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Foreword

We rejoice expressing our gratitude towards all those who,
better or less known, along the years, have helped us to get to
this particular book. And they are many, many indeed whom
have helped us! Some provided suggestions, others, ideas; at
times, we have struggled together to decipher a certain elusive
detail; other times we learned from the perceptive or sometime
naive questions of our intetlocutors.

The coming into being of this book represents a very
good example of altruism, kindness and selflessly giving, of the
journey, made together, on the road to discovering life’s beauty.

He who thinks not only of his mother or father, of
himself or his family, will discover an even bigger family, will
discover life everywhere, which he will start to love more and
more in all its manifestations.

Mathematics can help us in our journey, stimulating and
enriching not just our mental capacity, our reasoning, logic and
the decision algorithms, but also contributing in many ways to
our spiritual betterment. It helps shed light in places we
considered, at first, fit only for an empirical evolution — our own
selyes.

We offer this succession of methods encountered in the
study of high school calculus to students and teachers, to higher
education entry examination candidates, to all those interested, in
order to allow them to reduce as many diverse problems as
possible to already known work schemes.
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We tried to present in a methodical manner, advantageous

for the

reader, the most frequent calculation methods

encountered in the study of the calculus at this level.

In this book, one can find:

methods for proving the equality of sets,

methods for proving the bijectivity of functions,
methods for the study of the monotonic sequences
and functions,

mutual methods for the calculation of the limits of
sequences and functions,

specific methods for the calculation of the limits of
sequences,

methods for the study of continuity and
differentiation,

methods to determine the existence of an equation’s
root,

applications of Fermat’s, Rolle’s, Lagrange’s and
Cauchy’s theorems,

methods for proving equalities and inequalities,
methods to show that a function has primitives,
methods to show that a function does not have
primitives,

methods to show that a function is integrable,

methods to show that a function is not integrable.

We welcome your suggestions and observations for the

improvement of this presentation.

C. Dumitrescu, F. Smarandache
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I. Sets Theory

A set is determined with the help of one or more properties
that we demand of its elements to fulfill.
Using this definition might trick us into considering that any
totality of objects constitutes a set. Nevertheless it is not so.
If we imagine, against all reason, that any totality of objects is
a set, then the totality of sets would form, in its own turn, a set that
we can, for example, note with M. Then the family p(M) of its
patts would form a set. We would thus have p(M) € M.
Noting with czrdM the number of elements belonging to M,
we will have:
card p(M) < cardM.
However, a theotem owed to Cantor shows that we always
have
card M < card p(M).
Therefore, surprisingly maybe, not any totality of objects
can be considered a set.

Operations with sets
DEFINITION: The set of mathematical objects that we
work with at some point is called a total set, notated with T.
For example,
= drawing sets on a sheet of paper in the notebook, the
total set is the sheet of paper;
= drawing sets on the blackboard, the total set is the set
of all the points on the blackboard.
It follows that the total set is not unique, it depends on the
type of mathematical objects that we work with at some given point

in time.

11
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In the following diagrams we will represent the total set
using a rectangle, and the subsets of T by the inner surfaces of this
rectangle. This sort of diagram is called an Euler-Venn diagram.

We take into consideration the following operations with
sets:

1. The Intersection
ANB={x€T | X € Aand x € B}
Because at a given point we work only with elements
belonging to T, the condition x € T is already implied, so we can

write:

AnB:{x|xeAandx€B}

A B
ANB
More generally,
R A=(x | YieN, xea?
=1 L 19

Let’s observe that:
xE€ANB<===>x¢Aorx¢B

2. The Union
AUB = {x | X € Aorx € B}

+ X g
= | X |
— Ly T - |
— X yi -

A (: ‘a El —" B

AUB

12
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As in the case of the intersection, we can consider:
i=19i={x ! 31N, xieﬁ}
We see that:

xEAUB<===>x€&Aandx &B

3. The Difference
A—B={x | x € Aand x & B}

A-B=CB
We retain that:
xX&A—B<===>x¢&€Aorx€B

4. The Complement
The complement of a set 4 is the difference between the
total set and A.
CfA={x|x€Tandx ¢ A} = {x| x & A}
The complement of a set is noted with CA or with A.

= . E—

CA

Let’s observe that
xECA<===>x€A
Morte generally, we can talk about the complement of a set to
another, random set. Thus,

13
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C,B={x|x€Bandx ¢ A}

is the complement of set B to set A.

5. The Symmetrical Difference
ADB = (A—B)U (B - A)

e e

AAB
We have x € AAB <===>x¢A—B andx ¢ B —A.

6. The Cartesian Product

A XB ={(x,y)|xEAandyeB}

The Cartesian product of two sets is a set of an ordered
pairs of elements, the first element belonging to the first set and the
second element belonging to the second set.

For example, RXR ={(x,y)[x ER,y €ER}, and an
intuitive representation of this set is provided in Figure 1.7.

Y —-—=—-—

R x R
Fig. 1.1

By way of analogy, the Cartesian product of three sets is a
set of triplets:

14
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AXBxC={(x,y,z)x€eA,yeB,zeC}.
An intuitive image of RE=RXxRXRis given in the figure

below.
(y752)
=== - 1
i
I
I
'
I (Y A 4
! ! l'
i v
Y -
RXRXR
Fig. 1.2
More generally,
n
X A ={(X1, X3, ... Xp)| X; €A, foranyi € 1,n}.
i=1

Methods for Proving the Equality
of Two Sets

The difficulties and surprises met on the process of trying to
rigorously define the notion of sets are not the only ones we
encounter in the theory of sets.

Another surprise is that the well-known (and the obvious, by
intuition) method to prove the equality of two sets using the
double inclusion is — at the level of a rigorous definition of sets —
just an axiom.

A=B<===>ACcBandBE A (1.1

By accepting this axiom, we will further exemplify two
methods to prove the equality of sets:

15
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(A) THE DOUBLE INCLUSION [expressed through the
equivalence (1.1)];

(B) UTILIZING THE CHARACTERISTIC FUNCTION
OF A SET.

We will first provide a few details of this second method that
is much faster in practice, hence more convenient to use than the
first method.

DEFINITION. We call a characteristic function of the set A
the function @4: T — {0,1} defined through:

1 ifxeA
Pa(x) = {0 i;x ¢ A

As we can observe, the numbers 0 and 1 are used to divide
the elements of the total set T in two categories:

(1) one category contains those elements X in which the
value of @, is 1 (the elements that belong to A4);

(2) all the elements in which the value of @, is 0 (clements
that do not belong to A) belong to the second categoty.

Method (B) of proving the equality of two sets is based on
the fact that any set is uniquely determined by its characteristic
function, in the sense that: there exists a bijection from set(T)
of the subsets of T to the set Y(T) of the characteristic
functions defined on T (see Exercise 171]).

Hence,

A =B <===> @, = @p.
(1.2)

Properties of the Characteristic

Function
®1) Pang(x) = @a(x). @p(x)
®2) Pavs(x) = @4(x) + @p(x) — Panp(x)
®3) Pa—p(x) = Pa(x) = Qanp(x)
®4) Pca(x) = 1= @u(x)

16
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@s) Pasg () = @a(x) + @p(x) = 2.Qanp(x)

P6) Paxp(%,Y) = @a(x) X 9p(y)

P7) P4 (x) = @a(x)

Pg) pp(x) =0, pr(x) =1

P9) A S B <===> @,(x) < pp(x) foranyx € T.

Let’s prove, for example ). For this, let’s observe that the
total set T is divided by sets A and B in four regions, at most:

1) for the points x that do belong to neither A, nor B, we
have @4(x) = @p(x) = 0 and @4np(x) = 0.

2) for the points x that are in A but are not in B, we have
©a(x) =1,0p(x) = 0and @unp(x) = 0.

3)ifx € Aand x € B,

the equalities follow analogously.
4HifxEBandx & A

Exercises
I. Using methods (A) and (B) show that:
1. A-(BNnC) =(fa-B) UuiA-T)
2. A-{BUC)={(A~-B)n(A-C)
3. (BN L) =CBwuwCC
4. C(BuUCLC) =CB n CC
5. AnNn((B-C)=(ANB) — (ANEC)
8. AL (B-A)=A0LBEB
7. A-(A-B)=AnNB
8, C(CB} =P
9. AuCA=T,AnCA=0

SOLUTIONS:
(A) (the double inclusion)
Let’s notice that solving a mathematical problem requires we

successively answer two groups of questions:

17
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(9 WHAT DO WE HAVE TO PROVE?

(Q) HOW DO WE PROVEY?

Answering question (Q) leads us to a new (q) question. Thus,
for exercise 1, the answer to the question (q) is:

(r1): We have to prove an equality of sets,
and the answer to the question (Q) is:

(R1): We can prove this equality using two methods: using
the double inclusions or using the properties of the characteristic
function.

We choose the first method and end up again at (q). This
time the answer is:

(r2): We have to prove two inclusions,
and the answer to the corresponding question (Q) is:

(R2): We prove each inclusion, one at a time.

Then,

(r3): We have to prove one inclusion;

(R3): We prove that an arbitrary element belonging to the
“included set” belongs to the “set that includes”.

It is obvious that this entire reasoning is mental, the solution
starts with:

a) Letx € A — (B — (), itrespective [to continue we will read the
final operation (the difference)]l, <===>x € Aand x & B N C [we will

read the operation that became the last (the union)] <===>
x &B x€EAandx € B

x €A and{ or <=== { or (1.3)
x€&C x€Aand x ¢ C

From this point on we have no more operations to explain
and we can regroup the enunciation we have reached in several
ways (many implications flow from (1.3), but we are only interested
in one - the conclusion of the exercise), that is why we have to
update the conclusion:

XE(A-B)UA—-C)<===>x€A—-—BorxeA—-C.

18
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We observe from (1.3) that this conclusion follows
immediately, so the inclusion is proven.
For the second inclusion: Let x € (A—B) U (A—C), [we

will read the final operation (the reunion)] <===>

x€A—-B

{ or <===>we will read the operation that became the lasi|
x€A—-C

<===>

x€Aandx € B x&B

{ or <===> x €Aandy or (1.4)
x€Aandx € C x&C

We have no more operations to explain, so we will describe
in detail the conclusion we want to reach: x EA— (BN C),ie x €
A and x € B N C, an affirmation that immediately issues from (1.4).

5. (r1): We have to prove an equality of sets;

(R1): We prove two inclusions;

(r2): We have to prove an inclusion;

(R2): We prove that each element belonging to the included
set is in the set that includes.

Let x € A — (A — B), irrespective [we will read the final
operation (the difference)], <===>x € Aand x € A — B [we will
read the operation that became the lasf] <===

x¢A
x €A and{ or (1.5)

x € B.
We have no more operations to explain, so we update the

conclusion:
xE€EANBi.e.x€Aand x € B.
We observe that (1.5) is equivalent to:
{x EAandx ¢ A
or

x € Aand x € B.
The first affirmation is false, and the second one proves

thatx € AN B.

19
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We will solve the same exercises using the properties of the
characteristic function and the equivalence (1.2).

1. We have to prove that @4_(gnc) = @ a-Byua-c)s

(r1): We have to prove an equality of functions;

(R1): As the domain and codomain of the two functions
coincide, we have to further prove that their values coincide, i.e.

(t2): @a-(nc)(X) = Qa-B)ua-c)(X) forany x € T.

The answer to the corresponding (QQ) question is

(R2): We explain both members of the previous equality.

@a-nc)(x) = [we will read the final operation (the
difference) and we will apply property @3 ] = @a(x) —
®annc)(x) = [we will read the operation that became the last and

we will apply property@,] =
Pa(x) — @a(x). p(x). pc(x) (1.6)
The second member of the equality becomes successive:

P!A--MA"I:F{ x) = Pﬁ--{ ® ’ * PA—GI x) ~ ‘}(A—i‘ilﬁlh'ﬂ?t x) =

(e, 0x) =@, L tx) )+ (o,0) =9, (x)] =

- ﬂ*_'(xi-p‘rcixl = (pltx} - p‘EH]'ﬂn{ki ) +
+(pAlx} - pjtx)-p‘:[x} } - (p‘{:n] = Pargt ) ].
-(p‘tx! - e (%)) = 2op (x) = g (2)ep (%) =

2
pﬂ(a).pﬂ[x} phixl + p‘hﬂ ;?A“__,txl +

+ p‘{}:l-qp‘m{:ul —p:{xll.pnix:l.pc{x? =

=.p‘(x]| 'p.{xl-pﬂml.

5. In order to prove the equality ¢a_a—p)(X) — Panp(x)
we notice that:
(x} = p“{ ®) —

2] (w) = pﬂ(ﬁ} - g

A={A=~B) ArCA-BY

-, ) e ) = e lx) = g (x)

20
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'[-,r.:lA[x:' = Paral) )= LNES B pAIx}-f plx) —
- e, (%)@ (%) ) = P %) w () = ﬂamtxl-

II. Prove that:

i. (A B)Y X (ICHD)=({AXC)mn (B XC}
2 (ALEB) XC=(aAXC) ui(b X CLC)

3. (A-8B) XC iAXC) - (B XC)

4. A A (B ALC) (A AB) AC

5. An(B ALD) (AN B) A (AnNC)

6. (A AB) XC=4{AXC) A(BXLC)

SOLUTIONS.
Method (A) (the double inclusion)
1. Let x € (AN B) X (C N D), irrespective [we explain the

final gperation (the scalar product)) <===>x = (a,f8), witha € AN
B and B € C N D <===>[we explain the operations that became the last

ones) <===>x=(a,f) with a €EA,a €EBand BEC,BED
[we have no more operations to explain so we update the conclusion: x € (A X
C) N (B X D), sox belongs to an intersection (the last operation)] <===
>x=(a,f) witha €A, ECanda €EB,BED <===>x €
AXCandx € BXD.

3. Let x € (A—B) X C, irrespective <===> x € (a,f})
with ¢« EA—B and B € C <===> x € (a,B) with @ € A and
a & B and [ € C [by detailing the conclusion we deduce the following steps)
<===>x=(a,f),a €A, BE€Candx = (a,B),a & B,BEC
===>x€AXCandx & BXC.

