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Annotation

Some large-scale natural phenomena and unexpected 
experiments are analyzed. It is proved that they can be explained 
by gravitomagnetism existence and significant gravitomagnetic 
forces. On the same basis it is proved that a generator using the 
gravitational conservative forces source energy for work 
performance can exist and this does not contradict the energy 
conservation law.

A new solution of Maxwell's equations for gravitomagnetism, 
used in order to create the various models of phenomena (sand-
devil, sea current, rotary stream, funnel, water soliton, water and 
sand tsunami, turbulent flows, additional (non-Newtonian) forces 
of celestial bodies’ interaction) is proposed. 

A detailed proof for interested reader is given.
Experimental validations of the theory are considered.
Explanations of experiments that have not been justified 

until now are proposed. 
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1. Introduction
There are widely known Maxwell's equations for the electromagnetic field 

in the form (1), suggested by Heaviside [1] (the formulas are given in 
Appendix 1). Heaviside is also the author of gravitation theory [2], in which 
the gravitational field is described by equations of similar form (3). Later it has 
been shown [3], that in a weak gravitational field at low velocity it is possible to 
derive from the basic equations of general relativity the gravitational analogs of 
the electromagnetic field (3). 

“The idea of the similarity of the gravitation laws to the laws of 
electromagnetism was discussed by J.K. Maxwell, Brillouin, Bridgman, 
O. Heaviside, G. Bondi (1962), E. Braginsky and others. R. Forward 
(1961) derived gravitational relations, which are similar to Maxwell’s 
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Chapter 1. Gravitomagnetism

equations based on A. Einstein’s general theory of relativity. J. Karstua 
(1969) derived the same system of the “gyrofield” equations based on 
the isomorphism of the electromagnetism and gravitation basic laws.” 
[12]

Next, we will consider the gravitation equations presented by 
Maxwell's equations and call them the Maxwell’s equations of 
gravitomagnetism or the MGM-equations. Below we consider the 
MGM-equations and Samokhvalov's experiments. It is noted that the 
effects observed in these experiments are so significant that in order to 
explain them within the framework of these Maxwell-like gravitational 
equations it is necessary to supplement these equations with a certain 
empirical coefficient, which can be called the gravitational permeability 
of the medium. It is further shown that with such an addition the results 
of the experiments are in good agreement with the equations of 
gravitation such modified. A rough estimate of this coefficient is given. 
Some results of these equations are considered, in particular, the 
gravitational excitation of electric current, the effect of gravitomagnetic 
induction on electric current, etc.

Some phenomena and experiments that can be explained with the 
help of these equations are considered in detail. Further, the solutions of 
the indicated equations are proposed explaining the observed 
phenomena and experiments. In other words, it is shown that there are 
solutions adequate to many phenomena and experiments. Therefore, one 
can assert for certain that the proposed theory describes the observed 
reality.

Thus, in the weak gravitation field of the Earth the Maxwell-like equations 
may be used for the description of gravitational interactions. It means that there 
exist gravitational waves having a gravitoelectrical component with intensity 

gE  and gravitomagnetic component with induction gB . On a mass m , 

moving in a magnetic field with a velocity v , gravitomagnetic Lorentz force 
(an analog of the known Lorentz force) is acting in form (GHS system)

 gBv
c
mF   , (1)

where   is a coefficient equal to 1 by Heaviside and equal to 2 by 
general relativity.

Samokhvalov [4-9] had conceived and carried out a series of  
unexpected and surprising experiments, which presumably can be 
explained  by interaction of  irregular mass currents. Irregular mass 
currents  gJ  create variable gravito-electrical intensity gE  and  gravito-
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magnetic induction gB . At the interaction of this induction with the 
masses  m , moving with speed v  there arises gravito-magnetic Lorentz 
force. It is important to note that the effect are so significant, that in 
order to explain them within the said Maxwell-similar equations these 
equations should be supplemented by a certain empirical coefficient  . 
(similar to the coefficient of the magnetic permeability   of the medium 
in electromagnetism). Further it is shown that with such modification the 
results of experiments are in good agreement with the modified 
gravitation equations. The value of the coefficient   from these 
experiments is determined for a reduced pressure. Its value at 
atmospheric pressure can be estimated very approximately.

Thus, based on the Samokhvalov's experiments the Maxwell-similar 
equations should be rewritten in the form

GmEg 4div  , (2)

0div gB , (3)

t
B

c
E g
g 




1rot , (4)

t
E

c
J

c
GB g

gg 



14rot 

.  (5)

where the value of coefficient   will be determined below from the said 
experiments. This coefficient can be called the gravitational permeability 
of the medium. 

Lorentz force for mass

 gg Bv
c
mmEF   ,  (6)

2. Certain Analogies and Consequences
Here we shall consider certain analogies between electrodynamics 

and gravito-electrodynamics, and some consequences of the above 
examined equations. 

2.1. The Induction of Circular Mass Current
Magnetic flow  , passing through the area S  of the coil with the 

length L , carrying alternated current J , in CGS system 

L
SJ

c


4
.  (1)
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Chapter 1. Gravitomagnetism

The induction average for the area S  is

cL
JB 4

 .  (2)

If the coil is a ring of diameter R , then

cR
JB 2

 .  (3)

Let us assume now that the ring is carrying  alternated mass current gJ . 
Then, without considering the technical realization, by analogy with (1.5) 
we shall get

cR
JG

B g
g

2
 .  (4)

Comparing these formulas, we find the gravimagnetic flow g  
passing through the area S  of the ring in length L , along which the 
alternating mass current flows gJ :

L
SJ

c
G g

g 
4

. (4а)

2.2. Gravitational Excitation of Electric Current
From (1.4) follows that gravitational moving force created by 

gravito-magnetic flow in the circuit of mass current is 

dt
d

c
g

g




1 . (5)

The force of induced electric current in a closed-loop  (in the CGS 
system) is:

dt
d

cR
J

e




1
,  (5а)

where eR  - the resistance to these electrons motion. This current in the 
metal is created by free electrons with the charge oe . By analogy, taking 
into  account (5), we find that variable gravito-magnetic flow g  also 
creates vortex induced mass current 

dt
d

cR
J g

m
g





, (6)
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Chapter 1. Gravitomagnetism

where mR  is the resistance to mass particles motion  This current in the 
metal is created by free electrons of the mass  em . Then em RR   - 
resistance to the electrons motion. In this case mass current gJ  

corresponds to electric current

e
o

gge m
eJJ  .  (7)

It is known that

.
г

Кл108.1

,Кл106.1,г101.9

14

1934



 

e
o

oe

m
e

em


.  (8)

Thus, the strength of the induced current created by variable gravito-
magnetic flow g  is

dt
d

cR
J g

e
ge





.  (9)

Similarly to (7), the mass current J  corresponds to mass current

o
e

gm e
mJJ  .  (9a)

Thus, the strength of mass current created by variable magnetic flow   
is

dt
d

cR
J

e
gm





1

.  (9b)

2.4. Induction of a Moving Body
It is known that the induction of field in a medium with 

permeability  , created by a charge q , moving with speed v , in a 
certain point, is 

  3crrvqB   .   (16)

The vector r  is directed from the point, where the moving charge 1q  is 
located, to the referred point. Similarly, the gravito-magnetic induction of 
the field created by the mass m , moving with a speed v , in a certain 
point, is
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Chapter 1. Gravitomagnetism

  3crrvGmBg   , (17)

Because, as shown in the Section 2.2, the electronic current is at the 
same time also the mass current, the gravito-magnetic induction can 
create the Lorentz force, affecting the electric current. 

2.5. Gravitomagnetic law the Biot-Savart-Laplace
It is known that an electric current creates a magnetic flux density, 

determined by the Biot-Savart-Laplace law as

 rdL
cr
JdB 


 3


            (18а)

where dL  - vector element conductor with current, r  - vector between it 
and the point where, it is determined of induction. This law is currently 
being considered as a consequence of Maxwell's equations. Therefore, it 
can be argued that a similar law for gravitomagnetic induction, generated 
of mass current. In this case, the Biot-Savart-Laplace law is written as 
follows: 

 rv
cr
GmdBg  3

 ,              (18в)

where v  - the speed vector of the mass m .

2.6. Gravito-magnetic Ampere Force
It is known that a conductor carrying electric current J  in a 

magnetic field with induction B  is affected by Ampere force (per a 
length unit

 BJ
c

Fa 
1

 (19)

Similarly, a conductor carrying mass current gJ  in a gravito-magnetic 

field with induction gB  is affected by Ampere force 

 ggag BJ
c

F 


, (20)

Let us consider the case when mass current is a consequence of electric 
current, i.e. the particles carrying the charge form the mass current. Then   

2JJ g  , (21)

,/2 qm (22)
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Chapter 1. Gravitomagnetism

where qm,  – mass and charge of the particle. Then a conductor 

carrying electric current J  in a gravito-magnetic field with induction 

gB   is affected by Ampere force 

 gage BJ
c

F  2
. (23)

For example, if the charged particle is an electron, then 

..
e
m

,.e,.m

o

e

oe

Kl
g1060

Kl1061г1019

14
2

1934










.  (24)

But if the charged particle is an ion with mass emhm  , then

Kl
g106.0 14

2



 h
e
mh
o
e .  (25)

and for complex molecules 12  . So,  at the interaction of gravito-
magnetic induction with electrical current significant Ampere forces are 
likely to act.  

2.7. Density of Magnetic Wave Energy
It is known that the density of electromagnetic wave energy [10], is








 2

2

secсm
g

8
BW (26)

By applying the derivation shown there for the equations  (1.2-1.5) 
of gravito-electromagnetic wave, we find

G
B

W g
g 8

2

 . (27)

2.8. Induction of Current-carrying Conductor  
It is known that the magnetic induction of infinite conductor 

carrying electric current is: 
 cdJB /2 , (28)

where d  - is the distance from the conductor to the point of 
measurement. Similarly, the gravito-magnetic induction of infinite 
conductor  with mass current is  

 cdGJB gg /2 . (29)
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Chapter 1. Gravitomagnetism

3. Certain Experimental Estimates
The analysis of Samokhvalov's experiments [4-9], performed in 

Chapter 51, permits to obtain a crude estimate of the coefficient   of 
gravitational permeability. There it was shown that for vacuum  

1210 . (30)
This value can be greatly understated, as the experiments were carried out 
at an average vacuum, but   increases with decreasing pressure. For 
atmospheric pressure 0 , which explains the absence of visible 
effects of gravitational interaction of moving masses.  

The gravitational permeability of the medium is now introduced 
into the equation for the gravitomagnetic induction rotor in the same way 
as the magnetic permeability of the medium is introduced into the 
equation for the magnetic induction rotor.

In order to discover the phenomenon of the decrease in the air 
gravitational permeability compared to vacuum gravitational permeability 
we should point out that the magnetic permeability of electrically 
conductive materials sharply decreases with increasing of current 
frequency which forms the magnetic field (due to the appearance of 
Foucault currents shielding the magnetic induction). It can be assumed 
that being influenced by alternating gravimagnetic field the moving air 
molecules behave similarly to free electrons in a conductor under the 
action of an alternating magnetic field – “Foucault mass currents” 
screening the gravimagnetic induction arise in the air. In this case, it can 
be assumed that at low velocity of mass motion the significant effects can 
be observed even in the atmosphere.

Further, it is shown that there are natural phenomena and 
experiments that do not have universally accepted explanations and 
mathematical models, but can be explained with the use of the equations 
considered above.

4. More about the Lorentz forces
The interaction between moving masses is described by 

gravitomagnetic Lorentz forces (hereinafter GL forces), analogous to the 
Lorentz forces in electrodynamics, acting between moving electric 
charges. It follows from (2.20) that the GL-force (its gravitomagnetic 
component) has the form

BJFL  , (1)
where, as follows from (2.4), the gravitomagnetic inductionгде, 

HGB  . (2)
1 2



Chapter 1. Gravitomagnetism

Here G  is the gravitational constant,   is gravitomagnetic permeability 
of the medium.

Thus, the Lorentz forces (1, 2) act or
 HJGFL   . (3)

or
oL SGF   , (4)

while
 HJSo  . (5)

This vector product is the density of the gravitomagnetic energy flux.
The Lorentz force and the gravitomagnetic induction are defined 

above in (1.6, 2.18c), respectively, in the form

 gBv
c
mF   ,  (6)

 rv
cr
GmBg  3


.  (7)

Consequently, the Lorentz gravitomagnetic force, acting from the first 
body to the second,

 rvv
cr
mGmF 


 23

21 . (8)

Chapter 3 shows that due to the GL-forces the gravitating body 
spends its energy to create and maintain mass currents. The analogy 
between Maxwell's equations for electrodynamics and MGM-equations 
oroves the existence of a flow of S gravitational energy.

Further, some large-scale natural phenomena and unexpected 
experiments are analyzed. It is proved that they can be explained by the 
existence of gravitomagnetism and significant gravitomagnetic interaction 
forcese. These gravitomagnetic forces are significant in a vacuum.

For the weak gravitational field of the Earth the MGM-equations 
can be used. As already noted, GL-forces are significant in vacuum. The 
moving molecules of a fluid flow are separated by vacuum. Therefore, 
their gravitomagnetic interaction forces can be significant and affect the 
nature of the flow.

5. About gravity force propagation velocity
Fedulaev's book [1] provides a calculation of the gravity force 

propagation velocity and a number of references to the works of well-
known scientists (Lesage, Laplace, Poincare, van Flandern, Atsiukovsky) 
who had previously performed the same calculations. All of the 

1 3
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mentioned calculations are based on completely different methods, but 
their result is approximately the same: the velocity 

cg   , (1)

where c  - light velocity in vacuum, 1310 . The author shows that the 
same result can be obtained directly from experiments on earth.

In electrodynamics, the Lorentz force acting on electric charge q  moving 
in a magnetic field with B induction was determined,

 Bv
c
qF  , (2)

The gravitomagnetic Lorentz force affecting m  mass moving with 
v  velocity in gravitational field with gravitomagnetic induction gB , was 
determined above

 gg Bv
c
mF   , (3)

where   - gravitational permeability. Section 3 shows that in vacuum 
1210 . (3а)

Now let us derive (2) for medium as following

 BvqcF e 


, (4)

where 2c  - known coefficient, ec  - light velocity  in some medium. 
By analogy (like in other cases when comparing the laws of gravitation to 
the laws of electromagnetism) we rederive (3) as following

 geg BvmcF 


 (5)

or

 geg BvmgF 


, (6)

where
ee cg  . (7)

Again, the value (7) is in the same way naturally considered as the velocity 
of gravity propagation in medium. We have obtained formula (1) from 
which we began. Consequently, we have obtained approximately the 
same result as the well-known scientists mentioned at the beginning (see 
(3a)). Thus, we can assume that this coincidence is yet another 

1 4



Chapter 1. Gravitomagnetism

confirmation of the estimate (3a) for the gravitational permeability value 
 .

Appendix 1. The Equations of Electro-magnetism 
and Gravito-magnetism  
Further we shall use the following notations: 

 q - electric charge mсg  ;
   - electric charge density  3ссg mm ;

 J  - electric current density 








 сm
g

sс
1
ecm

; 

 c  - speed of light in vacuum  secсm103 10c ;
 Е - electric field intensity  mV103sсg 42  ecm ;

 В - magnetic induction 







 sG

сm
g

sec
1 ;

   - permittivity of the medium is equal to 1 for the 
vacuum in the CGS system; 

   - permeability of the medium is equal to 1 for the 
vacuum in the CGS system;

 v - speed  secсm ;
 F - force 2sсgnd ecmy  ;
 m - mass g ;

 g  - mass density 3сg m ;

 gJ  - mass current density ecm sсg 2 ; 

 G  - gravitational constant, 












 
2

3

2

2
8

sg
с

g
сd107

ec
mmynG ;

 gE - gravito-electric field intensity 2sсm ec ;

 gB - gravito-magnetic induction 2sсm ec ,

   - gravito-magnetic permeability of the medium.
The Maxwell equations for electromagnetism in CGS system are as 
follows [1]: 

4div E ,  (1)

0div B ,  (2)

1 5
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t
B

c
E





1rot ,  (3)

t
E

c
J

c
B








4rot .  (4)

The Lorentz force for the electric charge is

 Bv
c
qqEF  .  (5)

The Maxwell equations for gravito-electromagnetism in CGS system [3], 
supplemented by analogy with equations (1-4) permeability  , are as 
follows: 

gg GE 4div  ,  (6)

0div gB ,  (7)

t
B

c
E g
g 




1rot ,  (8)

t
E

c
J

c
GB g

gg 



14rot 

.  (9)

The Lorentz force for the mass is

 gg Bv
c
mmEF   ,  (10)

where   - is a coefficient equal to 1 by Heaviside and equal to 2 in 
general relativity theory. 

Appendix 2. Some formulas in the CGS system

Name Electromagnetism Gravitomagnetizm
4div E gg GE 4div 

0div B 0div gB

t
B

c
E





1rot

t
B

c
E g
g 




1rot

Maxwell's equations 




























t
E

c

J
cB


4

rot
























t
E

c

J
c
G

B
g

g

g 1

4

rot



1 6
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Lorentz force  Bv
c
qqEF   gg Bv

c
mmEF  

The magnetic 
Lorentz force, acting 
from the first body to 
the second   rvv

cr
qqF





12

23
21

12 

  rvv
cr
mmGF





12

23
21

12 

Magnetic flow 
passing through the 
area of coil with a 
current (p.2.1)

L
SJ

c


4
L
SJ

c
G g

g 
4

Induction of the 
ring current (p.2.1) cR

JB 2


cR
JG

B g
g

2


The moving force 
(p.2.2) dt

d
c




1
dt
d

c
g

g




1

The strength of the 
induced current 
(p.2.2) dt

d
cR

J
e




1
dt
d

cR
J g

m
g




1

Induction of a 
moving body 
(p.2.4)

  3crrvqB     3crrvGmBg  

Biot-Savart-Laplace 
law (p.2.5)  rdL

cr
JdB 


 3

  rv
cr
GmdBg  3



Ampere Force 
(p.2.6)  BJ

c
Fa 

1  ggag BJ
c

F 
1

The energy density 
of a magnetic wave 
(p.2.7) 8

2BW 
G
B

W g
g 8

2



Induction of 
current conductor 
(p.2.8)

 cdJB /2  cdGJB gg /2

Appendix 3. Transformation of a vector 
product.
Consider an expression with vectors of the form

  rbaf  . (1)

1 7



Chapter 1. Gravitomagnetism

In the right-hand Cartesian coordinate system, this expression 
takes the form

   
   
   
























yzzyyzxxzx

xyyxxyzzyz

zxxzzxyyxy

rbrbarbrba

rbrbarbrba

rbrbarbrba

f . (2)

Suppose that the projections of these vectors on the z axis are zero. Then

 

















0
x

y

xyyx a

a

rbrbf . (2а)

Assume also that 0yr , i.e. xrr  . Then


















0
x

y

y a

a

rbf . (3)

So, under the specified conditions

  
x

y
yab a
a

rbrbaf


 . (3а)

V1

V2

m1

m2 f1

f2

y

xr

F

Fig. 1
Similarly,

   
x

y
yba b
b

rarabf


 .

We have
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Chapter 1. Gravitomagnetism














xyyx

baab baba
rfff

0
(4)

or
   aabaxyyxy rabbabarf  cossinsincos  , (5)

where ba  ,  are the angles of the vectors ba,  with the x axis ох. 

Thus, the vector f  lies in the same plane as the initial vectors, is 
directed along the axis oy and has a value (see Fig. 1)

 abrabf   sin . (6)

Appendix 4. Interaction of moving electric 
charges and efficiency of Lorentz 
electromagnetic forces.
Let us consider two charges 1q  and 2q moving with velocities 1v  

and 2v  , respectively. The induction of the field created by the charge 

1q at the point where the charge 2q is currently at (here and later the 
CGS system is used) is known [13] to be

  3
111 crrvqB  .  (1)

The vector r is directed from the point where the moving charge 1q is. 
The Lorentz force affecting the charge 2q  is

   cBvqF 12212  .  (2)

Similarly, 

  3
222 crrvqB  ,  (3)

  cBvqF 21121  .  (4)

In the general case 2112 FF  , i.e. the third Newton's law is not 
observed as there are unbalanced forces acting on the charges 1q  and 

2q  distorting the trajectories of these charges motion.
Let us consider the relationship between the Lorentz force and the 

attraction force of charges. In the simplest case, the Lorentz force found 
from (1, 2) can be presented as the following

22
2121

cr
vvqqF  .  (5)
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Chapter 1. Gravitomagnetism

The force of attraction of two charges
Consequently,

2
21

r
qqP  .  (6)

Consequently,

2
21

c
vv

P
F

e  .  (7)

Let us consider this value as the efficiency of the electromagnetic Lorentz 
forces.

Appendix 5. Gravitomagnetic interaction of 
moving masses and the efficiency of Lorentz 
gravitomagnetic forces
By analogy with the interaction of electric charges (see Appendix 4), 

two masses 1m and 2m  moving with velocities 1v  and 2v , respectively, 
also interact with each other. In Section 2.4 it is shown that 
gravitomagnetic inductions are found as the following:

  3
111 crrvGmBg  , (1)

  3
222 crrvmGBg  , (2)

where 

c  — speed of light in vacuum, 10103c  cm/sec;

G  - gravitational constant, 8107 G  dyne*cm²*g−2.
The gravitomagnetic Lorentz forces also affect the masses, which can be 
presented as the following (see Figure 1 in Appendix 3):

  cBvmF g12212   , (3)

  cBvmF g21121   , (4)

where 
2 , which follows from general relativity,

1210  - coefficient of gravity permeability of vacuum.
In the general case we find from (2, 4)

  rvv
rc
mGmF  2132

21
21


.  (5)
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Chapter 1. Gravitomagnetism

Let us consider the unit vectors marking them with chain-dotted line. 
Then we obtain the following from (5):

2121 fF  ,  (6)

where
  rvvf  2121 .  (7)

22
2121

rc
vvmmG 


 .  (8)

Similarly,

1212 fF  ,  (9)

where
  rvvf  1212 ,  (10)

or
fF   ,  (11)

where
,1221 FFF   (12)

.1221 fff   (13)

In Appendix 3 (see (6)) it is shown that value of the vector (13) is 
calculated by the formula 

 12sin   rf .  (14)

Taking into account (13, 11) we obtain:
 12sin  F .  (15)

We find the relationship between the Lorentz gravitomagnetic force 
and the attraction force of the masses. The attraction force of two masses 
is

2
21

r
mGmP  .  (16)

Consequently,

2
21

c
vv

P
F

g   .  (17)

Let us designate this value as the efficiency of the Lorentz 
gravitomagnetic forces. Comparing (17) with the efficiency of the 
Lorentz electromagnetic forces (see (7) in Appendix 4) we can observe 
the following:

 eg  .  (18)
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Chapter 1. Gravitomagnetism

Consequently, the efficiency of the Lorentz gravitomagnetic forces 
exceeds the efficiency of the Lorentz electromagnetic forces at 
comparable velocities.

Combining (8, 17) we obtain
PgF .  (19)
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1. Equations of gravitomagnetism in a 
stationary gravitomagnetic field
Further, the experiments described by Maxwell's equations for 

gravitomagnetism in a stationary gravitomagnetic field will often be 
considered. In order to obtain these equations, let us recall, first of all, 
the equations (6-9) from Appendix 1 in Chapter 1:

gg GE 4div  ,  (1)

0div gB ,  (2)

t
B

c
E g
g 




1rot ,  (3)

t
E

c
J

c
GB g

gg 



14rot 

.  (4)

where variables have the following meanings:
gB  - gravitomagnetic induction,

gE  - gravitoelectric tension,

gJ  - mass currents density,

g  - mass density.
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If we do not consider the time-dependent summands and mass 
density, not interested in future for the stationary case, we obtain the 
following in SI system:

0div gE ,  (5)

0div gB ,  (6)

0rot gE ,  (7)

gg JH rot ,  (8)

where gH  - gravitomagnetic tension. In addition, the currents must also 
comply with continuity condition.

0)(div J . (9)
Considering only the tensions and currents, we obtain a system of 
equations (for further we reject the indices):

0div J ,  (10)
0div H ,  (11)
JH rot ,  (12)

0rot J .  (13)
For a stationary gravitomagnetic field, we will use an abridges 

system of equations (10-12), which is usually used for a stationary 
magnetic field. These equations link up H gravitomagnetic tensions and 
J mass currents density.

Next, this system will be designated as (10-12) - system B.
Interaction between moving masses is described by 

gravitomagnetic Lorentz forces (hereinafter GL-forces), similar to 
Lorentz forces in electrodynamics, acting between the moving electric 
charges. 

Below it will be shown that system B has a lot of solutions. Our task is to 
find solutions that explain the observed phenomena and experiments. In other 
words, it is necessary to prove that there is a solution adequate to this 
phenomenon. If such phenomena and experiments will be multipally 
discovered, it will be possible to confirm with a certain sureness that the 
proposed theory describes an observed reality.

2. Equations of gravitomagnetism in 
cylindrical coordinates (system B)
In zr ,,   cylindrical coordinates, [2], the divergence and curl of 

Н vector are known[2] to have the form of
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  





















z
HH

rr
H

r
HH zrr


1div , (a)

  ,1rot 
















z
HH

r
H z

r



(b)

  ,rot 
















r
H

z
HH zr

 (c)

  .1rot 


















 r

z
H

rr
H

r
H

H (d)

Considering equations (a-d), we rewrite equations (1.10-1.12) in the 
following form:

01















z
HH

rr
H

r
H zrr


 , (1)

,1
r

z J
z
HH

r









 


(2)

,Jr
H

z
H zr 








(3)

,1
z

r JH
rr

H
r
H












 (4)

01














z
JJ

rr
J

r
J zrr


 (5)

Equations (1-5) describe, in fact, the processes of currents, 
tensions and gravitational Lorentz forces (GL-forces) interaction, namely, 
gravitational field tension is directed along z axis,

1. it generates zJ  vertical mass flow-mass current,
2. zJ  vertical mass current forms a circular gravitomagnetic 

magnetic field with H  tension and rH  radial gravitomagnetic 
magnetic field - see (4),

3. H  gravitomagnetic magnetic field rejects the masses of vertical 
flow in radial direction by GL-forces, creating a radial current of 
mass - rJ  radial mass current,

4. H  gravitomagnetic field rejects the radial current mass 
perpendicular to radii by GL-forces, creating zJ  vertical current,
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5. rH  gravitomagnetic magnetic field rejects the mass of vertical 
flow perpendicular to radii by GL-forces, creating J  ring mass 
current,

6. rH  gravitomagnetic magnetic field rejects the mass of ring 
current along radii by GL-forces, creating zJ  vertical current,

7. rJ  mass current forms a vertical gravitomagnetic field and H  
ring gravitomagnetic field - see (2),

8. J  mass current forms zH  vertical gravitomagnetic field and rH  
radial gravitomagnetic field - see (3).

9. zJ  mass current forms H  ring gravitomagnetic field and rH  
radial gravitomagnetic field - see (4); etc.

The system of 5 equations (1-5) with respect to 6 
 zrzr JJJHHH ,,,,,   unknowns is newly defined and can have a 
lot of solutions. Below it is shown that such solutions exist and for some 
cases some of possible solutions are determined.

At first let us search for solution of this system of equations (1-5) 
in the form of functions which are separable with respect to coordinates. 
These functions are the following:

)cos()(. zrhH rr  , (1)

)sin()(. zrhH   , (2)

)sin()(. zrhH zz  , (3)

)cos()(. zrjJ rr  , (4)

)sin()(. zrjJ   , (5)

)sin()( zrjJ zz  . (6)

where   - a constant, and )(),(),(),(),(),( rjrjrjrhrhrh zrzr   - 
functions of r  coordinate; the derivatives of these functions will be 
indicated by dash marks.

Substituting (6-11) in (1-5), we obtain:

0 zr
r hh
r
h  , (12)

,rjh   (13)

 jhh zr  (14)

zjh
r
h

 
 , (15)

2 7



Chapter 2. Equations of a stationary gravitomagnetic field

0 zr
r jj
r
j  . (16)

Substituting (13) and (15) in (16). Then we obtain:

0






 






 


h

r
h

h
r
h

. (17)

An expression (17) is an identity of 0 = 0. Therefore (16) follows 
from (13, 15) and can be excluded from the system of equations (12-16). 
The remaining equations should be rewritten in the form of:







  r

r
z h

r
hh


1 , (18)


 h
r
h

jz  , (19)

hjr  , (20)

zr hhj   (21)

In this system of 4 differential equations with 6 unknown 
functions, two functions can be defined at random. This definition will 
be made in the following chapters.

3. Helical motion (system B)
It can be assumed that the mass current is a flow of elementary 

masses - EM. Let us consider the case when EM average velocity does 
not depend on mass current direction. In particular, for a fixed radius, 
the distance covered per EM time unit full circle, and the distance 
covered by it in vertical direction, will be equal. Consequently, in this 
case, for a fixed radius, we can assume that 

z . (1)
In the system considered above, EM trajectory is described by 

formulas 
)cos( zco  , (2)

)sin( zsi  . (3)
Thus, in such a system a trajectory of particle described by 

formulas (1-3) is on r  constant radius cylinder. Such a trajectory is a helix 
line. On this trajectory, all the current tensions and densities don't 
depend on  .

Based on this assumption, it is possible to construct the trajectory 
of EM motion in accordance with functions (1-3). Fig. 1 shows three 
helix lines at z , described by  rjr  and )(rjz functions of 
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current: thick line at 8.0 , middle line at 2.1  and thin line at 
6.1 .

-1
-0.5

0
0.5

1

-1
-0.5

0

0.5
1
0

2

4

6

8

(TokPotok33.m, fig=102)Fig. 1.

4. Flows of gravitomagnetic energy (system B)
In [1] a structure of electromagnetic energy flows of direct current 

in a cylindrical wire with a constant current was described. The 
electromagnetic energy flow density is shown as:

 HJS   . (1)
where   - specific electrical resistivity. By analogy, let us determine the 
gravitomagnetic energy flow density in mass current

 HJS   , (2)
where   - specific resistance to mass current. Consequently,

oSS   , (3)

where 
 HJS o , (4)

Let us note once again that interaction between the moving masses 
is described by gravitomagnetic Lorentz forces (hereinafter GL-forces), 
similar to Lorentz forces in electrodynamics, acting between the moving 
electric charges. In (1.4.4), it is shown that the following GL-forces act 
between the moving masses

oL SGF   . (5)

Gravitomagnetic energy flow density (4) in zr ,,   cylindrical 

coordinates has three zr SSS ,,   components directed along the radius, 
full circle, along the axis, respectively, i.e.
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







































rr

zrrz

zz

z

r

HJHJ
HJHJ
HJHJ

S
S
S

S





o . (6)

Thus, for a known solution of the system of equations (3.1-3.8), 
GL-forces can be found from (3).

