( )  ( ) 
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Hence, 

N ( N( )  N( ) 

(ii) proof is similar to the proof of (i) 

Proposition 3.8: 

i.  ( ) = ) 

ii. ) =  ( ) 

iii.  ( ) ) 

Proof , according to definition 3.1, we can obtain 

i) ={ <x ,  , > |  } 

 ={ <x ,  ,1- > | 

 } 

)=  { <x, (x) ,1- (x) , (x)> 

|  , x  U} 

) ={ <x, (x) ,1-(1- (x)) , 

(x)> |  , x  U} 

  = { <x, (x) , (x) , (x)> 

|  , x  U}, where 

=  , (x)=

and (x) = 

Hence   ( ) = ) 

ii) The proof is similar to i

iii) For any  ( ), we can have 

(x) =

(x)=

And =

    Hence,  ( ) ) 

4 Conclusions 

In this paper we have defined the notion of rough 

neutrosophic sets. We have also studied some properties on 

them and proved some propositions. The concept combines 

two different theories which are rough sets theory and 

neutrosophic theory. While neutrosophic set theory is 

mainly concerned with ,indeterminate and inconsistent 

information, rough set theory is with incompleteness; but 

both the theories deal with imprecision. Consequently , by 

the way they are defined, it is clear that rough neutrosophic 

sets can be utilized for dealing with both of indeterminacy  

and incompleteness. 
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Abstract. In this paper authors study the customer’s 

preference of street shops to other eateries using Fuzzy 

Relation Equations (FREs) and Neutrosophic Relation 

Equations (NREs). We have constructed a new type of 

FRE and NRE called the new average FRE and new 

average NRE. This study is based on interviews 

/discussions taken from 32 tuck shops in and around 

Tambaram. This paper is organized into five sections. In 

section one we just recall the working of FRE and NRE. 

We define the new notion of average FREs and average 

NREs and use this new model to study the problem which 

forms section two of this paper. Section three describes the 

attributes related with the customers and the types of 

customers based on the pilot survey made by us. The new 

FRE and NRE models constructed in section two of this 

paper is used in analysing the problem in section four. The 

final section gives the conclusions and suggestions made 

from this study. 

Keywords: Fuzzy Relation Equation(FRE), Neutrosophic Relation Equation(NRE), New Average Fuzzy Relation Equation 

(NAFRE), New Average Neutrosophic Relation Equation(NANRE).

1 Basic Concepts 

Here we just recall the basic definitions and describe the 

functioning of Fuzzy Relation Equations (FRE) and 

Neutrosophic Relation Equations (NRE). We have taken 

the basic definitions from [1,6]. The notion of Fuzzy 

Relation Equations (FREs) is associated with the concept 

of composition of binary relations. The FREs are based 

upon the max-min composition. Considering the three 

binary relations P(X,Y), Q(Y,Z) and R(X,Z) which are 

defined on the sets, X = {xi | i ∈ I}, Y = {yj | j ∈ J} and Z = 

{zk | k ∈ K} where we assume that I = Nn, J = Nm and K = 

Ns. Let the membership matrices of P, Q and R be denoted 

by P = [pij], Q = [qjk] and R = [rik] respectively where pij = 

P(xi, yi) , qjk = Q(yj, zk) and rik = R(xi, zk) for all 

n m
i I( N ), j J( N )∈ = ∈ =  and 

s
k K( N )∈ = .This means all 

the entries in the matrices P, Q and R are real numbers in 

the unit interval [0, 1]. 

 Assume now that the three relations constrain each 

other in such a way that  

P Q R=� (1) 

where ' '�  denotes the max-min composition. This means 

that 

ij, jk ik
j J

max min(p q ) r
∈

=  (2) 

for all i ∈ I and k ∈ K. That is, the matrix equation (1) 

encompasses n ×  s simultaneous equations of the form (2). 

When the two of the components in each of the equations 

are given and one is unknown, these equations are referred 

to as FREs. 

It is pertinent to mention that in general the equation P 

o Q = R need not give a solution. In case when we do not

have a solution to equation (1) we use neural networks to 

find the solution [1,3-6].  

 We just recall the definition of Neutrosophic Relation 

Equations (NREs). To this new notion we need the concept 

of the indeterminate I, where I
2
 = I and I + I +…+ I = nI, 

for more about these neutrosophic concept please refer [2, 

5]. We denote by NI = {a + bI / a, b ∈ [0,1]} and NI is 

defined as Fuzzy neutrosophic values. 

 To construct Neutrosophic Relation Equations we make 

use of NI clearly [0,1] ⊆  NI; this is the case when b = 0. 

The Neutrosophic Relation Equations are based upon the 

max-min composition. Considering the three binary 

relations N(X,Y) Q(Y,Z) and B(X,Z) which are defined on 

the sets, 
i j

X {x | i I},Y {y | j J}= ∈ = ∈  and Z = {zk | k∈K} 

where we assume that 
n m

I N , J N= =  and 
s

K N= . Let the 

membership matrices of N, Q and B be denoted by N = 

[nij], Q = [qjk] and B = [bjk] respectively where nij = N(xi, 

yj),  jk j k
q Q(y , z )=  and 

ik i k
b B(x , z )=  for all i ∈ I( = Nn), 

j ∈ J(= Nm) and k ∈ K(= Ns). This means all the entries in 

the neutrosophic matrices N, Q and B are fuzzy 

neutrosophic values from NI . 

Assume now that the three relations constrain each other in 

such the way that  

N Q B=� (3) 

where ' '�  denotes the max-min composition. This means 

that 
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ij, jk ik
j J

max min(p q ) r
∈

=  (4) 

for all i ∈ I and k ∈ K. That is, the matrix equation (3) 

encompasses n ×  s simultaneous equations of the form (4). 

However if an expert wishes to work in a different way 

he/she can choose min{a, bI} = a even if a < b or min{a, 

bI} = b even if a > b. This flexibility alone makes the 

system more agile for any researcher. For more refer[1-6]. 