Reciprocally, let x € (AXC)—(BXC) , irrespective
<===> x = (a,B) with (o, ) EAXC and X C <===> x =
(a,B),a € Aand B € C and

21




C. Dumitrescu m F. Smarandache

or or
p&EC a€Aand f € Cand B & C (fals)

===>(a,f) E(A—B) x .
Method (B) (using the characteristic function)
(ayd=p, _(x)-e_ _(y)=

{aeEB { a€AandfeECanda & B
<===>

1'“{1:"-:-::”
= ﬂa“”’ 'p.{x}'pctvl'puty] "':{.n..;n:»::nl"n::lJ-::ul‘[x"1""”I =
-_—ﬂ“':(h..ri'p“ntﬂgﬂ = ﬂlia]‘pctw-p.lx}-pn!w}

3. puthtx.ﬂ = lp‘_-t:-c]'pclrl =

= (e, (x) = o, 00) Jp ty) = g (x) g (¥)-

- p,;{"}"’a“i“’ch'"p :_(“m“l:!rl =

p‘,ygt"y, - #:AII:H"'I!H‘:P{}:’Y! = pﬁ!ﬂ‘“'?‘} -

- w“:tn.ﬂ-p“ntx,ﬂ = piiul-pntyl -
_ i 2
#A(x:r -p'{xl pﬂty) .

4. (%) —

Padmac!®) = f,00) + o ..

- th[:r}‘p. (M) -pA[x] + p‘ln} + pﬂ(xi =

Ac

- 2p (%) p_(x) = 2p (x) ( Pgix) + p_(x) =

= 2p, (%) -e_(x) ) - P(x) + g (x) +

+ e (1) - 2@, (x) g lx) - E'p*tx.'l'pc(xl =

—E-p'(u] -pc[x} + 4-;:‘{:} -;r.{ %) -p.:(:-:l .
Explaining @ 4ap)ac (%), in an analogue manner, we obtain

the desired equality. If we observe that the explanation

of @anp)ac(x) from above is symmetrical, by utilizing the

commutativity of addition and multiplication, the required equality

follows easily.
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- Pum”ciﬂ1¥? = I'J"MEN]'PGH'T =

=( P 00) + g (x)= 2-p (F (%) Yo _ly)F
P xS ABRS
- 2p, _(xsy) . Pl ®¥) = e, (x)-p (¥)e

(#,¥) = #Mc{x,ﬂ + p.m[n,yl -

z
. - The . '
+P“{xl' #E{}'J' 2 -pA{M} Pn{“] pﬂt;-].
Equalities 4)-5) wete easy to prove using the characteristic
function; they are, however, more difficult to prove using the first

method. The characteristic function is usually preferred, due to the
ease of use and the rapidity of reaching the result.

I11. Prove the following equivalences:

1. AyybB e <= A cC gnd B8 cC
2 AcBnC <=> AcE and BcC
3. AMNEB cCcC 4d=>» H:I“ll.'.'.Uﬂ

4 AcBUC <> ANnC cC

5. (A-EB)YUE <«<=> B |JA

SOLUTIONS:

1. 1r1: We have to prove an equivalence;

Ri: We prove two implications;
mAUBcC=>AcCandBc(C
Ro: We prove that A € C and B < C (two inclusions).

Let x € A irrespective [we have no more operations to
explain, thetefore we will update the conclusion: x € C; but this is
not evident from x € A, but only with the help of the hypothesis]

x€EA=>x€AUB=
> [through the hypothethis AUB c C] =
>x€C

Let x € B irrespective =>x € AUB c C =>x € C.

Reciprocally (the second implication):
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r1: We have to prove that AU B € C (an inclusion)

Ri: Let x €EAUB irrespective (we explain the last
operation):

x € A =>x € C (due to the hypothesis)
=> or
x € B => x € C(due to the hypothesis)

5. r1i: We have to prove an equivalence;

Ri: We prove two implications;

t2(A—B)UB=A=>BcCA;

Ra: We prove the conclusion (an inclusion), using the
hypothesis.

Let x € B itrespective =>x E(A—B)UB =>x€A

t3: We have to prove the implication: B € A => (A—B) U
B = A;

R3: We prove an equality of sets (two inclusions).

For the first inclusion, let x € (A — B) U B irrespective [we
explain the last operation] =>

x€A—B x€EAandx ¢ B (a)
=> or => or
{ x€B {x EB (b)

[We have no more operation to explain, so we update the
conclusion]. We thus obsetve that from (a) it follows that x € A,
and from (b), with the help of the hypothesis, B € A, we also
obtain x € A.

Method 2:

1.(AUB CcC => AcC si B cC )<=
<=>( Pom $ PP 80, S1op (@, )

We have to prove two inequalities among functions.
Through the hypothesis, @ yp < @¢ and, moreover @, < Paup
(indeed, P4 < Qaup <=> P4 < Pa+ P — Papp <=> @p(1 -

©4) > 0 — true, because the characteristic functions take two
values: 0 and 1).
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It follows that @4 < @aup < @¢ and, analogously @z <

Paup < Pc-
Reciprocally, for the inverse implication, we have to prove

that: 40 < @c, i.c.

0a(x) + @p(x) — Panp(x) < Pc(x) (1.7
in the hypothesis:
Y4 < @cand pp < @ (1.8)

But @4, @p, @c can take only two values: 0 and 1. From
the eight possible cases in which (1.7) must be checked, due to (1.8),
there remain only four possibilities:

a) g, (x) = g (x)

ﬁcixl = 1

bl #ﬁtx} = Pctxll =1, p.{x] = 0
c} p.htl = pc{x! =1 , p‘{xl = 0

d) e (x) = p (%) = p_{x) = o

In each of these cases (1.7) checks out.
5. We have to prove that

Poa-mus %) = P, 00) <=> o (1) ¢ p_ (%}

But
pu_‘M{x]l = e glxl e (x) = Poacmra' X =
= p‘lix! -P‘n.[x] + p'{u:l - p‘__'{xl-p.(x] =
==¢‘H! - p‘txl'p’{nl - p_t:t‘l—
“( P00 = @, (x) g (%) Jop (x) =
= p‘tu} + p'{x] -~ ph(x:l-p.tx}. (1.9)

For the direct implication, through the hypothesis, we
have:
;-A{x} + p.tx} - p‘(H]'#.{Kfl = p‘tx}.i.e.:

ﬁr'hl]f 1=, x) }J=o0.
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Consequently:
@Pp(x) =0 => @g(x) < @4(x) (due to the values 0 and 1 that the function ¢ takes)
or
1= @u(x) = 0=> @,(x) = 150 pp(x) < @4(x)
Reciprocally, if @g(x) < @4(x), we cannot have @p(x) =
1 and 4(x) = 0, and from (1.9) we deduce:

Fu.—nm{“l = pAix} <=}P‘tx] + -Pnix} -

= e, (x) e (x) = p (x)<=>e, )1 =g (x) ) =0
- equality that is true for the three remaining cases:
al pA(}:] =1 , qr.r![:u:‘.l =0
b} ;:r‘{x;l = pﬂ(}:l = 1

c) e x) = p (2} =0

IV. Using the properties of the characteristic function, solve
the following equations and systems of equations with sets:

1. AU B~-X)=BuU2X

A-X=8

2. { ifBcpand AncC=4¢g
AUX =C
ANnX=18,

a. { ifBecAaccC
AUVUX=C
XuyY =an

4. *Xny=BifBEcA,CcA,BNC=¢8
X -Y=¢C

SOLUTION:

1.AULB-X)=BuUX<=>rf, . (%)=

= P (X =>p 00+ g (X)- p (x)p,  (x)=
-p'hn + px{xl - p-{xl-ﬂu{u} (->#ll{:]+

+ p.tx} - p‘{x)-px{xl - p‘txbp.tu‘.l +
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+P‘IN1‘F'TK}‘P,‘I:H? = g (x) + g (x) -
_p.[g]-p.x{gl-(t} px[l’][l - P‘[“}'ﬂ"{x]) =
=p, 001 = p ) <=> P 00) o O0) =

=0, gt} (1.10)

We have to analyze the following cases:

a)ifx € Aand x € B, we have:

®cang)(x) =1 and @uncp(x) =1, so for (1.10) to be
accomplished we must have ¢, (x) = 0. So, any point that doesn’t
belong to A ot B, doesn’t belong to X either.

b) if x € A and x € B, we have:

(PC(AnB)(x) =1 and @uncp(x) =1, so for (1.10) to be
accomplished we must have @, (x) = 1. Therefore, any point from
A—BisinX.

¢)if x € Aand x € B and for (1.10) to be accomplished, we
must have @, (x) = 0, consequently no point from B — 4 is not in
X.

d) if x € A and x € B we can have @,(x) = 0 or ¢,(x) =

So any point from A N B can or cannot be in X. Therefore
X = (A\B) U D, where D € A N B, arbitrarily.
2.8 — X = B <=} p‘_-tx} = p.h:‘l =3

(-}ip‘{ul - p*(x‘.i*px(xl- p_lﬂ(-}
=3 @ (%) e (n) = e, (%) = g x) (1.11)
X-A=C ¢a>e (%) = p (x)p (x) = g (x)<=2

<=>p (x) (1-p, 0] =p_(x) <=>

= #,‘lnl'p&tui = P‘:{xl (1.12)

We have to analyze four cases, as can be seen from the

following table:

27




C. Dumitrescu m F. Smarandache

L11 1.12
Cases e ¥ LR P lx) L] (1.11) i ]
® 2 A [+] oroso=a (A)] o-i1=0 (A}
and o ] o
x ¢ C 1 iro=e-a (A)| 1-i=0 (F)
X €A o o g=g~-a (F)| o-0=0 (A)
and 1 L+ [+ -
* £ B i icama=0 (A)]| 1-o=0 (A)
[+] p-i=i-1 (A)| o b= (A)
= & B 1 1 4]
1 i d=i-41 (F}| a-o=a0 {(A)
Q orong-o (A)] o-d4=4 (F}
% € C Q 0 1
1 iroso=0 (A)] 2-a=x (A}

SoX=(A-B)UC.
V. Determine the following sets:

1.A={xaZ|x= 2227 na2Z}
'—.
2. A= {x «eN|x = 3a '2114-1 s 1
n=1
ontv 7
BA={xeZix= ooy e2}
3
o= 3Ixn + 2
I-ﬁ-{liz1—uw12}

B, A = {ix,y) «MN = N | 9% — (x + 1)*= 32}

uin

{lx,y) € Z x Z | %'~ 2xy + 3y"= 8}

7. Let P € Z(x) a n degree polynomial and q €EZ.
Knowing that P(q) = 15, determine the set:

A= | x a £ | 7'3—1-’%-*

Z }

:—
B.Hl{n:!laaem,ij-:-:—;'—im}.

INDICATIONS:

1. An integer maximal part is highlighted. This is obtained

making the divisions:
10

= RENE. - =
% 3 2n+1,soxiz<>

2n + 1

10

eZ <=

>
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10 is dividable by 2n + 1 <=>n € {0,1, -2}
2
N s ek HCCE RS "= DR
so E € Z <=> 27 is dividable by 2x + 1 and 4x% —2x — 11 +
”_is a multiple of 8 <=> A € {—14,—5,-2,—1,0,1,4, 13}.

2x+1
3 9yi-(x + 1)%= 32 ¢a> (By —%— 1)(3y + x + 1)= 32

so x and Y are integer solutions of systems the shape of:
3y—x—1=u

{By +x+1=v

B. 57— 2% + 3y¥= B <=3 (x - y)¥+ 29%= 8 2>

with u and v as divisors of 32.

w = v = 0 and Eyzﬂﬁ.

7.P(x) = C(x){x — q) + R <=>a x"+

+ ln_lblﬁ-t'l' cee * @, = Clx){x - g) + 15.
P(x) .. .
So; € Z <=> 15 is dividable by x — q.
8. Method 1: For a #+ —1 we have
z
o= B 8% 1 oy oan b x=a-a+ 1=
a + 1 -

€= - all +# x) + 1 — x =2 0 <=}

L + x *+ o x*+ &% - 3

£=> a = =

so, we must have x2 + 6x —3 > 0. As X1, = —3 + 2v/3, we
deduce:
X @€ (-, 3-23 JUL -3+ 23, +x).

a?-a+1

and A =

Method 2: We consider the function f(a) = —
f(D), with D = R{—1} the domain of f. A is obtained from the

variation table of f.
VI. Determine the following sets, when a,b € N:
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a={xez|[25=]-[+]}
an={xezi[25=]=[§] 1}
3.A-{§-RI[2“]'2M}

where [t] is the integer part of t.

SOLUTIONS: We use the inequalities: [t] < t < [t] + 1, so:

1.[1;:-(]‘ a
a + ¥

x & A <=->[-E-]< —-E—CI[
|

ol +
=
)
| |
w
o+
®
| |
*
-

q:;b[%]+h—a(u<n{%]+zb—g_

VIL. The application f:P(T) — Fr defined through
f(A) = @, is a bijection from the family of the parts belonging to

T to the family of the charactetistic functions defined on T.

SOLUTION: To demonstrate the injectivity, let A, B € P(T)

with A # B. From A # B we deduce that there exists xqg € T so
that:

a)xg € Aandxyg &€ Borb)xyg €E Bandxy € A

In the first case @4(xo) =1, case @g(xy) =0, so @y #
@g- In the second case, also, @4 # @p.

The sutjectivity comes back to:

v =
P = 3‘1_ I A e 2T) a.l. P e,

Let then @ € Fy irrespective. Then for A = {x|p(x) = 1}
we have @ = @y .
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II. Functions

Function definition

A function is determined by three elements D, E and f, with
the following significations: D and E are sets, named the domain
and the codomain, respectively, of the function, and f is a
correspondence law from D to E that causes:

each element x € D to have one,
and only one corresponding elementy € E. (F)

So we can say a function is a triplet (D, E, f), the elements of
this triplet having the signification stated above.

