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1 Introduction

Field-induced effects in low-dimensional quantum spin systems have been
studied for a long time [1, 2]. Hamiltonian models incorporating external
magnetic fields are gaining popularity among experimentalists as well as
theoreticians (see references [3, 14, B, 6]). A longitudinal field is often
introduced mainly to facilitate the calculation of order parameter and



associated susceptibility as can be seen for example in references [7, 8, 9],
and a transverse field to introduce quantum fluctuations [10), [11].

Our main objective in this paper is to give an explicit matrix representa-
tion for the Hamiltonian of a system of N spin-1/2 particles on a cyclic
one dimensional lattice chain, interacting via nearest neighbour exchange,
in the presence of transverse and longitudinal external magnetic fields.

The Hamiltonian, H, is

N N N N
H=—h,y SF—h,> S/ —h.> 8 —JY 587, (1)
=1 =1 =1 =1

where h, and h, are the uniform external transverse magnetic fields, h, is
the uniform longitudinal field, J is the nearest neighbour exchange inter-
action, S; are the usual spin-1/2 operators and the fields h,, h, and h, are
measured in units where the splitting factor and Bohr magneton are equal
to unity. Periodic boundary condition is assumed so that S%,;, = S, and
so on. The parameters h,, h,, h, and J are all assumed to be non-negative.

It is convenient to write H = Hr + Hj, where

N
H; = _JZSiZ i
i=1

and
N N N
Hp=—hy » SF—hy Y S'—h.» S;.
=1 =1 =1

Hp describes a system of N non-interacting spin 1/2 particles in mutually
orthogonal external magnetic fields.

The model (1) has been widely studied for various combinations of the
parameters hy, hy,, h, and J, especially for phase transitions (see [3| 5,
12| and the references therein). Our aim is to give an explicit matrix
representation for H, using the eigenstates of Hr as basis.



Throughout this paper we will make use of the following identities which
hold for j, k € {0, 1}:

j=sin®(jr/2), 1—j=cos’(jm/2),
S =1—7—k+2jk=cos’ {(j — k)r/2},
j+k—2jk=sin*{(j — k)r/2} ,
(=10 =1—j —k = 6 — 2jk = cos {(j + k)7 /2} (2)
in particular (—1)) =1 —2j = cosjm, (—1)"'=2j—-1,
(=17 + (=D =2(=1d5, (1) =205 — 1= cos{(j — k)7},
Jojk = jk .
2 Quantization of a system of non-interacting

spin 1/2 particles in external magnetic fields

A system of N non-interacting spin 1/2 particles in mutually orthogonal
external magnetic fields h,, h, and h, is described by the Kronecker sum
Hamiltonian

Hr=Hp ®Hp & @ Hp,

where, for j, k € {0,1}, each single particle Hamiltonian Hp,, at the ith
site, has the matrix elements, in unit of A,

h. ‘ o (/. s
Ol Hr, 1) = = cos jmeos® { (= 1) T }

L () e (5)] e (003)

with respect to the eigenstates {|Ag),|A1)} of the spin 1/2 operator S?,

)



whose elements, in unit of A, are

COos JT m

] 87 1) = =2 cos? {(j k) 5} = ), cos? {(j k) g} .

The remaining two spin 1/2 operators S¥ and S; have matrix elements
given by

= 1y N
Nl 87 ) = 5sin { (= k) 5 }
and
| Qv _ TLCOSJT o f . T
Ol 8¢ ) = = sin? { (= k) T}

Parameters h,, h, and h, are the external magnetic fields and a = h, —ih,,.
Explicitly,

Hp, = —h,SY — hy,S? — h,S?