From (3.1-3.6, 3) it follows that the total energy flow is
 
 
 

dzddr
zzhjhj
zzhjhj

zhjhj

S
S
S

S
zr

rr

zrrz

zz

z

r








































  











,,

2

)cos()sin(
)cos()sin(

)(sin
.

or
 
 
 

dzddr
zhjhj
zhjhj

zhjhj

S
S
S

zr
rr

zrrz

zz

z

r








































 











,,

2

)2sin(5.0
)2sin(5.0

)(sin
. (7)

Fig. 3.1. in the right column shows the following functions
 
 
 

 
 
 




















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From (4, 5) we obtain:
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5. Equations of gravitomagnetism in Cartesian 
coordinates (system B)
In Cartesian coordinates, equations (1.10-1.12) take the following 

form:
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Chapter 3. On the possibility of 
using gravitational forces to 

perform work

Below it is proved that the power of conservative forces (including 
gravitational forces) performs work on closed trajectories of multiple 
body's motion, if these bodies are not rigidly connected and between 
them forces are acting, which depend on the speed of these bodies. A 
shortened version of this paper has been published in [1, 2] as an 
appendix.

We shall begin with considering some examples. 
Example 1. There is an electrical charge Q  and another charge 

much smaller by its size Qq 1 . Coulomb forces acting of the 1q  from 
the side of the charge Q  do not perform any work on a closed path of 
the motion of charge 1q . Let there be another charge Qq 2 , and both 
charges 1q  and 2q  are moving along near closed paths. Then between 
them Lorentz forces are acting. Let the medium in which the charges  1q  
and 2q  are moving provides some resistance to their motion. Then under 
the influence of Lorentz forces a certain work will be performed. The 
energy for this work is provided from the electrical charge Q  (this is 
similar to the fact that Lorentz forces acting as Ampere forces perform 
work by the energy of  the power force). Thus, the source of Coulomb 
forces performs work on closed paths of the two charges motion. 

Example 2.  There is a DC motor with self-excitation (in which 
the armature winding and the electromagnetic field are connected in 
series or in parallel). In such a motor the energy source is a DC voltage 
source, i.e. a source of Coulomb forces. This source explicitly performs 
work. 

In the general case from these examples it follows that the source 
of Coulomb forces performs work on closed trajectories of multiple 
unconnected charges motion. As the Coulomb forces are conservative, 
then the previous conclusion is equivalent to the following:

0) The source of conservative forces performs work along 
closed trajectories of multiple bodies motion, if 

32



Chapter 3. On the possibility of using gravitational forces to perform work

 a body – it is something, on which a conservative force is 
acting,

 The bodies are not connected rigidly,
 Between the bodies are acting forces that depend on the 

speed of these bodies motion. 
Conservative forces (by definition) do not perform work on a 

closed trajectory. The force of gravity is a conservative force (which is 
proved mathematically). Hence the conclusion is reached that

1) there does not exist a motor using only conservative forces 
(specifically, the force of gravity) to perform work. 

Next an unproven conclusion is made that 
2) there does not exist a motor using the energy of 
conservative forces source (including the gravity forces), for 
performing the work.

Coulomb forces are also conservative. From this by analogy one 
can make the conclusion 1). However, the conclusion 2) is easily refuted 
by the previous assertion 0). Therefore, in the general case, the assertion 
2) is incorrect, and the true statement is as follows:

3) There can exist a motor using the energy of conservative 
forces source for performing work. 

Nevertheless, the existence of the motor that uses energy of the 
electrical conservative forces source (ECF) does not mean that there is a 
motor that uses the energy source of the gravitational conservative 
forces (GCF).

Electrical forces create the charges motion along a closed trajectory 
– electric current which forms a magnetic field. Due to this the energy of 
ECF turns into magnetic energy. It occurs even if the energy is not 
expended for the motion of the charges on the closed path. Thus, the 
energy of ECF exceeds the energy of the mechanical motion of the 
charges. This is the reason for the existence of a motor using the energy 
ECF.

Gravity forces also can create a mass motion on a closed trajectory 
– mass current. Let us assume that mass current also forms a gravity magnetic 
field (it is shown Chapter 1). Then by analogy with the previous we may 
assume that 

Гравитационные силы также могут создать движение масс по 
замкнутой траектории – массовый ток. Массовый ток тоже 
формирует гравитомагнитное поле – см. главу 1. Тогда по аналогии с 
предыдущим, можно предположить, что 

4) there can exist a motor using the energy of the source of 
gravity conservative forces for performing work. 
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This does not contradict the law of conservation of energy: it is the 
energy of GCF that is converted into work, and GCF power source loses 
some of its energy (it cannot be said that the energy of GCF may be used 
only for the movement of the masses).

Let us approach the subject on the other hand.
The gravity force is a conservative force, i.e. the gravitational work 

is not influenced by the motion trajectory and determined only by the 
initial and final position of the point of this force application. This 
statement does not consider the velocity of this point. As a rule, the 
gravitational work is not influenced by this velocity. For example, the 
gravitational work can be spent on friction and changing the velocity of 
the point. In this case, the spent potential energy of the body is equal to 
the work of the frictional force (directed opposite to the force of 
gravity) and the increase of the body kinetic energy does not depend on 
the trajectory and motion.velocity

Let us consider the gravitational work which is independent of 
velocity and trajectory as the conservative gravitational work. No 
example of the velocity of movement affecting the gravitational work, i.e. 
when the gravitational work is not conservative can be found in 
mechanics.

However, formally such an example can be found. Suppose that 
the shear force is directed along the force of gravity and depends on the 
velocity, and additionally this shear force is formed due to gravity work 
(as well as the force of ordinary friction). Then the increase in the kinetic 
energy of the body is equal to the sum of the conservative work and the 
work of shear force. However, the latter is also performed by gravity (on 
the assumption just adopted). Consequently, in this case the gravitational 
work is greater than the conservative work, i.e. the gravitational work is 
not conservative.

It appears that in mechanics one cannot find such case. However, 
in the electromechanical system such a case is possible. Let us consider 
the motion of charged bodies - heavy electric charges (HEC) in the field 
of gravity. Such charges are affected by gravity forces, electric attraction / 
repulsion forces and Lorentz forces. As it is known the Lorentz forces do 
not perform work, but they use the work of external forces, in this case 
these are gravity forces (electric forces can be neglected). Since the 
Lorentz force depends on the velocity, in this case the gravitational work 
depends on the velocity of motion (HEC) along the given trajectory.

Thus, in the electromechanical system the forces of gravity are 
not conservative. (Note that there is another case of fundamental 
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difference between the laws in mechanics and electromechanics: 
Newton's third law is observed in mechanics, and in electromechanics it 
is not observed because of the same Lorentz forces).

It follows from the basic equations of general relativity theory that 
in a weak gravitational field at low velocities, i.e. on the Earth, you can 
use the MGM equations to describe gravitational interactions. This 
means that there are gravitational waves, and the gravitomagnetic 
Lorentz force (GL force) affect the mass mmoving in the 
gravitomagnetic field with velocity v .

So, in mechanical system (as well as in electromechanical system), 
Lorentz forces can arise, i.e. in mechanical system the forces of 
gravity are not conservative if motion under the action of gravity 
causes the appearance of Lorentz gravitomagnetic forces.

Thus, force of gravity can do work. 
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Chapter 4. Natural phenomena

A number of natural phenomena can be admittedly explained by 
significant intensity of gravitomagnetic forces. To the author's 
knowledge, many of them have no rigorous mathematical model and, 
therefore, quantitative estimates. These phenomena and their 
mathematical models are discussed below.
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Chapter 4.1. Dust Whirl
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1. Introduction
There exists a widely known dust dust whirl, which is an almost 

vertical cloud of dust – see Fig. 1. 
Such a dust whirl has a vertical axis of rotation, height of a few 

tens of meters, diameter - a few meters, the time of existence - a few tens 
of seconds [1]. There are similar phenomena - water, air, ash dust whirls. 
The cause of their existence is assumed to be various atmospheric 
phenomena (wind, heating of the atmosphere). However, the very 
existence of the dust whirl – its shape retention and movement, - are 
difficult to explain by the same reasons. Furthermore, such dust whirls 
are also moving on Mars, where there is no atmosphere - see Fig. 2 [1]. 
Therefore, in the explanation of the dust whirls the main question is 
about the source of energy.Therefore, below we consider the source of 
energy in sandy vortex. Atmospheric phenomena cannot be the only 
source of energy, since such vortices exist also on Mars where the 
atmosphere is absent. Below it is shown that the energy source for the 
sand vortex is the energy of the gravitational field - see Chapter 3. In any 
case, it is difficult to find another source of energy on Mars. The 
mathematical model of the sand vortex is proposed which applies the 
system of MGM gravity equations. Some properties of the sandy vortex 
are explained, for example, retention of the cylindrical vertical form of 
the vortex, the motion of the vortex as a whole.
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Fig. 1. Fig. 2.

The model is based on the following assumptions. Sandy dust whirl 
is composed of material particles – sand grains. The movement of these 
particles is likened to mass currents. Mass currents in the gravitational 
field are described by MLG-equations. The interaction between the 
moving masses is described by the Lorentz gravity-magnetic (the GL-
force) similar to the Lorentz forces in electrodynamics acting between 
moving electrical charges.

Currents arising in the dust whirl are circulating (as shown) in the 
cross section of the vortex and along the vertical (up and down). The 
kinetic energy of such circulation is spent on the losses from collisions of 
sand grains. It comes from a gravitating body. Potential energy of the 
dust whirl is not changed, and therefore is not consumed. I.e. in this case 
there is no conversion of potential energy into kinetic energy and vice 
versa. However, gravitating body expends its energy on creating and 
maintaining a mass current - see Chapter 3.

2. Mathematical Model
In Chapter 2, we solve the equations of gravitomagnetism in 

cylindrical coordinates (system B). In cylindrical coordinates zr ,,   
these equations have the form:
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In Chapter 2 (Section 2) it is shown that for equations (1-5) there 
exists a solution in the form of functions having the following form:

)cos()(. zrhH rr  , (1)

)sin()(. zrhH   , (2)

)sin()(. zrhH zz  , (3)

)cos()(. zrjJ rr  , (4)

)sin()(. zrjJ   , (5)

)sin()( zrjJ zz  , (6)

where   is a constant, and )(),(),(),(),(),( rjrjrjrhrhrh zrzr   is a 
function of the coordinate; the derivatives of these functions will be 
denoted by primes.

In Chapter 2 it is shown that after substituting (9-14) into (1-5), the 
following system of equations is obtained:

 rrz hhh  r , (18)

 hhjz  r , (19)

hjr  , (20)

zr hhj   . (21)

In this system of 4-th differential equations with 6-th unknown 
functions, two functions can be defined in an arbitrary way. For the 
following we define the following two functions:

  rrqh  sin , (22)

  rrhhr  sin , (23)

where hq,  are some constants. Then from (18-23) we find:
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
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 
 

 

   




















rhrr
R

h

rr

r
hrrhj
























































cos2sin

sin

cos2
sin

2

2

2

2

. (30)

Thus, the functions )(),(),(),(),(),( rhrhrhrjrjrj zrzr   are 
determined by (29, 30, 28, 23, 22, 26), respectively.

Example 1.
The graphs of functions )(),(),(),(),(),( rhrhrhrjrjrj zrzr   

are presented in Fig. 3. These functions are determined at given 2R , 
1,1,2  qh . The first column shows )(),(),( rhrhrh zr   

functions, the second column shows )(),(),( rjrjrj zr  functions and 
the functions in the third column will be considered further.
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It is important to note that there is a point on the graph of 
functions    rjrjr ,  where   0rjr  and   0rj . Physically this 
means that in the area of r there are radial mass currents  rJ r  
directed from the center (at 0q ). At point r mass currents 
   rJrJ r , are absent. Therefore, the value R is the radius of the 

vortex.
It is also important to note here that the vertical currents circulate 

in such a way that the sum of the currents zJ in each circle and in each 
section is zero (see (14)). This means that in each cylindrical layer of the 
vortex there are counter flows (up and down). Thus, the dust masses 
move along the closed trajectory and gravity forces do not work along 
this trajectory. Nevertheless, the work is done to overcome the frictional 
forces between dust particles when they are moved by GL forces. This 
work is carried out due to the energy of the gravitational field – see 
Chapter 3.
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3. The Energy Flows
Chapter 2.5 shows that along with the mass currents and in the 

same physical volume, there are flows of gravitomagnetic energy. In the 
cylindrical coordinate system, these internal flows are directed.

 along the radius from periphery to center - rS ;
 circumferentially - fS ;
 vertical down - zS . 

The densities of these flows are described by a formula of the form
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The total fluxes are equal to the integrals of these densities:
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where the densities of these flows
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In Fig. 1 functions (4) are shown in the right column. The values
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So, there is no energy flow outside the body of the vortex. These 
internal energy flows provide

• a certain height of the vortex,
• vertical stability,
• movement of a vortex,
• retaining the shape of the vortex.
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4. Vertical stability and height of vortex
At  =0 from (5) we have 0,0 23  DD . From this and (3) it 

follows that in this case there is no total vertical energy flow so the 
vortex cannot exist. At some 0  we have 0,0 23  DD  . This 
means that the vertical energy flow exists. If the Lorentz force 
proportional to this flow is directed upwards and exceeds the force of 
gravity, then the vortex exists. We can always find the value  at which 
this condition is met. This means that the existence of the vortex is 
necessarily associated with its rotation. The existence of motion along a 
helical line in the cylindrical vortex follows from the general solution of 
system B - see Section 3 in Chapter 2. In the case of variable radius of the 
vortex the motion along the conical helical line occurs (see Figure 4).

Рис. 4.

Therefore, this Lorentz force maintains the vortex in vertical 
position. It is counteracted and counterbalanced by its gravity increasing 
with height. At some height, the gravitational force of the vortex 
becomes equal to the Lorentz force. This condition determines the 
height of the vortex.

5. The Motion of the Dust whirl
The trajectory of the dust whirl is poorly predictable. We can say, 

that the dust whirl makes chaotic movement. In order to show that the 
motion of the dust whirl is accomplished by the internal energy (and not 
by the force of the wind) let us again turn to the consideration of the 
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internal flow of gravitomagnetic energy. Above it is shown that in the 
body of the dust whirl there is a flow of energy directed radially with 
density 

 HJHJS zzr  . (1)

Just as for a vertical energy flow, this flux corresponds to a force with a 
density

rr SF  . (2)
Let us find the total force acting in the dust whirl's body along the radius: 

 
R

rro drrSF
0

. (3)

For a symmetrical distribution of the radial flow total force (3) is zero. If 
the axial symmetry of the vortex is broken, then there appears an 
uncompensated force. Let  1 - be a coefficient characterizing the 
symmetry breaking. Then uncompensated force can be found from the 
formula 









  

2/

0 2/

R R

R
rrzo drrSdrrSF  . (4)

or

   
R

R
rzo drrSF

2/

1  . (5)

This force results in the motion of the vortex as a whole. The 
reason for this distortion (and, as a consequence, the motion of the 
vortex) is the inertia of the sand particles. Thus, the motion of the vortex 
is carried out by internal energy (and not by wind force). This we can see 
on Mars.

Another reason for the motion of vortex (in earth conditions) is air 
resistance. When vortex is moving it is necessary to take into account the 
fact that air resistance creates an additional flow, mass current directed 
against the velocity of the vortex translational motion. In Chapter 4.7 it is 
shown that this mass current creates a force directed along the velocity of 
the vortex translational motion (though it may sound strange).

6. Retention of vortex shape
It was shown above that at the boundary of the vortex at Rr   

radial current   0RJ r  and energy flow   0RSr .
The energy flow (as shown above) is proportional to the Lorentz 

force driving the mass current in the direction of the energy flow. In 
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particular, the radial energy flow affects the radial mass current. From 
  0RSr  it follows that there is no radial energy flow at the boundary of 

the vortex, i.e. dust particles are NOT pushed out beyond the existing 
radius of the vortex.

Any change in the shape of the vortex must be accompanied by 
change in internal energy flows. In this case the internal impulses must 
change - see, for example, (4.2, 5.2). In this case, the sum of the impulses 
must change. Consequently, the change in shape can be caused only by 
the external impulse. Thus, in the absence of the external impulse the 
vortex retains its shape.

Of course, the wind can also affect the shape and motion of the 
vortex. Our goal was to show that all the metamorphoses of the vortex 
and its very existence could be caused by internal energy or, more exactly, 
gravitational energy.

7. Mathematical model of non-cylindrical 
vortices
The previous statement concerned vortices with cylindrical shape. 

However, sand vortices often have non-cylindrical and very intricate 
shape – see Figure 5. In [3], two forms of vortices are considered: cone 
with rectilinear or curvilinear generatrix with point downwards. It is 
assumed that these vortices are formed in baroclinic atmosphere where 
the air density is a function of pressure, temperature, and / or humidity. 
However, vortices exist both in the barotropic atmosphere and in the 
absence of the atmosphere [1].

So, our task is to find a mathematical model of vortices with non-
cylindrical shape.

We return again to Example 1 in Section 2. The root of the 
equation   0rjr  determined the radius R of cylindrical vortex. 
Now we change the value. If the value   will depend on z , then the 
radius R will also depend on z . But this very dependence determines the 
shape of the vortex.
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Fig.. 5.
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With this in mind consider a mathematical model which differs 
from the one used above where the functions of currents intensities and 
densities were determined from (2.9-2.14) in the fact that the function 

)(z  is used instead of constant  . We rewrite (2.9-2.14) taking this 
into account:

  zrhH rr cos)(.  , (1)

  zrhH  sin)(.  , (2)

  zrhH zz sin)(.  , (3)

  zrjJ rr cos)(.  , (4)

  zrjJ  sin)(.  , (5)

  zrjJ zz sin)(  . (6)
The system of equations (1-6) differs from the system (2.9-2.14) 

only in the fact that the derivative )(z   of function )(z  with respect 
to z  is used instead of the constant  . Consequently, the solution of the 
system (7-14) will differ from the solution of the system (2.15-2.22) only 
in the fact that the derivative )(z   is used instead of the constant  . 
Thus, the solution in this case will take the following form:
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These functions will depend on )(z  . When zz  )(  equations (7-
12) are transformed into equations (2.9-2.14).
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Chapter 4.1а. Clouds

First of all, for reader's convenience, we briefly describe the known 
beliefs about cloud formation, composition and structure [1-5].

Clouds formation is always associated with adiabatic cooling of 
ascending air [1]. Only adiabatic processes also take place in existing 
cloud [2]. The cloud consists of drops. Drops have a diameter from 2 to 
200 microns. Drops of a larger diameter are raindrops. The drop is 
formed as a result of steam condensation on the smallest solid particle. In 
general these are the particles of sea salt availability in the air.

Drops disintegration, coagulation, gravitation and repulsion 
continuously take place in the cloud (we will not consider the physics of 
these processes [1-5]). However, in average, there is a distance, calculated 
in millimeters between drops. Stokes proved that very small spherical 
bodies with a diameter of less than 0.02 millimeters fall at a very slow 
velocity. Drops can be held by a weak ascending air (not more than 0.5 
meters per second) [2, 5]. But actual pre-raindrops have a size of 0.2 
millimeters. Whole cloud can be held by ascending air, if this flow is not 
low and penetrates into entire air thickness, i.e. per hundreds of meters. 
But this contradicts the admitted fact that only adiabatic processes take 
place in the cloud.

So, the cloud is a limited air volume in which the scattered drops 
move. As all the processes in the cloud are adiabatic, energy does not 
input into this volume and there is no external air flow.

Our point of interest will be how such a construction made of 
scattered drops mass exists and does not fall? In fact, internal adiabatic 
processes cannot create an ascending force for the cloud as a whole, and 
there is no external air flow.

Another not so evident issue is the detection of that energy source 
which mixes the thousands of tons of water. That internal energy that 
appeared in the cloud during its formation when adiabatic cooling of 
ascending air is apparently insufficient for such work performance.

Absolutely similar issues arise when considering a sand-devil, see 
Chapter 4.1. There, scattered dust particles form a stable vertical column 
too. Chapter 4.1 shows that the energy source for sand vortex is the 
energy of gravitational field, and then a vortex shape retention is 
explained.
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By analogy with sand-devil, cloud model is based on the following 
assumptions. The cloud consists of material particles - drops. The motion 
of these particles assimilates to mass currents. Mass currents in 
gravitational field are described by Maxwell-like gravitational equations. 
Interaction between the moving masses is described by gravitomagnetic 
Lorentz forces.

Mass currents arising in the cloud circulate along vortex section 
and in vertical direction (upward, downward). Kinetic energy of such 
circulation is consumed for the losses from drops collisions. It comes 
from a gravitating body - Earth. Potential energy of the cloud does not 
change and, therefore, isn’t consumed. Namely in this case there is no 
potential energy conversion into kinetic energy and vice versa. However, 
the gravitating body consumes its energy for mass currents creation and 
maintenance.

Cloud holdup above the Earth is explained as follows. According 
to analogy between Maxwell's and Maxwell-like gravitational equations it 
follows that S gravitational energy flow can exist. Such a flow can exist 
and cannot change in time. A gravitational momentum exists together 
with the flow. If the body is in gravitational energy flow (and this flow 
does not change in time), then S force F=S\c oppositely directed to flow 
where c is the light velocity acts on the body. This follows from the law 
of conservation of momentum [6]. It should be mentioned again that this 
is a complete analogy between gravitational and electromagnetic field. 

So, a constant flow of gravitational energy in time exists together 
with constant mass currents in a cloud. It is down-directed. In 
accordance with the above, up-directed force acts on the cloud and holds 
it at a certain height.

Since such arithmetic model is completely similar to mathematical 
model of a sand vortex, we will not consider it in more detail.

In conclusion, let turn attention to the similarity during the sand-
devil and cloud formation. And in both cases, initial air stratification is 
necessary: cool stale air - from above, and warm light air - from below. 
Warm air in this situation begins to rise upward, but it cannot rise from a 
flat evenly heated surface. For the rise, the irregularity availability is 
necessary, which can be a hill, a structure, a single tree, a car passing 
through the field, and a sandhill for sand vortex. These irregularities are 
called as triggers. Wind twists the air vortex around the trigger. Rotating 
mass current creates a column of mass current in which the particles 
rotate, move along radii, and circulate in vertical direction. This follows 
directly from arithmetic model.
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The following pictures illustrate an analogy between the clouds and 
sand-devils.
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Облака Пыльные вихри
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Chapter 4.2. Water Soliton
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1. Introduction
The study of solitons began with the well-known Russell's 

observation on water soliton appearance and motion. Ever since, many 
different soliton mathematical models have appeared, and a water soliton 
became an insignificant special case of a large group of physical 
phenomena corresponding to these mathematical models [2-5]. However, 
to the author's knowledge, these models consider wave processes, and 
the processes of masses transfer are explicitly observed in water solitons. 
Sea wave transfers energy, but leaves water on its place - water only 
fluctuates in a vertical direction. Soliton transfers water - a tsunami that 
continues to move by land, should be the proof of it. In addition, water 
transfer in a horizontal direction cannot be explained by mass oscillation 
in a vertical direction and kinetic energy conversion into potential energy 
and vice versa. Water transfer in a horizontal direction must be 
connected with a horizontal flow of kinetic energy, which cannot be 
obtained from potential energy. We can remember the wind, but even in 
the first Russell's observation there was no wind. The concept of that the 
cause of soliton motion is the wind and environment nonlinearity seems 
unconvincing. It seems that this "device" inside has its own motor, and 
environmental resistance is only a catalyst, a force that presses on throttle 
pedal. This issue is discussed in more detail in Chapter 4.7.

It is shown that water soliton, being the "ancestor" of solitons 
theory, falls out of wave mathematical model of solitons. Therefore, the 
non-wave mathematical model is considered below, substance and energy 
flows within the water soliton are considered, energy source is revealed, 
its shape and causes of soliton shape and motion as a whole are 
explained. This model is completely similar to sand-devil mathematical 
model - see Chapter 4.1.

Let us first consider a soliton with cylindrical base. Its 
mathematical model is similar to sand vortex mathematical model. Flows 
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of gravitational energy, created by mass currents penetrate the soliton 
body. Formula dependencies between currents and energy flows are 
considered in Chapter 4.1. for sand vortex. The same dependencies can 
be used in this case. 

2. Vertical stability
The apparent difference that should be justified is the bell shape of 

water soliton, in contrast to cylindrical shape of sand vortex. This 
difference is due to the fact that soliton upper layers press on the lower 
layers by gravity. Let us consider what this leads to.

In particular, there is an energy flow in soliton body directed 
vertically, with a density of 

2
2 

 rhjS z  . (30)

This energy flow creates a pressure force acting in each section on the 
soliton body with R radius,
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As the energy flow (30) is directed downward, the oppositely directed 
force (32) is directed upward and supports the soliton in a vertical 
position. Its gravity counteracts and balances it.

Hence it follows that the radius of soliton should decrease upon 
z increase. Let us estimate the dependence of radius on z , designating it 
as )(zR . So,

 4)(
4

zR
c
hj

Fzo
 . (33)

The gravity of vortex part located above the level is equal to

  
L

z

dzzRpzP 2)()(  . (34)

where р – water density. Forces (33, 34) are balanced, i.e.
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Differentiating this expression, we obtain:
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    
dz
zRdzR )()( , (36)

where




hj
pc

 . (36а)

)(zR  function is defined as solution of this equation. For this purpose, 
)0(R  initial condition must be specified. )(zR  and )(zR  functions when 

10)0( R  and 2  - upper curves, 3  - lower curves are shown for 
illustration on Fig. 3.
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Under this )(zR  we can find from (34) the soliton weight 

 
L

o
o dzzRpP 2)( , (37)

soliton volume

  
L

o
o dzzRV 2)( (38)

and height of soliton center of gravity

  



L
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o dzzzR

P
pL 2)(

. (39)

Potential soliton energy
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gLPW oop  (40)

where g  - acceleration of gravity. Combining (39, 40), we find

  



L

o
p dzzzR

g
pW 2)(

. (41)

kW  soliton kinetic energy, in which the mass circulates "up and down" is 
equal to potential energy (if neglect the losses due to internal friction), i.e.

pk WW  . (42)

This energy is the energy of mass currents. Losses of this energy due to 
internal friction are replenished with the energy of gravity field. 
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At the moment of soliton formation, it receives pko WWW   
energy. It follows from (36, 41) that )0(RRo   initial radius depends on 

oW  initial energy (at given gp, , ). In turn, soliton height, shape, 
volume, and weight depend on )0(R . Let us consider these dependences 
when 10,1  gp , 2  - see Fig. 4, where the upper curves refer to 

oW  values, indicated on axis, and the lower ones to 10oW values.
Fig. 5 shows the dependence of soliton height on )( oo RfL   

lower radius .The form of this function depends on coefficient to find . 
With )( oo RfL   function known from observations, we can find the 
value of coefficient to find . Fig. 5 shows that coefficient is  2, 4, 7 
(upper, middle, lower curves, respectively).

57



Chapter 4.2. Water Soliton

0 2 4 6 8 10 12 14 16 18
0

10

20

30

40

50

60

70

80

Lo

Ro

Fig. 5.

3. Soliton motion
Soliton motion path is poorly predictable and this soliton is similar 

to sand devil - see Section 4.1.5. When moving both the soliton and 
vortex, we need to take into account the fact that air resistance creates a 
secondary flow - a mass current directed against the velocity of their 
translational motion. Chapter 4.7 shows that this mass current creates a 
force directed by velocity of vortex translational motion (as paradoxical 
as it may sound).

Gravitational energy in soliton is converted into kinetic energy of 
internal jets of water, which in turn is converted into thermal frictional 
energy and into kinetic energy of soliton motion.
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1. Introduction
Recently, there appeared a mathematical model of oceanic 

whirlpools [1], which is almost identical to the models built for space 
black holes. The similarity between the whirlpools and black holes is 
found in the fact that an object that happened to be near these objects 
becomes involved in them and never returns. Such a distant analogy 
stresses (in our opinion) the fact that this mathematical model is very far 
from completion. In the presented paper the author attempts to build 
such a model. This model, as well as above mentioned one, has the same 
base – the relativity theory. However, the proposed model is more 
downlanded (or, if you want, water-landed), because in it we use the 
equations of hydrodynamics and the consequences of the theory of 
relativity, which are relevant only in the case of low Earth's gravity. 

Another question is also of interest – about the source of energy 
which enables the whirlpool to be spinning for a long time when 
surrounded by still waters. This issue becomes even more important due 
to the fact that the whirlpools (and not the Moon) are energy sources for 
the tide [2]. In [1] a source of energy whirlpools not analyzed. Below we 
show that this source is the Earth's gravitational field.

In the below presented mathematical model of the whirlpool we 
are using a system of MLG-equations of gravitomagnetism, described in 
Chapter 1. The model is based on the following assumptions: the motion 
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of water is likened to mass currents; the interaction between moving 
masses is described by gravity-magnetic Lorentz forces (GL-forces).

Mass currents in the vortex circulate along the horizontal sections 
of the vortex and along the vertical line. The kinetic energy of such 
circulation is expended on losses from internal friction. It comes from a 
gravitating body - the Earth. The potential energy of the vortex does not 
change and, therefore, is not expended. That is, in this case there is no 
transformation of the potential energy into kinetic energy and vice versa. 
However, the gravitating body expends its energy on creating and 
maintaining mass currents - see Chapter 3.

In the whirlpool the currents create intensities; the currents 
together with intensities create Lorentz forces; Lorentz forces act on the 
mass, moving in the current, thereby changing the direction of the 
currents. All these processes together are described by MLG-equations 
together, from which the Lorentz force are excluded. However, these 
processes can be traced consistently and be linked with the MLG-
equations – see Chapter 3. 

2. Mathematical Model
It would be interesting to compare the presented mathematical 

model with a real whirlpool – see Fig. 0.

 
Fig. 0а. Fig. 0в.

In Chapter 2 shows, that MLG equations for gravity-magnetic 
intensities H  and mass currents densities J  for stationary gravity-
magnetic field in cylindrical coordinates zr ,,   have the following 
form

01














z
HH

rr
H

r
H zrr


 , (1)
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
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
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
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
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













z
JJ

rr
J

r
J zrr


 (5)

These equations describe, in fact, the processes of currents, 
tensions and Lorentz forces interaction, namely: 

1. The intensity of the gravitational field is directed along the axis 
of whirlpool,

2. It creates a vertical mass flow - a mass current zJ .
3. Vertical mass current zJ  generates annular gravity-magnetic field 

H  and radial gravity-magnetic field rH  - see (4).
4. Gravity-magnetic field H  deflects by GL-forces vertical mass 

flow in the radial direction, creating a radial mass flow - radial mass 
current rJ .

5. Gravity-magnetic field H  deflects by GL-forces radial mass 
flow perpendicular to the radius, creating a vertical mass current zJ .

6. Gravity-magnetic field rH  deflects by GL-forces vertical mass 
flow perpendicular to the radius, creating a annular mass current J .

7. Gravity-magnetic field rH  deflects the GL-forces annular mass 
flow is perpendicular to the radius, creating a vertical mass current zJ .

8. The mass current rJ  generates a vertical gravity-magnetic field 
zH  and annular gravity-magnetic field H  - see (2).

9. The mass current J  generates a vertical gravity-magnetic field 

zH  and radial gravity-magnetic field rH  - see (3)
10. The mass current zJ  generates a annular gravity-magnetic field 

H  and radial gravity-magnetic field rH  - see (4).