We usually note this triplet with f:D — E. Two functions
are equal if they are equal also as triplets, i.e. when their three
constitutive elements are respectively equal (not just the
correspondence laws).

To highlight the importance the domain and codomain have
in the definition of functions, we will give some examples below, in
which, keeping the cotrespondence law f unchanged and modifying
just the domain or (and) the codomain, we can encounter all
possible situations, ranging from those where the triplet is a
function to those whete it is a bijective function.

In order to do this, we have to first write in detail condition
(F) that characterizes a function.

We can consider this condition as being made up of two sub
conditions, namely:

(f1) each element X from the domain bas a corresponding element, in the
sense of “at least one element”, in the codomain.

Using a diagram as the one drawn below, the proposition can
be stated like this:
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“(At least) one arrow can be drawn from each point of
the domain.”
f T

D —_— 3 E D e e B
H EEE——— k4 E "
) :‘? ® y q__"‘——-».______.- "
H —_— ¥ X ‘-_—‘--——_____‘__h- W
al b)
L L

=
£ X ¥ m
¥ x x D

c) d)
Fig. 2.1
More rigorously, this condition is expressed by:
tf) Y% eD vy €eE , v = Ffin)

The second sub condition regarding f in the definition of a
function is:
(f2) the element from the codomain that corresponds to X is unique.
For the type of diagram in fig. 2.1, this means that the arrow
that is drawn from one point is unique.
This condition has the equivalent formulation:
“If two arrows have the same starting point then they
also have the same artival point.”
Namely,

[11} v xoO= === ftxll = ftx=J

Conditions (f1) and (f3) are necessary and sufficient for any
correspondence law f to be a function. These conditions are easy to
use in practice.
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In Figure 2.1, the correspondence law from a) satisfies (f)
and doesn’t satisfy (f3); in b) the correspondence law doesn’t satisfy
(f1), but satisfies (fy). In diagram c), neither(f;), nor (f3) are
satisfied, and in d) the correspondence law satisfies both (f;) and
(f2), so it is the (only) function.

A function is therefore a triplet (D, E,f), in which the
correspondence law f satisfies (f1) and (f2).

Let’s observe that these two condition only refer to the
domain of the function:

(f1) — from each point of the domain stems at least one arrow;
(f2) — the atrow that stems from one point of the domain is
unique.

It is known that the graphic of a function is made up of the
set of pairs of points (x, f(x)), when x covers the domain of the

function.

G =4 [(%:T(x) ) | = €D}

HOW CAN WE RECOGNIZE ON A GRAPHIC IF A
CORRESPONDANCE LAW IS A FUNCTION [if it satisfies (f7)
and (f2)] ?

In order to answer this question we will firstly remember (for
the case D, E C R) the answer to two other questions:

1. Given x, how do we obtain — using the graphic — f(x)
[namely, the image of x (or images, if more than one, and in this case
the correspondence law f is, of coutse, not a function)] ?

Apnswer: We trace a parallel from x to 0y to the point it
touches the graphic, and from the intersection point (points) we
then trace a parallel (parallels) to Ox. The intersection points of
these parallels with 0y are the images f(x) of x.

2. Reciprocally, given y, to obtain the point (points) X having
the property f(x) =y, we trace a parallel to 0x through y, and
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from the point (points) of intersection with the graphic, we then
trace a parallel (parallels) to 0y.

Examples

1. A citcle with the center at the origin and with the radius 7
is not the graphic of a function f: R — R, because it does not
satisfy condition (fy) (there are points in the domain that do not have any
image, namely, all the points through which the parallel 0y doesn’t
intersect the graphic) ot (), because #here are points in the domain that
have more than one image (all the points x € (—1,1) have two images).

fimd

(this point has

fix) no image)

Fig. 2.2

2. A circle with the center at the origin and with the radius 1
is not the graphic of a function f: [—1,7] — R, because it does not
satisfy condition (f3) (this time thete are no mote points in the
domain that do not have an image, but there are points that have two
images).

3. A circle with the center at the origin and with the radius 7
is not the graphic of a function f: R — [0, ©), because it does not
satisfy condition (f;). With the codomain [0, 0), the points have
one image at most. 'There are points, however that don’t have an image.
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4. A circle with the center at the origin and with the radius r
is the graphic of a function f: [—71,7] — [0,1], because a// the points
in the domain have one, and only one image.

5. A circle with the center at the origin and with the radius r
is the graphic of a function f: [-r,7] — [0,1].

In all these examples, the correspondence law has remained
unchanged (a circle with the center at the origin and with the radius
7, having therefore the equation x% + y? = r2, which yields y =
+(r? — le/z).

By modifying just the domain and (or) the codomain, we
highlighted all possible situations, starting from the situation where
none of the required conditions that define a function were fulfilled,
to the situation where both conditions were fulfilled.

WITH THE HELP OF THE PARALLELS TO THE
COORDINATES  AXES, WE  RECOGNIZE THE
FULFILLMENT OF THE CONDITIONS (f;) and (f), THUS:

a) A graphic satisfies the condition (f1) if and only if any parallel to
Oy traced through the points of the domain touches the graphic in at least one
point.

b) A graphic satisfies the condition (f2) if and only if any parallel to
Oy traced through the points of the domain touches the graphic in one point at
71051,

The inverse of a function

We don’t always obtain a function by inverting the
correspondence law (inverting the arrow direction) for a randomly
given function f: D — E. Hence, in the Figure 2.3, f is a function,
but f~1 (obtained by inverting the correspondence law f) is not a
function, because it does not satisfy (f2) (thete atre points that have
more than an image).
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Il
|

Fig. 2.3

With the help of this diagram, we observe that the inverse
doesn’t satisfy (f,) every time there are points in the codomain of f
that are the image of at least two points from the domain of f.

In other words, f~1 doesn’t satisfy (fs) every time there are
different points that have the same image through f .

Therefore, as by inverting the correspondence law, the
condition f still be satisfied, it is necessary and sufficient for
the different points through the direct function have different
images, namely

tf=] L4 X %, @ D, uii x, === f{x‘) # ‘_f{xz}

A second situation where f~1is not a function is when it

does not satisfy condition (fy) :

+ -4
D —_— &+ E D ‘__f— E
e 1 o —_— X
—_— x x —
L o

Fig 2.4

We observe this happens every time there are points in the
codomain through the direct function that are not the images of any
point in the domain.

So as by inverting the correspondence law, the condition
(f1) still be satisfied, it is necessary and sufficient for a// the points in
the codomain be consummated through the direct function, namely

[1"1 ¥v eB I x&D ,t(xn) =y

36




Methods of Solving Calculus Problems

In conclusion,

f 1 satisfies (f,) if and only if f satisfies (f3)

f 1 satisfies (f;) if and only if f satisfies (f3)

f~1is a function if and only if f satisfies (f3) + (f3).

As it is known, a function that satisfies (f3) is called an
injective function, a function that satisfies (f; ) is called a
sutjective function, and a function that satisfies (f3) + (fy) is
called a bijective function.

We see then that the affirmation: “A function has an inverse
if and only if it is bijective”, has the meaning that the inverse f 1
(that always exists, as a correspondence law, even if f is not
bijective) is a function if and only if f is bijective.

With the help of the parallels to the axes of coordinates, we
recognize if a graphic is the graphic of an injective or sutjective
function; thus:

C) a graphic is the graphic of an injective function if and only if any
parallel to 0x traced through the points of the codomain touches the graphic in
one point, at most [namely f = satisfies (f2)].

d) a graphic is the graphic of a surjective function if and only if any
parallel to 0x traced through the points of the codomain touches the graphic in
at least one point [namely =1 satisfies (f)].

Examples

1. A circle with the center at the origin and with the radius
is the graphic of a function f:[0,7] — [0, o) that is injective but
not surjective.

2. A circle with the center at the origin and with the radius r
is the graphic of a function f:[—7,7] — [0,7) that is surjective
but not injective.

3. A circle with the center at the origin and with the radius 1

is the graphic of a bijective function f:[0,7] — [0, 7).
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So, by only modifying the domain and the codomain, using a
circle with the center at the origin and with the radius r, all
situations can be obtained, starting from the situation where none
of the two required conditions that define a function were fulfilled,

to a bijective function.

Observation
1S obtaine mnverting the correspondence law r, namely
~1 is obtained by inverting th pondence law F Iy

f-i

] —v-f—-—r y S===2 ¥ =¥

in other words

y = f(x) <=m=> x = f'(y) (2.1)
In the case of the exponential function, for example, the

equivalence (2.1) becomes:

=

Yy = a {===3 W o= lnuusf (2.2)
because the inverse of the exponential function is noted by
f1(y) = logy,y. The relation (2.2) defines the logarithm:

The logarithm of a numbery in a given base, Q, is the exponent X to
which the base has to be raised to obtain y.

The Graphic of the Inverse Function

If D and E are subsets of R and the domain D of f (so the
codomain of f~1) is represented on the axis 0x, and on the axis
0y, the codomain E (so the domain of 1), then the graphic of f
and f ™1 coincides, because f ™1 only inverses the correspondence
law (it inverses the direction of the arrows).

But if we represent for f ™1 the domain, horizontally, and the
codomain vertically, so we represent E on 0x and D on 0y, then

any random point on the initial graphic Gy (that, without the
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aforementioned convention is the graphic for both f and f~1),
such a point (x, f(x)) becomes (f(x), x).

The points (x, f(x)) and (f(x),x) are symmetrical in
relation to the first bisector, so we obtain another graphic G;l
besides Gy if the domain of flis on Ox.

Agtreeing to represent the domains of all the functions on
0x it follows that G;rl is a graphic of f 1.

With this convention, the graphics of f and f~1 are

symmetrical in relation to the first bisector.

Methods to show that a function
is bijective
1. Using the definition
- to study the injectivity, we verify if the function
fulfills the condition (f3);

- to study the surjectivity, we verify if the condition
(f4) is fulfilled.

2. The graphical method
- to study the injectivity we use proposition c);

- to study the surjectivity we use proposition d).

Important observation

If we use the graphical method, it is essential, for functions
defined on branches, to trace as accurately as possible the graphic
around the point (points) of connection among branches.
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Examples

2x+1 ifx<1
x+3ifx>1
injective, but is not sutjective. The graphic is represented in Figure
2.5 a).

1. The function f: R — R, f(x) = { is

3x—1 ifx<?2
2x—=1ifx>2
surjective, but is not injective. The graphic is in Figure 2.5 b).
2x+1 ifx<1
x+2ifx>1
bijective. The graphic is represented in Figure 2.5 ¢).

2. The function fiR — R, f(x) = {

18

3, The function fiR — R, f(x) = { is

(=

Fig. 2.5

3. Using the theorem

A strictly monotonic function is injective.

To study the surjectivity, we verify if the function is
continuous and, in case it is, we calculate the limits at the
extremities of the domain.
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Example
Let’s show that f(x) =tg x, f: (—%,g) — R is bijective.
() njectivity: because f(x) = Co;x is strictly positive, we

deduce that the function is strictly ascending, so, it is injective.
(ii) surjectivity: the function is continuous on all the definition
domain, so it has Darboux’s property and

lim fi(x) = — = , lim fix) = e
=TT+ 2
X S-ofe2 I <Ma%

from where it follows that it is sutjective.

4. Using the proposition 1

The function, f:D — E is bijective if and only if

¥ y € E the equation f(x) = y has an unique solution
(see the Algebra workbook grade XII)

Example
Let D = Q X Q and the matrix A = (3 ). Then the function

TP D —— D, fhlxax) = (3x = x . 4x, + 2x)
is bijective (Algebra, grade XII).

Let’s observe that in the proposition used at this point, the
affirmation “the equation f(x) =y has a solution” ensures the
surjectivity of the function and the affirmation “the solution is

unique” ensures the injectivity.

5. Using the proposition 2

If f,g:D — D and g.f = 1pthen f is injective and g is
sutjective (Algebra, grade X1I).
Example

let D=ZXZ and A= (_21 _32 . Then the function
fa:D — D defined through
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fﬂ{x‘,x:} = ‘2’:: * 3”: s TR T 2":,

satisfies f o fu = 1p, so it is bijective (algebra, grade XII).

Let’s observe that the used proposition can be generalized, at
this point, thus:

“Let f:D — E,g:E — F, so that g o f is bijective. Then f

is injective and ¢ is sutjective.”

Exercises
I. Trace the graphics of the following functions and specify,
in each case, if the respective function is injective, sutjective or
bijective.
1. f{x!nnin{x+1,xz+2,3x)
2. f(x) =max ( 3x -1 , 2x + 3 , x* = 2x )
3. fi{x) = min ( 2x - 3, 4:\::-5, [x1 )
4. f(x} =min ( |x = 3| , 4x )

2z
5. f(x) =_ pig t

8. f(x) = inf ( %+ 2t + 3 )
z
7. f(x) = int _[._1.:_51'&
A |
. o 2 _ _
8. Tix) =_gig ( t* - |t - 2| )
t4
8. t({x) = _min
=ZCL M {t +T].

10. f(x) = sup tiln t
[-E8 4§

11. f(x) = max (t — 2 arctg t )}
~835L5x .

12. fin) = [T} sin t
M4 En
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SOLUTIONES.
It is known that:

min{u{x),vix) . wix}) =

ulx} if ulx) £ v(x) and ulx) = wix)
= vix) if win) = ui(x)and vix) = wix)
wix) if wix) = ul(x)and wix) = wix)

In order to more easily explain the conditions from the
inequalities over u, v and w we will proceed as follows:

1. we draw the table with the signs of the functions u —
vu—wandv —w

2. using the table we can easily explain the inequalities,
because for example u(x) < v(x) <===>u(x) < 0.

1. For u(x) =x+1, v(x) = x2 + 2 and w(x) = 3x we
have the following table:

x £ : 2
ulx)=vixn) = = = = - -
uln)-—win) +# © - - - - =
vix)-wix) | + + 0 - -0 + +

So:
a) » = [—m . -;-] — uix) £ vix)
and uix) = wix),s0 fix) = wix)
B) x @ (3 » 1] — ulx) < vix)
and ui{x}) = wix}),s0 fix) = uix)
c}] x & (1 , 2] — ul(x) = vix)

and ui{x) = wix),so fix) =uix)
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d) x & (2 y0) — uf(x) S vix)
and u{x} = wix),so0 f({x) = u(x)
Therefore,

3= if = = 1/2
fix) =
. x + 1 if w > 1/2

5. To explain f we proceed as follows:

(1) we draw the variation table of the function y(t) = t?