2 New Average Fuzzy Relation Equations 
(NAFRE) and New Average Neutrosophic Relation 
Equations (NANRE) 

 The main motivation for construction of these new 

models Average Fuzzy Relation Equations and Average 

Neutrosophic Relation Equations arises from following 

factors. These models functions on the wishes of all the 

experts who work with the problem. If for any problem we 

use more than one experts opinion we may have problem 

of choosing the experts opinion for preference of one 

expert over the other may not give satisfaction to the other 

experts as they may feel their suggestions are ignored and 

this may lead to an unpleasant situation and bias in the 

choice.  

 To overcome this problem we have defined two new 

models called the New Average Fuzzy Relation Equations 

(NAFRE) and New Average Neutrosophic Relation 

Equations (NANRE). Here we define and describe the 

New Average Fuzzy Relation Equations model (NAFRE) 

and New Average Neutrosophic Relation Equations model 

(NANRE).  

Suppose 
1 2 n

P (X,Y),  P (X, Y),..., P (X, Y)  be the Fuzzy 

Relation of X on Y given by n-distinct experts, where all 

the n-experts agree to work with the same set of attributes 

from the range and domain spaces. 

Let
1 2 n

R ,R ,...,R denote the related matrices of the FRE 

of the n-experts associated with P1(X, Y), P2(X, Y), ..., 

Pn(X, Y) the fuzzy relation of X on Y respectively. 

We define 

1 nP (X, Y) ... P (X,Y)
P(X,Y)

n

+ +
=

that in terms of the Fuzzy Relation Equations, that is if R is 

the matrix related with P(X, Y) then R is got from 
n

i

i 1

1
P

n =

∑
using FRE based on max-min composition is again a 

matrix which gives the fuzzy relation of X with Y. 

 The merit of using this model is that every expert is 

given the same preference so the experts have no 

disappointment when forming the final result and further 

this saves time and economy for we can work with one 

model instead of n-models. The advantages of using the 

average FRE model is as follows. Just like other fuzzy 

models the extreme values do not cancel out as the values 

of all the FRE matrices R related with the respective 

i
P (X,Y) has its entries in [0, 1]; 1 i n≤ ≤ . Hence at the 

outset we are justified in using this specially constructed 

New Average Fuzzy Relation Equations(NAFREs) model. 

This model also caters to the law of large numbers. So the 

results become more and more sensitive by increasing the 

number of experts and further only a single matrix 

represents the opinion of all these n-experts. Hence time 

and economy are not affected by using this new model. 

Next we proceed to define the New Average NRE 

model. Suppose
1 2 n

N (X,Y),  N (X,Y),..., N (X, Y)  be the 

neutrosophic relation of X on Y given by n-distinct experts, 

where all the n-experts agree to work with the same set of 

attributes from the range and domain spaces. 

Let
1 2 n

B ,B ,...,B denote the related matrices of the 

NREs of the n-experts associated with 
1 2

N (X, Y), N (X,Y) , 

…,
n

N (X,Y) the neutrosophic relation of X on Y 

respectively. We define 

1 nN (X,Y) ... N (X, Y)
N(X,Y)

n

+ +
=

that in terms of the Neutrosophic Relation Equations, that 

is if B is the matrix related with N(X, Y) then B is got from 
n

i

i 1

1
N

n =

∑ using NRE based on max-min composition is

again a matrix which gives the neutrosophic relation of X 

with Y. There is no dependency between the average taken 

for real and indeterminacy; since as per the experts who 

have deterministic opinion the average of their opinion is 

taken separately and the experts who have indeterminacy 

opinion is dealt with separately. However we prefer to use 

NRE models mainly as certain experts express their 

inability to give opinion had forced us to deploy 

neutrosophic models. 

 In NRE models the extreme values do not cancel out as 

the values of all the NRE matrices B related with the 

respective 
i

N (X,Y) has neutrosophic values {a + bI | a, b 

∈  [0,1]}. Hence at the outset we are justified in using this 

specially constructed New Average Neutrosophic Relation 

Equations (NANREs) model. This model also caters to the 

law of large numbers. So the results become more and 

more sensitive by increasing the number of experts and 

further only a single matrix represents the opinion of all 

these n-experts. Hence time and economy are not affected 

by using this new model. 

3. Description of the attributes related with the
preference of the customers to road side eateries 

 In this section we keep on record that we have taken a 

pilot survey from different types of customers and for their 

preferences to these road side eateries from 32 number of 

customers. After analysing the collected data the experts 
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felt the following attributes can be given preference in the 

study of the problem. Accordingly X denotes the attributes 

related with the preferences of the customers which is 

taken as the ‘domain’ space of the Fuzzy Relation 

Equations. Y correspond to attributes related with the types 

of the customers. 

 We briefly describe in a line (or) two the attributes of X 

and Y in this section.  

Let 
1, 2 7

S {S S ,...,S }= denote the domain space. 

S1: “Cost” – The cost is reasonably fair because the street 

shop owners do not charge VAT, no tips for the servers 

and they do not charge for even hygienic water. 

S2: “Quality is good” – The view of the experts 

(customers) felt that the phrase “Quality is good” means 

that the food they get from the street shops is less in 

adulteration with chemical for taste and smell. They also 

claimed that the food is just like home made food so they 

prefer the tuck shops to that of big restaurant or 

multicusine hotels. 

S3: “Quantity is more” – The quantity is more in 

comparison since for the same amount we spend on street 

shops, we get more and substantial amount of food which 

is really fulfilling the customers. 

S4: “Better Hygiene” – Since the food are instantly made 

we do not get left out foods. They keep the surroundings 

clean because they are always watched keenly by all the 

customers and public. They give us clean can water and 

they serve the food in paper plates and cups which is used 

only once. Added to this even sometimes they serve in 

fresh green banana leaves. 

S5: “Service is good” - Most of the street shop owners are 

themselves servers. So they take care of each customer. 

They are friendlier. They serve the food immediately and 

the customers need not wait.  

S6: “Prepared in our presence” – Since the food is prepared 

in our presence we can give instruction to prepare for our 

taste. Food are just made so hot and hygienic. 