GL-forces can be found as follows. Let us transform (1.3):
oL SGF   , (9)

where
 HJSo  . (10)
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This vector product in cylindrical coordinates looks as:
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
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
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
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
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 . (11)

So, for a known solution of equations system (3-6, 8) the GL-forces can 
be found by (9-11).

3. The Equations of Hydrodynamics for a 
Whirlpool
Whirlpool, as the movement of water, also satisfies the Navier-

Stokes equations for a viscous incompressible fluid. For stationary flow 
this equation has the following form (see, for instance, [3]):

0)(div v , (16)

  0 mFvvvp  , (17)

where
  - permanent water density,
  - coefficient of internal friction, 
p  - pressure,
v  - the rate of flow in the given point, a vector,
mF  - mass force, a vector.

The mass current and the rate of flow are connected by an obvious 
relation 

vJ   . (18)
Therefore, the equations (7) and (16) are identical, and the equation (17) 
can be rewritten as

  01
 FJJJp 




. (19)

The mass forces here are GL-forces LF  and gravity forces P , or taking 
into account (2.9),

PSGF o   . (20)

For known currents and forces the pressure can be found from (19). So, 
the equations system 

 (2.1-2.5, 2.8.1-2.8.3, 19, 20) (21)
is the equation system of whirlpool, permitting to find the distribution of 
speeds and pressures in the body of the whirlpool. 
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4. The Computational Algorithm 
In Chapter 2 (Section 2) it is shown that for equations (1-5) there 

exists a solution in the form of functions having the following form:
)cos()(. zrhH rr  , (1)

)sin()(. zrhH   , (2)

)sin()(. zrhH zz  , (3)

)cos()(. zrjJ rr  , (4)

)sin()(. zrjJ   , (5)

)sin()( zrjJ zz  . (6)

where   is a constant, and )(),(),(),(),(),( rjrjrjrhrhrh zrzr   is a 
function of the coordinate r ; the derivatives of these functions will be 
denoted by primes.

In Chapter 2 it is shown that after substituting (9-14) into (1-5), the 
following system of equations is obtained:

 rrz hhh  r , (18)

 hhjz  r , (19)

hjr  , (20)

zr hhj   . (21)

In this system of 4-th differential equations with 6-th unknown 
functions, two functions can be defined arbitrarily. In Appendix 1 it is 
shown that the solution of this system of equations can have the 
following form:

nbr
r ehrh )( , (22)

mbreqrh )( , (23)

 n
br

z bnr
r
ehrh

n





 1)(


, (24)

mbr
r eqj r)( , (25)

  







 11)( 2

2 nbrrbn
r

ehrj nnbrn


 , (26)

 m
br

z bmr
r
eqrj

m




 1)( . (27)

Algorithm of the system (3.21) solution can be, for instance, as 
follows: 
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1. determine the intensities and currents 
 zrzr jjjhhh ,,,,,   from (22-27),

2. determine GL-forces from (2.8.1-2.8.3),
3. determine mass forces from по (3.20),
4. determine the pressures from (3.19).

5. The Analysis of the Whirlpool Equations 
Now we shall analyses the solution (4.22-4.27). The origin will be 

located on the ocean surface, and the axis oz  will direct straight up.
Example 1. 
In Fig. 1 shows the functions (4.22-4.27) at 

1,05.0,6.3,5.3,3,1  bnmhq . The left column shows 
the functions  zr hhh ,,  , and in the right column shows the functions 
 zr jjj ,,  . It is seen that there is a certain radius bRr   at which 

0zJ . Let us call the radius of "vertical calm": at bRr   the current 
0zJ  directed down, and at bRr   the current 0zJ  directed up. In 

this case .
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Fig.1. (fig-Vod-1.m)

So, there exists a certain radius of "vertical calm" for which the 
vertical flow of water is not present  0zJ , and more close to the 
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center of whirlpool the water flow is directed down  0zJ , but with 
increasing distance from this radius the water begins to rise  0zJ . 
And so the water of surrounding ocean pours into the funnel with this 
radius of "vertical calm". 

Let us look now on the vector field of the currents zr JJ ,  in the 
vertical plane of the whirlpool section. The Fig 2 shows fragment of this 
field for the part of the plane 3,0r  and 4.1,0 z  for the same 
value of the constants. It shows also "the vertical of calm". One can see 
that the mass currents (equivalent to the speeds) decrease drastically 
when the distance to the whirlpool center increases.

So we see that the mass currents in the whirlpool circulate 
vertically. Wherein in a small central area the mass of water moves down 
with great speed, and in the distant, but large area the water rises up with 
low speed. On the free surface of the ocean along the axis a recess is 
formed and along the borders the elevation is formed - this can be seen 
in Fig. 2, if you mentally unite the ends of the arrows in the upper 
horizontal. The water rushes from the elevation to the recess. The kinetic 
energy of such circulation is expended only on the losses of internal 
friction. The potential energy does not change. It means that in this case 
there is no transformation of potential energy into kinetic energy and vice 
versa. However (as we already indicated) the gravitating body expends its 
energy for creating and maintaining the mass currents – see Chapter 3.

Now let us consider the vector field of currents JJ r ,  on the 
circle in horizontal plane of whirlpool for the same values of constants – 
see Fig. 4. There the analyzed points located on the "dotted" radii are 
designated by circles. "Green (light)" short segments show the vectors of 
currents proportional to the speeds, and the "blue (dark)" segments 
combine the ends of these vectors. Evidently, the distribution of vectors 
recalls Fig. 0b. One can see that on small radii the speeds are directed 
tangentially to the circle, and with increase of the radius the radial 
components of the overall speed also are increasing, but the overall speed 
is decreasing.

As shown in the general case, there is a movement along the helix. 
When z is a member in formula (4.9-4.14) the helical line is cylindrical, 
and when function  z  is present instead of z , a conical helical line 
appears. This case is discussed in detail in Chapter 4.1.
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6. Energy Flows
Energy flows are described in this case in the same way as in 

Сhapter 4.1. In accordance with (2.11), we consider only the functions, 
shown in Fig. 5:
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Just as in Chapter 4.1, it can be shown that, что in a swirlpool the 
flow of energy circulates vertically. Consequently, the energy of vertical 
circulation remains constant. The potential energy of the whirlpool also 
remains constant. Thus, in this case, there is no conversion of potential 
energy into kinetic energy and vice versa. The energy flux circulates also 
along the rim. Radial flow of energy is spent on compensation for the 
losses from internal friction. This energy can come only from the outside 
- from a gravitating body (as already pointed out (as already indicated - 
see Chapter 3).

7. Pressure
In conclusion let us consider the calculation of pressure in the 

whirlpool with the help of the algorithm described in Section 4. The 
pressure will be determined by formula (3.19), and the mass forces – by 
formula (3.20). Thus,

  PSGJJJp o  


 1
. (1)
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Fig. 6 (VodovorotFig.m)

Fig. 10 shows the values from (1) and calculated for the surface of 
whirlpool for 0z . In the calculation we have used the previous values 
of the constants and the following values of constants from (1):

.1,,11,10 8   PG 



(2)

The windows in Fig. 10 show projections on the axis z  for 0z  of the 
following values:

  oSSzJJvDvzJLvzpDPz  ,,,



. (3)

The pressures on the free surface reflect the form of whirlpool's surface.

8. Conclusions
Based on the determined assumptions a system of whirlpool 

equations was built and one of the possible solutions was found. This 
solution explains the observed phenomena, namely 

   vertical circulation of water: the active fall of water in the center 
of whirlpool and the rising of water from the depths with low 
speed, but on a great space., 

68



Chapter 4.3. Whirlpool

   horizontal rotation of water around the circumference with 
forming linear waves, at an angle to the tangent of the circle,

  form of whirlpool's surface,
   the existence of energy source of whirlpool energy in a calm 

ocean.

Appendix 1.
Для решения 4-х уравнений (4.18-4.21) с 6-ю неизвестными 

функциями для дальнейшего мы определим следующие две 
функции:

mbreqrh )( , (1)
nbr

r ehrh )( , (2)

где nmbqh ,,,,  – некоторые константы. Тогда
mbrm eqbmrrh  1)( , (3)
nbrn

r ehbnrrh  1)( . (4)
Из (3.20) находим:

mbr
r eqj r)( . (5)

Из (3.18) находим:
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z bnr
r
ehh

n





 1


. (6)

Аналогично, из (3.19) находим:
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Найдем из (6):
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  11 22
2  nnnnbnrnnrb
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ehh nnbr
z

n


.

  11 2
2  nbrrbn
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ehh nnbr
z
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
. (9)

При известной функции r)(zh  по (2, 3.21) находим:

  







 11 2

2 nbrrbn
r

ehj nnbrn


 . (10)

Итак, далее мы будем использовать решение системы (4.18-
4.21) в виде функций  zrzr jjjhhh ,,,,,  , определенных по (2, 
1, 6, 5, 10, 8) соответственно.
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1. Introduction
A giant storm in the form of a hexagon, each side of which is larger 

than Earth diameter exists at the north pole of Saturn [1, 2, 3]. This 
hexagon does not move on the planet, it rotates and holds its shape. It 
has an amazing stability - for more than 30 years. A lot of studies are 
devoted to such a storm mathematical model construction, but the 
recognized model is absent [3]. A mathematical model of such a storm, 
similar to mathematical model of the ocean whirlpool, given in Section 
3.1 is proposed below. It is shown that the energy source, allowing the 
storm to rotate for a long time, is a gravitational field of Saturn.

An external similarity between this storm and the ocean whirlpool 
is evident - see Fig. 1 and Fig. 2. The main difference relates to surface 
shape. It can be said, emphasizing this analogy, that there is a hexagon 
"gas whirlpool" on Saturn, in contrast to round ocean whirlpool on 
Earth.

Let us also note that hexagon gas whirlpools are also observed 
under terranean conditions: satellite images analysis has shown the clouds 
of hexagonal form presence above the anomalous zone in Atlantic Ocean 
known as the Bermuda Triangle - see Fig. 3 [4].

Firstly, a mathematical model of elliptical whirlpool is constructed. 
It is constructed by analogy with mathematical model of a circular 
whirlpool - see Section 4.3.

Then a hexagon gas whirlpool is the sum of elliptical gas 
whirlpools is shown. Each gas whirlpool is determined by its own initial 
conditions in Maxwell's equations. When there are several independent 
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initial conditions, several solutions-elliptical gas whirlpools appear. As the 
system of Maxwell's equations is linear, then a real solution is the sum of 
these solutions. The sum has the form of a hexagon whirlpool.

Fig. 1.

Fig. 2.

Fig. 3.
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2. Brief description of the Earth whirlpool 
mathematical model
Whirlpool mathematical model uses the system of Maxwell-like 

gravitational equations - see Chapter 1. The model is based on the 
following assumptions. Water movement assimilates to mass currents. 
Interaction between the moving masses is described by gravitomagnetic 
Lorentz forces (hereinafter GL-forces), similar to Lorentz forces in 
electrodynamics, acting between the moving electric charges. 

Mass currents in a whirlpool circulate along the helix line, in which 
the radius varies exponentially (see Fig. 2.8.7). Kinetic energy of such 
circulation is consumed for the losses from internal friction. It comes 
from a gravitating body - Earth. Whirlpool potential energy does not 
change and, therefore, is not consumed. In other words in this case 
potential energy is not converted into kinetic energy and vice versa. 
However, a gravitating body consumes its energy for mass currents 
creation and maintenance, i.e. for whirlpool retention.

The whirlpool as water movement also complies with Navier-
Stokes equation for incompressible viscous liquid. Section 4.3 shows that 
the water pressure in whirlpool can be calculated by Navier-Stokes 
equation depending on mass currents. It is found that the locus of points 
with a constant value of vertical pressure component on a free surface is 
a circle of a given radius. The pressure on free surface reflects the shape 
of whirlpool surface. Consequently, the concentric protrusions and 
cavities, corresponding to wave-like pressure dependence on radius 
should be on the whirlpool surface. On the basis of this, Section 4.3 
presents the whirlpool surface pattern - see Fig. 4 (fragment of Fig. 
4.3.10).

Fig. 4.
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A similar approach is used below. It only remains to show that a 
solution of Maxwell's equations for elliptical whirlpool and, further, for 
hexagon whirlpool is available.

4. Mathematical model of an elliptical 
whirlpool
Maxwell's equations for a stationary gravitomagnetic field are the 

following (see (1.10-1.12) in Chapter 2):
  0div H , (1)

0)(div J , (2)

Jrot(H) , (3)
where H  - gravitomagnetic tensions, J  - densities of mass currents.

Let us consider these equations in z,,   elliptical coordinates [5, 
p. 161] - see also Fig. 5:
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where
     22 cosch  , (7b)

а - semi-focal distance,
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z,,   coordinates are related to zyx ,,  rectangular coordinates 
by the following formulas

        .,sinsh,cosch zzayax   (7с)

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

Saturn.m: Fig.5.

For fixed z, , the point describes an ellipse in a horizontal plane. 
For fixed z, , the point describes a hyperbola in a horizontal plane. In 
particular, Fig. 5 shows the ellipses and hyperbolas constructed according 
to (7c) when 1a , depending on  20,2.10  .

One of the possible solutions of equations (4-7a) is of the 
following form (as shown in Appendix 1):

    cossin. 2 hH , (8)

    chsh. -2 hH , (9)
2zH , (10)

    cossin2
5


a

J , (11)

    chsh2
5


a

J , (12)

         
2222

5 cossinchsh3 hh
a

J z 


 , (13)

where  hh ,  constants are associated with the form correlation
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0  hh . (14)

Fig. 6 shows the graphs of functions (8-13) when 
1,1,1   hha on  yx,  plane, where  yx,  are determined by 

(7c) depending on  20,0 max  . Fig. 6a shows the same 
graphs, but on a logarithmic scale for illustration purposes.

In the left column of Fig. 7 )(),(),(   zHHH  functions for a 
given   value are shown. In this case, these functions are denoted by the 
solid line, dots and dashed lines when 67.3,83.1,05.1  
correspondingly. 

In the right column of Fig. 7 )(),(),(   zHHH  functions for a 
given   value are shown. In this case, these functions are denoted by the 
solid line, dots and dashed lines when 4.1,7.0,4.0 correspondingly.

Finally, Fig. 8 shows )(),(),(   zJJJ  and )(),(),(   zJJJ  
functions in the same manner.
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4. Mathematical model of a hexagon 
whirlpool
The pattern shown in Fig. 4 is determined by initial conditions - 

mass currents at the whirlpool base. When there are several groups of 
independent initial conditions, several solutions of specified type appear. 
Since the system of Maxwell's equations is linear, then a real solution is 
the sum of these several solutions. If the group of initial conditions 
defines a group of elliptical whirlpools with a common center, then the 
summarized solution will determine a whirlpool with the sum of ellipses 
configuration.

It can be shown that the sum of ellipses configuration has the form 
of a closed curve F. This means that the locus of points with a constant 
value of vertical pressure component on a free surface differs from the 
circle of a given radius and has the form of a closed curve F. A vertical 
pressure component value will have the same magnitude on this curve F. 
Consequently, in this case the concentric curves F should be observed 
instead of concentric circles on the whirlpool surface.

Any closed convex curve F can be decomposed into the sum of 
ellipses. For the proof let us note the following. Any such curve can be 
represented by two functions of   angle:

 xfx  , (1)
 yfy  . (2)

Discrete functions (1, 2) presented in such manner can be 
expanded into trigonometric series of the form
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Here, each pair of  nn yx ,  addends represents an ellipse. Consequently, 
a curve F is the sum of ellipses.
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Appendix 2 describes the decomposition of a hexagon into ellipses. 
A solution for elliptical whirlpool is shown above. Consequently, a group 
of initial conditions for hexagon whirlpool formation can exist. 
Observations on Saturn and the Bermuda Triangle show that the 
combinations of initial conditions mentioned above can exist.

Appendix 1. Solution of Maxwell's equations in 
elliptical cylindrical coordinates
Section 3 shows the Maxwell's equations in z,,   elliptical 

coordinates (3.4 - 3.7a).
Let us search for the solution of these equations based on 

assumption that all variables don't change along z axis. Then equations 
(2, 11-13, 14) will take the form of:
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From (3.7b) we find:
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Let us assume that
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Then

             



 
 chshcossin2cossin 4

2

hh
H 











, (10)

80



Chapter 4.4. Hexagon storm on Saturn
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From (1, 8-13) we find:
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Let us substitute (2, 3) in (4). Then we obtain
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From (6, 7) we find that
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Comparing (16, 17), we see that
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    cossin2
5


a

J , (21)

    chsh2
5


a

J . (22)

Thus, if .H  and H  variables are determined by (8, 9), 
respectively, then zH , J , J , zJ  variables are determined by (18, 21, 
22, 15), respectively, and the condition (14) is met.

Appendix 2. Decomposition of a hexagon into 
ellipses

a1a5

a6

a4

a3

a2



y

x

Fig. 1.
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Let us consider the hexagon shown in Fig. 1. It can be represented 
by two functions of   angle:

 xfx  , (1)
 yfy  . (2)

These functions are shown in Fig. 2. Let us represent these 
functions by a set of points. In Fig. 2 each segment is represented by 
three points: 3n , and [a1, a2] is a segment repeated twice. In this case, 
each function is represented by nN 7  points. The discrete functions (1, 
2) represented in such manner can be expanded into trigonometric series 
of the following form (4.1, 4.2).

a1 a5 a6a4a3a2

-1 0 1 2 3 4 5 6 7
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

a1

 xfx

 yfy


Fig. 2.

The modeling shows that the constant value of addends when 
1n  can be neglected. Consequently, the functions (1, 2) in polar and 

cylindrical coordinates can be approximated by a set of  1N  functions 
describing the ellipses. The sum of such functions represents a hexagon. 
For example, Fig. 3 and 4 show the figures as a result of such 
approximation when 3n  and 9n , respectively. Fig. 6 shows the first 
4 ellipses in decomposition of a hexagon when 3n . The first ellipse is 
separated by dots.
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1. Introduction
It is shown that a non-monotonic gravitational field exists in the 

neighborhood of honeycombs. The structure of this field is considered. 
It is assumed that this field is the result of honeycombs specific effect on 
biological objects. A possible action of this field on biological objects is 
described.

"To date, a lot of observations have accumulated in natural science, 
indicating the existence of specific effect on bioobjects, structures of 
cavity-type (pyramids, honey combs and combs similar to them, porous 
materials, etc.)" [1]. Such effects are mostly shown in honeycombs. For 
example, in [2] the beekeeper writes: "Cellular structures such as 
honeycombs create a field that depresses vital function of microbes and 
even plant roots, so that the nests for wasps and bees are always clean. If 
to held honeycombs over the head of a man without honey, the fatigue 
feeling and headache will disappear, blood pressure, sleep will be 
normalized in a few minutes."In [3, p. 205] other trial subjects note "... a 
curious phenomenon - the so-called phosphenes: mobile, constantly 
changing bright colorful designs when closed (and sometimes open) eyes 
- now flaming auroras, flashes, sparks, flowing waves and spirals, then the 
most complex geometric constructions of amazing beauty, like nothing 
natural" - see Fig. 0. Various phenomena near honeycombs are described 
in [4]. It follows from what has been said that a certain field that is an 
active source of effects on biological objects exists in the neighborhood 
of honeycombs. Further, the nature of such an active field is studied. 
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Note that there are some studies in which various hypotheses about this 
field nature are considered - see [1] and references to this study, [9-11]. 
The proposed hypothesis differs in the fact that it allows to obtain some 
quantitative estimates.

Fig. 0.

2. Prerequisites
The existence of gravitational waves is predicted by the general 

theory of relativity. From this it follows that, in case of weak gravitational 
fields and low velocities the gravity is described by Maxwell-like 
equations. Precisely such conditions exist on the Earth. Consequently, 
gravitoelectromagnetic effects similar to electromagnetic effects, might 
be observed.

Let us consider electrostatics equations, which are the following 
(hereinafter the GHS system is used):

4div E ,  (1)

0rot E ,  (2)
where

   - density of electric charge 3сmсmg  ;
 q - electric charge  сmg  ;
 E - electric field intensities.  2secсmg   
From Capter 1 it follows that the following gravitostatics equations 

are applied
gg GE 4div  ,  (3)

0rot gE ,  (4)

where
8 7
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 g  - density of mass  3сmg ;

 m – mass  g ;
 gE  - the intensity of the gravitoelectric field  2seccm ;

 G  - gravitational constant,  238 secgcm107  G .

3. Geometry of honeycombs
Honeycombs (see Fig. 1) consist of quite thin, closely-spaced bee 

cells. The thickness of honeycombs with unsealed brood is about 22 mm. 
Bee cell is of hexagon shape and is characterized by the following 
dimensions: depth - 11-12 mm, diameter of inscribed circle - 5.37-5.42 
mm, volume - about 0.28 cm3. Cell walls have a thickness of 
approximately 0.1 mm. The deviation from this average value can be not 
more than 0.002 mm. About four cells are concentrated in 1 cm² [6]. 
Wax density is about 1 g/cm3.

Fig. 1 (from [2]).

4. Gravitational field of honeycombs
Fig. 2 shows a fragment of honeycombs in zyx ,,  Cartesian 

coordinates and ABCD plane in xoz  coordinates, perpendicular to 
honeycombs plane. We will determine the vectors of gxE , gyE , gzE  
gravitational intensities created by masses of honeycombs. Thus, it is 
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necessary to solve equations (2.3, 2.4) under known ),,( zyxg  mass 
density distribution function in honeycombs. In particular, this mass 
density distribution function along oy  axis when 0x  and 0z  in 
Fig. 2 - )0,,0( yg  has the form shown in Fig. 3. Here it is assumed 
that the honeycombs are sufficiently deep and masses are located, in fact, 
on a hexagon grid.

y

x

o

gxE

gyE

z

gzE

A

B

C

D

Fig. 2.

Such )0,,0( yg  function can be approximated by  yCh  function, 

where   is a some coefficient, depending on cell diameter. At that
)0,,0( yg function as a whole is approximated by  yChd periodic 

function, composed of  yCh functions, defined on 
 RRy , segment, which is equal to cell width. Similarly, 
 yShd function composed of  ySh functions defined on the 

same  RRy ,  segment can be defined. For the following it is 
important to note that

       yyyy  ChdShd
dt
d,ShdChd

dt
d

 . (1)
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),0,0( zg function is defined in a similar way. In this case, the mass 
density distribution function in honeycombs can be determined by the 
formula

       xzy
h

zyx o
g  ChdChd,,  . (2)

Here it is assumed that 0x  at the cell bottom, and the function is

 

















,,0

,,1

hxесли

hxесли
x  (3)

where
h  - cell height,
  - known coefficient (wall thickness in Ch function depends on it 

- see also Fig. 2),

o  - wax density.

Fig. 3.

In [7, 8] a solution of the following equations (2.1, 2.2) providing 
the form (2) is given. In consequence of analogy between electrostatics 
and gravitostatics mentioned in par. 2, this solution can be applied to 
equations (2.3, 2.4, 2, 3). Then we have:

      )cos(ChdChd,, xzyezyxEgx  , (4)
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      )sin(ChdShd,, xzyezyxEgy  , (5)

      )sin(ShdChd,, xyyezyxEgz  , (6)

hGe o4 . (7)
Thus, under these conditions, cells plane forms a field of intensities (4, 5, 
6) that harmonically change towards ox . In other words a non-
monotonic harmonic field is  formed in the direction perpendicular to 
cells plane.

Fig. 4.

As an example Fig. 4 shows  0,, zyxEgx  harmonic field of 
intensities on ABCD plane, perpendicular to ACNM combs plane – 
compare with Fig. 2. Fig. 4 shows the values of intensities (laid off in a 
vertical direction). But the vector of this intensities is directed along 
ABCD plane parallel to CB side. This field is static. Obviously, there 
should be a period of this field formation and a wave exists in this 
period. This wave’s gxE  vector of intensities is directed towards wave 
propagation - from the honeycombs. Consequently, such a wave is 
longitudinal.

Example. According to Section 3 it follows that the cell height is 
 cm2.1h . In accordance with (7) we obtain

 268 cm/sec102.1110744    hGe o . 
Consequently, at maximum point, the gravitational intensities is 

 26
max cm/sec10E . For comparison, we note that the mass of 1g 

(which is equal to cell mass) at a distance of  cm3r  creates the 
following intensities:
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 27
8

2 cm/sec10
9

10744 








r
Gp . 

This intensities p  is less than intensities E . Besides, intensities p  
(unlike intensities E ) decreases suddenly and monotonically with a 
distance. 

5. Modeling
A solution found in the previous section is correct in a close 

neighborhood of honeycombs plane, since it doesn't take into account 
the limitations of this plane and edge effects associated with it.

In [7] a solution of similar task related to electrostatics 1) is given, 
considering the edge effects and 2) in case of arbitrary charge distribution 
function along the plane width. Let us apply this solution to our task in a 
particular case when z  coordinate value is fixed. Consider the vector-
function 

    yxEyxEE yx ,,, (8)
and functional of the following form
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where ),( yxg is a known function. This functional gradient has the 
form of
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
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xxyy 
. (10)

When escaping on functional (9) upon gradient (10), there is an optimal 
value of the function (8) which satisfies the following equation

0p . (11)
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As E field doesn't have a constant component, then from (10, 11) it 
follows that (2.3, 2.4). Thus, escape on functional (9) under gradient (10) 
at a given ),( yxg  leads to a solution of equations (2.3, 2.4). 
In [7] the method of such a solution of these equations software 
implementation is described. Below we only give the field calculation 
using this program. Fig. 5 shows the result of  0,, zyxEgx three 
cells field calculation in the same ABCD plane. In Fig. 6 the same field 
with a minus sign is shown for illustration purposes.
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6. Field effect on biological objects 
assumption
The non-monotonic field considered modulates a constant field of 

Earth's attraction. Therefore, the total field has a non-monotonic 
gradient. The moving mass that appears in such a field is displaced to the 
nearest point with zero gradient. If this moving mass, for example, is a 
microorganism, then its movability becomes limited. Vital function of 
such disabled microorganism becomes limited and it dies. So in such a 
way we can explain (noted above) the fact of microorganisms' vital 
function inhibition in the neighborhood of honeycombs.

Movable particles in a human body under the influence of this field 
also attempt to be arranged at points with zero gradient. Thus, the 
harmonic field intensities reduces a thermal chaos of moving particles, 
creating some order. Apparently, exactly this has a beneficial effect on a 
human health near the honeycombs.
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1. Introduction
To author’s knowledge, a strict model of water flow flowing out of 

a pipe with sufficiently high velocity (created by artificial pressure or 
gravity) and forming a rotating vortex - funnel has not been constructed 
yet. The experiments allow us to establish only that the vortex is formed 
when flow velocity exceeds a certain threshold value [1]. Water twists not 
only in funnel, but also when escaping out of the hose, in a steep 
waterfall, when it flows out of the cock under high pressure, etc. Another 
phenomenon observed when water flows out of the pipe is that water 
compressed at the outlet from the pipe rather rapidly expands again [2].

Next, we consider water flow flowing out of the pipe into airspace 
- see Fig. 1 and Fig. 2. It is shown, in particular, that phenomena 
observed when water flows out of the pipe - rotation of jet and 
expansion of jet can be explained by significant gravitomagnetic forces 
availability.

Fig. 1.
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Fig. 2.

The following mathematical model uses the system of Maxwell-like 
gravitational equations - see Chapter 1. The model is based on the 
following assumptions. Movement of water assimilates to mass currents. 
Interaction between the moving masses is explained by gravitomagnetic 
Lorentz forces (GL-forces) existence.

Mass currents create the strengths in water flow; mass currents 
together with the strengths create Lorentz forces; Lorentz forces effect 
on masses moving in a current, thereby changing the direction of 
currents. All these processes are jointly described by Maxwell's equations, 
in which Lorentz forces are excluded. However, these processes can be 
followed sequentially and related to Maxwell's equations - see Section 2.2.

2. Mathematical model
Mathematical model of unusual fountain completely coincides with 

the model of dusty vortex of non-cylindrical shape - see Chapter 4.1, 
Section 7. In this model, )(zR vortex radius, and in this case - funnel 
radius is z  function in section at z  height. Therefore, for any 

)(zR function a mathematical model can be constructed.
Consequently, it can be argued that gravitomagnetism equations are 

confirmed by experiment. Whereby, the existence of significant 
gravitomagnetic forces and gravitomagnetic energy flow is confirmed.

In the following, we consider the dependencies of mass currents 
and flows densities in stream from z  upon linear )(zR  function. At that, 
we will assume that flow parameters are defined as in Example 1 of 
Chapter 4.1. Fig. 3 shows )(zR  и )(z  functions - see Section 7 in 
Chapter 4.1. It is assumed that the source is located at the level of 0z  .
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Fig. 4 shows the dependences of the total mass currents in a given 
section at a height of z  - zr JJJ ,,  . It can be seen that mass current 
along the jet remains constant.

Fig. 5 shows the dependences of the total energy flows in a given 
section at a height of z  - zr SSS ,,  , and also their sum is

zr SSSS   . It can be seen that flow is 0S .
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Analysis of solution obtained shows the following.
1. Solution doesn't take into account the gravity (thus solution 

doesn't depend on jet direction).
2. Mass currents and energy flows are present only in a volume 

limited by  zR  radius. Solution does not take into account the 
losses of jet substance for radiation from this volume.

3. rJ radial mass current is always directed from the jet center.
4. There are circular J  and vertical zJ  mass currents.
5. rS radial energy flow is consumed for environment resistance 

overcoming, which is "expanded" by jet.
6. zS vertical energy flow is directed along the jet and is consumed 

for environment resistance overcoming.
7. The method obtained allows finding the energy flows and mass 

currents at a given jet shape. Inverse problem - jet shape 
determination at known jet source energy is not currently 
solved.

8. zSSSS  r total energy flow increases with jet length 
increase and, consequently, jet source cannot be the source of 
this energy. The source of this energy is gravitational energy of 
Earth - see Chapter 3.
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3. Jet characteristics
Let assume that   jet density is constant along the jet section. 