(2) considering x in the first monotonic interval (deduced
from the table), at the right of —1 (because we ate only interested in
the values t = —1), we calculate the minimum of y(t) on the
interval t € [—1,x] etc.

& o -1 o [+] » +a
¥’ -i—0+1-£f + +
Y T ’

a) for the first monotonic interval, x € (—1,0), the function
y(t) = t? has a single minimum point on the interval [—1,x],
situated in t = x; its values is y(x) = x2. Being a single minimum
point it is also the global minimum (absolute) of y(t) on the
interval [—1, x], so, the value of f is f(x) = x?2 for x € (—1,0].

b) for the second monotonic interval, x € (0,00), the
function y(t) = t? has a single minimum point on the interval
[-1,x], in t = 0; its value is y(0) = 0. Being a single minimum
point, we have f(x) = 0 for x € (0, ), so

z

* if wa (-1 ,0]
fix) = 0 if x & (0 ,m)

Let’s observe that using the same variation table we can

explain the function g(x) = 1Tffx t2. Hence:
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a) for x € (—=1,0], the function y(t) = t?, has only one
maximum, namely [—1,x] in t = —1; its value is M = y(1) = 1.
So g(x) =1, for x € (1,0].

b) for x € (0, +), y(t) = t? has two maximum points, in
t; = —1 and t, = x; their values are M; = y(1) =1 and M, =
y(x) = x2. The values of f is the global maximum, so:

g(x) = max(1,x) for x € (0, +c0).

1 if x € [-1,0]
It follows that g(x) = { max(1,x2) if x>0

1 §jf = e (=1, 0]
Sogix) ={ 1 if x e {0, 1] =

w2 if x> 1

1 if » & (-1 , 1)
{x" if »>.1

. . — t4
9. From the variation table of y(t) = 0]
t | -2 x 0 . AL
T T
) | - - - -0+ o+ L+ 4
10 ' !
G - TR Y !

1. for x € (—2,0], y(t) has a single minimum on the
x4

(x+7)3

2. for x > 0, y(t) has a single minimum, namely [—2, x], in

t = 0;its value ism = y(0) = 0. So

interval [—2,x], in t = x;its value is m = y(x) =

&
—“—.——;if x & (-2 , 0]
+ 7
fi) =4 X7
0 if x>0
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Analogously, for

4
t
aix) = ~—————— we have
2 T
ﬁlé— if » & (-2 , 0]
gty = 16 t* .
m[ '—) lf I ]
1z x +7)°

10. From the variation table of y(t) = t?in t

t 0

" i/ fe X + o
T
y' (t) - =] = - 0 + + !_ + +
vty 1o N N 12 |/ : L

we deduce:
(@ if x € (0,%], the function y(t) = t2in ¢ has, for t €
lim
(0,x], a single supremum S =t - 0 y(t) =0.
t>0
(b)x € (_T:' 0], the function y(t) has two supreme values:

S; =0and M; = y(x) = x*1nx.

So:
o xe({0, — ]
tox) = *
-1
nxtﬂ,x’lnxr u-(—.-m‘]
I1. Study the bijectivity of:
L] x =0
1. 1(x) = % x @@ , ® * 0
] =aR -@
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2. f(x) = P(x), P being an uneven degree polynomial.

S-f{x}-lﬂﬂ.{at*f'u:*ll a>0,arl.

2% + 1 = 8
4. f(x) =
_§. xelR @

B f 1 RE——m— R fix) = A-x

whereﬂ-[i §

6. f 1t RP—— B f(x) = A-x
101 1

where A = 2 3 45
4 9 18

7. R —— ®

fiu,v) = (lg w + 2-1g ¥ . 3-1g_u - 2-1g ¥}
II1. Study the irreversibility of the hyperbolic functions:

£ -
1. shix) = =~ @ (hyperbolic sine)
2
u -
2. chix) = = > 2 (hyperbolic cosine)
2
X _ _=x
3. thix) = = '_ (byperbolic tangent)
e + @
H -3 .
4. cthix) = =22 (hyperbolic cotangent)
. - e

and show their inverses.
IV. 1. Show that the functions f(x)=x%2—-x+1,

f: Eoo) — Rand

1 1
gtni_sT“./u-T .“’[?"’”_‘R
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are inverse one to the other.

1-x . . .
2. Show that f(x) = T3, coincides with its inverse.

ax+b
cx+d

3. Determine the parameters @, b, ¢, d so that f(x) =

coincides with its inverse.

4, Show that the function f:(0,1] = R defined
throughf(x) = — — x,ifx € [3n, — 1] is bijective.

5. On what subinterval is the function f: [—%,00) — R

f(x) =+x —+2x — 1 bijective?

INDICATIONS.
4. To simplify the reasoning, sketch the graphic of function

5. Use the superposed radical decomposition formula:
A+tyE =/8H*C A-C

+ =
2 - 2 *
where C = VA2 — B.

Monotony and boundaries
for sequences and functions

A sequence is a function defined on the natural numbers’ set.
The domain of such a function is, therefore, the set of natural
numbers N . The codomain and the correspondence law can
randomly vary.

Hereinafter, we will consider just natural numbers’
sequences, i.e. sequences with the codomain represented by the set

of real numbers, R.
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fN—R REAL NUMBERS SEQUENCE
For this kind of function, with the same domain and
codomain each time, only the correspondence law f should be

added, which comes down to specifying the set of its values:

£(0), f(D), f(2), ..., f(n), ...

i} 154
O .
) \
f(0)

2
< f(2)
- fin)
n 1)

= 00

For the ease of notation, we write, for example:
f{0O) = a‘ s T{1) = az s s=s 3 Fln}) = an § saw

So, to determine a sequence, it is necessary and sufficient to know
the set of its values: ag, Ay, ..., Ay, ... This set is abbreviated by
(an)nEN~

Consequently, a sequence is a particular case of function.
The transition from a function to a sequence is made in this
manner:

(s1) by replacing the domain Dwith N

(S2) by replacing the codomain E with R

(S3) by replacing the variable x with n (or m, ot i, etc)

(s4) by replacing f(x) with a,,
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DOMAIN | CODOMAIN | VARIABLE | CORRESP.
LAW
Function D E X f(x)
Sequence N R n ay

Hereinafter we will use this transition method, from a
function to a sequence, in order to obtain the notations for
monotony, bounding and limit of a sequence as particular cases
of the same notations for functions.

We can frequently attach a function to a sequence (Qp)pen
obtained by replacing M with X in the expression of Ay (ay

becomes f(x)).

Example

. x+3
We can attach the function f(x) = 7o © the sequence
_ n+3
n T oon+1

However, there are sequences that we cannot attach a

function to by using this method. For example:
F = T.pu'-.-.-’—-u-—
™ ™ o+ i

It is easier to solve problems of monotony, bounding and
convergence of sequences by using the function attached to a
sequence, as we shall discover shortly.

Using functions to study the monotony, the bounding and
the limits of a sequence offers the advantage of using the derivative
and the table of variation.

On the other hand, it is useful to observe that the monotony,
as well as the bounding and the limit of a sequence are particular
cases of the same notion defined for functions. This

particularization is obtained in the four mentioned steps (S;) —

(s4) -
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Here is how we can obtain the particularization, first for the

monotony and bounding, then for the limit.

MONOTONIC FUNCTIONS

MONOTONIC SEQUENCES

a) the function f:D — R, D €
R is monotonically increasing if:
¥ Xx1.%, €D, xqy < x5 > f(xq)

< f(x2)

a) the sequence f:N — R is
monotonically increasing if:
vn,n, ENng <n, »

n, < an, (1)
If condition (1) is fulfilled,
taking, particularly ny =n and
n, = n+ 1, we deduce

ap < Apyq foranyn 2
In conclusion (1) — (2)

The reciprocal implication also
stands true. Its demonstration
can be deduced from the
following example:

If (2) is fulfilled and we take

ny=7n,=11 , we have

ny <n, and step by step
<

a:,_a-,a'Saﬁ,agsam

and a7 S a11.

Consequently, (1) < (2).
Because conditions (1) and (2)
are equivalent, and (2) is more
convenient, we will use this
condition to  define the
monotonically increasing
sequence. But we must loose
from sight the fact that it is
equivalent to that particular
condition that is obtained from
the definition of monotonic
functions, through the
patticularizations ($1) — (S4) ,
that define the transition from
function to sequence.
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b) the function f:D — R, D C
R is monotonically decreasing if:
¥ xq,X €D, xy < xp = f(xq)

= f(x2)

b) the sequence f:N — R is

monotonically decreasing if:

¥n,n, ENn<n; - ap,
2 Qp,

It can be shown that this

condition is equivalent to:

An = Apyq foranyn € N (4)

LIMITED FUNCTIONS

LIMITED SEQUENCES

a) ftD—R, DSR is of
inferiorly bounded if it doesn’t
have values towards —o0 | i.e.
daeR¥xED, f(x)=a

by f:D—R, DER is of
superiorly bounded if it doesn’t

have  values towards +oo
ie.IbERVYXED, f(x)<h
o f:D—R DESR is

bounded, if it is inferiotly and
supetiorly bounded, i.e.
Ja,beR¥x € Na<f(x)<
b.

In other words, there exists an
interval [a,b] that contains all
the values of the function. This
interval is  not,  generally,
symmetrical relative to the origin,
but we can consider it so, by
enlarging one of the extremities
wide enough. In this case [a, b]

becomes [—M,M] and the
limiting condition is:
aAM>0,¥x€D -M <

f(x) <Mie.
AM>0,¥x€eD |[f(x)|<M

a) the sequence f: N — Ris of
inferiorly bounded if it
doesn’t have values towards
—00 | ie.

daeR¥n€EN a, =a

b) the sequence f: N — Riis of
superiorly bounded if it
doesn’t have wvalues towards
400 ie.
IbeR¥nEN,a,>b

¢) the sequence f:N — R is
bounded if it is inferiorly and
superiorly bounded, i.e
da,beR¥NEN a<a, <
b

OR

AM>0¥n€eN |a,| <M
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Methods for the stu
and bounding

dy of monotony

METHODS FOR METHODS FOR
FUNCTIONS SEQUENCES
The study of monotony

1. Using the definition:

We consider x; < x5 and we
compare the difference f(x1) =
f(x;) to zero. This can be done
through successive minorings
and majorings or by applying
Lagrange’s theorem to function
f on the interval [x4, x5 ].

2. Using the variation table (in
the case of differentiable
functions)

As it is known, the variation
table of a differentiable
function offers precise
information on monotonic and
bounding functions.

3. Using Lagrange’s theorem
It allows the replacement of the
difference f(x,) — f(x1) with
f(c) that is then compared to
ZEro.

1. Using the definition:

We compare the difference
Ap41 — Ay to zero, and for
sequences with positive terms
we can compare the quotient
Any1/a, to one. We can make
successive minorings and
majorings or by applying
Lagrange’s theorem to the
attached considered sequence.
2. Using the variation table
for the attached function
We study the monotony of the
given sequence and, using the
sequences criterion, we
deduce that the monotony of
the sequence is given by the
monotony of this function, on
the interval [0, ), (see
Method 10 point c)

3. Using Lagrange’s theorem
for the attached function.

The study of bounding

1. Using the definition
2. Using the variation table

1.. Using the definition
2. Using the variation table
for the attached function

3. If the sequence

5
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decomposes in a finite
number of bounded
subsequences, it is bounded.
4. Using the monotony.

If a sequence is monotonic, at
least half of the bounding
problem is solved, namely:

a) if the sequence is
monotonically increasing, it is
inferiorly bounded by the first
term and only the superior
bound has to be found.

b) if the sequence is
monotonically decreasing, it
is superiorly bounded by the
first term, and only the inferior
bound must be found.

¢) IF THE SEQUENCE IS
MONOTONICALLY
DECREASING AND HAS
POSITIVE TERMS, IT IS
BOUNDED.

Exercises

L. Study the monotony and the bounding of the functions:

¥ 4+ 1
1. 'l'{x]:{ 2

® O+ x + 1

if = =1

if W o» 1

2. foo=x* + | 3% - 4 |

B =(1n 0" *, f o [L,e)— R

d. f{n) = me * n s F iR — R
'f.:u’+x+1

S fix) =+ x -2 - ¥ 3n = F ,

f @ [3,m) — R
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B. fix) = arctg x , ¥ 3 IR-—-—*[";'_‘- %]

ANSWERS:

3. We can write f(x) = e™IIn%) 304 we have the
variation table:

® 1 EU'
f ix) - - - .= 0 + += + + +
-1
fix) b .\ [ /

so the function is decreasing on the interval (1, el/€) and increasing

on (el/€

e—l/e

,0). It is infetiotly bounded, its minimum being m =
and it is not superiorly bounded.

5. We use the superposed radicals’ decomposition formula:

- . /AFTC _fA-T
foo=ya+ s /BT AT
withC = &°- B

6. Let x; < x;. In order to obtain the sign of the difference
f(x1) = f(x3) we can apply Lagrange’s theorem to the given
function, on the interval [xq, X,] (the conditions of the theorem are
fulfilled): ¢ € R exists, so that:

f{x"_} - f{nz} = f‘tc)t:‘ - xzk =

(¥ = =) €0
1 - c* ¢ 2

so the function is increasing.
11. Study the monotony and the bounding of the sequences:

In n
1. a -

™

n
E.a-n'/n_
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also determine the smallest term of the sequence.

3. a =na"
2]

also determine the smallest term of the sequence.

4., a -l-—j'--'r"n gy for n =22 .
n Inn

S. a_ =1+ —nj—'-—]“, b= (r+ %]"“,

e = (1 v =), with
1 s
ae(0, 1) ,d =1+ )",
Vn being the intermediary value that is obtained by applying

Lagrange’s theotem to the function f(x) =Inx on the intervals
[n,n+1].