L h. hy—ih
~ 2\ hetiby, b )

2.1 Change of basis via the eigenstates of the single
particle Hamiltonian

Solving the eigenvalue equation Hp, |¢;) = €; |¢;), the normalized eigen-
states |¢;), j € {0, 1}, are found to be

le5) = acj o) + bjci [A)
with corresponding eigenvalues

gj = —h/2cos jm, (3)



where
1/2

h=(hi+hl+h2)"",
a = hy —ih,, bj=—hcosjr—h,
and

cos jm (h + h cos jm)"/?

o= _
7 (2h)Y2 (h + h, cos jr) (2h)1/2b;

Note that
a*a = —byb; :hi—i—hz:hQ—hg,

a*+a=2h,, a —a=2ih,,

bibe — (h + h cos jm)’ cos? {(] — k) g} — (h* — h2) sin® {(j — k) g}

_ 1 <COSQ{(,7 —k)m/2} sin” {(j — k) 7r/2}>

2h h+ h,cosjm (h? — h2)1/2
and
1 1
a*aZc?zl, Zc?bj:O.
§=0 5=0

The diagonalizing matrix P has elements Pj, = acy cos? (jm/2) + jbyck,
for j,k € {0,1}. Thus, Hp, is similar to the diagonal matrix D having
elements D, = ¢; cos? ((j — k)m/2), that is

Hp, = PDP',

[ coa ca (& O
P_<C()bo Clbl>7 D_<O 51).
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With respect to the new basis, {|eo),|e1)}, and for j, k € {0, 1}, the Pauli
spin matrices have the representation

T - hx . 2 . ™
(|57 |ex) = 5y, €08 jm cos {(] — k) 5}

sin? {(j — k) 7/2)

+ [(hcosjm+ h,)a+ (hcoskm + h.)a*
( Jat( e

)

h T
(g1 57 |ek) 5, COSJcos {(] k) 2}

isin? {(j — k) m/2}

+ [(hcos jm + h,)a — (hcoskm + h,)a”
(heos jm+ h)a— ( )

and
T

z o hZ . 2 .
(€] 57 |ex) = 5, €08 jm cos {(] — k) 5}

(h2 =0 Ly
— o sin {(j_k)i} )

2.2 General basis states for the matrix representation
of one dimensional spin 1/2 Hamiltonian systems

Since Hp is a Hermitian operator that lives in a 2"V dimensional Hilbert
space, ‘H, its eigenstates form a complete orthonormal basis, suitable for
giving matrix representations for operators living in H and with the same
conditions at the boundary. The eigenvalue equation for Hp is

Hp|E,) =E.|E), r=0,1,2,...,2Y% —1.

For each r the eigenstate |E,) is a direct product of the eigenstates of Hp,



while the eigenvalue is the sum of the respective eigenvalues ¢;, that is

N
IE,) = len) @ len) @ - ® lery) = [ len)
=1

and

N
Er:57°1+€7"2+"'+5r1\1: E o)
=1

ri:sinz{QQ;%J) g}, 1=1,2,...N,

where |z], the floor of z, is the smallest integer not greater than z. Thus
each state | E,) is uniquely represented by a binary vector r = (1,79, ...,7N).

where

Thus, any operator A in H has the matrix representation A with elements
given by
Ans = (B A|Es) .

Using (3) we get

N
N N
ET:hZTi_Th:hmT_Th- (5)
i=1

Note that m, = 3.~ r; counts the number of |¢;) states in the direct prod-
uct state |E,). The degeneracy of the state |E,.) is therefore g(E,) = VY C,,, .
Thus only the ground state and the most excited state are non-degenerate.



3 Quantization of the one dimensional spin 1/2
Ising model in external magnetic fields

Explicit matrix representation

Since H is diagonal in the basis {|E,)}, the only task is to find the matrix
elements of H; and then add them to those of Hr. We have

N
Hy,, = (E;| Hr|Es) = _JZ (Er| S5 |E)
=1
N (6)
- _(]Zdi"ssinsz' Si+1T¢+1Si+1 ’
=1

where S} = (g,,| 57 |es,) and where we have introduced an N —dimensional
TkSk

vector d whose components are 2V x 2 symmetric binary matrices d; de-
fined by

N
di'rs = H 6T’L3i : (7>
j=1
7
jFi+1
Thus d;,, = 1 if either the two vectors r and s are one and the same
vector, that is 7 = s, or they differ only at the consecutive i and (i+1)™"
entries, otherwise d; , = 0.