Since jet mass in section doesn't depend on z ,   jet density in section at 
z  level is

  constCzRzzQz  )()()( 2 , (1)
or

)()( 2 zRCz   , (2)

where   )(,Q zRz  - area and radius of section, respectively. Denote by 
)(zvz  - jet velocity. Then mass current with a density (3.5) passing 

through jet section is defined as




ddrzrJzJ
r

zz  
,

),,()( . (3)

On the other hand, this current is
)()()( zvzzJ zz  , (4)

and kinetic energy of this current is
)(z)(5.0)( 2 zvzW zz  . (5)

Combining (2, 4, 5), we can find

)()()( 2 zJzR
С

zv zz


 , (6)

  )()(
2

)(
22 zJzR

С
zW zz


 . (7)

Density of the mass current passing full circle of r  radius with v  

velocity inside jet is, 
     rvrrJ   . (8)

But 
   rrrv   . (9)

where   is angular velocity of circumferential mass current. From (2, 8, 
9) we obtain:

     
 

 
Cr

zrJzR
zr
zrJ

r
zrv

zr






,)(,,

,
2

 


 . (10)

Let us suppose, for example, that Rr  5.0 . Then

   zrJzR
C

zr ,)(2, 
  . (11)
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It is commonly known that kinetic energy density of the ring rotational 
motion with coordinates  zr,  is equal to

),()(
2
1),( 2 zrrIzrW   , (12)

where )(rI  - density of ring inertia moment, and

)()( 2 zrrI r . (13)

Here )(zr  - density of jet ring, and

 drzrz
R

r
0

2 )()(  . (14)

If (as mentioned above) )(z jet density is constant across section (does 
not depend on z ), then (14) can be performed only under the condition 
that

),()(
2
1),( 2 zrrIzrW   , (12)

In order to verify, we substitute (15) in (14) and obtain identical equation:
)()( 2 zrrI r . (13)

Here )(zr  is the density of the jet ring, and

 drzrz
R

r
0

2 )()(  . (14)

If (as indicated above) the jet density )(z  is constant on the cross-
section (does not depend from z ), then (14) can be satisfied only under 
the condition, that

Rr
zzr 

 2
)()(  . (15)

To verify, we substitute (15) in (14) and obtain the identity:

)()()(
0

zdr
R
zz

R



   . (16)

From (13, 15, 16) it follows that

R
zrI


 )()(  , (17)

),(
)(2

)(),( 2 zr
zR
zzrW 




  . (18)

Hence, considering (2) under we find:
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),(
)(2

),( 2
32 zr
zR

CzrW 
  , (18)

and then taking into account (10) we obtain:
   

Cr
zrJzR

Cr
zrJzR

zR
CzrW





 2

2

22

242

32 2
,)(,)(

)(2
),( 






. (19)

Finally, the total kinetic energy of jet layer rotation at a given level is
 


)(

0
2

2 ,
2

)()(
zR

z dr
r
zrJ

C
zRzW 

 . (20)

Let us suppose, for example, that Rr  5.0 . Then
 
CzR
zrJ

zrW z 


)(
,2

),(
2


 , (21)

 


)(

0

2 ,
)(

2)(
zR

z drzrJ
zRC

zW  . (22)

Thus, at known density of mass currents in jet according to (6, 7, 
10, 20), jet vertical velocity, kinetic energy of jet vertical motion, angular 
velocity of elementary masses full circle motion, kinetic energy of jet 
rotational motion can be found. Thus,

 kinetic energy of jet translation and rotation motion increases 
towards jet,

 jet velocity increases towards jet,
 jet rotation velocity increases towards jet.
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FIG. 6.(VoronkaFigIsk133.m)

102



Chapter 4.5. About water flow flowing into the funnel and out of pipe

Each element of the water jet mass rotates at angular velocity of 
(10), falls down with velocity of (6) and thus moves along the helix line. 
Besides, this element moves away from the column central line with 

rr Jv   radial velocity, i.e. jet expands downward and at the same time its 
density decreases - see Fig. 6.

4. Conclusions
Rotation of water flowing into the funnel or flowing out of pipe 

can be described by Maxwell-like gravitational equations. At the same 
time, water movement assimilates to mass currents. There is a solution of 
these equations that agrees with observed motion: the mass of water jet 
rotates, goes down and thus moves along the helix line; In addition, there 
is a radial velocity of jet spreading downward and jet density decrease. 

Jet energy increases towards the jet direction. This means that this 
energy source cannot be the source of jet. This energy source is a 
gravitational energy of Earth - see Chapter 3.
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Chapter 4.6. Sea Currents
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1. Introduction
Accepted ideas about the causes of sea currents are badly coherent 

with closed current trajectories and configuration resistance and current 
trajectories section form existence. A mathematical model of sea currents 
is constructed below using equations of gravitomagnetism. It is shown 
that this model explains internal mass forces existence which creates the 
flow and forces that ensure the stability of configuration and jet section 
form.

Three groups of currents, distinguished by the factors that create 
these currents are given: [1]

 Gradient currents caused by horizontal gradients of hydrostatic 
pressure, 

 Currents caused by wind
 Flood currents,

These factors can be the cause of currents initiation, but they cannot (for 
centuries) maintain the closed current trajectory existence (since 
oppositely directed sections of this trajectory should be subjected to 
oppositely directed influences, and factors specified are monodirectional 
at all trajectory points). However, the currents are generally closed (as can 
be seen on maps - see Fig. 1, 2 [1]). Consequently, internal mass forces 
creating the current should be available.
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Fig. 1.

Fig. 2.
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Currents retain the configuration of their trajectory and jet section 
form. In order to explain these phenomena, the differences in jet water 
and environmental waters composition and properties are usually pointed 
out. It is more natural (in our opinion) to assume that these differences 
are the consequence of jet isolation, and not the cause of this isolation. 
Consequently, the forces that ensure the configuration and jet section 
form stability should exist.

To the author's knowledge, such questions are not reflected in 
existing theories and numerical methods of ocean currents calculation - 
see, for example, [2, 3]. Below a theory explaining internal driving forces 
and forces that ensure the current stability existence is proposed. A 
mathematical model of currents is considered. At that, the system of 
Maxwell-like gravitomagnetism equations described in Chapter 1 is used. 
Interaction between the moving masses is explained by gravitomagnetic 
Lorentz forces (GL) existence, which, as shown in Chapter 1, can be 
significant.

2. Mathematical model
Maxwell-like equations for H gravitomagnetic tensions and J mass 

currents densities in a stationary gravitomagnetic field are the following 
(see system B in Chapter 1)

  0div H , (1)

Jrot(H) , (2)

0)(div J , (3)

Let us consider the current in the form of parallelepiped, where ав is a 
water-surface elevation, and the axes are located in accordance with Fig. 
3. We assume that v  current velocity is directed along ох axis. In 
Cartesian coordinates, the equations (1, 2, 3) will be the following (see 
5.1-5.5 in Chapter 2):

x
yz J
z
H

y
H







 , (5)

y
zx J
x
H

z
H







 , (6)

z
xy J
y
H

x
H









, (7)

0












z
H

y
H

x
H zyx , (8)
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0
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
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






z
J

y
J

x
J zyx . (9)
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xz
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ba
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Fig. 3.

From physical considerations it is clear that the field must be 
homogeneous along оx axis, i.e. the derivatives according to x argument 
must be absent, and therefore equations (5-9) must be rewritten as 
follows:

x
yz J
z
H

y
H







 , (10)

y
x J
z
H



 , (11)

z
x J
y
H





 , (12)

0








z
H

y
H zy , (13)

0







z
J

y
J zy . (14)

In Appendix 1 it is shown that the solution of this system of 
equations can be the following:

)exp()(h. zyH xx   , (6)

)exp()(. zyhH yy   , (7)
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)exp()(. zyhH zz   , (8)

)exp()(. zyjJ xx   , (9)

)exp()(. zyjJ yy   , (10)

)exp()( zyjJ zz   , (11)
where 

  – some constant, 
)(),(),(),(),(),y( yjyjyjyhyhh zrzr   – functions of 

coordinate; the derivatives of these functions will be indicated 
by dashed lines.

At that
   4

213sin)(h ybbybyx  , (15)

45 |)|exp()(h bybyy  . (16)

|)|exp( 5
5 ybbhz 

 , (17)

45
2
5 |)|exp(1 bybbjx 











 . (18)

   4
213sin ybbybjy  , (19)

   
   














 24

213
3

2

4
2133

sin4

cos

ybbybyb

ybbybb
jz , (20)

where kb  – some constants. 

3. Solution analysis
Next let us consider the indicated functions when

1.0,4,06.0,0016.0,3,2.0 54321  bbbbb .

zyx jjj ,,  mass currents do not depend on х coordinate, and, 

depending on у coordinate, are determined from (18-20). 
)y(),y(),y( zyx jjj  functions are shown in Fig. 4.

Fig. 5 shows zx JJ ,  mass currents as functions of z coordinate. 

The currents for several specified у values are shown. The currents are 
shown at a scale of 1 in 10.
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JZ(y=10)
JZ(y=8)
JX(y=4)
JX(y=10)
JX(y=8)

Let us consider a vector field of zy JJ , currents in the vertical 

plane of jet section. Fig. 6 shows a fragment of this 15,15y  field 

and ]8,6,4,2,0[ z . Thus, the mass currents in a jet circulate 
in a vertical direction. At the same time, in a small central region, the 
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mass of water descends at a high velocity and in a distant but significant 
in volume region, it rises at a low velocity. A deepening is formed along 
the axis on a jet free surface (see AA arc in Fig. 6), and an elevation is 
formed along the boundaries (see AB arcs in Fig. 6). This is similar to 
rotary stream surface. Water swoops down from the elevation into the 
deepening. A kinetic energy of such circulation is consumed only for the 
losses from internal friction. Rotary stream potential energy doesn't 
change. In order words in this case there is no potential energy 
conversion into kinetic energy and vice versa. However (as mentioned in 
Chapter 3), a gravitating body consumes its energy for mass currents 
creation and maintenance.

Fig. 6 (Golfstrim.m).

Fig. 7 shows zyxx JJJJ ,,,   currents in a horizontal plane of jet 
section. It can be seen that yJ  currents directed perpendicular to jet 
lateral surface are close to zero on lateral surface and are directed from 
the jet (see also Fig. 4). This means that lateral waters don't enter into jet, 
and jet waters don't leave the jet, i.e. there is no exchange between jet 
waters and environmental waters: jet retains its composition!

It can be seen that xJ currents rapidly decrease with the depth. 
This corresponds, for example, to the Gulf Stream structure [4]. 
zJ vertical currents also decrease with a depth and we can talk about the 

vertical size of a current. It is also seen that the mass currents along the 
flow are approximately 100 times greater than the mass currents in other 
directions.
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By analogy with (1.8.3) in Chapter 2, we write the following 
expression for gravitational energy vector density projections:

























xyyxz

zxxzy

yzzyx

xyz

HJHJS
HJHJS
HJHJS

S (1)

Fig. 8 shows  zzyx SSSS ,,,  energy flows density in the 
horizontal plane of jet section. 

4. Conclusions
The proposed mathematical model explains

 sea current energy source
 closed current trajectory existence
 current trajectory configuration upload
 current form preservation
 current isolation from environmental waters

Appendix 1
Let us rewrite equations (2.10-2.14):

x
yz J
z
H

y
H







 , (1)

y
x J
z
H



 , (2)

z
x J
y
H





 , (3)

0








z
H

y
H zy , (4)

0







z
J

y
J zy . (5)

Let us search for the system of equations (1-5) solution in the form 
of functions that are separable with respect to coordinates. These 
functions are the following:

)exp()(h. zyH xx   , (6)

)exp()(. zyhH yy   , (7)

)exp()(. zyhH zz   , (8)

)exp()(. zyjJ xx   , (9)

)exp()(. zyjJ yy   , (10)
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)exp()( zyjJ zz   , (11)
where 

  – some constant, 
)(),(),(),(),(),y( yjyjyjyhyhh zrzr   – functions of y  

coordinate; the derivatives of these functions will be indicated 
by dashed lines.

Substituting (6-11) in (1-5), we obtain:
xy jh  zh , (12)

yx jh  , (13)

zx jh  , (14)

0 zy hh  , (15)

0 zy jj  . (16)

Let us substitute (13, 14) in (16). Then we obtain:
0 xx hh  . (17)

Expression (17) is an identity of 0 = 0. Therefore (16) follows from 
(13, 15) and can be excluded from the system of equations (12, 16). The 
remaining 4 differential equations (12-15) contain 6 unknown functions. 
Therefore, any two functions can be defined at random.

For the following we define the following two xh and yh  functions. 
Then we find

xy hj  , (18)

xz hj  , (19)

yz hh  , (20)

yyyx hhhj   zh . (21)

Let us assume that
   4

213sin)(h ybbybyx  , (22)

45 |)|exp()(h bybyy  . (23)

where kb  – some constants. Then

   
   
















24
213

3
2

4
2133

sin4

cos
)(h

ybbybyb

ybbybb
yx , (24)

|)|exp()(h 55 ybbyy  . (25)

|)|exp()(h 5
2
5 ybbyy  . (26)
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|)|exp( 5
5 ybbhz 

 , (27)

45
2
5 |)|exp(11 bybbhhj yyx 














 . (28)

   4
213sin ybbybjy  , (29)

   
   














 24

213
3

2

4
2133

sin4

cos

ybbybyb

ybbybb
jz , (30)

So,  zyxzy jjjhhh ,,,,,x  functions are defined by (22, 23, 27, 
28, 29, 30), respectively.
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1. Introduction
Water and sand tsunamis are often combined into one class of 

phenomena with water solitons and sand-devils. Exteriorly they are 
different in size and shape. Huge sizes of tsunami impress - see Fig. 1-4. 
As for the shape, then, in contrast to solitons and sand vortexes having a 
bell or cylindrical shape, the tsunami shape can be approximated by 
parallelepiped. Therefore, the parallelepiped tsunami shape is used in 
mathematical model of tsunami.

Let us look once again at Fig. 1-4. The concept of that the cause of 
this machine motion is the wind and environment nonlinearity seems 
unconvincing. We cannot avoid the impression that this "device" inside 
has its own motor, and environment resistance is only a catalyst - a force 
that presses on throttle pedal.

Fig. 1.
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Fig. 2

Fig. 3.

Fig. 4.
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2. Mathematical model
Maxwell-like gravitational equations for H  gravitomagnetic 

strengths and densities of J  mass currents in a stationary 
gravitomagnetic field are the following (see system B in Chapter 1)

  0div H , (1)

Jrot(H) , (2)

0)(div J , (3)
These equations describe a motionless tsunami. But when the tsunami is 
moving, it should take into account the fact that air resistance and 
elementary masses inertia create an additional flow - a mass current 
directed against tsunami translational motion velocity - see Fig. 4a. It can 
be assumed that there is some constant current source as vJv  . In 
Cartesian coordinates, let us assume that a velocity is directed along ох 
axis. In this case, equations (1, 2, 3) will be the following:

vx
yz JJ
z
H

y
H







 , (5)

y
zx J
x
H

z
H







 , (6)

z
xy J
y
H

x
H









, (7)

0












z
H

y
H

x
H zyx , (8)

0











z
J

y
J

x
J zyx . (9)

From physical considerations it is clear that the field must be a 
uniform along vertical axis, i.e. the derivatives according to z argument 
must be missing, and therefore equations (5-9) must be rewritten as:

vx
z JJ
y
H





(10)

y
z J
x
H





 (11)

z
xy J
y
H

x
H









(12)
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0








y
H

x
H yx (13)

0







y
J

x
J yx (14)

x

z

o V

y

N

N/2

Fig. 4а.

The solution of combined equations (10-14) is found in Appendix 1. It is 
the following:

   yxhH xx  sincos , (15)

   yxhH yy  cossin , (16)

    yJyxhH vzz   sinsin , (17)

    vxx JyxjJ   cossin , (18)

   yxjJ yy  sincos , (19)

   yxjJ zz  coscos , (20)
where

 ,  - constants,

zyxzyx jjjhhh ,,,,,  - amplitudes of functions.
In Appendix 1 it is shown that under given zx jj ,,,  the remaining 

yzyx jhhh ,,, amplitudes can be found by the following formulas:


x

z
jh  , (21)
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


xy jj  . (22)




xy hh  , (23)









 


 2

zx jh . (24)

Let us suppose that the cross-sectional area is such that 

NxN   и 
22
NyN

 .

Figures 5, 6, 7 show zyx JJJ ,, values on  yx,  section plane  at
3,1,1,/2,/2  vxz JjjNN  . Fig. 7a shows the 

functions (20) at fixed values of y . Thus, under certain values of  ,  
the sum of vertical currents (20) on each horizontal line and in each 
section is equal to zero. This means that in each vertical layer of tsunami 
the counter flows (up-down) exist. Herewith the whole tsunami potential 
energy remains constant. This is similar to wheel rotation at a constant 
velocity in vertical plane, when potential and kinetic energies remain 
constant.
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3. Energy flows
In Appendix 2, these projections of gravitational energy density 

vector in tsunami body are calculated. When 0vJ  they are the 
following:

      





  yhjyhjxS yzzyxo  22 cossin2sin

2
1

, (21)

      





  xhjxhjyS zxxzyo  22 sincos2sin

2
1

, (22)

       

    


















yxhJ

yxhjyxhj
S

yv

xyyx

z 



cossin

sincoscossin 2222

. (23)

When 0vJ  these flows take the form of:
    yxjJSS yvxox  sincosy  , (24)

        yJyxhJyxjJSS vzvxvyoy
2sinsincossiny   , (25)

    yxhJSS yvzoz  cossin . (26)
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Fig. 8 shows  xoxxxo SSSS ,,  values on  yx,  section plane 
when 3,1,1,/2,/2  vxz JjjNN  . The last window 
shows  0, yxSx  and  10, yxSx  dependencies - see lower and 
upper curves, respectively. Integration of xxo SS ,  values on  yx,  
section plane shows that

0
,

 
yx
xoxo dxdySS , (27)

but
0

,

 
yx
xx dxdySS . (28)

Fig. 10-13 show zozyyo SSSS ,,,  values on  yx,  section plane 
at 3,1,1,/2,/2  vxz JjjNN  . It is seen that

yoy SS  , (29)

zoz SS  , (30)

where integral values are the following
0

,

 
yx
yy dxdySS , (31)

0
,

 
yx
zz dxdySS , (32)
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4. Vertical stability and motion
Thus, 

1. at any vJ  there is a vertical flow of gravitomagnetic energy not 
depending on vJ

0zS . (33)

2. at 0vJ  there is a horizontal flow of gravitomagnetic energy

0xS . (34)

Simultaneously with these energy flows, 0zP  and 0xP  flows 
of gravitomagnetic momentum exist. In accordance with the law of 
momentum conservation, the oppositely directed 0mzP  and 0mxP  

momenta of tsunami mass exist. 0mzP momentum holds the vertical 

shape of tsunami, and 0mxP  momentum moves tsunami in direction 
opposite to velocity.

Thus, the cause of tsunami motion is air resistance. This air 
resistance creates an additional mass current directed against v velocity of 
vortex translational motion. So, there is a positive feedback between 
tsunami velocity and its mechanical momentum: after starting the 
movement, tsunami picks up the velocity. Gravitomagnetic energy 
does the work - see Chapter 3.

5. Conclusions
Proposed mathematical model explains the following:

 energy source for tsunami movement
 source of tsunami driving force
 tsunami shape retention

Appendix 1
The solution of combined equations (2.10-2.14) will be sought in 

the form of:
   yxhH xx  sincos , (41)

   yxhH yy  cossin , (42)

    yJyxhH vzz   sinsin , (43)

    vxx JyxjJ   cossin , (44)
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   yxjJ yy  sincos , (45)

   yxjJ zz  coscos , (46)
where

zyxzyx jjjhhh ,,,,,  - amplitudes of functions,

 ,  - constants.
Let us differentiate (41-46) and substitute the expression obtained in 
initial combined equations (2.10-2.14). For example, from (2.10) we 
obtain: 

        vxvz JyxjJyxh   cossincossin .

After reducing by common multipliers, we find:

xz jh  , (48)

Similarly, from (2.11-2.14) we find:
yz jh   , (49)

zxy jhh   , (50)

0  yx hh , (51)

0  yx jj . (52)

From (48, 49) we find:


x

z
jh  , (53)




xy jj  . (54)

From (50, 51) we find:




xy hh  , (55)









 


 2

zx jh . (56)

Thus, under given zx jj ,,,  the remaining ,,,, yxzy hhhj variables 
can be found from equations (56, 55, 54, 53), respectively. 

Appendix 2
By analogy with (1.8.3) in Chapter 2, we write an expression for 

gravitational energy density vector projections:
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























xyyxz

zxxzy

yzzyx

xyz

HJHJS
HJHJS
HJHJS

S (60)

Using the formulas (2.15-2.20) of the main text, we find the 
gravitational energy density vector projections:

        

       
       

         
        

        













































yxhyxj

yxhJyxjS

yJyxhJyxj

yxhyxjS

yxhyxj

yJyxhyxjS

S

xy

yvxz

vzvx

xzy

yz

vzyx

xyz













sincossincos

cossincossin

sinsincossin

sincoscoscos

coscoscoscos

cossinsincos

(61)

When multiplying, we find:

           

       
       

           

   
           

        





















































yxhyxj

yxhJyxhyxjS

yJJyxh

yxyjJyxhyxj

yxhyxjS

yxhyxj

yJyxjyxhyxjS

S

xy

yvyxz

vvz

xvzx

xzy

yz

vyzyx

xyz















sincosshcos

cossincossincossin

sinsin

cossinshsincossh

sincoscoscos

cossincoscos

sincosshsinsincos

2

. (62)

or

       

    






















xyhj

yxjJxyhj
S

yz

yvzy

x





2sincos
2
1

sincosy2sinsin
2
1

2

2

, (63)

       

        




















yJyxhJyxjJ

yxhjyxhj
S

vzvxv

zxxz

y
2

22

sinsincossiny

2sinsin
2
12sincos

2
1




, (64)
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       

    


















yxhj

yxhJyxhj
S

xy

yvyx

z 



22

22

sincos

cossincossin
. (65)
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1. Introduction
In Chapter 1, the Maxwell-like gravitational equations specified 

based on known experiments are considered, from which it follows that 
the significant forces of moving masses gravimagnetic interaction in a 
vacuum can exist. These equations are valid only under conditions of a 
weak gravitational field at low velocities. Therefore, it should be 
expected that the gravimagnetic interactions between satellites, asteroids 
and larger celestial bodies can be observed in space. The calculations of 
such interactions and some examples are given below.

In Chapter 1 it is shown that Maxwell-like gravitational equations 
must be supplemented by some empirical coefficient of medium 
gravitational permeability. This coefficient for vacuum has the size of 

1210  order and sharply decreases with pressure increase. This 
explains the absence of visible effects of moving masses gravimagnetic 
interaction in the air. However, these interactions are clearly 
demonstrated in a vacuum. The restriction can also be the fact that, as it 
follows from the basic GR equations, Maxwell-like gravitational 
equations are valid only under conditions of a weak gravitational field at 
low velocities. Therefore, it should be expected that such gravimagnetic 
interactions between satellites, asteroids and larger celestial bodies can be 
observed in space.
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2. Gravitomagnetic interaction of moving 
masses
Let us consider 1m  and 2m  masses, moving with 1v  and 2v  

velocities, respectively. In Appendix 5 of Chapter 1 it is shown that in 
this case the gravitomagnetic Lorentz forces which are the following 
(here the unitary vectors of velocity are denoted by dashed lines) arise:

2121 fF  ,  (1)

1212 fF  ,  (1а)

where
  rvvf  2121 .  (2)

  rvvf  1212 ,  (2а)

22
2121

rc
vvmmG 


 ,  (3)

where 2 , 1210 .
Let us consider the case when both velocities lie in the same хоу 

plane. In Appendix 3 of Chapter 1 it is shown (see (2a)) that in this case 
vector product (2) is the following:

  












x

y
xyyx v
v

rvrvf
1

1
2221 . (4)

Thus, in this case

121 vf  . (5)
In particular, when 0yr , i.e. xrr  , we have:













x

y
y v

v
vrf

1

1
221 . (6)

The vectors included in this formula are shown in Fig. 1.
If even 01 xv , i.е. yvv 11  , then

1221 vvrf y  . (7)
Thus, in this case the force (7) is repelling. Consequently, the force 

(1) is also repelling. The force of two masses attraction is always 
attractive and equal to
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2
21

r
mGmP  .  (8)

In Appendix 5 of Chapter 1 it is also shown that
PF g , (9)

where

2
21

c
vv

g   . (10)

V1

V2

m1 m2

y

x

r

21f

Fig. 1.

Example 1. Let us consider two 1m  and 2m masses located 

at xrr   distance. Let their velocities satisfy the following 
conditions

01 xv , i.e. yvv 11  ,

02  xv , i.e. yvv 22  ,

i.е. their 12 , vv  velocities are parallel to оу axis. Then from (7) we 

find 1221 vvrf  . The vector of this force is directed opposite 

to xrr   vector. At that the module of repelling force is equal to 
(9). The attractive force is always equal to (8). Consequently, in this 
position the force of masses interaction will be absent, if 1g . 

We have 10103c  cm/sec., 2 . Let us suppose that
5

21 10 vv cm\sec. Then from (10) we have:
1 2 8
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2
211

c
vv

g   , from which we find 
21

2

vv
c





  or 

    1025210 105102103  . Under these conditions, 

the total force will be attractive, if 10105  , and repelling if 
10105  .

3. Known experiments
It was mentioned above that the observations of gravimagnetic 

interactions between satellites, asteroids and larger celestial bodies should 
be expected in space. The unexplained experiment using Explorer-I 
satellite (1958) is briefly described below. Then the mathematical model 
of satellite flight, considering gravimagnetic interaction between the 
Earth and satellite is considered, and it is shown that the results of such 
modeling coincide with observations.

In [2] Hoagland describes the Brown's experiment with Explorer-I 
satellite (1958). The trajectory of this satellite was clearly contrast to 
calculated trajectory, and no explanation has been found up to now. 
Investigating this fact, Hoagland doesn't restrain his creative impulse:

1) "… this is a delightful space discovery, which, obviously, being 
publicly confirmed, would mean the most important result of all the 
space program! This is a concealment, which continues to this day. "

2) "It seems that immediately after launching, the real trajectory of 
Explorer-I unequivocably violated two basic physical laws of the 
twentieth century. And it DID NOT gain any scientific recognition, 
prizes or discussions... even 50 years after the absolutely unexpected 
discovery."

3) "…in contrast to public "proves" of Explorer-I anomalous 
behavior, in private capacity, secretly, he (Brown) was looking for a 
serious working alternative to Newton and Einstein!"

4) von Braun's intensive world search for working physics to solve 
this fundamental problem was not something that he did "just out of 
interest." Obviously, he was the only aware of that if this "violation" of 
classical mechanics in satellites dynamics was not understood and then 
somehow taken under control, the impossibility of future satellites 
placing on the planned orbits will quickly put an end of entire space 
program!

1 2 9



Chapter 4.8. Additional forces of celestial bodies interaction

5) If a space vehicle can not be launched on an accurate, predictable 
orbit, then scientific missions based on known satellite orbits... could not 
be successfully carried out. The fly-arounds of designed objectives could 
not be planned for military purposes.

6) "Radically "non-Newtonian" in-orbit behavior of Explorer-I (and 
other US satellites) should be considered as the main scientific and 
political discovery in the early space program, if not in the field of solar 
system reseacrh over the last 50 years! "

Hoagland also points to a number of other unexplained experiments
1) " 34 hours after launching, the first Soviet automatic lunar probe 

successfully crossed the Moon's orbit, but was found ahead of the Moon 
by as much as "5.953 km" before remaining on the annual, solar orbit.... 
This was the first independent confirmation of this possibility, because 
the Soviets in Earth's orbit could always say (and said) that any orbit they 
achieved was "planned". The Moon miss, and even at a distance greater 
than the Moon diameter itself (3.475 km), considering a complex system 
of space navigation availability, was an important evidence that the 
mysterious "Force" (not Newtonian gravitation) pointedly acting on Von 
Braun's space vehicle, acted also on the Soviet vehicles!"

2) "Two months later, when it was the Von Braun's turn to carry 
out another American lunar mission Pioneer 4, his space vehicle was 
found at a distance of 59.533 km before Moon. Ten times more than a 
mistake of Russian scientists!"

3) "Open access data consideration revealed the equally unexpected 
"behavior" of two additional Explorer satellites under Von Braun's 
military program, as well as similar "mysteriously increased orbits" of 
three successfully launched US Navy Avangard satellites to such an 
extent that the latter became the oldest artificial satellites still rotating 
around the Earth!"

4) "However, as we have noticed, even after 50 years no one noticed 
or asked deeper questions about this amazing event sequence: repeated 
violations of Newton's laws and Einstein's relativity theory when 
launching the first US satellites!"

5) "For a little more than one year and half... Von Braun 
successfully launched two more Explorer satellites, and US Navy - three 
(of the planned 11 satellites) Avangard satellites. And they all showed the 
same kind of "mysterious anomalies of orbits!"

Further Hoagland notes that in the absence of an adequate theory, a 
need for "the rocket that would have enough fuel to withstand any "non-
Newtonian uncertainties" that it would collide on its way... arised"
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So, the energy resources of rocket allow the satellite to send some 
pv  launching velocity. However, the real trajectory is such that, for its 

existence, the satellite should have acquired pr vv   launching velocity. 
In order to explain this contradiction, Hoagland suggests that rockets 
somehow acquired additional energy during acceleration.  

Hoagland is looking for an explanation of all these facts in the 
theory of torsional fields. A highly unusual theory [4], based on the fact 
that gravity distribution velocity is finishing and, consequently, a violation 
of Newton's third law can be commited is also known. An explanation is 
justified below.

4. Gravitomagnetic interaction of the satellite 
and Earth
Further, it is shown that experimental trajectory of Explorer-I 

satellite coincides with the calculated trajectory, which is obtained by 
considering gravitomagnetic Lorentz force.

Table 1.

Path parameter
Calculated 

values 
obtained by 
traditional 
methods

Experimental 
values

1 2 3
Apogee (km) [2, p. 5] 1a =1575 2a =2534
Perigee (km) [2, p. 5] 1p =224 2p =360
Orbital period (min) [2, p. 5] 105 114.7
The same, but calculated in this 
article under given apogee and 
perigee

1051 T 3.1142 T

Velocity of satellite delivery - 
velocity at perigee (m/sec) [4] 1v =8129 2v =8214

The same, but calculated in this 
article under given apogee and 
perigee

1v =8125 2v =8210

Semimajor axis (km) [5] 7832
Eccentricity [5] 0.14
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Inclination [5] 33,24°
Weight (kg) [5] 21.5 21.5

In [2, 4, 5] the parameters of Explorer-I satellite trajectory, which 
are summarized in Table are given. 1. Let us denote by:

111067.6 G  - gravitational constant (here and below the SI 
system is used)

61037.6 R  - Earth radius,
241097.5 M  - Earth mass,

5.21m  - satellite weight,
p  - perigee (see Table 1).

At first, we will simulate the calculated trajectory, choosing a 
launching velocity so that it could pass through the perigee and apogee 
points specified and could have a specified duration of turnover. For this, 
trajectory calculation can be carried out by the following formula

2

2

dt
rdg  , (1)

where
g  - acceleration caused by Earth's attraction,
t  - current time,

),( yxr  - vector of distance from the Earth to satellite, where the 
system of plane coordinates is tied to earth center.

Acceleration is calculated, as is known, by the formula [3]

3r

rMGg 
 . (2)

In this case, the initial values should be as follows:








,0
,

0

00

y
pRrx

(3)

 
  








,
,0

0

0

yovdtdy
dtdx

(4)

where yov  - velocity of satellite at perigee. This calculation can also be 
carried out by the following analytical formulas [6]:
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(4а)

where 
  - )(r vector angle with the abscisse,
P - ellipse parameter (satellite trajectory),
e  – ellipse eccentricity.

Fig. 1.