S7: “Waiting Time” – Comparatively since the owners are 

themselves servers they give importance to each customer 

and they serve the food very quickly. The customers need 

not wait for long time in a long queue which very often 

happens in big multicusine restaurant even to pay bills and 

for parcelling the food and for every service many hours 

are wasted. 

The attributes related with the types of customers R = {C1, 

C2, ..., C7} is taken as range space. We briefly describe in a 

word or two the attributes C1, C2, ..., C7; 

C1: Bachelors :Most of the bachelors take food from road 

side shops because of so many factors like the quantity of 

food is large for what they pay. 

C2: Students: Both day scholars and hostellers like to have 

food due to the less price they charge. 

C3:I.T and Call centre Employees: These type of customers 

give importance for hygiene food and less waiting time. 

C4: House Wives; These type of customers give much 

importance to better hygiene and for more quantity. 

C5: Daily Wage Labours: These labour in tambaram used 

to go road side eateries for various reason like more 

quantity of food they get for what they pay, less cost which 

is affordable by them and for good hospitality. 

C6: Local Employees: These type of customers mainly 

prefer these shops for better hygiene and for better service. 

C7: Children above 10-Years: Children prefer for some 

special food which is not always prepared in their home 

and for less cost charged for the food. 

 The collected data was analysed and the following limit 

sets are derived using the questionnaire. 

1
S 0.6≥ (The cost is reasonably fair so we are forced to 

give just 60%, S1 < 0.6 means the cost in not reasonably 

fair to their expectation). 

2
S 0.5≥ (The quality is preferred by those who have 

experience in eating quality food so we are forced to give 

just 50% 
2

S 0.5<  means the quality is not as good to their 

expectation). 

3
S 0.6≥ (Several like school students, daily wage 

people, etc, prefer quantity with so the expert feel after 

pilot survey 
3

S 0.6< is not as good as to their expectation). 

4
S 0.5≥ (Most of the customers like I.T employees, 

house wives, etc, prefer better hygiene 
4

S 0.5<  means the 

better hygiene is not as good as to their expectation). 

5
S 0.6≥  (The service is preferred by those who have 

experienced the better service when compared with the 

multi cuisine hotels. So we are forced to give 60% 

5
S 0.6< means the service is not good as to their 

expectation). 

6
S 0.4≥ (The expert feels that they prefer the food 

which is prepared in their presence so we are forced to give 

40% 
6

S 0.4< means they do not give much importance for 

the food which is prepared in their presence). 

7
S 0.6≥ (The waiting time is much important and they 

have less waiting time compared to multiCuisine hotels 

7
S 0.6< means the waiting time is comparatively more).  

In the next section we analyse the collected data using 

FRE and NRE. 

4 Use of FRE and NRE models to analyse the 
problem 

Here we have collected the data from 32 tuck shops. We 

have used five experts to work with FRE and NRE model. 

The FRE matrices of 5 experts 
1 2 3 4

P ,P , P ,P  and P5 are 

given as follows. Now we work with first expert. Let P1  be 

the membership matrix given by the first expert which is as 

follows: 
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1
P =

1

2

3

4

5

6

7

S

S

S

S

S

S

S

0 0.6 0 0.7 0.8 0.6 0.8

0.3 0.1 0.6 0.6 0 0.5 0.7

0.6 0.8 0 0.7 0.7 0.5 0.6

0 0 0.7 0.6 0 0 0

0 0 0.6 0.3 0 0.2 0

0.1 0 0 0.2 0 0.1 0

0.2 0 0.7 0.6 0 0.5 0.7

 
 
 
 
 
 
 
 
 
 
 

and the expert wishes to work with this 
t

1
Q [0.7  0.5  0.7  0.4  0.8  0.6  0.3]= . 

Now we find the solution to the following fuzzy 

relation equations. That is
t t

1 1 1 ij jk
P Q R MaxMin(p q )= =� ;

which gives 
t

1
R [0.8 0.6 0.7 0.7 0.6 0.2 0.7]= . 

As analysed from resultant t

1
R , the first expert feels 

that least preference for the food prepared in their presence 

and the much preference is given for all the remaining 

constrains. 

Suppose the expert wishes to work with 
t

11
Q [0.9 0.8 0.9 0.8 0.7 0.7 0.6]= . 

Then we find solution for the fuzzy relation equation as 
t t

1 11 ij jk 11
P Q MaxMin(p ,q ) R= =�

which gives t

11
R [0.7 0.6 0.8 0.7 0.6 0.2 0.7]= . 

As analysed from resultant t

11
R  the expert feels the 

least preference is given for the food prepared in their 

presence and much importance is given for all the 

remaining constrains. 

Suppose the expert wishes to work with 

[ ]t

12
Q 0.4 0.2 0.3 0.4 0.5 0.4 0.3=

then we find solution for the fuzzy relation equation as 
t t

1 12 ij jk 12
P Q MaxMin(p ,q ) R= =�

which gives [ ]t

12
R 0.5 0.4 0.5 0.4 0.3 0.2 0.4= . 

As analysed from resultant t

12
R  the expert feels least 

preference is given for all the constrains. 

 Next we work with second expert. Let P2 be the 

membership matrix given by the second expert which is as 

follows 

2
P =

1

2

3

4

5

6

7

S

S

S

S

S

S

S

0.1 0.7 0.1 0.8 0.9 0.7 0.8

0.4 0.2 0.7 0.7 0.1 0.4 0.6

0.7 0.8 0.1 0.7 0.1 0.6 0.6

0.2 0.1 0.8 0.8 0 0.1 0

0.5 0 0.6 0.4 0 0.2 0.3

0.1 0.1 0.2 0.3 0.1 0.1 0.1

0.3 0 0.8 0.4 0 0.4 0.8

 
 
 
 
 
 
 
 
 
 
 

. 