Note that

Orys;0 i, = Or;s,Ciry = Ops, (8)

Ti418i4+1 Yirs
where we have introduced another N —dimensional vector ¢ whose com-
ponents are 2V x 2V symmetric binary matrices ¢; with elements given

by
N
Cirs - H (51”7;82‘ ‘ (9)
7j=1

J#i
Thus ¢;,, = 1 if either the two vectors r and s are one and the same vector,
r = s, or they differ only at the i component, otherwise ¢; ., = 0.



Motivated by the definitions in (7), (8) and (9) we introduce two more
N —dimensional vectors, o and B, whose components are 2 x 2 sym-
metric binary matrices, in terms of which the ¢; and d; matrices may also
be expressed. The «; and 3; matrices are defined through their elements

i, = 0y = cos® {(r; — s;) 7/2},
ﬁz’m = 57”i5i57’i+15i+1

= i, @i, = cos” {(ri — 8;) 7/2} cos® {(ri41 — sis1) 7/2}

It is straightforward to verify the following properties for the a; and S;
matrices:

0 = QGoy = 2N715ij04i + 2N72<1 — 5Z'j)J2N,

BiBj = BB =2V 26,8 + (1 — 655) {2V Pay6ji01 + (1 — 841) 2V Jon }
and

aiﬂj = ﬁjai = 2N_2(;Z'j01i + (1 — (5”) {2N_2Oéi(5i7j+1 + (]_ — 52',]'-‘,—1) 2N_3J2N} s

(10)
where
11 1
Jow = 11 : 1
11 1

is the 2V x 2V all-ones matrix. The a; and 3; matrices are singular and
have trace equal to 2. The eigenvalues of o; are 2V~! repeated twice
and 0 repeated 2V — 2 times while those of 3; are 2¥~2 repeated four
times and 0 repeated 2V — 4 times. Finally using multinomial expansion

theorem and (10), it is readily established that the matrices a = le\il o

10



and (= Zf\il (; satisfy

o = 2Nl 2N TEN(N — 1) Jyw,
3 =22+ B) + 2V EN(N — 3) Jon
and

aB=2""1a + 2N N(N — 2)Jyn .
It is now obvious that

Cirs - 5’!’5 —I— (1 - airs) 6041”37N_1
= 51”5 + (1 - ai'rs) 5/67“57]\]_2 (11>

= 5’!"8 + 557"57]\[*2 COS2 (Odlrsﬂ-/2) ?

dirs = 57“8 + (1 - airs)ai‘i’lrs 657"871\772
+ (1 - ai"t‘lrs)airs 5ﬁ7‘S7N_2

+ (1 —a,, )(1 — oy 0,4, N~
( Oérs)( a‘f‘lrs) ﬁ757N 3 (12)

= 57‘5 _|_ 5ﬁr5,N—3 + (5ﬁ,r57N_2 - 567"87]\[_3)(0{7;7«5 + ai+1r5)
+ (08,0,N—3 — 208,,,N—2) i, Qit1,, -
From (11) and (12) we find

N
Cro =) Cine = Ny + 05,,n-2
=1
and

N
drs = Z dirs - N(STS + 255r57N_2 + 6BTS’N_3 ’

=1

11



Explicitly
cos® (a;, . w/2) if Bos =N —2

¢ = 0 if By < N —2

1 ifr=s,

(cos? (ay,,m/2) cos? (ayy, . 7/2) if Bos =N —3
sin? {(,, — aip1,,)7/2} if B, =N —2

lrs

0 if G,s <N —2

1 r=Ss,

0 ifBs<N-=2
s=< 1 ifBy=N-2

N ifr=s
and

(0 iff,<N-3
1 lfﬁrS:N—g

2 iffB=N-—2

| N ifr=s

From the definitions of the ¢; and d; matrices the following additional
properties are evident:

1. ' =2, dP = 4" 1d;, for n € ZT.

12



2. The eigenvalues of ¢; are 0 and 2, each repeated 2V~! times while
those of d; are 0, repeated 2% — 2V~2 times, and 4, repeated 22
times.