Fig. 1 of [2] shows the trajectories of satellite 

 with 6
1 10224.0 p  perigee and 6

1 10575.1 a  
apogee,

 with 6
2 1036.0 p  perigee and 6

2 10534.2 a  apogee.
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The differences between 610959.0 a perigees and 
610136.0 p apogees differ by factor of 7 - see Table. 1.

Fig. 2 shows the calculated satellite trajectories

 with 6
1 10224.0 p perigee, 6

1 10575.1 a apogee, 

1v =8125 launching velocity, min1051 T  orbiting period for 
theoretical orbit (tr),

 with 6
2 1036.0 p perigee, 6

20 1035.2 a  apogee, 

2v =8210 launching velocity, min3.1142 T  orbiting period 
for experimental orbit (ex),

 Earth radius and circumference (rz, oz, zz).
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rz
zz
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tr
ex

Fig. 2 ('fspunath, mode=7')

As shown above, 2m  moving mass acts on other 1m moving mass by 
the following gravitomagnetic Lorentz force:

  rvv
rc
mGmF 


 2132

21
21


,  (5)

where
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r  - vector of distance between masses,

21, vv  - corresponding velocities,

  - coefficient of medium gravitational permeability,
8103c  - light velocity.

In our case, Earth acts on satellite, and satellite's influence on Earth 
can be neglected. In this case, the acceleration that satellite acquires 
under gravitomagnetic Lorentz force action from the Earth's side is the 
following,

  rvv
rc
GML c 


 332


,  (6)

where 3, vvc  - velocity of satellite and Earth, respectively.

The coefficient of  gravitational permeability is approximately 
determined above based on Samokhvalov's experiments. This coefficient 
nonlinearly depends on air pressure. Satellite trajectory partially passes 
through the atmosphere in which the pressure varies with elevation, and 
partially in space with zero pressure. Therefore we cannot strictly 
consider the influence of this coefficient. Next, we determine an average 
value of this coefficient on the assumption that it doesn't change 
throughout the whole trajectory.

Thus, considering the gravitomagnetic Lorentz force, acceleration 
will be calculated by the following formula:

Lgw  . (7)
At that, the initial conditions (3, 4) with the following constant values are 
accepted:

6
2 1036.0 p  - experimentally found perigee,

1v = 8125 satellite velocity at perigee, which is achieved in 
accordance with theoretical calculation.

Thus, it is assumed that engines delivered to satellite that particular 
launching velocity for which they were designed. But a trajectory was 
determined considering the Lorentz gravitomagnetic force.
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Fig. 3 ('fspunath, mode=10')

Furthermore, the average value of 61065.2  medium 
gravitational permeability coefficient is taken. This value differs from 

1210  value for vacuum found above, as the satellite flew in low-
density atmosphere.

Fig. 3 shows the calculated trajectories of satellite with 
6

2 1036.0 p perigee:
 satellite trajectory with 2v =8210 launching velocity, 

6
20 1035.2 a apogee and min3.1142 T orbiting period 

for experimental orbit (ex), calculated by traditional method - see 
also in Fig. 2,

 satellite trajectory with 1v =8125 launching velocity, 
6

2 1053.2 a  apogee and min3.1142 T orbiting period, 
calculated considering Lorentz gravitomagnetic force (lr),

 Earth radius, circle and centre (rz, zz, oz).

5. Conclusions
Thus, the actual satellite orbit is such that when calculating the 

known theory it should have 2v =8210 launching velocity. However, 

1 3 6



Chapter 4.8. Additional forces of celestial bodies interaction

according to satellite energy reserves it could reach 1v =8125 
 8512  vv  launching velocity. In order to explain this 
contradiction, it was assumed that satellite during acceleration received an 
additional energy (from unknown source) and reached 2v =8210 
launching velocity. This article shows that the satellite also at 1v =8125 
launching velocity (without obtaining an additional energy) could have 
the specified actual orbit.

Thus, the observed trajectory of Explorer-I satellite coincides with 
the trajectory calculated by proposed theory, i.e. it can be explained 
without using unknown energy sources, but only taking considering 
Lorentz gravitomagnetic force. In this case, an energy source is the 
Earth's gravitational field (just as the energy consumed by electric charges 
under Lorentz forces action is supplied by current source).

An insignificant difference between perigees mentioned above can 
be explained as well as the difference between apogees, but for this it is 
necessary to consider the trajectory of satellite acceleration, that isn't 
done here.

Moreover, Explorer-I satellite actual trajectory coincidence with 
calculated trajectory, which is obtained considering Lorentz 
gravitomagnetic force, is one more confirmation of the fact that 
Maxwell-like gravitational equations are valid and vacuum (and any other 
medium) has a gravitational permeability for magnetogravitational 
interactions between masses transmission.
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1. Introduction
An explanation of turbulent flows generating mechanism, based 

on Maxwell-like gravitational equations is proposed below. It is shown 
that the flowing fluid moving molecules interact with each other similarly 
to moving electric charges. The forces of such an interaction can be 
calculated and included in Navier-Stokes equations as mass forces. 
Navier-Stokes equations supplemented by such forces become the 
hydrodynamics equations for turbulent flow. In this case the calculation 
of turbulent flows can be performed using the known methods for 
Navier-Stokes equations solution.

Chapter 1 shows that Maxwell-like gravitational equations must 
be supplemented by some medium gravitational permeability empirical 
coefficient. This coefficient for a vacuum has 1210  size of order and 
sharply decreases with pressure increase. This explains the absence of 
visible effects of moving masses gravimagnetic interaction in the air. 
However, these interactions are clearly demonstrated in a vacuum.

The moving molecules in a fluid flow are separated by vacuum. 
Therefore, their gravitomagnetic interaction forces can be significant and 
influence on the flow pattern.

It is known that the fluid or gas laminar flow velocity spontaneous 
increase (without external forces) leads to a turbulent flow [1]. The 
mechanism of flow spontaneous change from laminar to turbulent is not 
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found. Obviously, a source of forces perpendicular to flow velocity must 
be detected.

Further, it is shown that the fluid moving masses gravitomagnetic 
interaction may be the cause of turbulence.

2. Gravitomagnetic interaction of moving 
masses
Let us consider two 1m  and 2m masses, moving with 1v  and 2v  

velocities, respectively. In Appendix 5 of Chapter 1 it is shown that in 
this case gravitomagnetic Lorentz forces arise, which are the following 
(velocity unitary vectors are denoted by dash lines here):

2121 fF  ,  (1)

1212 fF  ,  (2)

where
  rvvf  2121 .  (3)

  rvvf  1212 ,  (4)

22
2121

rc
vvmmG 


 ,  (5)

where 2 , 1210 .
In case of parallel 21 vv  speeds and equal 2112 FF  force 

masses, the laminar flow retains its pattern. However, in general case, 
when 21 vv  , 2112 FF   forces arise, i.e. an unbalanced 

2112 FFF   force acting on 1m  and 2m masses and distorting 
these masses motion trajectories (let us note that in this case Newton's 
third law isn't observed [2]) arise. From the above formulas it follows 
that the unbalanced force is directed at an angle to flow velocity, which 
violates laminarity.

In Appendix 5 of Chapter 1 it is also shown that gravitomagnetic 
Lorentz forces effectiveness greatly exceeds the effectiveness of 
electromagnetic Lorentz forces at comparable speeds.

3. Gravitomagnetic interaction as the cause of 
turbulence
For unbalanced forces appearance, the following conditions must be 

fulfilled:
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1. velocities must have a certain value (at which the forces become 
significant);

2. reason for velocities local changes must arise, for example, 
o barrier appearance
o pressure variation while jet flowing out of water.

We can specify a number of reasons for unbalanced forces increase:
 temperature increase at which 1v  and 2v  velocities cease to be 

parallel due to thermal fluctuations,
 viscosity, i.е. intermolecular attraction forces decrease, which 

counteract an unbalanced force which expands the molecules.
A number of external factors can be indicated causing the appearance of 
unbalanced forces due to 1v  and 2v  velocities parallelism external 
violation and, for example,

 temperature, pressure sudden changes,
 additional fluid or other substances injection.

The local change of a pair of tie molecules equal velocities, caused, 
for example, by asymmetric impact, inevitably spreads to the whole flow 
range. 

Navier-Stokes equations allow to determine flow velocities 
encountering or leaving a barrier. While knowing these velocities, the 
above equations can determine the unbalanced forces. Then these forces, 
as velocity functions, can be included in Navier-Stokes equations as mass 
forces.

The kinetic energy of turbulent motion increases with increasing 
turbulence. This increase occurs due to the action of gravitomagnetic 
forces of Lorentz. The source of these forces and this additional energy 
is (as shown above) the gravitational field of the Earth. 

There are devices in which this additional energy is used - so-called 
cavitation heat generators. The first such device was "Apparatus for 
Heating Fluids" by J. Griggs [6]. In it "the rotor rides a shaft which is driven by 
external power means. Fluid injected into the device is subjected to relative motion 
between the rotor and the device housing, and exits the device at increased pressure 
and/or temperature". At present, there are many such devices that differ in 
the ways of creating turbulent motion - see, for example, [7], where there 
are also references to many prototypes. Such devices provide efficient, 
simply, inexpensive and reliable sources of heated water and other fluids 
for residential and industrial use. 

Together with the existence of cavitation heat generators there is 
no generally accepted theory that reveals the source of additional energy 
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that appears as a result of the functioning of these cavitation heat 
generators. In particular, Griggs in [6] points out that his "device is 6 
thermodynamically highly efficient, despite the structural and mechanical simplicity of 
the rotor and other compounds", but does not provide a theoretical 
justification for this statement. The authors of the following devices also 
do not consider the reasons for the efficiency of their devices. 

All this confirms that the source of the additional energy of the 
cavitation heat generators is the gravitational field of the Earth

4. Quantitative estimations
Let us consider the formulas (2.1-2.5). From them it follows that:

fF   ,  (7)
where

,1221 FFF   (8)

.1221 fff   (9)

V1

V2

m1

m2 f1

f2

y

xr

F

Fig. 1.

Let us consider two adjacent fluid molecules. The distance between 
fluid molecules remains unchanged. In view of little r  distance between 
them, it can be assumed that 21, vv   velocity vectors of these molecules 

are applied to one point and lie in some common xoy plane. Then the 
vector (9) also lies in this plane. Fig. 1 shows rvv  ,, 21  vectors 
geometry.
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In Appendix 5 of Chapter 1 (see (6)) it is also shown that vectors 
value (9, 8) is determined by the following formulas

 12sin   rf .  (10)

 12sin  F .  (11)

This force occurs when adjacent molecules strike against the barrier at 
different angles. It can be assumed that the total force is applied to one 
of molecules. Therefore, it creates dipole torque composed of two 
molecules,

FrM  . (12)
Each pair of adjacent fluid molecules forms a dipole with a torque 

(12). Torques increase fluid molecules local velocities, which in turn 
increase the torques of dipoles specified. Therefore, a turbulence, having 
begun, continues to develop, spreading in the fluid volume.

A formula (11) determines the forces of fluid molecules 
gravitomagnetic interaction, as a function of these contacting molecules 
velocities. These forces can be included in Navier-Stokes equations as 
mass forces - see below.

5. Example: turbulent water flow in a pipe
Next, we consider the case of fluid jets interaction, assuming that 

the groups of molecules forming the jet element interact. Let us consider 
a special case when the jets velocity vectors are equal to vvv  21  

and group masses are equal to mmm  21 . At that, by (4), we find 
the following force

2







cr
mvG .  (11)

where r  – distance between jets. Denote by d  the typical size of group 
(jet diameter) and rewrite (11) in the form of

23










 


cr
vdG  .             (11а)

where   - fluid density and mass of group
3dm   .             (11в)
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Fig. 2 (from Wikipedia.ru). Water vapor (1) and water (2). The water 
molecules are increased approximately 5·107 times.

A further example relates to water. As molecules in a fluid are 
located at distances comparable with the size of molecules themselves 
(see Fig. 2), the distance between molecules must be assumed as equal to 
molecule diameter, which for water is equal to cm103 12r . Water 
density is 3g/cm1 . Let us also find the velocity of water flow at which 
a turbulence arises. It is known [3] that the condition for turbulence 
occurrence is determined by Reynolds criterion, which for round pipe is 
the following

/Re Dv , (12)

where D  - pipe diameter,   - kinematic viscosity coefficient. For water 
/fcm01.0 2  [3]. Let us suppose that cm5.2D . A turbulence occurs 

if Reynolds number is 2300Re  . In this case, from (12), we find the 
turbulent flow 10v  cm/sec velocity. Let the diameter of interacting 

jets is equal to cm1.0d . Above it is stated that 2 , 1210 , 
8107 G . Then from (11a) we find

   2000103103/101.01107102
212103812   dyne      (13)

Let us suppose that   2
12 10sin  . Then we find the force (9):

20F dyne (14)
From (10, 14) we also find a torque:

2 FrM  dyne*cm. (15)
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6. Turbulent flow equations
Let us return again to formula (5) from Appendix 5 of Chapter 1:

   



 

 22132

2

21 sec
сmgdynervv

rc
GmF  .  (1)

Similarly to par. 5, we find
fF   ,  (2)

where





 232

2 g
cmrc

Gm , (3)

      rvvrvvf  1221 .  (4)

Considering (11b), we rewrite (3) in the form of





 232

62 g
cmrc

dG . (4а)

Next, the forces causing a turbulence will be denoted by T. In 
Appendix 3 of Chapter 1 it is shown (see also Fig. 1) that if all the 
vectors lie in one plane, then (4) is equivalent to formula

 xyyxxy vvvvRT 1212  , (5)
where

yT  - force acting on mass moving with 2v  velocity

xR  - distance between mass centers.
Let two adjacent groups of molecules be located on ох axis. Denote by:

,dxRx  (6а)
dvvvvv  12 , . (6в)

Then
    xxyyyxy dvvvdvvvdxT  (7)

or
 xyyxy dvvdvvdxT  . (8)

Similarly, for the right coordinate system, we have:
 yzzyz dvvdvvdyT  , (9)

 zxxzx dvvdvvdzT  . (10)

Let us consider the operator (which hereinafter for brevity sake will be 
called as turbulean)
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











 2sec
cm

dy
dv

v
dy
dvv

dx
dvv

dx
dv

v

dz
dvv

dz
dvv

)v(

y
z

z
y

x
y

y
x

z
x

x
z

 . (11)

Example 1. Consider the ideal laminar flow in which 
0,0,0  zyx vvv . Obviously, in this case, 0)(  v  i.e. a 

laminar flow cannot spontaneously pass into the turbulent flow.

In accordance with (6a) we have
dzdydxR  (12)

From (10-12) the following expression follows

  



 


 dyne

sec
cmg

sec
cm

cm
gcm 222

22 vRT  . (13)

or
  dyne1 vT   , (14)

where

 g
rc
dGRR 32

622
2

1
  . (15)

An expression (14) defines the force acting on a group of molecules 
on the part of three adjacent groups of molecules located in front of it on 
coordinate axes, if coordinate differentials are equal to distance between 
molecules (12). This force acts on the four groups of molecules volume, 

i.e. on 34d  volume. Therefore, the force acting on a unit volume is,

  



  223 cmsec

g
cm
dynevT mm  , (16)

where





 332

322

3
1

cm
g

44 rc
dGR

dm


or





 332

82

cm
g

4 rc
dG

m
 , (17)

as dR  .
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Let us note for comparison that the mass force dimensionality in 

hydrodynamics equations is 







 2sec

cm
g

dyne
mF , and the dimensionality  of 

force acting on unit volume is 







 2233 cmsec

g
cm
dyne

cm
g

g
dyne

mF . And the 

force has exactly this dimensionality(16). At that the coefficient (17) has 
the density dimensionality and can be called as the turbulent density of a 
given fluid.

Example 2. Let us find m  turbulent density of water. We have: 
3g/cm1 , cm1.0d , sec/103 10cmc  , 2 , 1210 . Let 

the diameter of jet is equal to cm1.0d  and a distance between jets 
is cm10 8r . Then 

  38210

8812

32

82

101034

10107102
4 








rc
dG

m


or ..m 



 3cm

g40

Forces (16) can be included in Navier-Stokes equations. Navier-
Stokes equations supplemented by such forces become hydrodynamics 
equations for turbulent flow.

A turbulean (11) structurally is similar to expression

 






























































z
vv

y
vv

x
vv

z
v

v
y
v

v
x
v

v

z
vv

y
vv

x
vv

vv

z
z

z
y

z
x

y
z

y
y

y
x

x
z

x
y

x
x

, (18)

included in Navier-Stokes equations. Therefore, in order to calculate 
turbulent flows, it is necessary to use the known methods for Navier-
Stokes equations solving and, in particular, the method proposed in [4].
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An expression (18) is included in Navier-Stokes equations with   
factor. Consequently, a turbulean (11) will influence on equation solution 
if a coefficient (17) will have  m  value. 
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There are experiments that, without regard, are attributed to 
perpetuum mobile, just because there are no acceptable explanations. 
Meanwhile, some of them can be explained by the assumption of a 
significant magnitude of the gravitomagnetic forces. More such 
experiments and their mathematical models are described below.
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Chapter 5.1. Samokhvalov's 
Experiments
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1. Introduction
Samokhvalov had conceived and carried out a series of unexpected 

and surprising experiments, which presumably can be explained  by 
interaction of irregular mass currents [4-8]. For the author, these 
experiments served as an incentive for the development of this topic. 
Analyzing these experiments, it could be assumed that they correspond 
to the Maxwell equations for gravity. It could be see, then irregular mass 
currents gJ  create variable gravito-electrical intensity gE  and gravito-

magnetic induction gB . At the interaction of this induction with the 
masses m , moving with speed v  there arises gravito-magnetic Lorentz 
force.

It is important to note that the effect are so significant, that in 
order to explain them within the said Maxwell-similar equations these 
equations should be supplemented by a certain empirical coefficient  . 
Further it is shown that with such modification the results of 
experiments are in good agreement with Maxwell's equations for gravity, 
which we agreed above to call MGM-equations.

It should be noted that Samokhvalov did not accept such an 
explanation of his experiments.

2. First Experiment
Consider the Samokhvalov experiment described in [1]. Two disks 

are placed into a vacuum chamber; they are misbalanced (by skewed axes) 
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and are rotating in one direction. Both disks are overheated. Technical 
parameters of the setup are as follows:

 Material of the disks aluminum
 Pressure in the chamber aP1
 Density of aluminum 3g/cm72.
 Thickness of the disks cm090.h 
 Diameter of the disks cm5162 .R 
 Gap between the disks cm30.d 
 Beating on the sides cm050.
 Number of revolutions sec50 /f 
 Temperature of overheating (in [4] is written that the 

temperature rise measured after some minutes was К50 ).

Let us consider the disk's rotation as mass current. We can assume that 
this current is formed by the mass's motion in the circle of the upper 
band of the disk of radius smR 7  and the cross-section  

22 c57c5230 m.m..S   . (1)
The speed of this mass is

sec/220050722 smfRv   . (2)
So, the mass current is

sec/440022007.25.7 gvSJ g   . (3)
This current is variable because the beating of the disks. In accordance
 with (1.2.4) this current causes a variable axial induction (along the 
ох axis of the disk)  average on the circle area of radius R , 

cR
GJ

B g
g

2
 (4)

or

15
10

8

103
7103
44001072 







 
gB . (5)

This induction is variable in time because of he disks We shall assume 
that the circular frequency of this induction is  

3142  f .  (6)

In accordance with (1.2.9), the strength of vortex electric current created 
by variable gravito-magnetic flow, is  
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dt
d

cR
J g

e
ge





(7)

or

g
e

ge cR
J 


. (8)

In our case
1522 103  RBR gg  , (9)

where   – is the coefficient of induction weakening on the level of the 
driven disk (because of the gap). So,

g
e

ge BR
cR

J 2
 (10)

or

6152
10

14

1010325.8
103

314108.1  





ee
ge RR
J  (10а)

This electric current raises the disk temperature. In the experiment it was 
shown that  the disk's temperature has increased by 100T  grades 
Let us consider the equivalent voltage

egee RJE  (11)

And assume that such increase of the disk temperature may be due to the 
voltage eE . From (10а, 11) we find

610 eE . (12)

Let us assume that such equivalent voltage is 200eE . Then we find
8102  . (13)

Here   depends on the pressure, and   depends on the gap. Assuming 

that 2/1 d  and knowing that md s3.0 , we find 01.0 . Thus, 
based on Samokhvalov's experiment  we can now assume that for the 
indicated conditions the gravitational permeability coefficient  with the 
pressure of  0.1 atm is equal to

10102)1.0( p . (14)
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3. Second Experiment
Let us now consider the experiments of Samokhvalov described in 

[5]. Two disks are placed into a vacuum chamber, misbalanced by skewed 
axes. The first of them rotates forcibly, and the second disk begins 
rotation  due to the impact of the first one. The speed 2f  of the second 
disk's rotation (if the rotation speed of the first one is constant ) depends 
on the gap between the disks d  and on the pressure in vacuum chamber
p . We may assume that the rotation speed of the driven disk is

  )()(, 222 dfpfdpf dp  . (1)
This experiment explores these two dependences.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-5

0

5

10

15

20

25

30

35

p

f

Samoh2

Fig. 1.

The dependence of rotation speed on the pressure  is given in [2] 
on Fig 2, from which we find

р=[0.1 ,0.3 ,0.5 ,0.7,0.9,1] (atm),
f=[24, 17, 8, 2, 0.2,  ],

where   is a small value that it is impossible to find from the experiment 
results. 
Fig. 1 shows this experimental dependence  (by circles) and (by full line) 
– the approximating function in the form form of a polynomial with 5 
members. We assume that,
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  )2.0()(2.0, 222 dp fpfdpf  (2)
In particular, by approximating function we find:

25)2.0,1.0(2 f ,  35)2.0,0(2 f .           (2а)

The dependence of rotation speed on the distance
is given in [5, Fig. 3], from which we find:

d=[0.15, 0.2, 0.25, 0.3] (sm),
f1=[24, 17, 6, 5] при atmp 1 ,
f102=[30, 25, 12, 10] при atmp 02.1 .

0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32
0

5

10

15

20

25

30

35

40

45

p

f

Samoh4

Fig. 2.

Fig. 2 shows this experimental dependence  (by circles) and the 

approximating function (by full line) – in the form of  2dba  , and 
the function 

2
2 1)( ddf d  . (3)

To a first approximation further we shall use the function (2). In 
particular, for 2.0d  (cm) we have 

25)2.0(2 df .           (3а)
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Analysis of the functions  )(2 pf p  and )(2 df d  
Taking into account (2, 3a), we find:

   2.0,04.0)2.0(2.0,)( 2222 pffpfpf dp  . (4)
In particular from (2а) we find:

  5.13504.02.0,004.0)0( 22  ff p , (6)
Below in (p.3.7) it will be shown that 

)()( 2
2 ppf pp   . (8)

Thus,

 



)(2 pf

p p
p  ,  (9)

From (9) it follows that
 
  )(

)0(0

2

2
pf

f
p p

p

p

p 



,  (10)

In experiment 1 it was shown, that
10102)1.0( p . (11)

Combining (5, 6, 10, 11), we get

    1010

2

2 105.2
1
5.1102

)1.0(
)0(

1.00 
p

p
pp f

f
 .

From this we can find a crude estimate of the gravitational permeability 
of vacuum:

1010 . (13)

4. The Role of Gravito-magnetic Lorentz 
Forces
In Samokhvalov's experiments the driving disk  drags the driven 

disk. Now we shall present the explanation of this phenomenon. 
Samokhvalov notes that first there occurs the vibration of the driving 
disk, and then begins the rotation of the driven disk  – then see Fig. 3.
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m1

m2

F1Bg

v1

F2

v2

Fig. 3.

The disks' vibration is explained in the following way - see Fig. 3. 
Above, analyzing the Experiment 1, it was shown that the driving disk  is  
variable mass current (2.3) with circular frequency (2.6). This current 

mass 1m , moving with speed 1v , creates a variable gravito-magnetic 
induction (2.4), which is perpendicular to the mass current of drive disc, 
ie radially and parallel to the disc plane – see a closed curve on Fig. 3. 

This induction vector at the slave drive moves with a speed 1v  relative 
to the mass 2m  of the driven disc. This raises gravito-magnetic Lorentz 
force, acting on the mass 2m  and directed vertically and having the form

c
BvmF g


121  . (1)
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Above, when analyzing the experiment 1, we have showed that the 
masses 21, mm  are the mass of a circle of higher band of the disk with 

radius cмR 7  and cross-section (2.1). This mass is equal to 
RSmm 221  . (2)

The force 1F  is directed perpendicularly to the disk plane and varies 
with the frequency ecf s/50 , causing the vibration of the driven 
disk. Evidently, the speed 2v  of this vibration is proportional to the 
force 1F , i.e.

12 Fv  , (3)

where   is a certain constant.
This force may explain the "oscillatory" character of the process of 

repulsion of the screen with the increase of the oscillations amplitude 
(angle of the frame's deviation)  after steadying of the disk rotation 
speed", which is reflected in the Samokhvalov's experiments described in 
[5].

Rotating force acting on the driven disk  is explained as follows 
– see Fig. 3. The foregoing gravito-magnetic induction gB  (2.4), created 
by the driving disk is directed perpendicularly to the mass current of the 
driving disk, i.e. along the disk's radius and parallel to its plane. This 
induction acts on the vertically vibrating mass 2m  of the driven disk  by 
gravito-magnetic Lorentz force (1.1.1): 

c
BvmF g


222  . (4)

This force is tangential to the circumference of the disc, because  
perpendicular to the direction of induction (which is directed along the 
radius of the disk) and the speed (which is perpendicular to the plane of 
the disk). Due to the fact, that the speed of vibration 2v  and the 
induction gB  are changing synchronously, the vector of this force 
doesn't change direction. Apparently, the rotation speed of the driven 
disk is proportional to the force 2F , i.e. the number of its revolutions is

22 Ff  , (5)

where   – a certain constant. Combining (1-5) we get
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2

2122

12222











ggg

gg

B
c

m
c

Bvm
c

Bm

F
c

Bm
c

Bvmf





. (6)

Because gravito-magnetic induction gB proportional gravito-magnetic 

permeability   (which follows from (2.4, 2.5)), the number of 
revolutions of the slave drive is

2
2  f . (7)

Which is proportional to 2  with a certain proportionality factor  . 
This ratio is used in the above analysis of the Experiment 2 – see (3.8).

5. Some experimental estimates
The analysis of Samokhvalov's experiments considered above 

makes it possible to obtain a rough estimate of the gravitational 
permeability coefficient  :

1010 . (1)
This value can be greatly underestimated, since the experiments were 
performed with an average vacuum, but   increases with decreasing of 
pressure. At atmospheric pressure 0 , that explains the absence of 
visible effects of gravitational interaction of moving masses.

The gravitational permeability of the medium is now introduced 
into the equation for the gravitomagnetic induction rotor in the same way 
as the magnetic permeability of the medium is introduced into the 
equation for the magnetic induction rotor.

In order to discover the phenomenon of the decrease in the air 
gravitational permeability compared to vacuum gravitational permeability 
we should point out that the magnetic permeability of electrically 
conductive materials sharply decreases with increasing of current 
frequency which forms the magnetic field (due to the appearance of 
Foucault currents shielding the magnetic induction). It can be assumed 
that being influenced by alternating gravimagnetic field the moving air 
molecules behave similarly to free electrons in a conductor under the 
action of an alternating magnetic field – “Foucault mass currents” 
screening the gravimagnetic induction arise in the air. In this case, it can 
be assumed that at low velocity of mass motion the significant effects can 
be observed even in the atmosphere.
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Chapter 5.2. Aldo Costa's 
Gravity Motor

“My small work will bring them (perpetual 
motion seekers) advantage: they will not have to 
flee from the kings and rulers without fulfilling 
their promises”

Leonardo Da Vinci
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1. Introduction
It is known that the work of gravity for a body displacement along a 

closed pass is equal to zero.
In [1] one may read: After having reformed many efforts of building a 

perpetual motion machine, "Leonardo, after trying to comprehend, why such 
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motion machines of different systems do not work, claims the inevitability of 
the existence of inherent effects disrupting the work of such machines. His 
followers, based on his authority, use the principle of the impossibility of 
perpetual motion as an already firmly established law of nature. The 
Academy of Paris, basing on the views of these followers, had not presented a 
rigorous proof of the impossibility of the existence of a perpetual motion 
machine. Academy of Paris "meant well", when saying: "such work (of the 
creators of perpetual motion) is too wasteful, it has   destroyed a lot of families. 
Often happens that a talented mechanic, who could take his rightful place, had 
squandered in that way his reputation, time and talent."

But the mechanics can not get calm down, because principle of the 
impossibility of perpetual motion is not firmly established as the law of nature. 
Repeated attempts to build a perpetual motion machine have been taken for 
centuries [2] and are continued now. But they only allow, as Leonardo wrote, to 
assert the inevitability of the existence of some interfering factors. There is no 
proof of the existence of such reasons, and the law of energy conservation has 
nothing to do with it.

2. Did not Flee…
There is a known history of Orferius’s successful test of perpetual motion 

machine [3]. This work has been financed by Count Karl, who also led the 
"selection committee" including famous scientists. Count Karl was also 
considered one of the leading scientists of his time. Hard to imagine that 
Orferius undertook to deceive such a man. It seems to me less likely than a 
successful test. Orferius did not have to flee from the Count due to not having 
fulfilled his promises.

3. Unbalanced Wheels 
Among the projects of perpetual motion the so-called unbalanced wheels 

are rather common. As described in [3] “the first design of unbalanced wheels 
was described by Marquis Worchester. From the description, it follows that it 
was a wheel with two rims - one within the other. To the rims weights are 
attached by means of strings so that when they are moved downward they are 
displaced towards the outer rim, and at movement upwards - towards the 
internal. "The author was unable to find a description of the wheel, but in [4] 
descriptions of several such devices are provided.
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B

A

C

D

Fig. 1.

We shall consider the most impressive of them. In [5] the gravitational 
motor of Aldo Costa is described. Its design can be summarized as follows - see 
Fig. 1. The loads attached to the spokes revolve around a common axis. At the 
points A and C the loads move along the spoke in the points B and D 
respectively. Thus, if you move down (right) the loads rotate along the radius 

1R  and moving up (right) loads rotate along the radius 12 RR  - this is 
similar to what was proposed by the Marquis of Worcester - see above.

The wheel is mounted vertically, has a diameter of 18 m and contains 236 
complex mechanisms for switching the position of loads - see Fig. 2. Machine 
parts are described in detail in the patent [9]). Several videos of the device are 
given in [10]. 

Note that here, as well as in the work of Marquis Worcester, there is a 
"wheel with two rims - one within the other. ...  The weights are attached to the 
rim so, that during the downward movement they are displaced towards the 
outer rim and at movement upwards - towards the internal rim. "

Another device of this type Dmitriev suggested [11]. Detailed description 
of the device and a few videos of his work presented in [12].
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Fig. 2.

4. The Main Idea
Chapter 3 shows that the force of gravity can do work. At the 

same time, the author solemnly declares that he admits the energy 
conservation law (realizing, however, that this will not help author). 
Further, it is shown that this law does not contradict the possibility of 
constructing an eternal engine using the forces of gravity. In this case it is 
natural that the kinetic energy of the Earth decreases, but the author 
ignores this problem (in the same way as hydroelectric plants designers 
ignore it).