Now using 
t

1
Q [0.7  0.5  0.7  0.4  0.8  0.6  0.3]=

in the equation 
t t

2 1 ij jk 2
P Q MaxMin(p ,q ) R= =� we get 

[ ]t

2
R 0.8 0.7 0.7 0.7 0.6 0.3 0.7= . 

As analysed from t

2
R  the expert feels least preference is 

given for the food prepared in their presence and much 

preference is given for all the remaining constrains. 

Now using 
t

11
Q [0.9 0.8 0.9 0.8 0.7 0.7 0.6]=  

in the equation 
t t

2 11 ij jk 21
P Q MaxMin(p ,q ) R= =�  we get 

[ ]t

21
R 0.8 0.7 0.8 0.8 0.6 0.3 0.8= . 

As analysed from t

21
R  the expert feels least preference 

is given for the food prepared in their presence and much 

preferences is given for all the remaining constrains. 

Now using 

[ ]t

12
Q 0.4 0.2 0.3 0.4 0.5 0.4 0.3=

in the equation 
t t

2 12 ij jk 22
P Q MaxMin(p ,q ) R= =�  we get 

[ ]t

22
R 0.5 0.4 0.4 0.4 0.4 0.3 0.4= . 

As analysed from resultant t

22
R  the expert feels much 

preference is given for the food prepared in their presence 

and gives least preference for all the other constrains. 

 Next we work with third expert. Let P3 be the 

membership matrix given by third expert which is as 

follows  

P3 =

1

2

3

4

5

6

7

S

S

S

S

S

S

S

0.1 0.6 0 0.6 0.8 0.7 0.8

0.2 0.1 0.5 0.6 0.1 0.5 0.7

0.6 0.9 0.2 0.8 0.7 0.8 0.7

0.4 0.5 0.7 0.6 0.1 0.2 0.1

0.6 0.5 0.6 0.5 0.1 0.2 0.5

0.5 0.4 0.1 0.4 0.1 0.2 0.4

0.2 0.6 0.4 0.6 0.1 0.6 0.7

 
 
 
 
 
 
 
 
 
 
 

. 

Now using 
t

1
Q [0.7  0.5  0.7  0.4  0.8  0.6  0.3]=

in the equation 
t t

3 1 ij jk 3
P Q MaxMin(p ,q ) R= =� we get 

[ ]t

3
R 0.8 0.5 0.7 0.7 0.6 0.5 0.6= . 

As analysed from resultant t

3
R  the expert feels much 

preference is given for all the constrains. 

Now using 
t

11
Q [0.9 0.8 0.9 0.8 0.7 0.7 0.6]=  

in the equation 
t t

3 11 ij jk 31
P Q MaxMin(p ,q ) R= =� we get 

t

31
R [0.7 0.6 0.8 0.7 0.6 0.5 0.6]= . 

As analysed from resultant t

31
R  the expert feels much 

preference is given for all the remaining constrains. 

Now using 

[ ]t

12
Q 0.4 0.2 0.3 0.4 0.5 0.4 0.3=

in the equation 
t t

3 12 ij jk 32
P Q MaxMin(p ,q ) R= =� we get 
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[ ]t

32
R 0.5 0.4 0.4 0.4 0.4 0.4 0.4= . 

As analysed from resultant t

32
R  the expert feels much 

preference is given for the food prepared in their presence 

and given least importance for all the remaining constrains. 

Next we work with fourth expert. Let P4 be the 

membership matrix given by fourth expert which is as 

follows  

4
P =

1

2

3

4

5

6

7

S

S

S

S

S

S

S

0.1 0.7 0 0.7 0.8 0.8 0.2

0.5 0.5 0.6 0.7 0.4 0.6 0.7

0.7 0.7 0.5 0.4 0.7 0.6 0.5

0.6 0.5 0.5 0.6 0.1 0.2 0.4

0.6 0.4 0.6 0.7 0.4 0.3 0.5

0.4 0.2 0.4 0.5 0.2 0.1 0

0.2 0.1 0.7 0.5 0 0.5 0.5

 
 
 
 
 
 
 
 
 
 
 

. 

Now using 
t

1
Q [0.7  0.5  0.7  0.4  0.8  0.6  0.3]=

in the equation 
t t

4 1 ij jk 4
P Q MaxMin(p ,q ) R= =�  we get 

[ ]t

4
R 0.8 0.6 0.7 0.6 0.6 0.4 0.7= . 

As analysed from resultant t

4
R  the expert feels much 

preference is given for all the constrains . 

Now using 
t

11
Q [0.9 0.8 0.9 0.8 0.7 0.7 0.6]=  

in the equation
t t

4 11 ij jk 41
P Q MaxMin(p ,q ) R= =� we get 

[ ]t

41
R 0.7 0.7 0.7 0.6 0.7 0.5 0.7= . 

As analysed from resultant t

41
R  the expert feels much 

preferences is given for all the constrains. 

Now using 

[ ]t

12
Q 0.4 0.2 0.3 0.4 0.5 0.4 0.3=

in the equation 
t t

4 12 ij jk 42
P Q MaxMin(p ,q ) R= =� we get 

[ ]t

42
R 0.5 0.4 0.5 0.4 0.4 0.4 0.4= . 

As analysed from resultant t

42
R  the expert feels much 

preference is given for the food prepared in their presence 

and least preference is given for all the remaining 

constrains. 

 Next we work with fifth expert. Let P5 be the 

membership matrix given by fifth expert which is as 

follows  

P5 = 

1

2

3

4

5

6

7

S

S

S

S

S

S

S

0 0.6 0 0.6 0.7 0.7 0.8

0.3 0.1 0.5 0.5 0 0.5 0.7

0.5 0.7 0.1 0.6 0.6 0.5 0.6

0.1 0 0.7 0.6 0.1 0.1 0.1

0.1 0 0.6 0.3 0 0.2 0.1

0.1 0.1 0.1 0.2 0.1 0.1 0.2

0.3 0.1 0.7 0.6 0.1 0.5 0.6

 
 
 
 
 
 
 
 
 
 
 

. 