3. The ¢; and d; matrices are singular and have trace 2.

Returning to (6) and substituting for the matrix elements S, frsy We find,
after some algebra,

NJh? Jh? X
les - _Tzzdfrs + 2—h55r5 Z sin? {(T’Z — Ti+1)’ﬂ'/2}
i=1
h.J (h? — h2)'/? J (h? — h?)
- (]- - 61"5) 2h2 Prs + (1 - 57‘3) 4h2 Q'rs )

where, (for r # s),

N

Py =) ¢, cos {(Tz‘—l + Tiy1) f}

=1

(]

T
= 6ﬂrs,N*2 COSs {(Tk,1 + Tk+1) 5}

and
N
Qrs = Z (207LT5 dim) QCrs drs - 5ﬁrs N-3,
=1
where
N N N -
k:Z]<TJ sJ)Z = Z] (1-46,s,) —Z]SlﬂZ{(TJ —5j) 2}
j=1 j=1 j=1
Explicitly,

1 ifgs=N-2andr, 1 =0=rp
P., = 0 if s <N—-2o0rrgq1+rg=1
—1 if k-1 = 1= TE+1

13



and
-1 ifgs=N-3
Qrs:
0 iff.<N-—3

Putting the results together we finally have the matrix elements for the
Ising interaction Hamiltonian, H;, to be explicitly given by

N

NJ h? Jh? . 9 T
H[m = —Tﬁérs + W&s ;Sln {(7’@ — TZ'J’,I) 5}

Jh, (2 — h2)'/?

T
- (1 - 5rs) o2 5BTS,N—2 COos {(%—1 + Tk+1) 5}
J(h? — hg
- (1 - 57'3) ( 4h2 )6/67“57]\[_37

where
N T
k prmm— 1 1 2 { ;s = y _} .
jE_l jsin® § (r; — s;) 5

Since H,s = Hp,,+ Hj,, we therefore have that the matrix elements of the
Ising model in mutually orthogonal external magnetic fields are given by

N N
Nh NJ h? Jh? .5 T
H,s = ho,s ;Ti - 751“3 - Tﬁém + 2—h25rs ;sm {(Tz — Tiy1) 5}
Jh, (h* — h2)'/* m
— (1 =6) ( oh2 d 0,4, N—2 COS {(Tk—l + Tht1) 5}
J (h* — h?)

—(1—- 5rs)4—h2355m,1v—3,
with k as defined above.

Defining



we have

NJf? N L ™
Hfrs - 4 57‘s+ 9 57’SZ;SIH {(Ti_ri+l)_}

2
J m 13
_ (1 — 67“8)5ﬁr5,N2% COS {(kal —|— Tk+1) 5} ( )
J 2
- (1 - 5rs)Tg5ﬁT.57N_3
and
Nh NJf2
H,.. = _ s
rs mrh5T8 9 (Srs 1 5rs
Jf2 XL .
+ Tfém ZSIHQ {(n — Tit1) 5}
- (14)
J T
—(1- 57»5)56”7N—2% Ccos {(rk_l + Trg1) 5}
J 2
B (1 - 6T5)Tg56r31N—37
where
N N -
N . — . . 2 o ) n
my = ;T], k ;]sm {(7"] s;) 2}_

4 Example application: ground state energy
of weakly interacting spin 1/2 particles in
external magnetic fields

When the exchange integral J is small, the Ising interaction term H; can
be treated as a perturbation of Hp. In this section, we employ (13)) to find

15



corrections, up to the fourth order in .J, to the energy of the ground state
of weakly interacting spin 1/2 particles in mutually orthogonal external
magnetic fields. Since the ground state of Hp, the unperturbed system,
is non-degenerate, we will apply the non-degenerate Rayleigh-Schrodinger
perturbation theory.

The following particular cases of (13) will often be useful.