5. The Definition of Gravimagnetic Lorentz 
Force 
In Chapter1 it is shown that gravimagnetic Lorentz force, acting 

from mass 1m  on mass 2m , is determined by an expression of the form 
(here and further the CGS system is used)
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  rvv
r
mmk

F g  123
21

12 , (1)

where 

 coefficient 2c
Gkg


 , (2)

 8107 G  - gravitational constant,
 10103 c  - the speed of light in vacuum,

   - gravimagnetic permeability of the medium,

 r  - a vector directed from point 1m  to point 2m ,

 21, vv  - speeds of masses 1m  and 2m  accordingly

rb
ra

m2 m1

V1=b

V2=a
F12r F21r

r
fi2

fi1

x
O

y

z
Fs

F

fi0

Fig. 3.

It is important to note that the effects in the above experiments are 
so significant that to explain them within the Maxwell-like gravitational 
equations it is necessary to enter gravimagnetic coefficient of 
permeability of the medium   (the same as the coefficient of permeability 
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Chapter 5.2. Aldo Costa's Gravity Motor

of the medium   in electromagnetism). However, the value of coefficient 
  in these experiments may be estimated only very roughly.

6. The Mathematical Model of Aldo Costa’s 
Wheel 
Consider Fig. 3, which shows the two weights on the wheel Aldo Costa. 

In our case the velocities in the formula (1) - are the linear speed of loads 
rotation. We shall select in the formula (1), the expression

  rbaf 12 , (3)
where 

12 , vbva  . 
In the right Cartesian coordinate system, this expression takes the form

   
   
   
























yzzyyzxxzx

xyyxxyzzyz

zxxzzxyyxy

rbrbarbrba
rbrbarbrba
rbrbarbrba

f12 . (4)

The loads rotate at the same speed and in opposite directions. So 

12 , RbRa   , (5)

where 12 , RR  are the radii of the semicircles, - angular velocity. We shall 

further denote radius vectors of loads 1m and 2m as br  and ar , respectively. 
Then 

ba rrr  . (6)
As the loads rotate in one plane, so

0,0,0  zzz bar . (7)
With this in mind, we obtain: 

 
 























0
12 xyyxx

xyyxy

rbrba
rbrba

f

or
   xyyxxy rbrbDaaDf  ,,12 (8)

Similarly, 
   xyyxxy raraDbbDf  2221 ,, (8.1)

Now we shall find
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













xx

yy

bDDa
bDDa

fff
2

2
2112 (9)

From Fig. 3 it follows
2112 ,   AOmAOm

 ,sin,sin
,cos,cos

2211

2211




RbRa
RbRa

yy

xx




.

 111 cos,sin  Rra ,

 222 cos,sin Rrb  , (10)

ba rrr  . (11)
Let us denote

3rffL  . (16)

From (1, 3) it follows that 

Lg fmmkF  21 , (17)

One can assume that the force acts on a pair of rigidly connected 
(through rim and spoked of wheels) masses and is applied to the center of the 
segment r  - see the point in Fig. 3. The radius vector of this point

  2/baz rrr  . (20)

Let us find the projection sF of the force F on the tangent to the 

circle of radius zr . It is equal to the scalar product of this force on the unit wK   

of vector perpendicular to the radius zr , i.e.

ws KFF  . (21)
If 

 zyzxz rrr , , (22)

then

  zzxzyw rrrK , . (23)

In such way we may find the force (21). It creates a torque

zss rFM  . (24)

Taking into account (21-23), we get

 zxzys rrFM , . (25)
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Chapter 5.2. Aldo Costa's Gravity Motor

Mass 2m  moves along the arc o  of radius 1R - see Fig. 3. In this it 

interacts with the mass 1m , which also moves along the arc o  of radius 2R . 

The distance between them remains constant: constr  . The length of 

vector oz also remains constant: constrz  . The torque (25) also remains 

constant: constM s   - see further. In the highest point 2m  switches to a 

circle of radius 2R  ("top jump"), i.e. assumes the role of the mass 1m . At this 
point the mass moving on a circle of radius 1R   after the former mass, assumes 
the role of the mass 2m , etc.

330 340 350 360
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-20

0

20

40

60

dF
x(
fit
):r
,d
Fy
(fi
):b

-40 -30 -20 -10
35

40

45

50

55

dF
x+
j*d
Fy

330 340 350 360
15

20

25

30

35

40

rz
x(
fi)
:r,
rz
y(
fi)
:b

20 25 30 35 40
15

20

25

30

35

rz
x+
j*r
zy

Fig. 4.

Counting moment (25), we can show can be shown that on the 
bottom of the wheel a similar torque of opposite sign is created. Thus in 
a real device the “bottom jump” must be excluded.

It can be shown that on the bottom wheel (where occurs the 
"lower jump") create the same momentum and with the same sign

Fig. 4 shows the results of the overall calculation. Thus:
 The first window shows projections of vector (21): syF  - above, 

sxF  - below. 
 The second window shows hodograph of vector (21) in the form 

sysxs FjFF  . 
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 The third window shows projections of vector (22): zxr  - above, zyr - 

below. 
 The fourth window shows hodograph of vector (22) in the form 

zyzxz rjrr  .

Similarly, we can consider the forces involved in the movement of 
loads vertically - see Appendix 2.

7. Quantitative Estimates
In the example 48r , 41zr  for 50,45 11  RR  (in CGS 

system), and the forces and forces torques are calculated in the conditions
121  mmkK ggm . (31)

The torques are equal to: above - 2000sM  and below - 2000sM . 
The torque acts in the time period 05.01 T . Consequently, in the highest 
point the structure is affected by the torque 

  gmsgmo KRTMKtF 211  , (32)

where the coefficient gmK  needs determination. In Appendix 1.4 it is shown 
that each load in such structure for continuous rotation needs to get a force 
impulse  

  25001 tF . (33)
Consequently, to obtain continuous rotation by the Lorentz forces a following 
condition should be observed:

   12 tFtF o  (34)

or 
2500gmK . (35)

Let us estimate for this case the value of coefficient . Let the masses be

г50011  mm . Then from conditions (31, 35) we shall find
25002500 gk (36)

or
01.0gk .

Further from (2) we find

  26
8

2102 10
107

10301.0 


 Gckg . (37)
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This value coincides with that obtained in the analysis of Tolchin’s 
inertioid [8]. With this value of   (in order of magnitude) the presented 
explanation is legitimate. 

In this example, the angle 6 o . Consequently, in one 
revolution of the masses 12 pairs interact and we can assume that the 
torque 2000sM  is acting permanently. Thus, a structure is possible 
in which the motion is due to the energy of the gravitational field.

8. Some Comparisons
However, similar to the described problem of gravitational mass 

movement, we can consider exactly the same problem of the heavy 
electric charges motion, where there is no question about the legality of 
Maxwell-like gravitational equations and the value of the coefficient of 
gravimagnetic permeability of medium

Let us compare the Lorentz force in the interaction of mass and 
charge. Above we have described the Lorentz force acting from the first 
body to the second, in the form

  rvv
r
mkF gLg  123

2
,

where 2c
Gkg


 . Similarly the Lorentz force acting from the first charge 

to the second has the form: 

  rvv
r
qkF eLe  123

2
,

where 2c
ke


 . So, the Lorentz force LeF , acting on the charges, relates to 

Lorentz force LgF , acting on the masses (for the same speeds and distances), 
as

2

22

2








m
q

ckmk
qk

F
F

gg

e

Lg

Le 
.

Assuming that 1  and 01.0gk  (as was shown above), we find:
2

1910 





 

m
q

F
F
Lg

Le .
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Let us compare this with ratio of attraction forces:

 
2

2/1
Gm
q

F
F
Pg

Pe 
 .

For  1  and 8107 G  we find that:
2

710 






m
q

F
F
Pg

Pe

If PeLe FF  , then 719 1010  PgLg FF  or 2610PgLg FF  . Thus, if 

for 01.0gk  the conditions (distance and speed) are such that for two 
charges the Lorentz force is equal to the attractive force, then for two masses 

the Lorentz force is 2610  times stronger than the attractive force. This means 
that the structure using the energy of gravitation field and based on 
gravitomagnetic Lorentz forces is significantly more effective than the same 
design based on magnetic Lorentz forces – and so, the latter is not worth to try 
implementing.

9. Technology
Those 18 m, which Aldo Costa demonstrates, may be explained, 

apparently, by the size of switches - they are complex, and therefore large. 
Furthermore, they are complex and therefore require constant adjustment, 
which complicates operation.

The author can offer much less complex and compact structure. 
Investment is needed and any other assistance in advancing the project.

Appendix 1. Circumferential Body Movement 
by Force of Gravity 
Here we consider some idealized design, equivalent wheel Aldo Costa. 

For this construction, we can strict construct a mathematical model.

1. Ball Movement within a Tubular Circle 
Let us consider a globular body of weight Р, moving along a rigid tube 

coiled in a circle – see Fig. 1. The circle is located on vertical plane. 
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xalfa

y

P

FN

Fig. 1.

Find the forceF , acting on the body along a tangent
RxPPF /cos   .

The force torque is
xPFRMF  .

Let us take a moment to be positive if it is directed clockwise. Find the pressure 
forceN , acting on the circle along the radius:

RyPPN /sin   .
The body’s friction force along the circle is

RkyPkNT / .
where k  - friction coefficient. The torque of this force is:

kyPTRMT  . 
The Table 1 shows formulas for these forces and torques in the 4 quadrants.

Table 1.
1 2 3 4
RxPF / RxPF / RxPF / RxPF /
xPMF  xPMF  xPMF  xPMF 

RkyPT / RkyPT / RkyPT / RkyPT /
kyPMT  kyPMT  kyPMT  kyPMT 
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2. Movement of a Ball within a Deformed Tubular 
Circleference
Now let us assume that the ball is moving within a tube shown on Fig. 2. 

The Figure shows only the axis line of the tube and several positions of the ball. 
Shows only the upper half of the tube. This tube consists of three parts: arc 'ad' 

of radius 1R , arc 'bq' with radius 2R  and segment AB  ("the step"), located at 
an angle   to the horizontal.

Fig. 2.

Table 2 shows formulas for the forces named above and their torques in 
the 4 quadrants for such deformed tube. 

Table 2.
1 2 3 4







 0,

2
 






  ,

2
,0  






   ,

2






 ,

2
,

2/ RxPF  2/ RxPF  1/ RxPF  1/ RxPF 

xPMF  xPMF  xPMF  xPMF 

2/ RkyPT  2/ RkyPT  1/ RkyPT  1/ RkyPT 

kyPMT  kyPMT  kyPMT  kyPMT 
  21 1 PRkA    22 1 PRkA 

  1

3

1 PRk
A




  1

4

1 PRk
A



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1

1

sin
cos

v
d

k

gdv

















2

2

sin
cos

v
d

k

gdv

















3

3

sin
cos

v
d

k

gdv

















4sin
cos

4

v
d

k

gdv


















 kgR

vv ok






1
2

2

2
1

2
1

 kgR

vv ok






1
2

2

2
2

2
2

 kgR

vv ok






1
2

1

2
3

2
3

 kgR

vv ok






1
2

1

2
4

2
4

The summary work of gravity force done by the torques acting on the 
ball moving along quadrant 1, is equal to 

 

  





















0

2/
22

2

0

2/

0

2/
1









d
xRk

x
PdkyxP

dMMA TF








 








 
  








 cos

sin
sin

cos 0

2/
2

0
2/21 k

PRd
k

PRA

 kPRA  121
The work done in quadrants 2, 3, 4 is calculated similarly – see Table 2. All 
work performed on the semicircle is: 

4321 AAAAAo 
    2112 22 RRkRRPAo 

The work performed on the step is:
    sin1 12 RRPkAs  .

Summary work performed by gravity force is:

so AAA 2
Note the following. The sliding friction coefficient is 

25.05.0;1.0 k . The rolling friction coefficient of a roll of radius r  is 

rfk  , where mmf 5.0  when rolling steel on steel [6] If mmr 20 , then 
025.0k . 
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3. The Dynamics of Ball Movement within a 
Deformed Tubular Circleference  
Let us find the ball’s speed change on an element of length  ds  of the 

circle in the first quadrant due to the forces 11, TF . We have:

d
v
R

m
TF

v
ds

m
TFdt

m
TFadtdv

1
1111111

1 








 .

Considering Table 2, we get

 d
v
kyxgd

v
R

m
RkyPRxPdv 







11

222
1

//
,

d
v
kyxgdv 




1
1 ,

 
1

22
21 v

dxRkxgdv 
 ,

 
1

1 sincos
v
dkgdv   , причем 






 0,

2
 .

Similarly we may calculate the velocity increment on quadrants 2, 3, 4 - see 
Table. 2. In two steps, we have

  dt
m

kPdvs 
cos

,

s
s v

dhkgdv )cos( , причем  12,0 RRh 

where   -is step angle to the horizontal.
We shall integrate the expression for the first quadrant:

  
0

2/
211 sincos

1

1 
 dkgRdvv

k

o

v

v
, 

 


cossin
2

0

2/
2

2
1

1

1

kgRvk

o

v

v
 , 

 kgRvv ok 
 1
2 2

2
1

2
1 . 

Similarly we may calculate kinetic energy increment on quadrants 2, 
3, 4 – see Table. 2. On the steps we have:
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



12

0sin

RRv

v
ss dhkgdvv

sk

so


, hkgv RR
s

v

v

sk

so

12

0

2

sin2





, 

 12

22

sin2
RRkgvv sosk 







. 

In these formulas, the assumption is made that the step does not change 
the length of the semicircle.

Since the ultimate speed in a certain segment coincides with the initial 
velocity in the next section, from the preceding formulas we may find the 
change in velocity across the tube in one revolution v . The loss of kinetic 
energy then is equal to

 
2

22
bbb vvv

W


 .

4. The momentum of force for Movement of Ball 
within a Deformed Tubular Circleference
In wheel Aldo Costa all weights (in our scheme - balls) rotate with 

angular speed  around the point ‘o’. Above the change in kinetic energy 
W has been found. In our case, to preserve the kinetic energy of the ball, an 

external energy source must add value W for each revolution of the ball. We 
assume that this energy is brought by application of force torque tF   on a 
certain time interval. This torque increases the angular speed. When the torque 
is applied to the ball in the point 'b', then

bvmtF  , (1)
where

bb Rv  2 . (2)
This value can be calculated for a given W by the following formula:

  222
bbb vvvW  (3)

or

  22
2
2

2 bbbR
W  


(4)

or

bbb RW   2
2

2 2 . (5)

From (20, 21, 24) we find:
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 bb RWmRtF   2
2

2
2 2 . (6)
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Fig. 3.

If the torque exceeds the specified value, the angular velocity will increase and if 
the torque is less than the specified value, the angular velocity will decrease and 
in a certain moment the ball stops. Fig. 3 shows the relationship - 

 bftF  . When calculating assumed that in the CGS system 

025.0,10,50,44,105 21
5  kRRP 

In this the momentum of force must be equal 
2500 tF  (dyne * s)

Appendix 2. Movement of Load on Vertical 
Step
Let us consider the case when load 2m  rotates with angular speed  , 

and load 1m  moves vertically with the speed 1v  .Then 

 0,,0, 12 vbRa  , (1)
As the loads are moving in one plane, then

0,0,0  zzz bar . (2)
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Considering this, from (4) – see section 6), we get: 
 
 






















0

1

1

12 xx

xy

rva
rva

f (3)

or
  xxy rvDaaDf 112 ,,  . (4)

So, from 1m  to 2m  the force (4) is acting. Similarly, let us consider the case, 
when load 1m  rotates with angular speed  , and load 2m moves vertically with 

the speed 2v . Then

 0,,0, 21 vaRb  , (5)

and from ((4) – see sector 6), we get
 















 


0
0

1

21

xyyx rbrbv
f . (6)

So, the force (6) is directed horizontally from 2m  to 1m  and has no influence 
of the vertical movement. 

R2R1

b

a

o

c

Рис. 4.
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Above the assumption was made, that the speed of motion on   the step 
is constant. In fact, this speed varies even with constant angular speed. Let us 
consider this question in detail - see Fig. 4. Find the speed of the body on the 
segment "as". Denote:

.'22','2'

,'1','2',''

222

12

acouuabouu

baouuaocgaaobga



 

Solving the triangle "oab", we find:

 cos2 21
2
2

2
1 RRRRd 

   ,sinsin 2 u

21 uu   .
Radius "oc" rotates with angular speed  . Thus

t 2 .
Solving the triangle "oac", we find

1222 uu   ,

   22212 sinsin uRd  ,

   221122 sinsin uuRR  .
The body’s speed on segment "ab"

 .2

dt
ddv 

Speed of approach of the body to this segment along a circle of radius 1R  is 

equal to 1Rva  , and the rate of removal from it along a circle of radius 2R   

is equal to 1Rva   . At the points "a" and "b" the speeds change their values 
as a result of elastic collision, i.e. without energy loss. 

Fig. 5 shows functions of time vRd ,,, 2222  (in windows 1-4, 

respectively).
Speed of the body along a segment "ab" is substantially higher than 

circular speed. Therefore, above we examined the interaction of the body rising 
vertically with the speed v , and the body moving in a circle with the speed 

1Rva   or 1Rvb  .

1 7 8



Chapter 5.2. Aldo Costa's Gravity Motor

0 0.02 0.04 0.06 0.08
0

0.02

0.04

0.06

0.08

0 0.02 0.04 0.06 0.08
1

1.05

1.1

1.15

0 0.02 0.04 0.06 0.08
0

0.05

0.1

0.15

0.2

0 0.02 0.04 0.06 0.08
1

1.5

2

2.5

Fig. 5.

References
1.  Mogilevsky M. Leonardo da Vinci ... and the principle of impossibility of 

perpetual motion, "Quantum", № 5, 1999 (in Russian),
http://kvant.mccme.ru/pdf/1999/05/kv0599mogilevsky.pdf

2.  Krasnov A.I. Is it possible to a perpetual motion machine? Mosсow, 
1956 (in Russian).

3.  Is Orffyreus created a perpetual motion machine? (in Russian)
http://www.ortopax.ru/2010/11/dejstvitelno-li-orffyreus-sozdal-
vechnyj-dvigatel/

4.  Work gravitational potential field (in Russian)
http://fictionbook.ru/author/aleksandr_frolov/novyie_istochniki_ye
nergii/read_online.html?page=3

5.  Aldo Costa's Gravity Motor,
http://peswiki.com/index.php/Directory:Aldo_Costa%27s_Gravity_
Motor

6.   http://en.wikipedia.org/wiki/Rolling_resistance
7.  Aldo Costa. Movement Perpetual. Patent FR 2745857A1, 1995.
8.   Vlasow V.N. The greatest revolution in Mechanics, 6, in Russian,

http://vitanar.narod.ru/revolucio/revolucio6/revolucio6.html
9.   Dmitriev M.F. Torque Amplifier, WO 2010/062207, 2010.

1 7 9



Chapter 5.2. Aldo Costa's Gravity Motor

10.  Vlasow V.N. The greatest revolution in Mechanics, 5, in Russian,
http://vitanar.narod.ru/revolucio/revolucio5/revolucio5.html

11. Khmelnik S.I. GTR and Perpetuum Mobile Rehabilitation. The 
Papers of independent Authors, ISSN 2225-6717, № 28, 2014; 
and http://vixra.org/abs/1403.0086, 2014-03-12.

1 8 0



Chapter 5.2. Aldo Costa's Gravity Motor

1 8 1



Chapter 5.3. Tolchin's Inertioid

Chapter 5.3. Tolchin's Inertioid
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1. Introduction
The secret of Tolchin's inertioid exists for almost a century. Below 

it is shown that it can be solved using the general relativity theory. A 
technique for inertioid calculation is given. Structural variations are 
proposed.

The term "inertioid" and its structure were invented by V.N. 
Tolchin in the 1930 years. In [1] a detailed description of inertioid and 
experiments with it are given. Inertioid demonstrates an unsupported 
movement. The recognized physical model explains this phenomenon by 
friction forces. However, numerous experiments not confirming this 
explanation are known [2, 7].

Different theories for this phenomenon explanation are proposed 
[3]. But they are rejected by modern science due to the fact that 
unsupported movement is usually considered as impossible because it 
violates Newton's third law and law of conservation of momentum that 
follows from it (in mechanics). The latter is a more general physical law. 
In electrodynamics, this law also considers electromagnetic momentum 
and therefore momentas of material bodies interacting with wave in total 
are not equal to zero [4]. For example, in [5] the interaction of electric 
charges is considered, and it is proved that in this case the law of 
conservation of momentum can be violated in mechanics. In [6] the 
conceptual experiments based on it and which demonstrate an 
unsupported movement are described. This movement is possible due to 
Lorentz forces availability. Such forces are absent in mechanics and 
therefore Newton third law follows from the law of conservation of 
momentum in mechanics.
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In Chapter 1 the Maxwell-like gravitational equations are 
considered. From the basic general relativity equations it follows that, 
Maxwell-like equations are used to describe the gravitational interactions 
in a weak gravitational field at low velocities, i.e. on Earth. This means 
that there are gravitational waves having a gravitoelectric component 
with gE  tension and a gravitomagnetic component with gB induction. 
The gravitomagnetic Lorentz force acts on m  mass moving in a 
gravimagnetic field with velocity (known Lorentz force analogy). It 
follows that Newton third law can be violated in the Earth's gravitational 
field (as well as in electromagnetic field).

Below it is shown that Tolchin's inertioid operation is easily 
explained when considering gravitomagnetic Lorentz force. In addition, 
Tolchin's experiments allow to refine   coefficient value, and this theory 
allows to offer useful inertioid modifications.

2. Mathematical model of Tolchin's 
experiments
An inertioid consists of two 1m and 2m loads and on the levers 

mounted on a movable platform - see Fig. 1. Loads rotate towards each 
other with varying angular velocity (which is provided by actuating 
mechanism). Inertioid motor is powered on in CA section (from 330 to 
360 degrees), and inertioid brake is powered on in DB section (from 150 
to 180 degrees). In this case, the loads velocity is maximal when they are 
located near A point, and is minimal when they are located near B point.

According to author's assumption, the cause of acceleration is that 
the moving loads interact by gravitomagnetic Lorentz forces. The 
Lorentz force is inversely proportional to squared distance between the 
loads. Therefore, this force posseses an essential value only at A and B 
points, where the distance between loads is minimal. In addition, the 
Lorentz force is proportional to loads velocities product. Therefore, the 
Lorentz force at A point (where the velocities are large) is much greater 
than the Lorentz force at B point (where the velocities are small). 
Further, the Lorentz force direction depends on whether the loads come 
close or move away. It should also be noted that the total momentum of 
Lorentz forces acting from the right and left of these points would be 
equal to zero at uniform velocity of loads movement near A and B 
points. But Tolchin provided an abrupt acceleration change precisely at 
these points that creates a non-zero total Lorentz force momentum. As a 
result the inertioid motion becomes intermittent - a strong jump to A 

1 8 3



Chapter 5.3. Tolchin's Inertioid

point and a weak, reverse-directed jump to B point. These processes are 
then analyzed quantitatively.

m2 m1

V1V2

x

O

A

y

B

C

D

--30

150

H

Fig. 1 (T1.vsd)

Chapter 1 shows that the Lorentz force acting from 1m  mass, on 

2m  mass, is defined by the following expression (hereinafter the GHS 
system is used)

    dyne123
21

12 rvv
r
mmk

F g  , (1)

where 

 2c
Gkg


  is coefficient, (2)

 












 
2

3

2

2
8

sg
s

g
sd107

ec
mmyneG  is the gravitational constant,

  secsm103 10c  is the speed of light in a vacuum,

   is gravimagnetic permeability of the medium,
 r  is a vector directed from point 1m  to point 2m ,
 21, vv  is velocities of mass 1m  and 2m , accordingly.
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21, vv  velocities are the velocities of masses relative motion, not 
dependent on system velocity with which the masses are connected. In 
our case, these are the linear velocities of loads rotation on the platform, 
not depending on platform velocity - see Fig. 1.
Let us select in formula (1) the following expression

  rbaf  , (3)
where 

12 , vbva  .
In the right cartesian coordinate system, this expression takes the form of

   
   
   
























yzzyyzxxzx

xyyxxyzzyz

zxxzzxyyxy

rbrbarbrba

rbrbarbrba

rbrbarbrba

f . (4)

Fig. 2 (T2.vsd)

Loads rotate at the same velocity in opposite directions. Therefore
RbRa   , , (5)

where R  - lever length,   - angular velocity. Let us also denote 1m  and 

2m loads’ radius-vectors as br  and ar  respectively. Then

ba rrr  . (6)
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As loads rotate in parallel planes, between which d  distance is kept, and 
the angles of deviation of masses from vertical line are equal, then

0,0,,0  zzzy badrr . (7)
Accordingly, we obtain:


















d
a
a

rbf x

y

xy . (8)

We will be interested in vertical component of this force
xxyy arbf  . (9)

From Fig. 1 it follows that
  12 , AOmAOm

 ,sin,sin
,cos,cos




RbRa
RbRa

yy

xx




.

 0,cos,sin  Rra ,

 0,cos,sin Rrb  . (10)

Consequently,
 dRrrr ba ,0,sin2  , (11)

  22sin2 dRr   . (12)

From (9-11) we find:
 23222 sincos2sin2cos RRRf y  , (13)

32323 sincos2 rRrff yyr  . (14)

From (1, 3) it follows that the force vertical projection is (1)

yrgy fmmkF 2112  . (15)

By virtue of symmetry, two such forces from two loads act on the 
platform, i.e. the following force acts on the platform along its axis, when 
loads rotate towards each other

yrg fmmkF 211 2 , (16)

which is calculated for the fourth quadrant (where C point is located). 
Analogously, in case of loads "scattered" rotation, the force acts

yrg fmmkF 212 2 , (17)

which is calculated for the first quadrant (where H point is located).  
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The total momentum of these forces is equal to zero at equal 
velocities of "counter" and "scattered" rotation. This rule is also observed 
for nonuniform rotation. However, if these "counter" and "scattered" 
velocities are different, then their total momentum isn't equal to zero and 
the platform will move (forward or backward). This movement is 
unsupported, as the Lorentz force has no counteractive force.

3. Quantitative estimations
Let us consider the diagram of 2m  load angular velocities, which is 

represented by Tolchin's structure [1] - see Fig. 3. Here an involute of 
circle from Fig. 1 is shown with the same points designations and angles 
indication. In CA section, a motor accelerates the loads from 1  angular 
velocity to 2  angular velocity, and a brake is powered on in DB section.

0;
360

A BC D AC
150 180 330330

2
1

30

E
0;

360
Fig. 3 (T3.vsd)

Let us consider a selected CAE section in Fig. 3. In CA section, 
2m  load accelerates from 1  to 2  velocity with   acceleration at 

1,0 Tt   time interval, and in AE section - moves at 2  constant velocity 
at 21,TTt   time interval. In Fig. 4 and Fig. 5 the results of this process 
modeling are shown- the following functions are shown

tt   1)( , 
2)( 2

0 tt   , 
 )(),( 12  FF  - see formulas (14, 15, 16),

)(tF  - function which is equal to )(1 F  at 1,0 Tt   time interval, 
and is equal to )(2 F  at 21,TTt   time interval; only vertical 
projections of these forces are shown.

In this case 21, TT  intervals are defined by the formulas:

oTT   22 11
2

1 , 

oT   222 . 
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In the first three diagrams, 1,0 Tt   time interval corresponds to the 
movement in CA section, and 21,TTt   time interval corresponds to the 
movement in AE section. 

It is seen that )(1 tF and )(2 tF forces directed in the opposite 
direction (see window 3) and )()( 12  FF   (see window 4). However, 

the interval is 121 ,0, TTT  . The sum of )(2 tF  and )(1 tF  momenta is 
equal to value

0)()(
2

1

1

2
0

1   dttFdttFS
T

T

T

and acts on a bound pair of 1m and 2m loads changing the platform 
velocity. Or, rather,

vMS  ,
where M  – platform with loads weight, v  - its velocity increase due to 
S  momentum. This momentum has a projection on 'oy' axis. Later, the 

platform in DE section moves at a velocity changed by this momentum.

Table 1.
Variants: 1 2 3 4

Fig. 4 Fig. 5 Fig. 7 Fig. 8
m 100 500 500 500
M 500 5000 5000 5000
d 0.5 1 1 1
R 30 30 30 30

0 330 330 330 330

1 3 1 1 2.7
 100 3 3 -3
 10^23 10^23 10^23 10^23

1T 0.08 0.35 0.35 0.22

2T 0.05 0.26 0.22 0.35

2 11 2 2.7 1

1S 8.7 1.37 1.37 1.73

2S 10.1 1.57 1.73 1.38
S -1.4 -0.2 -0.36 0.35
oS 0.9 0.87 0.79 1.26
v -4.3 -39 -71 69
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Thus, it is possible to determine v  platform velocity momentum at 

each load rotation under given dMRmm ,,,,,, 121   

inertioid parameters and air gravimagnetic permeability under b  
atmospheric pressure. In this case, momenta are calculated by the 
following formulas

212122
0

11 /,,)(,)(
2

1

1

SSoSSSSdttFSdttFS
T

T

T

  .

The results of solution are summarized in Table. 1.
Analogously, we can investigate inertioid behavior at point B. But 

loads velocities near B point are much less than loads velocities near A 
point. Therefore, the Lorentz forces at B point are much less than the 
Lorentz forces at A points - the inertioid receives a large momentum at A 
point and a small oppositely directed momentum at B point.
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Fig. 5 (subaldo5.m, mode=10)

4. Possible modifications
In inertioid description it is declared that the motor is powered off 

at A point - see Fig. 1-3. Let us now consider inertioid behavior when the 
motor is powered off at E point - compare Fig. 3 and Fig. 6. In Fig. 7 are 
given and in Table. 1 the results of solution are shown. In this case, loads 

rotate with   constant acceleration, gaining velocity from 1 A  at 

A point to 2 E  at E point. Comparison of 2 and 3 variants shows 
that a momentum in latter case is much higher than a momentum in 
version 2.

Let us also consider inertioid behavior, if the loads rotate with a 

constant    slowing down, decreasing the velocity from 2 A  

at A point to 1 E  at E point. In this variant 4, a momentum has 
the same value but an opposite sign as compared to momentum in 
variant 3 - Fig. 8 and Tab. 1.

Considering the above, we can propose the following diagram of 
motor power-on - see Fig. 9. The loads are accelerated in CE section 

with   acceleration and are braked in DF section with    slowing 
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down. In this case, the loads at A and B points generate the 
unidirectional pmomenta (directed along AB - see Fig. 1), i.e. loads 
generate a useful momentum at both points of A and B approach.

Thus, if the proposed theory is correct, then inertioid efficiency 
can be substantially increased by the motor power-on time diagram 
change.
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5. Conclusions
Thus, Tolchin's inertioid can perform an unsupported movement 

under gravitomagnetic Lorentz forces action (which was discussed in 
introduction section). However, for this, certain relations must be 
observed between rotation velocities at different sections of rotation 
circle. Tolchin was able to find these relations and implement them in its 
design.
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The proposed theory allows to calculate these relations in advance. 
This fact can be used for theory prooving: if inertioid moves/doesn't 
move exactly in accordance with calculation, then this can be a proof of 
the theory validity. In addition, this theory allows to provide inertioid 
useful modifications. This possibility verification will allow to verify the 
theory validity.