ANSWERS:

2. The function attached to the sequence is f(x) = x/*,
From the variation table:

e 2 e z
£ (%) + + o - _ _
(%) ! 7 tw) \ h

we deduce, according to the sequence criterion (Heine’s criterion,
see Method 10, point ¢), the type of monotony of the studied
sequence. The sequence has the same monotony as the attached
function, so it is decreasing for n = 3. Because the sequence is
decreasing if n = 3, in order to discover the biggest term, we have
to compare a; and az. We deduce that the biggest term of the
sequence is:

.75

3. The function attached to the sequence is f(x) = xa*.
From the variation table for a € (0,1):
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x o {(-1n a)™*
£ (x) + o+ ) - - = =
fix) s f 1Y %

using point ¢) from Method 10, we deduce that the given sequence
is increasing for n, smaller or equal to the integer part of (—Ina)™?
and is decreasing for n = [(—Ina)™*] + 1.

Because

iﬂ i-in a) ' = 0 and m (-ln a) Y= + =
i

a*>o

1 s
<

AR

we deduce that the interval [1,

—

(—Ina)71]], in which the sequence
is increasing, can be no matter how big or small.

6. The sequence of the general term a, is increasing, the
sequence of the general term by, is decteasing, and the sequence ¢,
is increasing if a € [0,n —¥,] and is decreasing for a € [,n —
Yoo 1]

II1. Using Lagrange’s theorem.

1. Prove the inequality |sinx| < |x| for any trealx, then
show that the sequence a; =sinx, a, =sinsinx,...,a, =
sinsin ...sinx, is monotonic and bounded, irrespective of X, and
its limit is zero.

2. Study the monotony and the bounding of the sequences:

= 1 4n 2 n
s, = {1+ 5308, = eresin( ),
- in n n + 1
€ = = H=t2n+1 + 21n n,
(5] *=
3 n + 2
S T v T
ANSWERS:

1oy sin x| 5 | x| <= JBOR oy
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From Lagrange’s theorem applied to the function f(n) = sint on

the interval [x, 0] or [0, x], depending on x being either negative or
sinx

positive, we obtain = | cosc| < 1. The sequence satisfies the

recurtence relation: dy 41 = Sin ay, so if sinx > 0, we deduce that
the sequence is dectreasing, and if sinx <0 the sequence is
increasing. It is evidently bounded by —1 and 1. Noting with L its
limit and passing to the limit in the recurrence relation, we obtain

L =sinL soL =0.

1 nrd
2. va - .n-( 1+ ) it

_(L‘b_rj;_]n_ftn-l-li-f{n}

]
n+1-n

where f(x) =(1 +£)x defines the function attached to the

sequence.
b) Applying Lagrange’s theorem to the function attached to
the sequence, on the interval [n,n + 1], we deducean,; — a, =

f(cn). We have to further determine the sign of the detivation:

f[x}-[1+.,:;_J*,[1n{:l. +%)--—-—-——“ : l]

namely, the sign of

s00 = {1+ L) - i

From the table below we deduce g(x) > 0 for x > 0, so @41 —
a, > 0.
¥ o + o

g’ (x) - - - - -
glx) \ \ \

IV. 1. Let I be a random interval and f:I = I a function.
Show that the sequence defined through the recurrence relation
an+1 = f(ay), with a, being given, is:

a) increasing, if f(x) —x > 0on [

b) decreasing if f(x) —x < 0onl.
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2. If the sequence (ay)nen is increasing, and the sequence
(bp)nen is decreasing and a,, < by, for any n, then:

a) the two sequences are bounded, and so convergent.

b) if nl:":o (b, — a,) = 0 then they have the same limit.

c) apply these results to the sequences given by the

recurrence formulas:

with a, and b, being given.

SOLUTIONS:

1. Gpeq — Ay = f(ay) — a, > 0 in the first case.

2. the two sequences are bounded between a; and by, so the
sequences are convetgent, because they are also monotonic. Let [y
and [, represent their limits. From the hypothesis from (b) it

follows that [; = [,.
(c) the sequences have positive terms and:

2
b — a
hz - az = L S L >0 .
™ n 2
V. Study the bounding of the sequences:

i 1 1 1 1 1 1

1 1
3-1;2-?!4;T|b:---
) 27
4. 2,8, 5 5 F- s v o3
HERE- D W I b




C. Dumitrescu m F. Smarandache

S. cos(n/4) , cos(cos(m/4))

6'1!2 s ¥ iI_3"ll S!"'!il'h

2 " nloo-

with @ @ 1 ,b = 2,a =7 1 ta,
1+b

s b - n

nesr 2

ANSWER: Each sequence is decomposed in two bounded

subsequences (convergent even, having the same limit), so they are
bounded (convergent).
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ITI. 'The limits of sequences
and functions

The definition of monotony and bounding of sequences has
been deduced from the corresponding definitions of functions,
using the method shown, in which x is replaced with n and f(x) is
replaced witha,. We will use the same method to obtain the
definition of the limit of a sequence from the definition of the limit
of a function. This method of particularization of a definition of
functions with the purpose of obtaining the analogous definition for
sequences highlights the connection between sequences and
functions. Considering that sequences are particular cases of
functions, it is natural that the definitions of monotony, bounding
and the limit of a sequence are particular cases of the corresponding
definitions of functions.

The limits of functions

The definition of a function’s limit is based on the notion of
vicinity of a point.

Intuitively, the set V € R is in the vicinity of point x, € R,
if (1) x € V, and, moreover, (2) V also contains points that are in
the vicinity of x, (at its left and right).

Obviously, if there is any open interval (a, b), so that x, €
(a,b) € V, then the two conditions ate met.

Particulatly, any open intetval (a, b) that contains x,
satisfies both conditions, so it represents a vicinity for x,.

For finite points, we will consider as vicinities open intervals
with the center in those points, of the type:
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VEIL = e, t + &) U"a-tx“_ &, %+ &)

and sets that contain such intervals.

For (4+00), V, = (00 — &, + &) doesn’t make sense, so we
have to find a different form for the vicinities of +00. In order to
accomplish this, we observe that to the right of +00 we cannot
consider any points, so © + & has to be replaced with +oo.
Furthermore, because ©0 — & = o0, we replace ©0 — & with €. So, we
will consider the vicinities of +00 with the form:

Voo = (S' oo)
and sets that contain such intervals.
Analogously, the vicinities of —o0 have the form:
V. =(—0,¢)

The definition of a function’s limit in a point expresses the
condition accotding to which when x approaches x,, f(x) wil
approach the value [ of the limit.

With the help of vicinities, this condition is described by:

lim fix) = L {=>
X

=> (Y '»'l 3 V!n‘l" n e U’u’ x X, => f(x) = 'u'L] (%%}

As we have shown, for the vicinities V; and V;  from the
definition (**x*), there exist three essential forms, corresponding to

the finite points and to + 00 and — o respectively.

CONVENTION:

We use the letter € to write the vicinities of [, and the letter §
designates the vicinities of x,,.

We thus have the following cases:

al ::n-ﬁnite =3 vu;r {xﬂ— & . ua-l- &)
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and % = v!°<=-> * & (% - & %+ &) £=>
<=ru & € n £ Na-l'- & 4=»

<=)-¢5<x*nn{|§<-}|u*xn|<d

bB) M= +q =D Vxﬂt 'd‘m= (d , +=)

and condition x € and V; , becomes x > §

€} x = —m =xrV =V = [—m 5 &)
) In = =1

and condition x, € and Vy ; becomes x < §
.'}l-fiﬁitn}ul=t1—.c, I + £)
so the condition fi{x) = V‘ becomes:
fix) &« (L —&£,1 + £} <=
=3l = £ ¢ tix <1 + £4=>
c=> =g <Fin)=1< e<mx|tix)-1|< &
b') L = 4= ')"J'L-r Uw= (g , +=m)
and the condition f(x) & V¥ becomes f(x) > £
€'} I = —m =3 UL— U_m.r (- 4 £}
and the condition (%) & V becomes f(x!< £
All these cases ate illustrated in Table 3.7.
Considering each corresponding situation to X, and [, in the
definition (***), we have 9 total forms for the definition of a

function. we have the following 9 situations:
“’1 R~ finite s ! = finite
xljgufl w) = L c=m» { ¥ >0 3 65}0 Y x-h-:o,

| x=x <6 =>] t0-1 |<e ]

{lz} H= + = 5, L — finite
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lim fi(x} = 1 <=»
x -reo

=>[¥ £>0 3 6 >0 ¥ #>5, =>|fix)-tj<e]

{(l)y ##=-=, 1 - finite

3 &
lim f{x) = 1 =3
® =r - D

<=>[¥ £0 3 5_V¥ 25 =>|t(x)-t <]
{l‘} ®o finite ., Ll = + e

lim fi{x) = +m <=3
x-.':uﬁ

- -— == Ffi{nlre
1:_}[ veds 0V x#xa,|x x°|<és . ]
“151 X= % =, I =+ m
1im Ti{x) = +o=m <=r

X =rED

= [ Y eI S ¥V 36 _=>f(x)>z ]

{1‘5] N I = + w
lim fi{x) = 4+ <=3
n =3 =—co

£=3 [v SRR => f{u)re }

(L)) x - finite , 1l = -=

lim fi{x) = —e> <=3
]

E=>[Y¥ 2 3650 ¥ xmx , |12 [<6, =>10x) < =]
II.} un-+m, L= ==

lim fi{n) = —= <=>
-

<=> [ Ye 3 & Wx>s_=> T{x)<s ]
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- = ] = =
llp] "g &y =
lim fix) = == (=
w o=k ED

<=>[ Ve 35 _V¥ x5, => fix)<e]

Table 3.1
u\\\l 1 - finit 1=+ l = -
o ™\ = @ @
v, =tun-5,xn+6] V, =lx —6&,x +8) v, =!xo—é,x°¢é}
& ] o
"".l_‘ll'-l.‘.1+€] Ul-t"m] Ul-(-m.sj
» x eV (=¥ x eV £=3 x €V =)
o H ® »
o o ]
finite (=3 |>¢-u°! <6 =3 Ix-un1 <8 {=> |:<-:<DI <6
f(x) & Ut {=> fix) & VL {=> fix) & ¥ <=
= |tx)-1] <& | €= f(x) > s =3 fix} € &
Vo=, V. =(&,e) V=&,
o X x
o [ o
U1=H-.:,l'.+£) \-"T_!ts,w! l Vl={—:n_.:]
X eV (=) % eV =3 E- (=2
€= e *a *a "o
=> x> & = x > & i<-=)x)é
|
fin) e Vl (=l fix) 'Ul (=2 1 fix) &« V, <=2
L
=2 |f(x]—!l { £ > f(x) > & E = f{x} < g
Vo= (-e,6) Vo= l=2,8) | Y= (-m,8)
% X T
] ° o
Vl= {l=g,l+e) Ul- !:,a.'l Vl' (=, &)
® aV (=3 HaV i=x ® eV L=
x x X -
o o o
X = =goe -
=r x { & (=) x ¢ & => x € &

fix) & ul'<->

<= |fx)-1] < £

fix) & Ul f=3

<=> f(x) > &

fix) e Ul. =3

{=> f(x) € &
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Exercises
1. Using the definition, prove that:

1. llg {3x — 1) = 14
Hn =¥

. 2% + 3 .
2. xl—ET Ix + 2 - =
3. xl_:;.gifu'l“i = 2
4. 1-1'? 1 S = 4oz
* (x = 1)
-1 .-
S g —5
Sx

B. "lim sin § = sin a
N =>a

T+ lim ln % = ln a
X -ra
ANSWERS:
In all cases, we have x, — finite.
2. We go through the following stages:

a) we particularize the definition of limit

. 2% + 3
= =3
xl-';-'T 3! + E 1

{5?-{"' £»0 3 éﬂ?{.’l ¥ oxml,Ix—1]% &s =¥

=> H - 1i <& ]
(taking into account the form of the vicinity).
b) we consider € > 0, irrespective; we therefore search for
.
¢) we make calculation in the expression |[f(x)—1|,
highlighting the module |x — X, |.
Zx + 3 P = -1 |

Itoo=tl= | =5 " " T+ 2 1"
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d) we increase (decrease) the obtained expression, keeping in
mind we are ony interested in those values of x for which |x —
Xo| < 6.

kx—1|< és .
So: | 3% + Z ] T 3= + 2 |

e) if the expression that depends on x is bounded
(continuous) in a vicinity of X,, we can further increase, to eliminate
x. We have:

ﬁ-‘ 1

1
T Sn + 21 S Tm+zT © e

because in the interval [0,2], for example, that is a vicinity of x, =

1, the function g(x) =

is continuous, and therefore
|3x+2|

bounded: g(x) € [5,5], if x € [0,2].

f) we determine Jg, setting the condition that the expression
we have reached (and that doesn’t depend on X, just on ;) be
smaller than &:

1 =

5.5 < £ > 6£ < 2e

Any 6, that fulfills this condition is satisfactory. We can, for
3
example, choose &, JEor 8, = € etc.

In order to use the increase made to function g, we must
also have 6, < 1, so, actually 6§, = min(l,%s) (for example).

It follows that:

&
| % =1 | s
Itoo=tl =517 < T+ T °
&
£ 3
< 5 = nihllgz—"}< £

3. a) “lin Yu+2 =2 <=

=» 2
<=>[¥ &0 3 8,50 ¥ xm2, Ix = 2] < 5 =>
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=>|1":.=+2 -2E<s]

b) let € > 0; we seatch for &,

Px -2
o | ¥ wvz2-2]=

Y x o+ 2+ 2 ]

| = =2 | &
d> £

F
e +2+2 Yu+2+2

&

£ 1 1
= 5 € 8B =y
£ & 3
¥u+2+72 T +2+2

because in the interval [1,3], for example, the function:

el

1

¥Yx+2+2

glx) =

is bounded by

1 and

1
/s+2 /342

. .. 8 .
f) we determine &, from the condition: ?g < &. We obtain

8. < 3¢, so we can, for example, take §, = €. But in order for the
increase we have made to function g to be valid, we must also have
8¢ < 1, 50, actually §; = min(1, €).
It follows that:
In + 2] &

< £ <
Y +2+2 ¥ x+2+2

é\t = mini{l , £)

3 k]
so the condition from the definition of the limit is in this case, also,
fulfilled.