NIf2 I . . ™
H; = — TR 5 2 sin? {(sl — Sit1) 5} : (15)
In particular,
N 2
Hy,, = —Tfj. (16)
For s # 1
J T 2J
Hy, = —fiﬁsﬁst,Nﬁ cos {(Sk—1 + Skt1) —} - g—5ﬁst,N—3 ) (17)
2 2 4
where
ol T
k= j sin? { S — 5 —} .
Z] sin” § (r; — s5) 5
7j=1
In particular,
J 2
Hy, = —%%tw—z - gT5ﬁot7N—3- (18)
Note also from (5) that
E,— E;=FE,s = (m, —mg)h, Ey=—msh. (19)

4.1 First order correction to the energy

The first order correction to the energy of the ground state of Hp is the
expectation value of the perturbation H; in the ground state |Ey) of Hp.

Thus, quoting (16), we have

N f?
4

By = (Hp) gy = (Bol Hy | Eo) = Hypy = ———J. (20)

16



4.2 Second order correction to the energy

The second order correction to the energy of the ground state of Hp is
given by

2N 1
B2 _ Z (Eo| Hi |Es) (Es| Hi |Eo)
0 E, — E,
s=1
N_
= 221 |H10s ?
s=1 EOS
According to (18),
J 2
HIOS = _%6,6057]\[_2 - 97650871\[_3 .

We therefore see that contributions to Eéz) come only from states with

either my = > s; = 1 (corresponding to fps = N —2) or ms = > 8; = 2
(corresponding to Byps = N — 3 in the case when the two |e;) states of the
direct product state |Fy) are consecutive). A typical state with mg, = 1 is
the state

|E2N—1> = |‘€1> |€0> |€0> e |€0> e |€0> = (170707 e 707 e 70)
while a particular state with ms = 2 (and [ys = N — 3) is the state
B, s ) = 1) 0} o) <+ [eo) -+ [eo) = (11,0, 0, ,0).

Therefore

2
HIO,QN*1 = _% and HIO,SXQN*2 = _%’
and since there are N vectors with Fys = N — 2 and N vectors with
Bos = N — 3, and using (19), we obtain
2 2
E(2) . _N ’HIO,QN*I _ N ‘HIO,3><2N72
o h 2h

(21)

_NP°g® n  Ng'
4h 32h
The results (20) and (21)) were also obtained in [13].

J?.

17



4.3 Third order correction to the energy

The third order correction to the energy of the ground state of Hp is
obtainable from the formula

N _1 9N _IH o I 2N _1 |H 2
E(3) IOS Iet ]tO _ H[ A
2N 1 2 oN_2 oN_1 2N 1 2
’HIOS| HISS HIOSHIstHItO |HIOS‘
- Z E2, +2 Z Z Eo.Ey — Hig, Z E2,
s=1 s=1 t=s+1 s=1
=51+ 55+ Ss3,
where
2V —1 oN_9 oN_1
Hp, Hy, Hjp
S — S _2 Os st t0
1 Egs ’ 2 Z Z EoEy
s=1 s=1 t=s+1
2N 1 2
|Hr, |
Sy = —Hp, Z Eg
s=1 0s

Note that in the above derivation we made use of the following summation
identity

Zz.fst - Zfss+ Z Z fst+fts .

s=a t=a s=a t=s+1

Evaluation of S;
e Contribution from states with mg; =1 (= fps = N — 2 )

2
i, = 19 o (1)), #y, = -

The contribution of the N states with m, = 1 to the sum 5] is

therefore 22 12 N2
Nfi (— Z +f2J)/h2

18

+ f2J (from (15))




e Contribution from states with mg; = 2 (provided that fps = N — 3 )

2 Nf2J
HIOS = _gT7 HIss = - {1. + f2J

The N states with m, = 2, Bys = N — 3 therefore contribute

()

to Sl.

Putting these results together we have

s, — N f2g*J (_Nf2J+f2J)/h2

4 4

Ng*J? Nf2J
+ o (— / +f2J)/(4h2).

(22)

Evaluation of S,

oaN_2 oN_1 H. H H
S, =92 HIg T 4110 '
o ; t§1 Eos Eor

In each term of the sum, one of four different scenarios is possible, namely,
ms=1l=myorms=2=myormys=1,m;=2o0r mg=2,my=1. We
look at each possible situation in turn.

e Contribution to Sy when my =1 = my

In this case, for each s vector, there are two possible t vectors for
which the matrix element H;, does not vanish, as typified below:

5:(0,1,0,0,---,0,0)  s:(0,1,0,0,---,0,0) 5, —
t:(1,0,0,0,---,0,0) t:(0,0,1,0,---,0,0) ot

In such a situation,



We also have

J
Hip, = =192 (5 £ 0,50, = N —2)
and
J
Hy, = Hy, = —%(t £0,00=N—2).