An exact b  value is not yet known. But with inertioid acting, it is 

possible to solve an inverse problem and find b  and then design other 
inertioids.

Lorentz forces, as we know, don't perform the work. However, the 
influence of gravitomagnetic Lorentz forces leads to that the kinetic 
energy of platform appears. Obviously, this energy source is the energy 
of inner motor. This is similar to that the electrical energy is a source of 
additional energy under conductor motion with a current in magnetic 
field (under Ampère force action, which is a consequence of Lorentz 
force). 

An inertioid moves by inertia periodically receiving a momentum 
of Lorentz forces. Therefore, it can still be called as inertioid (although 
inertial forces aren't the driving forces). It should also be called as an 
inertioid, since this name was kept about a century.

y x

z

Fig. 10 (DwePoluokrugnostiZaradow.vsd)
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However, similar to mass motion gravitational problem considered, 
it is possible to consider the same problem of electric charges motion 
(where there is no question about energy source and unsupported motion 
possibility). In [6], a more complicated design with rotating electric 
charges is considered. With a view to above, it is possible to replace the 
electric charges by masses in it - see Fig. 10. These masses rotate 
continuously and evenly. Then we can obtain a construction which, uin 
contrast to Tolchin's inertioid (where the loads move in the plane) can be 
called as three-dimensional inertioid.
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Chapter 5.4. Unusual Fountain

An unusual fountain [1] is installed in England, which constitutes a 
vortex within a transparent cylinder – the Charybdis vortex fountain – 
see fig. 1. There is also an article [2] about another artificial vortex, less 
impressive, but structurally more transparent. The fig. 2 shows this 
vortex in a glass with presentation of its structure. Fig. 3 shows the 
process of formation of this whirlpool. In [2] it is described that in the 
whirlpool a surface layer is absorbed - plastic balls or oil film. We may 
also indicate a natural phenomenon resembling the unusual fountain [3] – 
see fig. 4.

Fig. 1.

To the author's knowledge such phenomena have no strict 
mathematical description. Chapter 4.5 proposes a mathematical model of 
the flow of water into the funnel and from the pipe. In this case, the 
MGM equations were used. The interaction between the moving masses 
of water was described by GL-forces. Further arguments are similar to 
those given in Chapter 4.5.
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Fig. 2.

a b c d
Fig. 3: a - a glass with fresh water, b - engine connection and the 

appearance of a vortex funnel, c - an incomplete vortex funnel, d - a full 
vortex funnel

Fig. 4.
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The mathematical model of an unusual fountain completely 
coincides with the model of a dusty vortex of noncylindrical form - see 
Chapter 4.1, Section 7. In this model )(zR  is radius of a vortex, and in 
this case )(zR  is radius of an unusual fountain is a function of cross-
section at altitude z . Therefore, for any function )(zR  mathematical 
model can be constructed.

Consequently, it can be argued that the equations of 
gravitomagnetism are confirmed experimentally. This confirms the 
existence of significant gravitomagnetic forces and gravitomagnetic 
energy flux.
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Chapter 5.5. Taylor Vortex
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1. Introduction
The theoretical justification for Taylor vortex is considered below. 

The proposed mathematical model allows constructing a flow structure 
between cylinders where correctly alternating vortices with right and left 
rotation and axes parallel to peripheral velocity of rotating cylinder 
direction.

z

r


R1

R2
 

Fig. 1.
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Chapter 5.5. Taylor Vortex

In [1] the classical Taylor experiment is described - see Fig. 1, where 
two cylinders and viscous fluid in the gap between them are shown. The 
outer cylinder with a radius of dRR i 2  is fixed, and inner cylinder with 
a radius of iRR 1  rotates and thereby creates iU  basic flow.

At a certain rotation velocity in the gap "between cylinders the 
correctly alternating vortices with right and left rotation and axes parallel to 
peripheral velocity of rotating cylinder direction arise." These vortices roll 
full-circle and don't change between two circles. In [1] various experimental 
studies of such a flow are described, but its mathematical model is absent. 
Apparently, it cannot be constructed on the basis of known equations of 
hydrodynamics. A mathematical model of such a flow, constructed based on 
assumption that, in addition to known mass forces, gravitomagnetic forces 
appear in flowing fluid, which depend substantially on motion speed is 
suggested below.

2. Mathematical model
Taylor's design has the massive currents. Let us denote their 

densities as zr JJJ ,,  . These mass currents create such gravitomagnetic 
tensions as zr HHH ,,  . Densities of mass currents and gravitomagnetic 
tensions should comply with Maxwell-like gravitational equations for the 
standard case, happened in our task. These equations for in zr ,,   
cylindrical coordinates have the form (see (2.6.1-2.6.5) in Chapter 2) of:
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In order to shorten the record, we will use the following designations:
)cos( zco   , (9)

)sin( zsi   , (10)

where  ,  - some constants. Appendix 1 shows that there is a solution 
which has the following form:
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 corjJ rr . , (11)

sirjJ )(.   , (12)

sirjJ zz )(.  , (13)

 corhH rr . , (14)

sirhH )(.   , (15)

sirhH zz )(.  , (16)

where )(),( rhrj - some functions of r  coordinate. In Appendix 1 it is 
shown that this solution of 5 equations (4-8) with 6 )(),( rhrj unknown 
functions can be found at a given )(rj function.

Function )(rj describes the mass currents. These currents arise in 
a given construction due to viscous forces. These forces are distributed 
full circle and this distribution depends on that which of cylinders 
rotates, dragging the nearby layers of water by viscous friction. 
Obviously, the rotation speed will decrease towards fixed cylinder.

We will not analyze these relationships, but suppose that in general 
)(rj  function has the following form:

brarj )( , (17)

where ba,  - known coefficients.

Example 1.
Fig. 2 (mode = 4) shows the graphs of 

)(),(),(),(),(),( rhrhrhrjrjrj zrzr   functions in design gap. These 
functions are calculated iteratively under given 63,4   , 

1,9.0 21  RR wire radius and rrj  3.0)( function. The first 
column shows )(),(),( rhrhrh zr   functions, and the second column 
shows )(),(),( rjrjrj zr   functions. Together with )(rjz  function, the 
following function is dotted

)sin(2 rjzt  , (18)

and together with )(rjr  function, the following function is dotted
 )9.0(25))cos(1(2  rrjrt  . (19)

It is seen that, )()( rjrj rtr  , )()( rjrj ztz  . Consequently, there is a 
solution of equations (4-8), wherein

 zrjzJ rtr   cos)()( , (20)
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 zrjrJ ztz   sin)()( . (21)

- see also (9-12).
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Example 2.
In Fig. 3, under conditions of Example 1,  )()( rJrJ zr   field of 

currents in vertical section of construction gap is shown. Vortices 
correctly alternating with right and left rotation are seen. This follows 
from (20, 21). From Fig. 3 it follows that the mass currents, i.e. fluid 
streams make circular motions in the gap. 
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Example 3.
Basic current iU converts fluid circular motions into the spiral 

motion with an axis - a circle passing along the central line of circular 
gap. Fig. 4 shows  )()( rJrJ zr   vector field of currents in a segment of 
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such a spiral. This segment corresponds to the section of toroidal helix in 
Fig. 1. Vector field is shown only for one radius of this torus. Blue 
dashed line represents a torus with this radius, and red dashed line unites 
 )()( rJrJ zr   vectors’ ends coming from the blue line.

The nature of motions considered corresponds to motions 
observed in experiments - see Fig. 1. Consequently, it can be argued that 
Taylor vortices are explained by gravitomagnetism. The influence of 
gravitomagnetic forces increases with motion speed increase. Therefore, 
a laminar flow is observed at low speeds, but with speed increase, the 
gravitomagnetic forces become very important. The turbulence appears. 
With further velocity increase, these forces begin to prevail and organized 
vortices arise.

Appendix 1
A solution of equations (3.4-3.8) in the form of functions (3.11-

3.16) is considered. Further, the derivatives of r will be indicated by line 
marks.

From (3.4) we find:

0)(
)(

)()(
 corjco

r
rj

corjco
r
rj

zr
r  (1)

or 

0)(
)(

)()(
  rj

r
rj

rj
r
rj

zr
r . (2)

From (3.5, 3.6, 3.7) we find:
    0)(

)(
 rh

r
rh

rh
r
rh

zr
r  , (3)

 ,)()(1 rjrhrh
r rz    (4)

  ).()( rjrhrh zr   (5)

From (3.8) we find:

  )(1)(
)(

rjrh
r

rh
r
rh

zr  
 . (6)

Thus, we have obtained 5 equations (2-6) with 6 
)(),( rhrj unknown functions. Therefore one of the functions can be 

defined arbitrarily. We define )(rj  function. In this case, an algorithm 
for solving these equations is as follows:
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1. Set the initial (at 0r ) zero values of functions listed above, 
except for )(rj .

2. Define )(rj  function.
3. From (2) we find:

0)(
)()()(   rj

r
rj

r
rjrj z

r
r . (7)

drjjj rroldr  . (8)

5 From (5) we find:
  rhrjrh rz  )()( . (11)

drhhh zzoldz  . (12)

6. From (4) we find:
    rjrrhrh rz  /)()( . (13)

    rjrrhrh rz  /)()( . (14)

7. From (6) we find:

 
 rh

rr
rh

rhrj rz 
1)(

)()( . (15)

8. Go to p. 2 with the new value of r  variable.
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1. Introduction
Instead of introduction, we raise several very brief quotes from 

introduction to Hutsol's article [1], which concisely characterize the 
situation with scientific justification for this effect. 

Ranque effect, which lies in the fact that in vortex tubes of sufficient common 
geometry the gas flow separation into two occurs, one of which is peripheral - has a 
temperature above original gas temperature and the second is central with a lower 
temperature accordingly is known. This effect seems even stranger if it is remembered 
that ... Archimede's buoyant forces would have to lead to hotter gas "floating" in the 
vortex center. Gases temperature separation effect was discovered by Ranque in 
1932.... An intensive experimental and theoretical study of this effect ... continues to 
the present day. Effect technical simplicity stimulated the activity of inventers.... The 
range of designed and used devices ... is extremely wide, and their capabilities are 
impressive.... As for attempts to find an irrefutable scientific explanation for the effect 
itself, publications on this topic continue to the present day. Thus, over the last 15 
years ... (further Hutsol refers to 21 publications - articles, theses, books). ... 
Apparently, such explanation for the Ranque effect, which would be recognized as 
indisputable isn't found. Ranque effect is an "unexpected phenomenon", the nature of 
which "still seems mysterious," according to leading experts in aerodynamics of vortex 
flows.

Further, Hutsol [1] considers the existing theories, shows their 
"inherent defects and contradictions in experimental data description," 
and then offers his own theory. However, another anonym in [2] notes 
the shortfalls of this theory, as well as several others.

The author doesn't begin to discuss the above statements and cites 
them only to confirm the need to find a new theoretical justification of 
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Ranque effect. And offer (as usual) his theory, explaining the Ranque 
effect including a completely different area of physics.

The same anonym in [3] formulates a very profound observation:
Traditional hydrodynamics tacitly based on axiom that the true mode of fluids 

and gases motion is a laminar current, and turbulence is regarded as its violation 
caused by a particular restriction of its "freedom". However, based on the fact that the 
current that was laminar in a relatively narrow channel, when removing the walls that 
limit it and remaining the previous velocity begins to swirl, it is logical to conclude that 
exactly vortex flow is a "natural" mode of fluids and gases motion, and it becomes 
forcedly laminar - just under the influence of environmental constraints! It is enough to 
look at Reynolds number formula - generally accepted criterion of flow laminarity or 
turbulence - in case of constant flow rate it increases proportionally to pipe diameter, 
which means that the current becomes more turbulent. A fluid whirling at a high 
velocity in a narrow tube is laminar, and even slow currents in the limitless ocean are 
accompanied by rotary streams and vortices - the same slow, low-observable and safe as 
flows that have generated them.

This statement about "the priority of turbulent motion" will also be 
justified in proposed theory.

2. Maxwell-like gravitational equations of 
Ranque pipe

r

fi

214
6

5

3

7
8

Fig. 1.

Here we consider only the direct-flow Ranque pipe - see Fig. 1 [1], 
where

1 – cylindrical pipe,
2 – swirler for fluid or gas feeding tangentially to pipe 

circumference,
3 – input flow,
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4 – choke dividing the total flow into the central flow 5 and 
external flow 6,

7 – pipe section with swirler 2,
8 – smooth cylindrical pipe section (smooth area)

zr ,,   – cylindrical coordinates.

The main task is to explain why the internal energy of central flow 
5 is much less than the internal energy of external flow 6.

The mass currents exist in pipe. Let us denote their densities as
zr JJJ ,,  . These mass currents generate zr HHH ,,   

magnetogravitational tensions. Mass currents and tensions densities 
should comply with Maxwell-like gravitational equations. For the 
stationary case, which takes place in our task, these equations in 

zr ,,   cylindrical coordinates are the following (see (2.2.1-2.2.5) in 
Chapter 2):
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It can be assumed that the field is uniform along oz  vertical axis. 
In Appendix 1 it is shown that in this case the system of equations (3-6, 
8) can have the following solution:

rJrjJ or  
2
1)cos(

2
.  , (9)

rJrjJ o   )sin(. , (10)

    ozz JhJ   cos21 2 , (11)

)sin(
2

. 
rhH r  , (12)
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2
)cos(. rJrhH zo  , (13)

22

2
1)sin(

2
1 rJrjH oz    . (14)

where  hj ,, , oJ , zoJ - some constants determined by design and 
input flow.

3. Pipe section with a swirler
oJ  mass current can be defined in this section as a value 

proportional to input flow 3. zoJ  mass current can be defined as a value 
proportional to oJ  mass current and a constant along the length of this 
section (because this length is small). Finally, for a given zoJ  by (3.11), 
we can find zJ . So, without getting into details of calculations, it is fair to 
say that there is a mass current (3.11) directed along oz axis at this 
section output.

 Fig. 2
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4. Smooth pipe section
So, at the input of smooth section there is a mass current (3.11) 

directed along oz  axis, and a mass current with oJ  density is absent (
0oJ ). At that, by (3.9, 3.10, 3.11-3.14) we can find

zrr HHHJJ ,,,,  , since from (3.11) ozz JhJ ,,  are known. 
Assuming that j  constant is also known, let us consider the solution 
obtained. Fig. 2 shows the graphs of functions - zr JJJ ,,  respectively, 

when 6 , 1,1   hj , 0oJ , 20zoJ .

5. Energy flows
The density of gravitomagnetic energy flow is a gravitomagnetic 

Poynting vector
HES  , (1)

where E  gravitational intensity is associated with mass current density, as 
well as electrical intensity is associated with electric current density, i.e.

JE   , (2)

where   - resistance to mass flow caused by fluid viscosity. Combining 
(1, 2), we obtain:

HJS   . (3)
Vector product (3) in cylindrical coordinates is the following:
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Under known HJ , , we can find S  . Fig. 3 shows the graphs of 
functions (4) when 2 . Fig. 4-6 show the graphs of  zr SSS  ,,   
functions, respectively, when 6 , 1,1   hj , 0oJ , 20zoJ .
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Fig. 3.

The average density of energy flow for each circle can be denoted 
as  zmidmidrmid SSS  ,,  . Fig. 4 shows the graphs of  zmidmidrmid SSS  ,,   

functions depending on radius when 6 , 1,1   hj , 0oJ , 
20zoJ .
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Fig. 4. 

From these graphs it follows that energy flows in the central 
section (at small radii) are close to zero. Srmid and Sfmid energy flows 
are consumed for the thermal losses in  resistance, i.e. for viscous 
friction. These losses determine the temperature of central and external 
flows. It follows that

internal energy of the central flow 5 is substantially smaller 
than internal energy of the external flow 6.

Appendix 1. 
The solution of equations (3.3-3.6, 3.8) is considered. From 

physical considerations it is clear that the field must be uniform along the 
vertical axis, i.e. the derivatives according to z  argument must be absent, 
and therefore equations (3.3-3.6, 3.8) should be rewritten as follows:

01











H

rr
H

r
H rr , (1)

,1
r

z JH
r







(2)

,Jr
H z 



 (3)

211



Chapter 5.6. Ranque Effect

,1
z

r JH
rr

H
r
H












 (4)

01











J

rr
J

r
J rr (5)

Let us suppose that
)sin(. rhH rr  (6)

rHrhH o   )cos(. (7)

From (1, 6, 7) it follows that:
      0sinsinsin

 
hh

r
rh

r
r , (8)

Consequently,
2hhr  . (9)

From (4, 6, 7) it follows that:
 . (10)

From (9, 10) it follows that:
    zoz JhJ   cos21 2 , (11)

ozo HJ 2 .              (11а)

Let us suppose now that
rJrjJ rorr  )cos(.  , (12)

rJrjJ o   )sin(. . (13)

From (5, 11, 12) it follows that:
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Consequently, 
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2oro JJ  .            (15а)

Let us suppose that
22

2
1)sin(

2
1 rJrjH oz    . (16)

From (12, 15, 15а) it follows that the conditions (2, 3) are met which take 
the form of:
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Thus,
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rJrjJ or  
2
1)cos(

2
.  , (12)

rJrjJ o   )sin(. , (13)

    ozz JhJ   cos21 2 , (11)

)sin(
2

. 
rhH r  , (6)

2
)cos(. rJrhH zo  , (7)

22

2
1)sin(

2
1 rJrjH oz    . (16)
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1. Facts
There are several facts which present the sound influence on gravity 

force. There are also the theories explaining these facts, but all of them 
are out of existing physical paradigm. An explanation of these facts using 
Maxwell-like gravitational equations is proposed below.

Fig. 1.

1.1. Stone sculptures moving in Ancient Egypt 
[1]. "To this day, the drawings of Egyptian hieratic structures with 

images of large stone sculptures moving have been preserved. From the 
above-mentioned (see Fig.1) - it can be seen that a small part of people 
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are pulling the platform on which the sculpture of the Pharaoh is 
installed, and they support it from overturning, while the other part of 
people stand apart with sound instruments in their hands which are 
necessary for Platform levitation with sculpture. ... the platform with its 
skids just lightly touched the ground, facilitating its transportation. "

1.2. The coral castle - a complex of huge structures with a total 
weight of 1100 tons exist in California. The author and castle builder 
Edward Lidskalninsh built it manually, with no use of machines, arguing 
that he discovered the secret of pyramids biulders. Neighbors, who 
sometimes could observe the construction progress, say that Edward 
moved huge blocks over the air with a wet finger and sang songs to his 
stones [2].

Fig. 2.
1.3. The so-called perpetual motion machine of John Keely [3] is 

known. Schematically it can be represented as follows. There is some 
structure, which called by the author as sympathetic transmitting device, 
and containing a lot of tuning forks. "A cylindrical glass vessel with a 
height of more than one meter, filled with water is located near it. The 
vessel lid, also made of metal, is connected to sphere by a thick wire 
made of gold, silver and platinum. Three metal balls, each weighing about 
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a kilogram lie at the bottom of vessel". "The inventor comes to 
sympathetic transmitting device, and tuning forks begin to vibrate, arms 
begin to turn round... Suddenly, a trumpet sounds briefly, and a ball on 
the bottom of vessel begins to wiggle, then slowly breaks away from the 
bottom and uprushes through water column. Then it strikes against the 
lid, rebounces, rises up again and, finally, calms down, tightly snuggling 
to it." Keely built many other elegant and expensive structures the 
mechanical motions in which are excited by certain melodies-see, for 
example, Fig.2.

1.4. Levitation in Tibet. In [4] the following case is described. "250 
meters from the rock, opposite to cave, a polished stone flag with 
rounded cavity was located. A stone block 1*1*1.5 meters in size was 
submerged into cavity by a group of monks with the help of yaks." 
Monks with 19 musical instruments, among which there were 13 drums 
and 5 trumpets, got into arc of 90 degrees before the stone. … All the 
drums were opened from one end, fixed on columns and oriented to 
stone. The monks beaten the drums with large leather beats. The monks 
also strung behind the instruments. They began to sing and play musical 
instruments. After about 4 minutes, when the sound reached a certain 
level, a large stone located in arc focus moved up stately and floated in 
the air upward to the rock where other monks took the stone. The flight 
took about 3 minutes. And it was not the only case. Monks continued to 
do this trick with velocity of 5 or 6 stones per hour. One of the stones is 
destroyed, which shows that sound resonance effect can cause a 
destruction. Another interesting aspect of this levitation is the small 
amount of energy necessary for this - ... we can calculate that a power of 
about 0.01 watts acts on the stone, ... and a stone weight is over 4 tons. A 
power of about 52 kilowatts is required for stone rise for 3 minutes."

2. Electrotechnical experiments
2.1. Ring with a current above the plane
At first let us consider the first electrotechnical experiment - see Fig. 

3, which shows A  conductor ring with U  ac voltage source and 
CDEF  metal board the plane of which is parallel to ring plane. 1J  
alternating current passing through A  ring induces 2J  induction 
current in CDEF board. In the first approximation, at sufficiently small 
d  distance between the ring and board, it can be assumed that 2J  
current flows along the annular closed B  circuit, and R  radii of A  and 
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B  rings coincide. 1J  and 2J  currents are opposite in direction (phase-
shifted by 2/ ) and therefore repelled with some F  force. If board is 
massive, it remains stationary, and A  ring rises by this force over the 
board. 

U
A

ED

C F

B

J1

J2

R

d

F

Fig. 3.

This experiment can be more strictly described as follows 
(hereinafter the GHS system is used). magnetic flow passing through 
A  turn area, along which 1J alternating electric current flows is,

c
RJ12

 . (2)

Electromotive force generated by magnetic flow in B  circuit is,

dt
d

c



1 , (3)

The strength of inductive electric current in B  closed circuit is
2J (4)

or

dt
d

c
J 



1

2  (5)

or, finally,
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

c

J 
2 , (6)

where   - B  loop resistance,   - 1J  current circular frequency. When 
calculating the force of two rings of R  radius attraction, in order to 
simplify the task, we replace them by two squares with R  half-side. Then 
in a vacuum and when dR  we obtain [5]:

dc
RJJF 2
2116

 . (7)

Combining (2, 6, 7), we obtain

dc
RJ

dc
RJF













4

22
1

4

22
1 10032 . (8)

Example 1. It will be recalled that this formula refers to GHS 
system. At that   

[GHS].
10
c1[A][GHS],

с
101[Om] 2

9

  

Then from (8) we find:

d
RJ

dc
RJF

















9

22
1

4

22
1

10
100 , (9)

where the currents and resistances measured respectively in amperes 
and ohms. Let us assume that

100[A].J0.01[Om],ρ

10[cm],d100[cm],R1000,ω

1 


 

Then from (9) we find:

1000[dyne]
0.011010
1001001000

dρ10
RJωF 9

22

9

22
1 








 .

If A and B rings' resistances are equal, then the heat losses power in 
A ring is

21Jp  . (10)

Then, as follows from (8),
pF  , (11)

where

24

2100



dc
R

 . (12)
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Thus, A ring lifting force is proportional to heat power released in this 
ring.

Example 2. Let us find  , under conditions of Example 1. In this 
example

[GHS].
с
100.010.01[Om]ρ 2

9


We have 10103c . Then 

[GHS].10[GHS]
103
100.01ρ 14
202

9



  

From (12) we find

6
28404

2

24

2
10

1010103
1001000100100 
 



dc
R


 . 

Consequently,  sec]/[][ ergpdyneF   or  ][10][ 7 WpdyneF  . 
Thus, in this example  ][10][ WpdyneF  . Indeed, in example 1 

][1002
1 WJР    and ][1000 dyneF  .

2.2. Two planes
Let us now consider an electrotechnical experiment (see Fig. 4), in 

which there are two metal boards 1 and 2. Metal board 1 is penetrated by 
  external variable magnetic flow. In this board, the eddy currents flow. 
It is extracted from the trajectories of such a current as A ring. The 
current in this ring induces a current in B ring of the metal board 2. It 
was demonstrated above that, in this case, A ring experiences a lifting 
force (11), depending on heat power consumed in this ring. The board 1 
contains a set of A rings. Consequently, the board 1 experiences a lifting 
force (11) proportional to the total heat power consumed by all eddy 
currents flowing in the board 1. In this case the proportionality factor 
(12) depends on R  mid-radius of eddy current paths.

Example 3. Let us find  , under conditions of Example 2. In this 
example ].[1001.0 29 GHSс  We have 10103c . Then 

].[10 14 GHS  From (12) we find 6
28404

2

24

2

10
1010103
1001000100100 

 



dc
R


 . 

Consequently,  sec]/[][ ergpdyneF   or  ][10][ 7 WpdyneF  . 
Thus, in this example or  ][10][ WpdyneF  . Indeed, in example1

][1002
1 WJР    and ][1000 dyneF  .
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1
B

J2

d

A

J1

F 2



Fig. 4.

З. Gravitomagnetic analogies
3.0. Introduction
In Section 2, some electromagnetic phenomena (which aren't 

beyond the scope of the classical theory) are considered, and in Chapter 1 
an analogy of electromagnetism and gravitoelectromagnetism is 
considered. On the basis of this, it is shown below that similar 
phenomena in the field of gravitoelectromagnetism can exist. In 
particular, it is shown that

1) acoustic waves in a rigid body generate an alternating mass 
current much as alternating magnetic flow generates the eddy 
currents in metal;

2) alternating mass current in one rigid body excites the 
gravitomagnetic waves that induce an alternating mass current 
in another rigid body;

3) mass currents of two bodies generate the forces of these 
bodies repelling, similar to forces of two conductors with an 
electric current repelling.

These phenomena allow to explain the above facts in that sound 
waves in a rigid body generate the lifting forces. Indeed, sound waves in a 
rigid body are related to body particles vibrations and can therefore be 
considered as a mass current (much as charged particles vibrations is an 
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electric current). This current frequency is a sound frequency. Sound 
waves velocity in a rigid body can reach significant values, and their 
intensity can be amplified when a sound resonance of material occurs-for 
example, at a sound resonance of steel, the sound waves velocity reaches 

sec]/[106 5 cm  values [6]. Thus, air sound vibrations can create an 
intensive mass current in a rigid body. Let us also note that sound waves 
in a rigid body increase the bode temperature, i.e. sound waves mass 
current releases the energy similar to energy release when an electric 
current passes through electrical resistance. In this regard, we can talk 
about the "mass" resistance of rigid body material.

3.1. Ring with a mass current above the plane
Let us now suppose that Fig. 3 shows the mass currents. 1gJ  

alternating mass current flows along A  ring. In Chapter 1 it is shown 
that in this case the gravitomagnetic flow passes through the ring A  area

c
RGJ g

g
12

 , (13)

where 






 
 

2

2
8

g
cmdyne107G  - gravitational constant. This formula 

differs from the similar formula (2) by G  coefficient in electrodynamics. 
A gravitomagnetic flow in B  circuit generates the following 
gravitomoving force

dt
d

c
g

g



 , (14)

where   - gravitational permeability. This formula differs from the 
similar formula (3) by   coefficient in electrodynamics.  In vacuum, 

1210  coefficient, but with pressure increase, sharply decreases. 
Further similar to previous one we have:

gggJ 2 (15)

or

dt
d

c
J g

g
g







2 (16)

or, finally,

g

g
g c
J


 

2 . (17)

Using the formula (7), by analogy we obtain
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dc

RJJ
F gg
g 2

2116
 . (18)

Combining (14, 15, 18), we obtain

dc

RGJ

dc

RGJ
F

g

g

g

g
g


















4

22
1

4

22
1 10032

. (19)

Reasoning as before, we find the following heat losses power in A ring

ggg Jp 21 (20)

and a force
ggg pF  . (21)

where

dc
GR

g
g 24

2100

 

 . (22)

Thus, a lifting force of A ring, through which an alternating mass 
current flows, is proportional to heat power generated in this ring.

So, a lifting force acts on a tubular ring with pulsating mass 
current, located above the massive plane. An alternating mass current can 
be generated through passing a portion of liquid with a certain frequency 
along the ring. Another ring construction with a mass current is 
described in Chapter 6.1. Here the ring is considered as a fragment of 
plane - see below.

3.2. Two planes
Let us now consider Fig. 4, where (contrary to previous one) two 

solid boards 1 and 2 are shown. The board 1 is penetrated by   
alternating current of sound waves. In this board, the mass currents, 
analogous to eddy currents arise in electrical engineering. Reasoning as 
before, it can be argued that these mass currents induce the mass 
currents in the board 2. Consequently, the board 1 experiences a lifting 
force (21), proportional to the total heat power, consumed by all mass 
currents flowing in the board 1. The proportionality coefficient (22) in 
this case depends on R  mid-radius of these mass currents paths.

Comparing (12) and (22), we note that in case of equal ppg  heat 

powers and equal ppg   resistances, the forces developed in gravitotechnical 

and electrotechnical structures are related as G  .
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Example 4. Let us find  , under conditions of Example 3. In this 
example ].[10 14 GHSg

  For vacuum 
4812 10710710  G . From (22) we find 

1.010710 46  g . Consequently, 

 sec]/[][ ergpdyneF ggg   or  ][10][ 7 WpdyneF ggg  . Thus, in this 
example or  ][10][ 6 WpdyneFg   or  ][10][ WpNFg  . If (as in 
example 1), ][100Wppg  , then ][1000 NFg  .

This example shows that the lifting force can be very significant. 
However, here it is necessary to make two remarks.

1) Resistance to mass current is currently unknown. Perhaps it 
essentially (in one or another direction) differs from the 
resistance to electric current.

2) Gravitational permeability rate under normal pressure ratings is 
much lower than accepted in example foe vacuum. But it can be 
assumed that a gravitational permeability of air for a 
gravitomagnetic wave increases substantially if air fluctuates at a 
frequency of this wave (what is valid in facts under discussion).

Thus, a lifting force acts on a massive plane 1 arranged above the other 
massive plane massive 2, if this plane 2 is exposed to radiation by 
intensive sound wave from below.
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Chapter 6. Experiment Projects

Based on the above-said, we propose the projects of some 
experiments which can confirm (or confute) the proposed theory. The 
experiments, which can be a prototype of industrial technical device, are 
also proposed.

Author would participate in such experiments with pleasure. You 
are welcome with your suggestions at:

solik@netvision.net.il
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Chapter 6.1. Gravitomagnetic 
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1. Porous charged ring rotation
In [1], a rotating charged disk exciting a magnetic field is 

considered. Eichenwald designates these rotating charges as convection 
current. His experiment allows to state that a normal electric current, 
convection current, a rotating electric field and a rotating charged disk 
uniformly excite the magnetic field. 