Now using 
t

1
Q [0.7  0.5  0.7  0.4  0.8  0.6  0.3]=

in the equation 
t t

5 1 ij jk 5
P Q MaxMin(p ,q ) R= =� we get 

[ ]t

5
R 0.7 0.5 0.6 0.7 0.6 0.2 0.7= . 

As analysed from resultant t

5
R  the expert feels least 

preference is given for the food prepared in their presence 

and much preference is given for all the remaining 

constrains. 

Now using 
t

11
Q [0.9 0.8 0.9 0.8 0.7 0.7 0.6]=  

in the equation
t t

5 11 ij jk 51
P Q MaxMin(p ,q ) R= =� we get 

[ ]t

51
R 0.7 0.6 0.7 0.7 0.6 0.2 0.7= . 

 As analysed from resultant t

51
R  the expert feels least 

preference is given for the food prepared in their presence 

and much preference is given for all the remaining 

constrains. 

Now using 

[ ]t

12
Q 0.4 0.2 0.3 0.4 0.5 0.4 0.3=

in the equation 
t t

5 12 ij jk 52
P Q MaxMin(p ,q ) R= =�  we get 

[ ]t

52
R 0.5 0.4 0.5 0.4 0.3 0.2 0.4= . 

As analysed from resultant t

52
R  the expert feels least 

preference is given for all the constrains. 

 The New Average Fuzzy Relation Equations(NAFREs) 

defined and developed in section 2 of the paper is 

constructed using five experts which gives the opinion of 

all the 5 experts feeling. As a law of large number the 

average taken for all the five experts give approximately a 

sensitive opinion.  

1 2 3 4 5
(P P P P P ) / 5+ + + + = 

P =

1

2

3

4

5

6

7

S

S

S

S

S

S

S

0.06 0.64 0.02 0.68 0.8 0.7 0.68

0.34 0.2 0.58 0.62 0.12 0.5 0.68

0.62 0.78 0.18 0.64 0.56 0.6 0.6

0.26 0.22 0.68 0.64 0.06 0.12 0.12

0.36 0.18 0.6 0.44 0.1 0.22 0.28

0.24 0.16 0.16 0.32 0.1 0.12 0.14

0.2 0.08 0.66 0.54 0.06 0.5 0.66

 
 
 







 









. 

Now using 
t

1
Q [0.7  0.5  0.7  0.4  0.8  0.6  0.3]=

in the equation 
t t

1 ij jk
P Q MaxMin(p ,q ) R= =� we get 

[ ]t
R 0.8 0.58 0.62 0.68 0.6 0.32 0.66=

As analysed from resultant the R
t
, expert feels least 

preference for the food which is being prepared in their 

presence and much preference is given for all the 

remaining constrains. 
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Now using 
t

11
Q [0.9 0.8 0.9 0.8 0.7 0.7 0.6]=  

in the equation
t t

11 ij jk a
P Q MaxMin(p ,q ) R= =� we get

[ ]t

a
R 0.8 0.67 0.78 0.68 0.6 0.32 0.66= . 

As analysed from resultant t

a
R , expert feels least 

preference for the food which is being prepared in their 

presence and much preference for all the remaining 

constrains. 

Now using 

[ ]t

12
Q 0.4 0.2 0.3 0.4 0.5 0.4 0.3=

in the equation 
t t

11 ij jk b
P Q MaxMin(p ,q ) R= =� we get

[ ]t

b
R 0.5 0.4 0.5 0.4 0.4 0.32 0.4= . 

As analysed from resultant t

b
R  expert feels least 

preferences is given for all the constrains. 

 Next we consider the opinion of 5 experts who wish to 

use the NREs to the same problem. Now we work with 

first expert. 

Let N1 be the membership matrix given by first expert 

N1 =

1

2

3

4

5

6

7

S

S

S

S

S

S

S

0.2I 0.6 0.3I 0.7 0.8 0.6 0.8

0.3 0.7I 0.6 0.6 0.3I 0.5 0.7

0.6 0.8 0.7I 0.7 0.7 0.5 0.7

0.5I 0.2 0.7 0.6 0.3 0.2 0.7

0.7 0.4I 0.6 0.3 0.2I 0.7 0.5

0.1 0.5 0.3 0.2 0.7 0.1 0.5I

0.2 0 0.7 0.6 0 0.5 0.7

 
 
 
 
 
 
 
 
 
 
 

and the expert wishes to work with 
t

1
Q [0.7  0.5  0.7  0.4  0.8  0.6  0.3]= . 

Now we find solution for the following neutrosophic 

equations. That is 
t t

1 1 ij jk 1
N Q MaxMin(n q ) B= =� ; which

gives [ ]t

1
 B 0.8 0.6 0.7I 0.7 0.7 0.7 0.7= . 

As analysed from resultant t

1
B  expert feels that much 

preference is given to all the constrains and not able to 

express the constrain quantity of foodis about 70%. 

 Now using 
t

11
Q [0.9 0.8 0.9 0.8 0.7 0.7 0.6]=  

in the equation
t t

1 11 ij jk 11
N Q MaxMin(n ,q ) B= =� we get 

[ ]t

11
B 0.7 0.7I 0.8 0.7 0.7 0.7 0.7= . 

As analysed from resultant t

11
B  expert feels that much 

preference is given to all the constrains and not able to 

express the constrain quality of food.  

Now using  

[ ]t

12
Q 0.4 0.2 0.3 0.4 0.5 0.4 0.3=

in the equation 
t t

1 12 ij jk 12
N Q MaxMin(n ,q ) B= =�  we get 

[ ]t

12
B 0.5 0.4 0.5 0.4 0.4 0.5 0.4= . 

As analysed from resultant t

12
B the expert feels least 

preference is given to all the constrains expect the food 

prepared in their presence. 