Since there are N m, = 1 states, the contribution to the sum S5
when m, =1 =my is

(2N -2-—fgJ/2-—g*J/4-—[fgJ/2)/(—h-—2h)
_ _Nf2g4J3
B 8h?

Contribution to S; when my, =2 = my

As in the previous case, for each s vector, there are only two possi-
ble t vectors for which the matrix element H;, does not vanish, as
typified below:

s:(1,1,0,0,---,0,0) s:(1,1,0,0,---,0,0) B, = N—3
t:(1,0,1,0,---,0,0) t:(0,1,0,0,---,0,1) st '
In such a situation,
9*J
H[st:—T butH]m:H[Ot:OsinceﬁtozN—Zl.

There is therefore zero contribution to Sy when mg, = 2 = my.

Contribution to S; when mg =2, m; =1

In this case, typical situations with an s vector and the two ¢ vectors
for which H; _ does not vanish are depicted below

s:(1,1,0,0,---,0,0)  s:(1,1,0,0,---,0,0) By = N_2
t:(0,1,0,0,---,0,0) t:(1,0,0,0,---,0,0) st '

From (17) we have
J
Hp, = —% cos(m/2) =0,
signifying a zero contribution to the Sy sum.

20



e Contribution to Sy when my =1, m; =0

Here as in the previous case we have Hy,, = —fgJ/2cos(n/2) =0,
so that again there is zero contribution to the Sy sum.

Adding all the contributions we have

Nf2g4J3
== 2
Sy = (23)

Evaluation of S3

From (16), (18) and (19) we have immediately that
N 2 N 2.2 712 N 4J2
Sy = fJ( fg‘]/h2+g—/(4h2)). (24)

4 4 16

Finally combining (22), (23)) and (24), we obtain the third order correction
to the energy of the ground state of Hp as
7Nf294J3 Nf4g2J3
64h? 4h?

EY = (25)

4.4 Fourth order correction to the energy

The fourth order correction to the energy of the ground state of Hp is
given by the standard Rayleigh-Schrédinger perturbation formula

oN_19N_19N_1 2N _19N 1

Hy, Hyp H Hy, Hr, H
oYY Y Bl S M

s=1 t=1 wu=1

Calculations completely analogous to those in the previous sections, but
much more involved, give E(()4) as

_13Nf2g6j4 55Nf4g4j4 _ Nf6.g2J4_ Ng8 J4
192h3 128h3 4h3 2048h3 "

B = (26)

21



4.5 Approximate analytical expression for the ground
state energy per spin for weakly interacting spin 1/2
particles in external magnetic fields

Adding the energy corrections (20), (21), (25) and (26) to the ground state
energy (obtained by setting m, = 0 in (5))) of the non-interacting spin 1/2
particles in external magnetic fields we therefore find, to the fourth order
in the exhange integral, J, that the energy of the ground state, Ej,,, of
the one dimensional Ising model in mutually orthogonal external magnetic
fields, for NV spin sites is given by

Nh Nf2 Nf292 2 N94 2 7Nf294 3 Nf492 3
Ey o ——t J— J? — J? — By LI
Orr 5 4 m 320 6z 0 T e
_I1BNf° oy 5Nt NS, Ng® o,
19213 12843 Ah3 2048137
that is

€0 f2 92 f2 2.2 7f292 f4 2.3
_%1 e Z e < <J 7
% +4Z+(64+8 7= w6 " 16)7°

6 2.4 4 2 6
g 13f%"  55f%° f°\ o4
+ <16384 T 536 T To2a T 32) 97

Y

where ey = Ejy,,./N is the ground state energy per spin, ¢ = —h/2 and
z = —J/ey.