< £

<
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43 ad lim
® - d

= o (=3
tx = 1?
(‘)[? g»0 3 é‘>0 ¥ ouml, |w = 1] < 6‘ =3
1
(x - 1?
b) let € any (not necessarily positive, because | = +00, so

V; = (&, +0)only makes sense for any &, not just for € positive).

1 1
) 3 = 3
(x — 1) Ix = 1}
1 1 i
d2 < z { because we only consider
Ix - 1]* 5,

those x for which, |x - 1] < & Y.

1 o &% < A
£ —ﬁ; I > éﬂ < = ]
£
take 8, = —
so we can take O = -2
Then:
1 = - i : >
{x — 1} Ix = 1]
> _1.-.. E 3 _1_ = fJg » £
5% 1
£ 4
II. Using the definition, prove that:
. I+ 1 _ 3
- lim Tt T
K =rD
z
2. lim T o
P
Wo=D o
ANSWERS:
. Ix + 1 3
. hem e L
1. a) 1lim e i =
M - O

<=> [V £>0 3 s_ "l":u}éﬂ =3
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- |m=r - 7] <]
b) let € > 0 any; we search for &,.
©) because x, isn’t finite anymore, we cannot highlight |x —
Xo |. We will proceed differently: we consider the inequality
|f(x) =] < €as an inequation in the unknown x (using also the
fact that x = o0, so, we can consider |2x + 1| =2x+1). We
have:

3Ix + 1 3
t - < - | =X+ 1 -
[fix) L £ <=> | T3 5 | ¢ & <=>
{.-.},_._..._1___..._{;(=>—1.__..{
212x + 1] 2(2x + 1)
1 i =
{j:[furk}—-f] <=>» 2x + 1 > 5= <=
- 1 - 2«
£=> ® > =

1 1 - 2
= - d
So for &# ma s g — } an
H o :5‘ + we have:

Ix + 1 3
—— z | <€
F 4
2. a) lim : *1:;0 =& <=
b = =]

z
c=>[ve 35, v, X 1L >100]

b) let € > 0 any; we determine J,.

) we express X from the inequality f(x)>e¢ :

z
#» + 1 . . ¢=>(wecanassume x > 100 because
¥ = 100

x—s @ ) <=> x>+ 1 - ex + 100 > 0.
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If x, and x, ate the roots of the attached second degree equation
and we assume X; < X, we have f(x) > ¢ & x > max(100, x,).
So we can take §; = max(100, x;).

The limits of sequences

The definition of a sequence’s limit is deduced from the
definition of a function’s limit, making the mentioned
particularizations:

(1) x is replaced with n,

2) f(x) is replaced with ay,

(3) x, is replaced with n,,.

Moreover, we have to observe that n, = —0 and finite n,
don’t make sense (for example n = 3 doesn’t make sense, because
n, being a natural number, cannot come no matter how close to 3).

So, from the nine forms of a function’s limit, only 3 are
particularized: the ones corresponding to x, = +00.

We therefore have:

(l19) L = finite (we transpose the definition (I,))

lim a =1 <=>
LR - =

{:}[w:}o 35, ¥ mé, la - 1] < e ]

Because in the inequality n > 6, n is a natural number, we
can consider §; as a natural number also. To highlight this, we will
write N, instead of §;. We thus have:

lim in = ]| {=3
™ =¥

<=>[¥ £>0 3 n_emN ¥a>n_ =>la-tl< ]

(l11) I = 400 (we transpose the definition (I5))
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1im ah = m =3
Lalia =+

<=>[¥e0 FneN Yo, = a>e]

(112) I = —oo (we transpose the definition (Ig))
lim a_ = - <=>
n->oo

<=>[ ve 3neN \rn)ns => a“<t]

Examples
I. Using the definition, prove that:

. 3n -1 _
- e =1 !

o=k oo

2. 1lim 1

nexom N+ 0o+ 1

3. lim ——
nses 20 + 3

4. lim Y n" +n + 1 = e
N =xoD

ANSWERS:

1. We adapt the corresponding stages for functions’ limits, in
the case of x, = +o0.

3n -1 -
a) lim m 1 £=3

n =

= 3n = 1

<=>[v &0 3nenvnn, 'S'r?+_1'1|“]
b) let € > 0 any; we determine n, € N.

) we consider the inequality: |a, — [| < € as an inequation
with the unknown n:
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2
ey o2 e oy =
In + 1 3

so, Ny = [%] +1

2. a) lim — L =0 <¢=>

F 4
n=xom N+ n 4+ 1

1

<=>[¥e0 IneN Ymn_|— <]

n o+ A+ 1

b) let € > 0 any; we determine n, € N as follows:
) 2—5— < £ €=>
n +n + 1
<=3 en® +.gn + £ -1 >0
Let njand n, represent the solutions to this second degree
equation (Ny < Ny). Then, for ny > n,, the required inequality is
satisfied. So, n, = [n,] + 1.

Calculation methods for the limits of
functions and sequences

Let’s now look at the most common (for the high school
workbook level) calculation methods of the limits of functions and

sequences.

Joint methods for sequences and functions

1. Definition

In the first chapter, we have shown how to use the definition
to demonstrate the limits of both functions and sequences. We will
add to what has already been said, the following set of exercises:
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I. Using the definition, find out if there limits to the
following sequences and functions:

i1.a= nz-_tﬂﬂ

N n

2.a=7n* - 100
™

S ¥ n* - 100

- 700 - n

4. fi{x) = ¥ = -1rgxn-251xn-a

n . _
9. fix) = cos » — in X == §ix = a

2
b.ﬂu;u!ls"*‘-.:nxﬂ-lsi. un='a

2. Giving the forced common factor
The method is frequently used to eliminate the
indeterminations of type: g, 00 — 00, %. By removing the forced

common factor we aim at obtaining as many expressions as possible
that tend towards zero. For this, we commonly employ the
following three limits:

Q if a>0

(1) 1im x® = ! 1 if o=0
® 30 - if a0

o if «x0

(2} 1im %7 = { 1 if a=0
* e 0 if oo

oif = & (-1 , 1)
(3) lim w = { 1if x =1
n-xa woif ® > 1
In order to have expressions that tend towards zero we aim
therefore to:
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®  obtain as many terms as possible with the form x%, with
a <0,ifx - oo,

*  obtain as many terms as possible with the form x%, with
a>0ifx—-0.

Examples
I. Calculate:
1. lim 3In - x + 2
W =rED Mz + % + 5
T+3 ™
2. 1im - *°%
LI Y- ?’“z - gt
3. lim 2"+ 23"+ 3-8
nowm 3 + 34" + 4-57
) 2“ + 3“ +* i
4. lim —~ d . X200
no-ras I o+ 4“
ial 127
3. 1im =28 *0
[ 3] ™

nes 3ca + 4-b
5. lim (n + 2)! - (n + 1)!

e (N + 23 + {n + 1)¢
s
3 z +
7. l:".m‘.‘/“ 2n-25+3‘!n+1
"o % 6n®r 2+ YT+ 3ot 1

Vs 24

8. 1lim -
:;u“ 3
28 — ¥ u

1ntx=+ X+ 1)

Es Y- - ln{uin-lr H o+ 2)
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™
11, lim X *1)-...-ix* 1)

raed
LR e =]
['Enn]"*- 1] z
12. lim 1n|=|
* 1 + Injx|
k]
13, 1lim Anix + e )

=D ln{xz+ eu]l

ANSWERS:
2. Given the common factor 9" we obtain terms that have
the form x", with sub unitary x.
5. Inix>+ x + 1) _
tnix%+ x + 2)

lnxz[_l-r-Lq-i]
x

21nx+1n[1+ :—-r _!.'..._]
= ®

101nx+1n[1+-‘1'.a+ 1]
% w10

. 1 . .
expression that tends to s when X tends to infinity.

II. Trace the graphics of the functions:

' 2"
1. fix) = lim =y % > 0
n=rm 2 + X
Zn+2
2. f(x) = lim _T:_T
n = 2 + ¥

™
3. f(x) = lim LT X ¥ ... T X

no=>eo 1 + "
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4]

- Fix) = 1lim 1 +x , x> -1
Ly R ==
Ingz"+ x™

3. f(®) = lim
BT n

&. Flx) = lim {(x — 1) -arctg ="

LRt X =]
Lk m+d
7. f(x) = lim = 2-1n
LT~ :u:"+ :S~1nn>¢

8. For any rational function, non-null, R with real
coefficients, we have:

lim
® -bED

Ri{x) -
TS S 1 (workbook grade XII)

3. Amplification with the conjugate

It is used to eliminate the indeterminations that contain
radicals. If the indetermination comes from an expression with the
form:

P P
f‘rutx} - ‘/\rfxl

than we amplify with:

) .
Yuf o + YuP2(0) vin) + oun + YVvF ) (3.1)

with the purpose of eliminating the radicals from the initial

expression. The sum from (3.1) is called a conjugate of order p.
If the indetermination comes from an expression with the

"r“p ulix) * ; vix}

with p — uneven number, the conjugate is:

P P P
Jup"'[n‘) - Jup-zlx‘hv{xl - ...+ o vp-t(x) -

An example of application for this formula is exercise 5,

form:

below.
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Exercises
2 a3 2 2 : | 2
1. 1lim ['/nd-x*vl-'lf:-r—u+1]
W =D
z ,r’:
2. lim ®x+ 1 + ¥ = 2u + X
X =2 * - 3
™ La]
3. 1im 'If'lirumffl—x
Y] H

m‘l’l+n+f1-:
H

4. lim
x -0
.
3. 1lim H+
et N ,p‘“
m-p m m
&. lim n ™ f“** _:’“‘1
nore '/n*-.l-i/n—l
s ™
7- li'ﬁ('iﬂfn+a‘fn+1+

Ly = =]

]
*o..* akfn + k l,wil:h a+ .1+___+ akzcl

ANSWERS:
7. We replace, for example ag = —a; — a; — *** — Ay, in the
given sequence and we calculate k limits of the form:

IJ.MIi{;(-I'-I-‘-:‘I'I*i ]

™ o=k O

4. Using fundamental limits
Hereinafter, we will name fundamental limits the following
limits:
(a) lim 2202 .y
o =>0
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i
(b iim(1L+a) " =e
o =30
ad -1
{c) 1im —_— In a
a -0
OBSERV/ATION:

From (a) we deduce that:

1im 2fcEin a _ ., . tim S92 .,
a a

a-xo a->a

arctg a

o

1im
a-ro

= 1

From (b) we deduce that:

1 o
1im(1+?)-u
o =roo

From (c) we deduce that:

o
ll-Mﬂ 1; 1im _a_'._:_a._._.._- ia'l!'l a
o a — o
430 o =>at <]
o
Exercises
I. Calculate:
sin 3x
- im -
1 *1_”3 sin 7H
- »
2. 1im Lo foB X
¥ =»0 W
- b
3. lim 1 :us M
W =r0d £
a. lim 1 = ci‘n! ¥
x =00 b
. sin 3x
J. lim sin Bx
X =311
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sin ® = tg ®

d. lim

2
W o=> 0 ® tg
1 = cos x + COS 2%
7. lim 7
M =303 =
1 — gos ¥ ... COS N
B. 1lim
z
®x =30 ®
cos mx + 1
?. 1lim —_—
x =>4 (x — 1}
. 5in mx
10. Ua o
® =>TT

™ . n
11. 1im X~ 21N ¥ for different valuesof n & N

i+ X
® =»0 »®
12. 14 S8rCSIN X Z APCEQ X
® <»0 b
In{l + x) — In{l — =)
13'!11:: arctg(l + x) - arctg(l — %)
ANSWERS:

12. Noting with a = arcsinx — arctg x, we observe that &
. . a
tends to zero when X tends to zero, so we aim to obtain P To

accomplish this we amplify with:
sin a = nin[nrl:;-.in # — arctg x}) =

= gin(arcein x)cosfarctg x) =
= sin(arctg ®)cos(arcsin x).

Noting with:

u = arcsin ¥ , v = arctg x ,
it follows:

¥ = 51N W, S0 COS U = 1-312

® = tg v, 50
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cos v = —-L-—.!lnv- 1
1+ %2 1+ X2

I1. Calculate:

z
2 - M
]
t, 1im | A
- -] “z - 2
1
COs M xz
2. lim [-——]
cOs 2%
M =xD

3. 1lim tg" -}

(g = =]
2 ctg’x
4, lim ( 1 + x ]
0
. 1
2 R —
» .\e *
s, 1im a_+ b
® ->0 aﬂ + I:rx
E 4
6. 1lim AR 3D

x =>->  lnfl + 2%

F 2z
7. lim [ln x]"‘ T 3ex s2e
o o=haE
an
8. lim 3
1 an

ANSWERS:

6. In the limits where there are indeterminations with
logarithms, we aim to permute the limit with the logarithm:

lim 1

—_— - In(l + X)) =
x -»-t0 In(1l + 2%y )
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1

»
'lia‘lln[l‘tEx]l”‘*!):
% ==

- *
= 1n 1im 1o+ 3: ] Lreid = 2 =
X =m0

. b l.nu*l‘l
1n  1lim [14-3"] 3

% -»-ml

liﬂ —_—— =
x -»-m In(l + 2%)

(we permute again the limit with the logarithm) =

= I 1 =
lim — -1n(l + 2%)
o
X =r=t0 3
- 1 - 1
1 1
< = =
lim 1nl2 + 2 n nm[1+2‘]‘
¥ =k -0 x > =0
- 1 -
f==]
In lim [[ 1+ 2 ]
-3 — o
III. Calculate:
" a
1. 1im 2 2
- &
» "'}ﬂ.
g %
2. lim 1
i M
® =>
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im X ﬁ
3. 1im L ;3
x =»TM 4 N - T
il
4., 1inn[‘r"’_2-—1)
™ =¥

5. lim n{cns% - .'l)

bl ==
-8 lim n-ircsin%
N =}Ch
a 3
7. lim n[ ,!'cu;?i - 1)
n -

8. 1_imn(n-f":—1)

9, lim n( ﬁi— Vl_:'i- .... + ﬁ—p)

(] = =]

ANSWERS:
x _ a ﬂ“ ﬂﬂ—ﬂ- - 1
1. lim =——2 = 1im ( )
® — a % — a
»o-ra o=k

and noting X — a = &, we obtain:

aa—l

=1

P = aq Lim = a%ln a .