 Next we work with the second expert. Let N2 be the 

membership matrix given by second expert which is as 

follows: 

 N2 = 

1

2

3

4

5

6

7

S

S

S

S

S

S

S

0.2 0.7 0.3 0.7I 0.8 0.7 0.7

0.6 0.2 0.7I 0.6 0.2I 0.3 0.5

0.7 0.5 0.4 0.6 0.2 0.6 0.3

0.4 0.2I 0.6 0.6 0.1 0.2 0.1

0.4 0.1I 0.5 0.4 0.1 0.3 0.2

0.1 0.2 0.3 0.4 0.1 0.2 0.4

0.3 0.1 0.6I 0.3 0 0.4 0.8

 
 
 
 
 
 
 
 
 
 
 

. 

Now using 
t

1
Q [0.7  0.5  0.7  0.4  0.8  0.6  0.3]=

in the equation 
t t

2 1 ij jk 2
N Q MaxMin(n ,q ) B= =�  we get 

[ ]t

2
B 0.8 0.7I 0.7 0.6 0.5 0.4 0.6I= . 

As analysed from resultant t

2
B  the expert feels inability to 

express about the quality of food and less waiting time and 

much preference is given for all the remaining constrains. 

Now using 
t

11
Q [0.9 0.8 0.9 0.8 0.7 0.7 0.6]=  

in the equation 
t t

2 11 ij jk 21
N Q MaxMin(p ,q ) B= =�  we get 

[ ]t

21
B 0.7I 0.7I 0.7 0.6 0.5 0.4 0.6I= .

As analysed from resultant t

21
B the expert feels inability to 

express about the reasonable cost, quality of food and less 

waiting time and least preference is given for better service 

and much preference for quantity of the food, better 

hygiene and for food prepared in their presence. 

Now using 

[ ]t

12
Q 0.4 0.2 0.3 0.4 0.5 0.4 0.3=

 in the equation 
t t

2 22 ij jk 22
N Q MaxMin(n ,q ) B= =�  we get 

[ ]t

22
B 0.5 0.4 0.4 0.4 0.4 0.4 0.4= . 

As analysed from resultant t

22
B  the expert feels much 

preference is given for food prepared in their presence and 

least preferences is given for all the remaining constrains. 

 Next we work with the third expert. Let N3 be the 

membership matrix given by third expert which as follows: 

N3 = 

1

2

3

4

5

6

7

S

S

S

S

S

S

S

0.1 0.6 0 0.4 0.7 0.8 0.9

0.3I 0.1 0.4 0.6I 0.1 0.5 0.7

0.5 0.9 0.2I 0.5 0.6 0.5 0.6

0.3 0.4I 0.6 0.4 0.2 0.1 0.2

0.5 0.5 0.6 0.5 0.1 0.2 0.5

0.3 0.2 0.2 0.3 0.2 0.1 0.3

0.1 0.5 0.2 0.4 0.1 0.4 0.5

 
 
 
 
 
 
 
 
 
 
 

. 

Now using 
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t

1
Q [0.7  0.5  0.7  0.4  0.8  0.6  0.3]=

in the equation 
t t

3 1 ij jk 3
N Q MaxMin(n ,q ) B= =� we get 

[ ]t

3
B 0.7 0.5 0.6 0.6 0.6 0.3 0.5= . 

As analysed from resultant t

3
B  the expert feels least 

preference is given to the food prepared in their presence, 

less waiting time, and better service. Much preference is 

given for remaining constrains. 

Now using 
t

11
Q [0.9 0.8 0.9 0.8 0.7 0.7 0.6]=  

in the equation 
t t

3 11 ij jk 31
N Q MaxMin(n ,q ) B= =� we get 

[ ]t

31
B 0.7 0.6I 0.6 0.6 0.6 0.3 0.5= . 

As analysed from resultant t

31
B  the expert feels least 

preference is given to the food prepared in their presence 

and for less waiting time and the expert is not able to 

express about the quality of food . 

Now using 

[ ]t

12
Q 0.4 0.2 0.3 0.4 0.5 0.4 0.3=

in the equation
t t

3 12 ij jk 32
N Q MaxMin(p ,q ) B= =�  we get 

[ ]t

32
B 0.5 0.4 0.5 0.4 0.4 0.3 0.4= . 

As analysed from resultant t

32
B  the expert feels least 

preference is given to all the constrains. 

 Next we work with fourth expert. Let N4 be the 

membership matrix given by third expert which as follows: 

N4 = 

1

2

3

4

5

6

7

S

S

S

S

S

S

S

0.1 0.5 0.2 0.7 0.6 0.9 0.5

0.6 0.8 0.8 0.9 0.2 0.6 0.5

0.4 0.2 0.5 0.4 0.7 0.6 0.3I

0.5 0.4 0.2 0.5 0.2 0.2 0.3

0.5 0.4 0.5 0.8 0.6 0.4 0.5

0.4 0.2 0.6 0.5 0.2 0.1 I

0.2 0.3 0.6I 0.4 0 0.2 0.2

 
 
 
 
 
 
 
 
 
 
 

. 

Now using 
t

1
Q [0.7  0.5  0.7  0.4  0.8  0.6  0.3]=

in the equation 
t t

4 1 ij jk 4
N Q MaxMin(n ,q ) B= =�  we get 

[ ]t

4
B 0.6 0.7 0.7 0.5 0.6 0.6 0.6I= . 

As analysed from the resultant t

4
B  the expert is not able to 

express about the less waiting time and given much 

preference to all the constrains. 

Now using 
t

11
Q [0.9 0.8 0.9 0.8 0.7 0.7 0.6]=  

in the equation
t t

4 11 ij jk 41
N Q MaxMin(n ,q ) B= =�  we get 

[ ]t

41
B 0.7 0.8 0.7 0.5 0.8 0.6 0.6I= . 

As analysed from the resultant t

41
B  the expert is not able to 

express about the less waiting time and least preference is 

given to better hygiene and much preference is given to all 

the remaining constrains. 

Now using  

[ ]t

12
Q 0.4 0.2 0.3 0.4 0.5 0.4 0.3=

in the equation 
t t

4 12 ij jk 42
N Q MaxMin(n ,q ) B= =� we get 

[ ]t

42
B 0.5 0.4 0.4 0.4 0.5 0.4 0.4= . 

As analysed from the resultant t

42
B  the expert gives least 

preference to all the constrains expect about the food 

prepared in their presence. 