With a view to Eichenwald experiment, let us consider the porous 
metal and electrically charged ring with R  average radius. Obviously, the 
charges are located on pores surfaces. It can be approximately assumed 
that charge distribution density along the ring circumference is described 
by the following function

))sin(1()(   o , (1)

where
o  - constant,

  - angular coordinate,
  - "wave" length, depending on the average distance between 

pores.
If to put ring in rotation with a certain   angular velocity, then 
tt  )( density of charges distribution along ring circumference 

becomes a function of t time in the form of
))sin(1()( tt o   , (2)

A current flowing through the ring is
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)cos()()( t
dt
tdtJ o 

 . (3)

This current generates a magnetic flow perpendicular to ring plane. The 
average magnetic induction of this flow in terms of ring area is 
determined in CGS system by the following formula

R
)(2)(



c
tJtB 

, (4)

Consequently, the average magnetic induction of rotating charged porous 
ring in terms of ring area is

 cRtB o )cos(2)t(   . (5)

2. Massive disk rotation
By analogy, it is fair to say that a rotating porous ring creates a 

mass current

)cos()()( tm
dt
tdmtJ og   . (6)

The average gravitomagnetic induction of this flow in terms of ring area 
is determined in CGS system by the following formula (see formula 
(1.2.4) in Chapter 1):

cR
JG

B g
g

2
 . (7)

Then from (7) we find that this current creates a variable gravitomagnetic 
induction 

 cRtGmB og )cos(2   . (8)

In Chapter 1 it is shown that in this case a gravitomagnetic flow passes 
through A   ring area - see (1.2.1.4a):

c
RGJ g

g

2
 , (8а)

Consequently, it is fair to say that a rotating porous ring creates the 
gravitomagnetic induction (8) and gravitomagnetic flow (8a). 

Obviously, a rotating solid disc made of porous material also 
creates a gravitomagnetic induction. Thus, the rotating porous disk 
generates a gravitomagnetic induction. This statement is equivalent 
to the following:

the rotating porous disk is a constant 
gravitomagnet
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Hence it follows that rotating porous disks, being gravitomagnets, 
should be attracted or repelled. 

As any material isn't solid, then this statement can be extended to 
any disk. However, its gravitomagnetic properties will be weakly 
expressed. Hence it follows that rotating disks, being gravitomagnets, 
should be attracted or repelled. Such phenomena are observed. The 
question of rotating bodies interaction was considered in detail by Etkin 
in [2, 3], where a theory that explains this phenomenon in other ways is 
also proposed.

Let us accentuate once again that effect of rotating discs 
attraction/repulsion should be the most manifested if the discs are 
porous or, more generally, discontinuous. Discontinuity can be created 
by nonplanar disk configuration. Exactly such discontinuity of disks was 
realized in Samokhvalov's experiments - see Chapter 5.1.

Finally, the effect of rotating disks attraction/repellency should be 
much greater in a vacuum, since gravitomagnetic induction is 
proportional to   gravitomagnetic permeability, which increases sharply 
with atmospheric pressure decrease - see Chapter 5.1.

3. Experiments
Based on the above, we can perform experiments that will allow to
 calculate the gravitomagnetic induction of various disks 

depending on rotation speed and pressure,
 calculate   gravitomagnetic permeability depending on 

pressure.
First of all, note that there is a wide variety of porous materials for 

porous discs production - see, for example, [4]. Wooden discs are also 
porous, and the most porous is the oak disc. Another way of porous 
discs production is to make a package of identical thin discs perforated 
with many holes. In a package such disks should be shifted relative to 
each other for some small angle. The porous disk, made in one or 
another way, becomes a constant gravitomagnet when rotating.

3.1. Gravitomagnetic induction measurement
Fig. 1 shows the measuring apparatus, where 1 - disk, 2 - electric 

motor, 3, 4 - tube, 5 - hinge, 6 - pump, 7 - tank, and 8 - water.
Disc 1, rotated by electric motor 2, is a gravitomagnet with gB  

gravitomagnetic induction. Pump 6 pumps water 8 from the tank 7 
through the tube 3, thereby creating gJ  mass current.
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A gravitomagnetic Ampere force acts on a conductor-tube 3 with 
gJ mass current in a gravitomagnetic field with gB gravitomagnetic 

induction (see (1.2.20) in SI system):

ggag BJ
c

F 1
 , (9)

2 8

1

3

4

5

55

6

7

8

gJ
gB

gB


Fig. 1.

This force acts on the length of tube 3 located above the disk 1. 
Hinges 5 allow a tube 3 to slant off into position 4.   deflection angle 
allows to determine agF  force intensity.

gJ  mass current in this experiment is also known. Therefore, agF  
force measured in such  way allows finding the following gravitomagnetic 
induction

gagg JFсB  , (10)

3.2. Gravitational permeability measurement
Fig. 2 shows the measuring apparatus, where 1, 2 - disks, 3, 4 - 

electric motors, 5 - spring, 6 - housing.
Disc 1 with electric motor 3 is a gravitomagnet A, and disk 2 with 

electric motor 4 is a gravitomagnet B. Gravitomagnet A is fixed on the 
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bottom of housing 6, and gravitomagnet B is suspended on spring 5 to 
housing cover 6.

When switching-on the gravitomagnets they are attracted or 
repelled depending on disks rotation direction. The force of 
attraction/repellency is calculated depending on L  length of spring 5 or 
z  distance between disks 1 and 2.

3

L6

5

4

2

1
z

Fig. 2.

F  force measured in this way is proportional to 
dzdBg derivative, i.e.

dz
dB
kzF g)( , (11)

where k  is some coefficient. As gB  gravitomagnetic induction can be 
measured in experiment 3.1, then k  coefficient can be found by the 
formula (11), i.e.

dz
dB

zFk g)( , (12)

  gravitomagnetic permeability is proportional to gB  gravitomagnetic 
induction, i.e.
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gqB , (13)

where q  coefficient is determined by the disk size. For example, for the 
ring this coefficient can be found from (7). From (11, 13) it follows that

dz
zdkqzF )()( 

 , (13а)

Consequently, the experiment will allow finding the dependence of

  dzzF
kq

z
z

 
0

)(1 . (14)

An actual gravitational permeability at p  given pressure is









 



dzzF
kq

p
z

z 00
)(1)( lim . (15)

A gravitational permeability of vacuum is
 )()0( lim

0p
p



 . (16)
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1. Introduction 
In Chapter 3 it is proved that the source of gravitational forces can 

perform work and this doesn’t contradict the physical laws. Many of long 
proposed designs can be explained from these positions. However, they 
are not continuously operating machines for the simple reason that 
incoming gravitational energy is less than friction forces work.

In Chapter 5.2, a substantiation of Aldo Costa's wheel performance 
and its calculation are given. The large dimensions of device, which Aldo 
Costa shows, are apparently explained by the size of switches - they are 
complex, and hence large. In addition, they are complex, and therefore 
require a constant fine adjustment, which complicates operation.

Below a much less complex and compact design is proposed. 

2. Schematic diagram
Wheel schematic diagram can be represented in the form shown in 

Fig. 1. It is a tube in which the loads are moving. These loads are 
threaded on spokes, and these spokes are fixed on sleeve so that the 
angles between each pair of spokes are equal to each other. The tube has 
a slot that allows the spokes to rotate full-circle.

Lorentz forces arise between loads m1 and m2, moving at different 
velocity full circle and along the "step". The resultant of these forces 
rotates the weight m1 - see Fig. 2.
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Fig. 1 (Aldo3.vsd (2)).
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m2 m1
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v2

Fig. 2 (Aldo7.vsd).
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R1

R2

R3

H

Z

S

Fig. 3 (Aldo8.vsd).

Less complicated tube configuration is shown in more detail in Fig. 
3. It can be seen that it consists of three circle parts and linear 
conjugation. This variant differs by the fact that there is no lower linear 
"jump" in it.

There are calculating formulas, but for their application it is 
necessary to perform, at least one experiment in order to obtain a 
reference point.

3. Experiment execution
Approximate design dimensions (in cm):

R1=100, R2=90, R1=80, H=5, S=5
Load weight is determined by the tube diameter
Number of spokes - maximum possible
Center of spokes rotation – p. Z
Rotation velocity - maximum permissible under strength 

conditions

Design should untwist by reversible machine of direct current in 
motor mode. After reaching a certain velocity, machine must switch to 
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generator mode and connect to electric load. The amount of kinetic 
energy E1 accumulated by the time of switching (according to electrical 
engineering laws) can be determined by operation time in generator 
mode and load rate. The same amount can be determined based on 
rotation velocity by the time of switching (according to laws of motion) 
E2. If to neglect friction, then, according to energy conservation law, 
there must be E2 = E1. If, as a result of experiment it will be fount that 
E2 <E1, then this will mean that an additional source of energy is 
available.

Certainly, the continuously operating machine cannot be created 
on the first try! But such measurements will allow understanding whether 
there is a hope. It should also be expected that the more this additional 
energy source will stronger, the more high will be rotation velocity, what 
can also be checked with specified experiment organization.

It is important to note that the effect should increase many 
times in a vacuum (or just in a chamber with reduced pressure).

4. Actual designs
The tube is difficult to make. We can offer a different design - see 

Fig. 4.
The design is shown in Fig. 4. There are two boards with a slit (see 

the slit) as shown above in Fig. 3. Each of them has an inner part 2 and 
4, in which the axis 5 rotates, and "suspended" part on the bearings of 
this axis. There is an outer part 1 and 3, covering a slit, and attached to 
general housing by the brackets 6 (eight skewed brackets 6 are shown in 
Fig.4). The boards are moved apart a distance of A (see clearance). Loads 
are the balls 7, through which a spoke 9 is threaded, fixed on axis 5. They 
can rotate around the spoke 9 and slide along it. Their diameter is D>A. 
Therefore, they do not fall between the boards, but slide along slit edges. 
Design sectional view on BB is shown below. The slit and brackets 6 are 
visible. The same sectional view with balls 7 is shown more below. A 
hole 8 for spoke 9 is shown on a ball.

A ball 7 on a spoke 9 rigidly fixed on the axis 5 is shown in the 
section. A hole 8 in which the spoke 9 slides can be seen.

Instead of boards the curved stripes attached to fixed spokes can 
be made.
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Fig. 4 (Aldo9.vsd).

Another variant of design is a strip, also of the shape shown in 
Fig. 3. The loads attached to spokes ends (also fixed on the sleeve). 
However, in this case the loads don't move over the spoke, and spokes 
move inside the sleeve (along its radius). Centrifugal forces press the 
loads to strip. In this case, they move as well as inside the tube. In order 
to reduce frictional forces, the loads are made in the form of a ball-
bearing fixed at spoke's forked end.

A design calculation is considered below.
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5. Lorentz gravimagnetic force
In Chapter 1 it is shown that Lorentz gravimagnetic force, acting 

from 1m  mass on 2m  mass, is determined by expression in the form 
(GHS and SI systems are used here) of

  rvv
r
mmk

F g  123
21

12 (1)

{ 2sec\cmgdyne   in GHS;  2sec\mkgN  , in SI; 1 dyne = 10-5 N}, 
where 
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


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


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

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mN107
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cd107

ecgec
mmyneG  is 

gravitational constant,
    secm103sekcm103 810 c  is speed of light in a vacuum,

   is gravimagnetic permeability of the medium,
 r  • is a vector directed from point 1m  to point 2m ,
 21, vv  is velocities of mass 1m  and 2m  accordingly,

 coefficient


















 

kg
m10

g
cm 27

2 
c
Gkg . (2)

It is important to note that the effects described in Samohvalov's 
experiments (see Chapter 5.1) are so significant that in order to explain 
them within Maxwell-like gravity equations, it is necessary to introduce 
  environment gravimagnetic permeability coefficient (similar to   
environment magnetic permeability coefficient in electromagnetism). 
However,   coefficient value based on these experiments can be 
estimated very approximately.

6. Design
The wheel is shown in Fig. 3. It is a tube in which the loads are 

moving. These loads are threaded on spokes, and these spokes are fixed 
on sleeve so that the angles between each pair of spokes are equal to each 
other. The tube has some slots that allow the spokes to rotate full-circle.

Upper part of this wheel is shown in Fig. 5, and Fig. 6 shows a part 
of this fragment. 
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Masses in this construction act on each other by Lorentz 
gravimagnetic forces. Force interaction of rotating masses is such that the 
forces are directed perpendicular to velocity vector. Therefore, masses 
moving full-circle prove the forces directed along the radius. These 
forces don't influence on rotation velocity. An exception is a case when 
mass jumps upward the step. The forces acting on it are perpendicular to 
step and directly influence on rotation velocity.

As jump is carried out at a high velocity in a short time, other 
masses have no time to significantly change their position on a circle. 
Therefore, it can be assumed (in calculations) that the mass stepping up 
experiences the forces from two other masses shifted as regard to given 
mass for   angle and which don't change their position - see Fig. 5. In 
this case, the force pushing it perpendicular to step can be ignored.

Fig. 5 (AldoMy1.vsd)

Fig. 6 (AldoMy2.vsd)
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7. Mathematical model
The force acting from 1m  mass on m  mass is determined by the 

formula (1), which in this case takes the form of

  113
1

2

1 rvV
r

mk
F g  , (3)

Here (see also Fig. 6 (AldoMy2.vsd))
11 Rv  , (4)

)cos(11 vv x  , (5)

)sin(11 vv y  , (6)

 cos2 1
2
1

2
1 hRRhr  , (7)

 ,sin 111 rr x  (8)

 ,cos 111 Rhr y  (9)

  ,
2

cos
11

22
1

2
1

1 rR
hrR 

 (10)

 
hr
hrR

1

22
1

2
1

1 2
cos 

 . (11)

Let us select in formula (3) the following expression
  111 rvVf  , (12)

In the right Cartesian coordinate system, this expression takes the form 
of

   
   
   
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




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
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


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f

1111111
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1 .

As loads move in the same plane, then
 















 


0
0

111

1

xyyx rvrvV
f

or
 xyyxx rvrvVff 11111  . (13)

We denote the force
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 31110 rff x . (14)

In order to determine the velocity, let us find jump duration
 /t , (15)

where    is a step slope angle. Body moves along the step with a 
length of  12 RR   with the following constant acceleration

 
2

122
t
RRa




 . (16)

Consequently, body velocity at h  height is equal to
 aRhV 12  . (17)

The force (14) at (17) is calculated in program aldonew2.m. On dh  
length element dh  the force  dhf 10 , creating the torque  dhfh  10  
acts. When turning to angle   this torque does the work
 dhfh  10 . Consequently, the total force work acting on body 
during the movement along the step is

  
2

1 101

R

R
dhhfA  . (18)

Similarly, 2A  work of 20f  force is calculated on the same step. Works 

 2121 ,, AAAAA   are calculated in program aldonew3.m.
Considering (3) together with (14), we note that actual work differs 

from calculated values by coefficient
2mkk ga  . (20)

Therefore, the total work of these forces for all loads per revolution is
 21 AANkA ao  . (21)

Consequently, device power is
 21 AANkAP ao   . (22)

ak  coefficient in GHS system, as follows from (2) has the 
following dimension of work

 mmmkk ga cg10 2282    . (23)
and in SI system it is

 mk10 2272   gmmkk ga  . (24)

In this case,  2121 ,, AAAAA   values are dimensionless, but 
when calculating them, the lengths and velocities must be represented in 
the same measurement system.
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Fig. 7 (aldonew.m)

8. Mathematical modeling 
Modeling is performed in program aldonew3.m. 

Example 1. 
Let us estimate the value of   coefficient. Based on modeling it 

follows that   5
21 10 AAA  when 6N and 100 . In order 

that power is equal to 1000 W, a coefficient should be the following
4

5 102
100106

1000 






NA

Pka

When gm k1  из (24) we find: 23102  . This value is comparable to 
that obtained in Tolchin's inertioid analysis - see Chapter 5.3. With this 
  meaning, an assumption of proposed design operability is justified.

In order to increase design economic feasibility, it should be 
placed in a vacuum chamber. Samokhvalov's experiments (see 
Chapter 5.1) show that in a vacuum 10102 
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Example 2. 
For Aldo wheel the calculation is carried out in program 

aldonew.m . There when
N=236;
R1=9;
z=1.05;
fi=2*pi/N;
dfi=fi/10;
omega=0.1;
m=100;
ksi=10^25;

obtained 
F=1.6
ka=10^-27*ksi*m^2=1
P=ka*N*F/omega=3786 Watt
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Chapter 6.3. Gravitational waves 
detection

Contents
1. Introduction \ 242
2. Lorentz force analogue in gravitational field \ 242
3. Gravitational radiation measurement \ 243
Appendix 1. The rate of copper atoms thermal motion \ 244
References \ 251

1. Introduction
Below the costly gravitational radiation detection experiments, 

which have no effect until now are shown. It is shown that known 
theories predict the possibility of Lorentz gravitational forces finding 
on the Earth. It points to known experiments in which these forces 
are discovered. Based on this the assumption that gravitational 
radiation of space objects can be detected on the Earth, as Lorentz 
gravitational forces manifestation is made. The construction of 
gravitational antenna designed for gravitational waves detection is 
proposed. It is shown that such a construction is much simpler than 
that of known gravitational antennas and telescopes.

2. Lorentz force analogue in gravitational field
Chapter 1 shows that it is possible to use Maxwell's equations of 

gravitomagnetism or Maxwell-like gravitational equations in the weak 
gravitational field of the Earth for describing the gravitational 
interactions. This means that there are gravitational waves having a 
gravitoelectric component with gE  strength and a gravitomagnetic 

component with gB induction. A gravitomagnetic Lorentz force (known 
Lorentz force analogue) of type (in CGS system) acts on the mass 
mmoving in magnetic field with a velocity ofv .
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 gg Bv
c
mF   , (1)

where   is a gravitational permeability, and also in vacuum.
1210 . (2)

Thus, gravitational waves having a gravitoelectric component with 

gE  strenth and a gravitomagnetic component with gB induction exist 
in a weak gravitational field of the Earth. These waves can be formed by 
uneven mass currents (for example, turbulent liquid flows) and act on 
moving masses by Lorentz forces.

3. Gravitational radiation measurement
The costly gravitational radiation detection experiments, which have 

no effect until now are known [1]. Detection is based on the fact that 
gravitational waves must change the body size or distance between two 
proofmasses.

In the first method, the so-called gravitational antenna - a metal 
cylinder with a weight of about 2 tons and a length of about 2 meters, 
suspended so that it can oscillate under weak forces influences is 
produced. Cylinder length is measured by piezosensors with a sensitivity 
of 10-16 m. Cylinder length varies with a frequency of gravitational wave 
and, if this frequency coincides with fundamental frequency of 
gravitational antenna oscillations, then there is a hope to detect this wave. 
The measurements are refracted by thermal noise and therefore 
gravitational antenna is installed in a vacuum chamber with cooling up to 
several degrees.

In the second method, the so-called gravitational telescope is a vacuum 
tunnel with a length of about 2 km. Two proofmasses are placed in this 
tunnel, and the distance between them is measured by laser 
interferometer. This distance varies with a frequency of gravitational 
wave and there is a hope to detect this wave.

Based on above-mentioned, another design of gravitational 
antenna can be proposed. A massive body is placed in heat-insulated 
chamber (as in the first method). However, the chamber doesn't get cool. 
Moreover, a heater must be built in the body of gravitational antenna.

Atoms of our antenna make thermal vibrations. Below in 
Appendix 2 it is shown that the average velocity of atomic motion in 
such vibrations at room temperature has, for example, for copper a value 
of .sec/3000cmVT   Let us denote the atom velocity vector as TV  and 
we will herafter call it as "thermal" velocity vector. It can also be assumed 
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that thermal motion takes place under the influence of a certain 
"thermal" force, which is TF vector, that (as shown in Appendix 2) 
varies with a frequency of Hzf 12105   and with a period of 

.sec102.0 12  changes direction to the opposite. Under the influence 
of Lorentz gravitational force gTg BVF   such atoms must move 

on gV "gravitational" velocity vector, directed along gF vector. Thus, 

the total force acting on an atom is gT FFF  . This force doesn't 
change atom thermal energy (since Lorentz force doesn't perform an 
operation).

When there is no Lorentz force, thermal radiation of our antenna 
spreads uniformly in all directions - we can say that in this case antenna 
directional pattern is a sphere. When Lorentz force appears, the radiation 
of our antenna becomes asymmetric and directional pattern becomes an 
ellipsoid, the major axis of which is directed on vector of 

gB magnetogravitational induction.
Consequently, antenna directional pattern must be deformed under 

gB  induction with a frequency of gravitational wave of gf , and 

deformation limit should be determined by gB  induction value. This 
phenomenon can be detected, as at the present time very sensitive meters 
of terahertz radiation are available [2]. 

So, the proposed gravitational antenna should be a solid body 
(maybe with internal well-stabilized heater), placed in thermally insulated 
chamber and surrounded by receivers of terahertz radiation. An 
additional heater is required in order to increase thermal velocity and 
Lorentz force depending on it, and, eventually, gravitational antenna 
sensitivity.

Appendix 1. The rate of copper atoms thermal motion
At first, let us consider some constants for copper [3]:

K kJ/kg 0,385 VC  is the heat capacity,
17.16  K  is coefficient of linear thermal expansion,

 -3cm / g 9  is the density,
g10 22m  is mass of the atom,

m1032 8с.a   is interatomic distance,
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13103.7   is compressibility,
5103   a  is coefficient of elasticity,

cmT.kTso
1010 1061040  


 is the average value of the 

amplitude of the oscillations of the atom,

 rad/sec1033 13
m
a

m 
  is frequency of the vibrations of the 

atoms,
112 sec108.4

2



f  is frequency of vibrations of atoms,

мм06.0/  fc  is wavelength of thermal terahertz radiation,

sec102.0/1 12 f  is period of oscillations of the atoms.

Depending on temperature, the average rate of copper atom 
thermal motions is determined by formula of the following type

сексмTsV o
T /200


.

In particular, when KT 230  we obtain: .sm/VT sec3000
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The magic wand works only in a sensitive hand.
I.V. Goethe
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1. Introduction
A dowsing physical mechanism is described and an attempt to 

explain it using the theory of gravitoelectromagnetism is made.
Dowsing is a highly diverse field of human activity. But here the 

author will analyze only the search for flow water. The reader will not see 
here a review of publications in this field - their fulness. Science didn't 
find an explanation for this phenomenon - only general ideas about how 
it can work are available. These representations are a little supplement 
what Goethe said, but they should be formulated more rigorously for a 
reasoned presentation. So, the mechanism of system operation can be the 
following:

1. flowing water emits some waves (electromagnetic, 
gravitational, ...),

2. these waves generate some currents in a person,
3. these currents are amplified and transmitted to a dowsing rod 

in a body sensitive to them;
4. the currents of dowsing rods interact with radiation (see par. 

1), which causes the dowsing rod movement.

2. Prerequisites
A dowsing rod (or metal frame - hereinafter such a note will not be 

repeated) in the hands of a person standing under the power 
transmission line (PTL), rotates. An explanation can be as follows. PTL is 
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a source of alternating magnetic field, a magnetic induction vector of 
which is directed along the earth's surface. The person with a dowsing 
rod forms a closed current-conducting circuit "a dowsing rod (fresh, 
current-conducting)" - "a person (in whose body the electrolytic liquids 
flow - blood, lymph)" - "earth" - "a capacitance between the dowsing rod 
and earth" for an alternating current. An alternating magnetic field, 
penetrating a current-conducting circuit, brings it in rotation. An 
arrangement of a single-phase asynchronous motor is based exactly on 
this principle. In order to start the operation of such a motor, a starting 
torque must be applied to it. In our case, an involuntary movement of 
the hand can be the starting torque.

A current-conducting circuit resistance under weak magnetic field 
must be small. This can be achieved by the fact that a circuit containing 
the inductance and capacitance is tuned to resonance with a frequency of 
alternating magnetic field. Another way could lie in the fact that an 
element is included in a circuit which converts a magnetic alternating 
induction into variable electromotive force. It is not known which of 
these ways is performed in the human body. But the fact is that a 
dowsing rod rotates under PTL and, therefore, the person (at least some 
of people) creates a circuit of our "asynchronous motor" rotating under 
the influence of a weak alternating magnetic field.

3. Gravitational waves
In Chapter 1 it is shown that a gravity is described by Maxwell-like 

equations (hereinafter, MLG-equations) at weak gravitational fields and 
low velocities. Exactly such conditions exist on Earth. Consequently, the 
gravitational effects similar to electromagnetic effects should be 
observed. In Chapter 1 it is shown that the strength of these effects is 
determined by gravitomagnetic permeability coefficient. It has a very 
large value in a vacuum, but is practically equal to zero under air pressure. 
The main result is that a time-varying particles flow with a mass, is an 
alternating mass current, which excites gravitomagnetic waves. These 
waves are very rapidly damped out in the air.

However, if gravitomagnetic waves are damped out, then their 
energy must flow into another energy. The author suggests that this 
energy is the energy of a standing magnetic wave. It should be noted that 
such waves (arisen for another reason) were observed in experiments [1]. 
In [2] it is shown that such waves can exist for a long time, because there 
is an exchange of thermal and magnetic energies in the area of this wave 
existence in the air (similar to magnetic energy conversion into electric 
energy in a traveling electromagnetic wave). A reverse conversion of 
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thermal energy into magnetic energy is also available. In addition, this 
area of existence expands. This process is accompanied by the 
temperature decrease of the wave region, which is also observed 
experimentally in [1] and is explained in [2]. Let us also note that a 
standing wave can exist even after the source of its generation 
disappearance. This probably explains the fact why some dowsers can 
detect the regions where such a source was available. 

So, a variable mass current excites a gravitomagnetic wave, which is 
converted into a magnetic standing wave in the air. Both the current and 
gravitomagnetic standing wave have the same frequency.

A magnetic alternating induction of a standing wave affects the 
circuit of "asynchronous motor" described above, which rotates the 
dowsing rod.

4. The mechanism of system operation 
Based on it, the following explanation of the mechanism of system 

operation is proposed - see Fig. 1.
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Fig. 1.
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Underground water flow is a variable mass current. But this 
statement is valid only if this flow is turbulent – see Chapter 4.9. Thus, a 
turbulent water flow is equivalent to mJ  variable mass current with a 
certain f  base  frequency. A laminar flow is not a variable mass current. 
A turbulence occurs only at significant fluid flow rates. The well-known 
Sydney dowsing testing experiment of 1980 [3] was unsuccessful, perhaps 
because the water velocity in pipes was insufficient to excite the mass 
current. 

mJ  variable mass current generates g  alternating 

gravitomagnetic flow with the same f  frequency. The water flow emits 
exactly this current. During g  gravitomagnetic flow expanding in the 

air, it forms a magnetic standing wave with B  induction and transfers its 
energy to it. This B  induction interacts with K  current-conducting 
circuit "dowsing rod" - "blood flow" - "earth" - "C  capacitance". eJ  
induction electric current arises in K  circuit. eJ  current is imposed on 
the principle fluids current flow in the human body in the form of a weak 
variable component. Some people in their bodies has, apparently, 
E "amplifier" of such current flows, the input signal of which is this 
current itself or B  induction. The author must directly state that he has 
no idea how this "amplifier" can be arranged. Besides, the body tunes 
into resonance with f  frequency of B  induction, changing its 
inductance and capacitance in such a way that K  circuit resonant 
frequency becomes equal to f . As a result, eJ  current acquires a 
sufficient value for A  "asynchronous motor" effect demonstration - F  
force of K  "asynchronous motor" arises, which induces the dowsing 
rod rotation in a vertical direction. Thus, a person generate the energy for 
a dowsing rod rotation.

So, the person is a receiver of induction, created by water turbulent 
flow, an amplifier and a converter of the currents into rotating force 
directed by it in the system under consideration.

5. Some quantitative estimations
It is known that the density of electromagnetic wave energy 

(hereinafter the GHS system is used) is








 2

2

sc
g

8 ecm
BW


, (1)
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where B  - magnetic induction of this wave. In Chapter 1, it is shown 
that the density of gravitoelectromagnetic wave energy is

 
G

B
W g

g 

8

2
 , (2)

where 

gB  is gravitomagnetic induction of this wave 





2sec
cm ;

G  is gravitational constant, 









 
2

3
8

secg
cm107G ;

  is gravity permeability of vacuum.

If a gravitomagnetic wave transfers its energy to a standing magnetic 
wave (as specified above), then in accordance with the energy 
conservation law it follows that

gWW  . (3)
From (1-3) we find











cm
g

sec
1

G
B

B g
. (4)

A gravitational permeability of vacuum, rather than air is considered here, 
as gravitomagnetic induction converts into magnetic induction with no 
expansion.

gB  gravitomagnetic induction of a continued conductor with mass 

current 




cm
g

gJ  (which is the turbulent water flow) is determined by the 

following formula (see Chapter 1)
 chGJB gg 2 , (5)

where h  - distance from the flow to induction measuring point (in our 
case - the distance from the flow to dowsing rod). Combining (4, 5), we 
obtain:

 chJGB g2 . (6)
or

h
J

h
J

h
J

c
GB ggg 14

10

8
102

103
10722 






  . (7)
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Let us now find gJ  mass current. It is determined by the formula

 sec/gvSJ g  , (8)
where 

v  1seccm  - water flow rate;
 31  cmg  - water density;

 2cmS  - water flow area;
  - coefficient which indicates what turbulent flow oscillates; we 

will accept 1.0  for further estimations.
Thus, for water

 sec\gSv.J g 10 , (9)
Combining (7, 9) we finally find the magnetic induction, generated by the 
turbulent water flow:

 Gs
h

vSB 
  15102 . (10)

Example. In Chapter 1 a rough estimate of 1210  vacuum 
gravitational permeability is given. Let us suppose, further, that 

 25 cmS  ,  1sec10  cmv ,  cmh 200 . Then,  sec\1000 gJ g   and a 
magnetic alternating induction amplitude is 

 GsB 31215 10
200

10510102  


 . A magnetic induction under PTL also has 

 GsB 310  size of order. A dowsing rod rotates under the power 
transmission line. Consequently,  GsB 310  induction obtained in the 
example can be detected by means of the dowsing rod.

6. Possible experiments
The proposed hypothesis can be proved experimentally. With a 

good tool base and the experimentator's ability, eJ  current, B induction, 
f frequency and F force can be detected and measured. S , v , h  аlow 

characteristics can be simply measured. It is important to note that S , v  
must satisfy Reynolds criterion for turbulence occurrence. It is known [4] 
that this condition for the round pipe has the form of 

/Re Dv , (12)

where D  - pipe diameter,   - kinematic viscosity coefficient. For water 
/seccm010 2.  [4]. A turbulence occurs when Reynolds number is 

2300Re  . Let us suppose, for example, that cm5.2D  and 
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2cm5S . In this case, from (12), we find 10v cm/sec velocity of the 

turbulent flow.
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Chapter 6.5. Projects of experiments, 
considered in previous chapters

1. The lifting force acts on a tubular ring with pulsating mass 
current, located above the massive plane - see Section 3.1 in 
Chapter 5.7.

2. The lifting force acts on a massive plane 1 located above another 
massive plane 2, if plane 2 is exposed to radiation from below 
by intensive sound wave - see Section 3.2 in Chapter 5.7.

3. Detection of the physical mechanism of dowsing based on 
gravitoelectromagnetism - see Section 6 in Chapter 6.4.

4.  Gravitational waves detection – see Chapter 6.3.
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