& -ra
4. We consider the function:
i

flx) =x(2% =1

obtained from a,, by replacing n with x. We calculate:
1

'
lim f(x) = lim z—l-i- = 1n 2.
kil ==] bR ==] T

According to the criterion with sequences (see Method 10,

. lim
point ¢), we also have: a, =In2.
n - o
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5. Something that is bounded multiplied with
something that tends to zero, tends to zero
(A) If (ap)nen is bounded and nllmoobn = 0, then:
lim _
> oo b,=0

(B) If f is bounded in a vicinity of xy and X llmx gx) =0,
0
lim
then X - xof(x).g(x) =0.

Examples

bl
-1
1. 1im ZE =

—_ .=
r
- Em

because (—1)" is bounded by —1 and 1 and % tends to zero;

2. 1lim _—-_-—"‘*‘:':5" =0
M o=boD

M

because 1 — cos x is bounded by 0 and 2 and x_12 tends to zero;

. S X
x. lim ————= 0
»
Ho=d oD

a -
4. lim 2,

™ =koo

where a,, is the nt decimal fraction of the number T;
FEd
S. lim -

L)
n-ren 2 % 1

where [, is the approximation with n exact decimal fractions of the
number e.

2] ™
&, lim 2+ (-2)

L T--] n-=-2"
7. 1im 39700 -30+2)
T =0 .n*l
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sint n® + 3n + 3 )

8. 1im 3 3
no=roo n + 3n + 5
P. lim ____m_g_h___u_a-c: tn"”;

N o=>Co nx + 2

10. lim x-arctg % ]

¥ -0
11. lim n~5intn!);
n o= oD nz*'l
12, 1lim %
x -3eo
e 2
13. 1im 232 R“““" :
p—
INDICATIONS:

4. (ap)nen is bounded by 0 and 9, being composed of

numbers;

5. (Bn)nen is bounded by 2 and 3;

6. The majoring and minoring method
(A) If functions g and h exist, so that in a vicinity of x, we

have:
lim g%} = lim hix) = 1
gi{x) = f(x) = h(x) and * %4 """,u
then:
lim f(x) = L.
® =D
o
Schematically:

gix}) = F(u) = hix)

Y
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(B) If the sequences (b)pen and (Cy)nen exist so that: by, <

. lim lim
a, < ¢y, starting from the rank ny and "o oob" = 5= L,
then: Lim a, =L
n —> oo
Schematically:
b = a £ ¢
L ™ ™
i1
W
> 1<
OBSERV ATION:
If |l = +00, we can eliminate h ((cp)nen TeSpectively),
and if | = —o0, we can eliminate g ((by,)ney respectively).

This method is harder to apply, due to the majorings and
minorings it presupposes. These have to lead to expressions, as least
different as the initial form as possible, not to modify the limit.

We mention a few methods, among the most frequently
used, to obtain the sequences (bp)nen 20d (Cy)nen-

Examples

1. We put the smallest (biggest) term of the sequence

(an)nen, instead of all the terms.

1

ala = 1 + 1 * e P

™

n?+ 1 n+ 2 n+ n

bla = 1 + = L + ... +_p__1_—

™ P

. /npa-l 1",np+2 nf+ n
ANSWERS:

a) In the sum that expresses the sequence (@, )pen, there are:

1 . 1 .
the smallest term T and the biggest term Nl By applying

Method 1, we have:
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a = 1 + 1 * .aa
mn
Y n=+ [ 1 4 FII"' n

+ 1 = n > 1
F4
¥ n®+ R n +n
s0 a —> 1.
™
2. We minorate (majorate) the terms that make up the
sequence a, with the same quantity.
sin 1 ain 2 Sin i
a) a= Z * z o * —
" ont+ 1 nte 2 no+ n
b) a = SL1n X + Sin Lk b oae. ﬁ;n nx
" oafs nt+ 7 noeon
ANSWERS:

a) This time there isn’t a smallest (biggest) term in the sum
that makes up the sequence a,. This is due to the fact that the
function f(x) = sinx isn’t monotonic. Keeping into consideration

that we have: —1 < sinx < 1, we can majorate, replacing sinx
with 1, all over. We obtain:

S | e+ 1

—_— 30
n+ 1 n+ 1

Analogously, we can minorate, replacing sinx with —1,
then, by applying the first method it follows that:

az ;_l + ;1 P ;1 - =i —>0
" n*+n N+ n n“+n n o+ n
S0 A > 0,
n
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3. We minorate (majorate), eliminating the last terms that

make up the sequence ay,.

Ll
al) nn- 1“(1P+ 2P+ ... +nf

1a]
b) a=71" 2" ... +n

ANSWERS:

L
b) ln! ¥ n" = n—>m s S0 a“—-hn

Exercises
1. Calculate the limits of the sequences:

n
2
2 am S( /i -y
n k=4
hicl
k
2. a= Zt 2
sl Z
311 n
4. a = '|i"/i:la+t||=-t'-...-l-l:.2 .
i k
w'ittll*(b‘ibl{...(hk
™ hal ™
- b .
S "n-"’,b:+hz+ + b
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ANSWERS:
x_
n kl n nZ
1. [ 1+ £ ]= . W
MR ER ==
1+ —
F3
n
= i % k
K1
n  ksi k
1+ —
ﬂz

We majorate using the smallest and the biggest denominator.
Thus, we obtain common denominators for the sum.

Sin %
2k 2]
x. t
S -
n nt

and we make majorings and minorings using the biggest and the
smallest denominator.

7. Exercises that feature the integer part
The most common methods to solve them is:
(A) The minoring and majoring method using the double inequality:

a-1<[al?=a (3.2)
that helps to encase the function (the sequence) whose limit we
have to calculate, between two functions (sequences) that do not
contain the integer part.

Using this method when dealing with functions, most of the
times, we don’t obtain the limit directly, instead we use the lateral

limits.
Example: For the calculation of the limit:
" [ 5 ]
Iim
7 2
¥ -z =3 o= — &
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we proceed as follows:
(a) We use the inequalities (3.2) to obtain expressions that
do not contain the integer part:

]
3 - 1« —; E-T—_
¥ % - & wi-x —& ¥ox-= &

(b) To obtain the function whose limit is required, we

. . . . L xX%42x . .
amplify the previous inequalities with — keeping into

consideration that:

2
- on the left of —2 we have: = ;Zx > 0, so:
K1+ 2x 5 _4) < X+ 2x s
7 z 7 2 <
X —r— & X —H— &
< xt-l- 2x )
7 “I_ = &
2
- on the right of —2 we have: ad ;Zx < 0, so:

2 ]

+ + 2y 3

» Zat[ . 3 _1]>u [ . ])
H=H- & K=—n—0

3 X'+ 2x . 3
¥

2
W= - &
(c) Moving on to the limit in these inequalities(the majoring

and minoring method), we obtain the limit to the left:l;(—2) = ;

and the limit to the right: [,.(—2) = %, sol = %

(B) If the double inequality cannot be used (3.2), for

xlznnf (x), with n € Z, we calculate the lateral limits directly,
keeping into consideration that:
= if = *n with * < n, them [x] = n = 1.

- if = *n with # > n, them [x] = n.
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Example: For nllm (—1[x])/(x — 1) we cannot use (3.2)

)
because the expressions obtained for the calculation of the lateral

limits don’t have the same limit. That is why we use the fact that an
the left of 1 we have [x] = 0, and on the right of 1 we have [x] =

1, so:

Ix1
0™ 1
I‘..{].'_l = nl-}? Tw =1 xl-i'T ¥ - 1 =
*ed Hed
t-llhd - -1
A = U = 7MY =TT
R LN
It follows that [ = —oo

(C) If x = 0o, we can replace [x], keeping into consideration
that for x € [m,m+ 1), we have: [x] =m (obviously, x = o

implies m — o).

Example:
1 ExI+{=4)
lim [1 o £xl ]
- [x1+({-1})

The variable x that tends to infinity is certainly between two

consecutive numbers:m < x < m+ 1, so:

N 1 . [x3+=1)"
-l I ——
[1 * a1 ] = [1 + [x]a»t'”'“’] L4
1 m+l
[+ ] ana
m m+l
11.[1+mil]=1im[1+%n] = e
-> D
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Exercises

I. 1. lim "‘:"“‘[ 8 ]

Na" Bx + 15

F
® ->eo ¥+ on o+ 1 2

2. lim X9 +8 [x-3x+2
® = 12x + 32

. 3
3- s [m‘r]‘tﬂ »

a. 1im x_[Ssinxﬂl-:u!n]

x =y sin X
. 9x + X X 3n
- 4113 [sin ZX ] t9 —

6. lim x'[ :: ]

1. 1. 1im Ix1 + [2%21 + ... + [n*x]
k|

o=k O n

2. 1im X3+ 353 +05%1 + ... +1(20-1)%x]

3
1]

™ =k
X, 14im L®1 + [2*%3 + ... + [n"x]

B =D nkfi

4. l1lim [el-1" + [2Zu]-2! -I-I___ +[nxl-n!
n =D {m + L)°

8. Using the definition of the derivative
As it is known, the derivative of a function is:
) _ ai{x) - g (%)
9 (x) = ul-g‘rx'u N
if this limit exists and is finite. It can be used to (A) eliminate the

(3.3)

indeterminations 5 for limits of functions that can be written in the

form:
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glx) — gi=x_)

1im ke

=3 M H o= H
[+ ] [=]

X, being a point in which g is differentiable.

Example:

= _ iﬂ
lim ———
®x -za x — a

We notice that by noting g(x) = a*, we have g(a) = a“
and the limit becomes:

lim gix}) — gtlta)
X =ra ¥ = a

This limit has the value g’(a) because g is a function
differentiable in a.

We have thus reduced the calculation of the given limit to
the calculation of the value of g’(a), calculation that can be made
by deriving g:

g°i{x) = a'ln a,so g'fa) = a”ln a = L.

Observation: this method can be used like this: “let g(x) =
a*. We have g'(x) =a*Ilna. g'(a) =a*lna=1. We dont
recommend this synthetic method for the elaboration of the
solution at exams because it can misguide the examiners. That is
why the elaboration: “We observe that by noting g(x) = -+, we
have g(a) = -+ and the limit becomes ... = g’(a) because g is
differentiable in a ...”is much more advisable.

(B) The calculation of the limits of sequences, using attached
functions. The function attached to the sequence is not obtained,

this time, by replacing n with X, in the expression of ay, because for
L . 1
x — oo we can’t calculate the derivative, but by replacing n with o

(which leads to the calculation of the derivative in zero).

Lim (V2 —1) we consider the function

Example: For n
n - oo

f(x) = % obtained by replacing n with % in the expression of
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a,. We calculate nll—7>n0 f(x). For this we observe that by noting

gx)=x* , we have g(0)=1 and the limit
lim g-g() _
-0 x-0 -
function in zero. We have: g’(x) = 2*In2, so g’(0) = In 2. Then ,

g'(0), because g is a differentiable

becomes:

. o . . lim
according to the criterion with sequences, we obtain a, =
n —> oo

In 2.

Exercises
¥ x =1
I. 1. lim pra—
x =x4i
2. lim sin X
®
® =30
in =
3. lim ——7
X =»d
. ¥ 2
sin ® = =
4, 1lim
L w -
* = — r
arctg ® — —
S5, lim
® =»1 ¥ - 1
@im x
3
&. lim
e o=
X =3 " ry
. cos ¥ o+ 1
F. 1lim ra—
X =¥
1
Sin H-COos X — =
8. 1lim
i -
x—hT H B
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II. For a > 0 calculate:

w a®
1. lim 2*__~— &
X = &
N =ra
W w®
2. lim 2~ 2
X - a
-
tg x _ _tg a
3. lim — -
X - a
W o=ka
tg x _ _tg a
4. lim = % y ae Iig—
% =ra Sin bx — sin ba
1
k1 k4 . —
+ +
5. lim [‘ < ] %
x =0
z 2
" »
. - b
&. lim a

—— (l! _ hH }z

log ® — log =
7. lim L =

=0 W = a
ANSWER:

4. We divide the numerator and the denominator with x — a.

II1I. Show that we cannot use the definition of the derivative
for the calculation of the limits:

f.nc—'{:ugu-l

1. lim
® o=¥0 o
0
2. lim —1 _ .1n 2-arcsin x
M =¥ 4 z ]
x4 ®x =1
™
IV. 1. limn(-r'e -1]
R ==
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2]
2 1im _.{;.2_-;.1_
noe 3y
3. lj.rl.r"'n(:" a, +n1"a: —2}

n e
L] 5]

4, linn[“fa!i-fa:«r._,irfak-kj

™ o=

n
Vo Ve

5. 1lim |—2— 2 |  witha,e >0

N =300 2 o2

&, lim

n <> oD

with 8 s8,, -« ik)ﬂ

[Fff“]

K

7. lim
- = Inn
ANSWERS:

x_
2. We consider the function f(x) = %, obtained by

replacing the sequence a, on n with % We calculate xlino f(x).

To use the definition of the derivative, we divide the numerator and
the denominator with X, so:
2" -1
x
-1
S
We observe that by noting g(x) = 2%, we have g(0) =1
lim g)-g(0) _
-0 x

fix) =

and the limit from the numerator becomes:

g’ (x) because g is differentiable in zero.
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g(x) =2%In2 , so, according to the criterion with
sequences l; = g’(0) =In2. Analogously, by noting h(x) = 3%,
the limit from the numerator becomes: lim re-hO _ h(0),

x—->0 «x
because h is differentiable in zero.

h(x) =3*In3 , so, according to the critetion with
sequencesl, = h'(0) =1In3,and [ = 12—2

5. The limit contains an indetermination with the form 1%,

so we will first apply method 4.