Next we work with fourth expert. Let N5 be the 

membership matrix given by third expert which as follows: 

N5 = 

1

2

3

4

5

6

7

S

S

S

S

S

S

S

0.2 0.9 0.1 0.5 0.6 1 0.8

0 0.2 0.1I 0.6 0.5 0 0.5

0.6 0.6 0.2 0.5 0.6 0.4 0.8

0.1 0.1 0.7 0.6 0.1 0.1 0.2

0.1 0 0.6 0.3 0 0.2 0.1

0.1 0.1 0.1 0.2 0.1 0.1 0.2

0.3 0.3 0.7 0.6 0.1 0.5 0.6

 
 
 
 
 
 
 
 
 
 
 

. 

Now using 
t

1
Q [0.7  0.5  0.7  0.4  0.8  0.6  0.3]=

in the equation 
t t

5 1 ij jk 5
N Q MaxMin(n ,q ) B= =� we get 

[ ]t

5
B 0.6 0.5 0.6 0.7 0.6 0.2 0.7= . 

As analysed from the resultant t

5
B  the expert feels least 

preference is given to the food prepared in their presence 

and quality of food. 

Now using 
t

11
Q [0.9 0.8 0.9 0.8 0.7 0.7 0.6]=  

in the equation
t t

5 11 ij jk 51
N Q MaxMin(n ,q ) B= =� we get 

[ ]t

51
B 0.8 0.6 0.8 0.7 0.6 0.2 0.7= . 

As analysed from the resultant t

51
B  the expert feels least 

preference is given to the food prepared in their presence. 

Now using  

[ ]t

12
Q 0.4 0.2 0.3 0.4 0.5 0.4 0.3=

in the equation 
t t

5 12 ij jk 52
N Q MaxMin(n ,q ) B= =� we get 

[ ]t

52
B 0.5 0.5 0.5 0.4 0.3 0.2 0.4= . 

As analysed from the resultant t

52
B  the expert feels least 

preferences given to all the constrains. 

The New Average Neutrosophic Relation Equation 

(NANRE) defined and developed in section 2 of the paper 

is constructed using five experts which gives the opinion of 

all the 5 experts feeling. As a law of large number the 

average taken for all the five experts gives the 

approximately a sensitive opinion. Using the special type 

of average mentioned in section two of this paper we find 

the average of 
1 2 5

N , N ,..., N  and denote it by N. 
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N=

.15 .2I 0.66 .15 .3I .68 0.8 .7 0.68

.38 .3I .33 .7I 0.6 .4I .62 0.12 .54 0.67

0.56 0.6 .37 .45I .64 0.62 .6 0.6

.33 .5I .23 .3I 0.56 .54 0.18 .16 0.3

0.44 .3 .25I 0.56 .46 .2 .2I .36 0.36

0.2 0.24 0.3 .32 0.26 .12 .3 .75I

0.22 0.24 .53 .6I .46 0

+ +

+ + +

+

+ +

+ +

+

+ .04 .4 0.56

 
 
 
 
 
 
 
 
 
 
 

Now using 
t

1
Q [0.7  0.5  0.7  0.4  0.8  0.6  0.3]=

in the equation 
t t

1 ij jk
N Q MaxMin(n ,q ) B= =� we get 

[ ]t
B 0.7 0.4I 0.56 0.56 0.56 0.32 0.533= . 

As analysed from the resultant tB  the expert feels least 

preference is given to all the constrains except the 

reasonable cost and expert is not able to express about the 

quality of food. 

Now using 
t

11
Q [0.9 0.8 0.9 0.8 0.7 0.7 0.6]=  

in the equation
t t

11 ij jk a
N Q MaxMin(n ,q ) B= =� we get

[ ]t

a
B 0.7 0.6I 0.6 0.56 0.56 0.32 0.56= . 

As analysed from the resultant t

a
B  the expert feels least 

preference is given to better hygiene, better service, food 

prepared in their presence and for less waiting time and 

expert is not able to express the quality of food. 

Now using 

[ ]t

12
Q 0.4 0.2 0.3 0.4 0.5 0.4 0.3=

in the equation 
t t

12 ij jk b
N Q MaxMin(n ,q ) B= =�

[ ]t

b
B 0.5 0.38 0.5 0.4 0.4 0.32 0.4= . 

As analysed from the resultant t

b
B  the expert feels least 

preference to all the constrains. 

6. Conclusions

Hence using the experts opinion for the Fuzzy Relational 

Equations. The performance that the most of the owners of 

the street shops choose this as their profession is more 

profit with reasonable investment and unemployment 

problem is solved since many owners are from 25 yrs to 

35yrs. Many owners do this job as a part-time. Even retired 

person with less investment do this job and they have job 

satisfaction. These street shops even give jobs for more 

Handicapped persons. The following conclusion are not 

only derived from the five experts described here but all 32 

tuck shops and their opinion are used and some of the 

owners whom we have interviewed are also ingrained in 

this analysis. Now we consolidate the opinion given by the 

five experts working with FRE model in the following 

tables and the eighth column of each of these tables gives 

the average of each of the 
i

R ’s 1 i 5≤ ≤  calculated for 

each of the five experts using the FRE model. We see 

readily from the table that the average 
Ai

R  (1 i 3≤ ≤ ) so 

found and the resultant 
Xi

R  ( 1 i 3≤ ≤ ) calculated using 

NAFREs given in column seven of all the tables do not 

differ. In fact the values are very close. So we are justified 

in the construction of this model as it can save both time 

and economy.  