Since f2 + g% = 1, we can also write
eo 1 g L7 5\ 95
— 1 _ — Z -
€0 +(4 4)Z+(8 647 )77

1039 , 23 ,\ .
+( 16 " 2569 2569)92

L1151, 161, 4580 G
e — [ N — z
32 10247 T 7689 T a01527 )97
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or, in a more compact form,

2 4 m—1
e
Dl Y 2 Y ()R (g (27)
€0 4 m=2 k=0
with
m _ (D"
o om+1 ' m 17 27 )
7
2
Cg ) = 6—4,

4) 151 0(4) . @ 0(4) . 4589
U7 10247 2 7 7687 % 491527

Note that when f = 0, then

€0 1 2 1 4

2 lt =2+ 2t

& 64" " 16384
in perfect agreement with the exact result for the ground state energy of
the transverse field Ising model [10]:

e _(4+2), [4v€} 1 1 ()

€0 21

-1 2 - A O
Tvz) et Tiessat T
where &€ is a complete elliptic integral of the second kind.

The form of (27) suggests an exact result for the ground state energy per
spin of the Ising model in external magnetic fields:

2 00 m—1
RS {z’” <—1>m—kc;m)<92>k+l} ,

where clgm) are positive rational numbers, and in particular, c(()m) = (—1)m/20m+1)

for m > 2.
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4.6 Estimation of various order parameters for the
Ising model in mutually orthogonal external mag-
netic fields

The knowledge of eq allows the derivation of approximate analytic expres-
sions for physical quantities such as the magnetization in each direction
and the spin-spin correlation function for neighbouring spins.
4.6.1 Magnetization
Invoking the Hellmann-Feynman rule in (1) gives for the z—magnetization
N
2 0 oh 0 hy O
My = — ZSZJ: = -9 ‘o = -9 €o :_Q_ﬂ
N \ & Oh, Oh, Oh, h Oh,
=1 |EOIF>

and similar expressions for m, and m., the y— and z—magnetizations.

According to (27),

eoz_ﬁ_ﬁzfg_ﬁi: Zmnlz_:l(_l)mkc(m) (g2)k+1
2 8 2 m=2 k=0 ’ ,

so that for h # 0 we obtain
deg 1 2 f?

on T T3ty
-1

2 {Z’" (1) Fe g (—(k 1S+ (m; 1)92> } .

0

3

b
Il

(28)
Thus for h, < h # 0,
. 4 m—1
m, ~ f—§f3+z {zm 7 (=) R g 2k + 1) 2 — (m— 1)92f)} :
m=2 k=0
and for h, < h # 0 and h, < h # 0, respectively,
he 2he o b~ [ 0SS ymek (m
my & 7_§ff2+f Z z (1) e g (2(k + 1) 2 — (m — 1)92)}
m=2 k=0



he 2hy .5 hy < =
~ T =Y 2 Y m m k (m) 2 . 2
My ™ 5 =57 -I—h E {Z o g* ((k—l—l)f (m 1)9)}.
Note that in the absence of interaction, (z = 0, h # 0), m2 +m§ +m? = 1.

4.6.2 Nearest neighbour spin-spin correlation

The spin-spin correlation, ¢; ;41, is given by

N
4 deg 0z Oeg 8 deg
Gt N<; Z Z+1>|E 9T aTos T hos

yielding

3

4
m=2

0

b
Il

Note that in the absence of interaction, z = 0, we have ¢;;,1 = f* while
h = h, gives ¢;;y1 = 1.

5 Conclusion

We have given an explicit matrix representation for the Hamiltonian of
the Ising model in mutually orthogonal external magnetic fields, with ba-
sis the eigenstates of a system of non-interacting spin 1/2 particles in
external magnetic fields. We subsequently applied our results to obtain
an analytical expression for the ground state energy per spin, to the fourth
order in the exchange integral, for the Ising model in perpendicular exter-
nal fields. Since the Hamiltonian of the non-interacting spin 1/2 particles
in external magnetic fields is a Hermitian operator that lives in a 2V
dimensional Hilbert space, its eigenstates form a complete orthonormal
basis, suitable for giving matrix representations for any operator living in
the same Hilbert space and with the same conditions at the boundary.
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