Q1 R1 R2 R3 R4 R5 RX1 RA1 

0.7 0.8 0.7 0.8 0.8 0.7 0.76 0.8 

0.5 0.6 0.5 0.5 0.6 0.5 0.54 0.58 

0.7 0.7 0.7 0.7 0.7 0.6 0.68 0.62 

0.4 0.7 0.4 0.7 0.6 0.7 0.62 0.68 

0.5 0.6 0.8 0.6 0.6 0.6 0.64 0.6 

0.6 0.2 0.6 0.5 0.4 0.2 0.38 0.32 

0.3 0.7 0.3 0.6 0.7 0.7 0.6 0.66 

Q2 R1 R2 R3 R4 R5 RX2 RA2 

0.9 0.7 0.8 0.7 0.7 0.7 0.72 0.8 

0.8 0.6 0.7 0.6 0.7 0.6 0.66 0.64 

0.9 0.8 0.8 0.8 0.7 0.7 0.64 0.76 

0.8 0.7 0.8 0.7 0.6 0.7 0.74 0.7 

0.7 0.6 0.6 0.6 0.7 0.6 0.62 0.6 

0.7 0.2 0.3 0.5 0.5 0.2 0.32 0.34 

0.6 0.7 0.8 0.6 0.7 0.7 0.7 0.66 

Q3 R1 R2 R3 R4 R5 RX3 RA3 

0.4 0.5 0.5 0.5 0.5 0.5 0.44 0.5 

0.2 0.4 0.4 0.4 0.4 0.4 0.32 0.4 

0.3 0.5 0.4 0.5 0.5 0.5 0.42 0.46 

0.4 0.4 0.4 0.4 0.4 0.4 0.42 0.4 

0.5 0.3 0.4 0.4 0.4 0.3 0.3 0.36 

0.4 0.2 0.3 0.4 0.4 0.2 0.34 0.3 

0.3 0.4 0.4 0.4 0.4 0.4 0.38 0.4 

Now we consolidate the opinion given by the five experts 

working with NRE model in the following tables and the 

eighth column of each of these tables gives the average of 

each of the 
i

B ’s 1 i 5≤ ≤  calculated for each of the five 

experts using the NRE model. We see readily from the 

table that the average taken so found and the resultant 
Xi

B

( 1 i 3≤ ≤ ) given in column seven of all the tables 

calculated using NANREs . From the column seven and 

eight of the table four, five and six we see when both 

indeterminacy and real values occur there is a deviation 

which is proper. For an expert who does not consider a 

relation values as an indeterminate may not agree upon the 

occurrence of indeterminate. Likewise the experts who 

feels a relational value to be an indeterminate cannot 

compromise with the occurrence of real numbers. Hence 

this justifies the deviation. So we are justified in the 

construction of this new model as it can save both time and 

economy.  
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Q1 B1 B2 B3 B4 B5 BX1 BA1 

0.7 0.8 0.8 0.7 0.6 0.6 0.7 0.7 

0.5 0.6 0.7I 0.5 0.7 0.5 0.4I 0.575+.7I 

0.7 0.7I 0.7 0.6 0.7 0.6 0.56 0.65+.7I 

0.4 0.7 0.6 0.6 0.5 0.7 0.56 0.62 

0.5 0.7 0.5 0.6 0.6 0.6 0.56 0.6 

0.6 0.7 0.4 0.3 0.6 0.2 0.32 0.44 

0.3 0.7 0.6I 0.5 0.6I 0.7 0.533 0.633+.6I 

Q2 B1 B2 B3 B4 B5 BX2 BA2 

0.9 0.7 0.7I 0.7 0.7 0.8 0.72 0.725+.7I 

0.8 0.7I 0.7I 0.6I 0.8 0.6 0.6I 0.7+.6I 

0.9 0.8 0.7 0.6 0.7 0.8 0.6 0.72 

0.8 0.7 0.6 0.6 0.5 0.7 0.56 0.62 

0.7 0.7 0.5 0.6 0.8 0.6 0.56 0.64 

0.7 0.7 0.4 0.3 0.6 0.2 0.32 0.44 

0.6 0.7 0.6I 0.5 0.6I 0.7 0.56 0.633+.6I 

Q3 B1 B2 B3 B4 B5 BX3 BA3 

0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

0.2 0.4 0.4 0.4 0.4 0.5 0.38 0.42 

0.3 0.5 0.4 0.5 0.4 0.5 0.5 0.46 

0.4 0.4 0.4 0.4 0.5 0.4 0.4 0.42 

0.5 0.4 0.4 0.4 0.5 0.3 0.4 0.4 

0.4 0.5 0.4 0.3 0.4 0.2 0.32 0.36 

0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 

Hence we conclude both the new models serves not only 

the purpose of saving time and economy but also gives 

equal importance to each and every expert and avoids bias 

by choice which is vital. 
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Abstract

    This volume is a collection of ten papers, written by different authors and co-authors (listed in the order 
of the papers): F. Yuhua, A. A. Salama, F. Smarandache, S. A. Alblowi, M. Ali, M. Shabir, M. Naz, 
A. A. A. Agboola, S. A. Akinleye, M. Dhar, S. Broumi, P. Biswas, S. Pramanik, B. C. Giri, H. A. El-Ghareeb, 
A. M. Maine, V. Kandasamy, P. Sekar and J. Vidhyalakshmi.

    In first paper, the author proposed Expanding Newton Mechanics with Neutrosophy and Quad-stage 
Method-New Newton Mechanics Taking Law of Conservation of Energy as Unique Source Law. The 
Characteristic Function of a Neutrosophic Set is proposed in the second paper. Neutrosophic Left Almost 
Semigroup is studied in third paper.  In fourth paper Neutrosophic Hypercompositional Structures defined 
by Binary Relations are introduced. Similarly in fifth paper A Note on Square Neutrosophic Fuzzy Matrices 
are discussed. In paper six, A New Methodology for Neutrosophic Multi-Attribute Decision-Making with 
Unknown Weight Information is presented by the authors. Introduction to Develop Some Software 
Programs for dealing with Neutrosophic Sets are given in seventh paper. Paper eight is about to Soft 
Neutrosophic Ring and Soft Neutrosophic Field. In the next paper Rough Neutrosophic Sets are discussed.  
The authors introduced New type of Fuzzy Relational Equations and Neutrosophic Relational Equations-To 
Analyze Customer Preference to street shops in the last paper.