[t ]

lim =
Lot ==
™ [a n
Ir"l1 + }az
= lim 1 =+ -1 =
LT -] 2
2 n
™ ™
“& +“g—2 }Cll* l||“'.|-z—z
= lim ||1 + : 2
o= 2
™ ™
f'dlﬁ t'l.z 2
n- E 1] ™
a + a - 2
. i
lim n
L~ 2

We now consider the function f(x) =i (af + a3 —2)

. . P .
obtained by replacing n with - in the expression above. We

calculate xll_T)no f(x). For this, we observe that by noting g(x) =

af +a; we have g(0) =2 and the limit can be written:
lim g(x)-g(0)

o0 * - g'(0) because g is differentiable in zero.
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Now g'(x) = aflna,; + ajIna,, so g'(0) =Ina; +1Ina,
According to the criterion with sequences:

lim n[ ;fal + ;/al -2]-= Intaa)),

LR = =

and the initial limit is /a;. a,.

9. Using I’'Hospital’s theorem
The theorem. ['Hospital (1661-1704)] If the functions f and g
fulfill the conditions:
1. are continuous on [a, b] and differentiable on (a, b){x,}
2.f(x,) =9(x,) =0

3. g’ is not annulled in a vicinity of X,

li :
4. there exists oL a , finite or infinite,
X = Xo9(x)
li
then there exists o
X = Xo9(x)
This theorem can be used for:
li
(A) The calculation of limits such as m e when these
X = Xy 9(x)

. . .. 0 o
contain an indetermination of the form Jore.

(B) The calculaton of limits such as Lim fx).g(x)
X - X,

when these contain an indetermination of the form 0. 0.
This indetermination can be brought to form (A) like this:
fix)
.
gix)

lim #{x)-g(x) = lim
= '?Hn X =rx

(indetermination with the form =)
lim f(x)-g(x) = 11:--—9%”—
X => ln ¥ =) “ﬂ "‘Fm

. L . 0
(indetermination with the form >
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Observation: sometimes it is essential if we write the

. .. 0 o
indetermination 5 Or o

Example:
-1
z
1im e "
# =r i E3
If we write:
- 3
“z e
lim g " s lim —
o =0 F nomr D KI
. . . 0 . .
(indetermination ) and we derive, we obtain:
-1
. = -1
. g ¥ ES
N *
I 7 lifm m———em———— = l4im ”
¥ ~>0 ¥ ¥ >0 M

. o . 0 . .
(indetermination with the form 5 with a higher numerator degree).

If we highlight the indetermination g:

< 2 A
. 2 rd
lim —— a” = 1im %
Rt ] E Rt = —;r-
F
e
and we derive, we obtain [ = 0.
li
(C) The calculation of limits such as m (f(x) —gx),
X - X,

with indetermination 00 — oo,

This indetermination can be brought to form (B) giving f (x)
ot g(x) as forced common factor.

We have, for example:
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lim (f(x) - gix)} = lim f(x}- {1 - EE:; )
x-hng N:-:-:co

and because

R o=
=) -
we distinguish two cases:
O v 15 N
if lim E i %W ) a = O
® —3u
C]
9

(namely, doesn’t tend to 1), we have:

fx)
lim [ f{x) = g%} } = ='a = co'sgn a = £ @ .
MW o=»>a

flx)
gQinl

_-u]_;

= if lim
% —FE
+]

the indetermination is of the form (B).

i
(D) The calculation of limits such as _ - f(x)9%®, with
X - X,

indeterminations 1%, 0°, 009,
These indeterminations can be brought to the form (C),

using the formula:

log_A
A= a 2
that for a = e, for example, becomes A = elnA, SO:
gon
f
lim £0)%° = 1im e!" TOO
x=rR ®orx

lim gi=x)-1n fix}
x ->u
o
=B
The last limit contains an indetermination of the form (C).
For sequences, this method is applied only through one of
the two functions attached to the sequence (obtained by replacing n

with x or by replacing n with i in the expression of a,). According
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to the criterion with sequences it follows that the limit of the
sequence is equal to the limit of the attached function.

Alttention: by replacing n with x we calculate the limit in oo,

and by replacing n with %, we calculate the limit in 0.

Exercises
I. Calculate:
[-% 4 B 1-%1
1. lim et
® =30 In{l + )
2. lim 109" , if a>1
N o=3 e o

(a polynomial increases faster to infinity than a logarithm)
4

S lim
» =D M

== ,if a > 1
(a polynomial increases slower to infinity than an exponential)

4. l.i.m[ 2 - = ]
in x ¥ = 1

X =»1

5. 1lim 1ln(l + sin“x)-ctg In (1 + x)
® =>0

¥ — tQ X

s — S1n o

16. lim n-=in _:..

™ =3 oD
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11. 1lim

La i = =] e

4
12. li-[".+9n]“
=3

II. Show that 'Hospital’s rule cannot be applied for:

- b |
W sin = .
1. 1im —— 2, 1im 2 %MW
sim X ® + CcoB =
% >0 % =5co
ANSWER:
L1 .
1. For f(x) = xzsm; and g(x) = sin x we have:
) Ex'ﬁiﬂ-l— - ED'E-L
1im uf (%) = lim " =
x 20 9 0x) % =20 cos M

- doesn’t exist, so the condition 4 from the theorem isn’t
met. Still, the limit can be calculated observing that:

xzsin ":T' w 1
5 - 3 . . 3 — ==
lim - = lim =T o XUsin —
x =»D sin % =300
= 1-0 = 0.

10. Using the criterion with sequences (the Heine
Criterion)

The criterion enunciation:

1im f{x) = 1 £=3 [ ‘![x“)“dﬂ

L

with the properties:

a) x > O
L}

b} xneD == }._j‘g f[x“]-l]

E) ¥ # %
n o
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Observation: 1f xy = o0, condition ¢) doesn’t make sense
anymore.

This criterion cannot be used to eliminate indeterminations
because the sequence (X, )pen from the enunciation is random, so,
by modifying the sequences (an infinite number of sequences), we
cannot eliminate the indetermination. Still, the criterion can be used
at:

(A) The calculation of limits that don’t contain indeterminations.

Example: Using the criterion with sequences, show that:

3x + 3 11
Bl i

Solution:  (a) we have to show that:

¥ (Xn)nen » with the properties:

a) x > 2

" M 11
Bl X“'IR\{T} =3 ,.,1_‘:. f[!th} = =
c) atﬂl' 2 -

(b) let (Xp)nen be any sequence with the
propetties a), b), ¢)
. lim .
(0) in n - oof(xn) we use the properties of the
. - - lim .
operations of limits of sequences to highlight n - ootn (it is
possible because there are no indeterminations), then we use the

lim
fact that Xp = Xg:
n - oo

lim = E ]
nowm 2 XS lim ( 2u + 3 )
n->eo n
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(B) To show that a function doesn’t have a limit in a point.
To accomplish this we can proceed as follows:

1p. we find two sequences: (Xp)nen and (Vy)nen with the
propetties a), b), ¢) so that:
lim f(x ) = lim f(y )
no=p oo n =X
or:
2p.we find a single sequence with the properties a), b), c)

lim .
so that n— Oof(xn) doesn’t exist.

Excanmple: Lim sinx doesn’t exist
X — o0
1p. letx, = 2nmwand y, = 2nmw + g We have:
al nn > @ Y, > . @
-3 LI 13

and lim f(x ) =
fn =>a0 n
; ) m _
lim ‘Hy“] = lim sin{ 2nm + -f-) = 1.
LT -]

lim sin 2nmT = 9 ,
B =>00

n -3co
So the limit doesn’t exist.

2p.letx, = nz—ﬂ We have:

>

a) x
121
b)Y » a B
™
and lim sin E"i_ doesn't exist.

L = =
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(C) The criterion with sequences can be used in the calculation of the
limits of sequences as follows:

(a) let f(x) be the function attached to the sequence, by the

replacement of, for example, n with x in the expression of a, ( or

1 lim
of n with o but then we calculate x50 f(x)

lim _ lim .

(b) we calculate ‘o o fx) =1 (n 50 f(x), respectively).

(c) according to the criterion with sequences lim f(x) = [
means: for any sequence (X, )peny With the propetties:

a) * o3

b} :-:nt!ID

lim _
we haven N Oof(xn) =1

We observe that the sequence x,, = n fulfills the conditions

a) and b) and, moreovert, for this sequence we have:

fi(x }) = a , so0 lim a = lim f(n) = 1.
™ 2]

™
b BN == | LI = =]
Exercises
1. Using the criterion with sequences, calculate:
. 4% + O
1. 1im —

x >3 2% -3

2. 1im (¥ 2x + 2 - arctg x )
® =51

3. limn[:tgx+u]

N =) m—
z

|
4. lim ¥ cos =

= =30
5. lim ¥ 3%+ 9
¥ -»3

I1. Show that the following don’t exist:
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1. lim cos x
H o=>E0

2. 1lim tg x

b N - = ]
3. lim "7 %
R ]
4. lim ¥ 1 + im"x
w =rOD
5 1im 2:8in ¥ + cos =
" o em X + cos 2

6. 1lim ((x = [x] )

N o=
7. If fhas a limit to its left (right) in X, then:

. 1
J‘.Bixﬂ} = 1lim f{xﬂ - =

LRt ==
G tx ) = 1im fx_ + %respecﬁvely].

noe (X1 Grade Handbook)

lim _ lim —
8. Ifn . OOf(x) =1, then "o Oof(n) = [, but not the
other way around.
lim g . L
‘o oof(x) doesn’t exist if f:D = Ris a petiodic, non-

constant function. Consequences: the following do not exist:

lim sin » , 1lim cos » , lim tg x , 1lim ctg x .
PR n =D n =0 X —reo

Apnswer. 9. This exercise is the generalization of exercises 1.-6.
For the solution, we explain the hypothesis:
-~ 4~ periodic <=> 3T >0 ¥ xeb,flx*T)=f(x)
- ¥ - ponconstant <=> 3 a,b e D f(a) = f(b)

We now use method 1p. The following sequences fulfill
conditions @) and b):

H“-I+HT, rh=h4-nT
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and:

lim f(x } = 1lim f{a + nT) = lim f(a) = fla)
L T--] n n=roo n =30

lim f(y ) = 1im f(b + nT) = lim f(b) = ¥(b)
n =rod " o =» D ™ o=k

ITII. Determine the limit points of the functions: f, g, f ©
g,gef,for:
%} x @& @
ot =, ema
Zx + 3 ¥ = @
n{rl'I3,+1 x & R\@

sin x % & Q
{

2. fix) = cos x x & R\GQ
P
LR ¥ = @
= 2
9 _% ¥ & R\@

;’: x & B

J. fTiwm) = I- a w & P\DQ

i & @
gix) = [-1 x & R\Q@

Answer. let xg € D = R randonm. We check if f has a limit
in xg. For this we observe it is essential if (X;)pen is rational or
irrational. We firstly consider the situation where the sequence
(Xn)nen is made up only of rational points (ot only of irrational
points).

Let (Xp)neny be a sequence of rational points with the
propetties a), b), c). We have:

lim f{y ) = lim 2 = 2.
[ O = = ] " ™ o=k
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So the function doesn’t have a limit in any point X, for
which x3 # 2, i.e. xy and +2. For xy = V2 we consider a random
sequence (X,)pen with the properties @), b), ¢). Eldecomposes in
two subsequences: (X;,)neny made up of solely rational terms and
(%) nen made up of itrational terms. Because:

5 . - a2 — . 2
Rl Tln,) = Jigg (x)7 =(¥2 07 = 2
and ig, Tx ") = lig, 2= 2,

we deduce that:

1.i.l|_fh-::l = 7
‘= =7z

The same goes for x = —\/E.

Specific methods for sequences

11. Any bounded and monotonic sequence
is convergent

Applying this method comes back to the study of monotony
and bounding, and for the determination of the limit we pass over
to the limit in the recurrence relation of the given sequence. If such
a relation is not initially provided, it can be obtained at the study of

the monotony.
n!

Example: a,, = oy

(a) For the study of monotony and bounding we cannot
apply the method of the attached function (f (x) = xx—; doesn’t make

sense). We employ the method of the report (we begin by studying
the monotony because (1) if the sequence is monotonic, at least
half of the bounding problem is solved, as it has been already
proven; (2) if the sequence isn’t monotonic, we can’t apply the
method so we won’t study the bounding.
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ay, being decreasing and with positive terms. Therefore

exists.

We therefore have:
(n + 1)1}

.rru - {n + 1}“"’ - n" -
an n! n + 1]'“
nl"l

n 1
[ n+ 1 } =30 > 3 <1
So the sequence is decreasing.

(b) The bounding. The sequence is bounded between 0 and

lim
aTl

(c) For the calculation of | we obsetve that studying the

monotony we have obtained the recurrence relation:

Lkt |

a
"

1] n

n d
B[|-|.4-1L] =2 am:“h{ﬂ*l]

Moving on to the limit in this equality, we obtain:

;==.l-—1-_(-)- 1 = 0.
(-3
EXERCISES:
™
]_.. .aﬁ:u —g-—
(nt)*
o, a= 1:38....-(20 - 1)
b3 ] ™

3 'n!

3. a-= 1/2+1"z+ wes + ¥ 2 - mradicals

- =2 7 n® - 2
4. aﬁ [3'!"""5-1-'"‘---"‘ ot ]+
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7 & 1
(7n = &)-(/n + 1) n = 1

6. a= Eﬁn_:,.l
kT b

7. aﬂ1+u1_+ +1

+ ] L
n bl bt bn

whete (b, )pen fulfills conditions:

a) lim b= =, b)) b B - b = 1.
"o * ﬂ( el m )
8. a = 1 + 1 * ... * =
T vz + n
- tn= hl +* !I:l * e ¥ T:'L-
v 1 vz . n

ANSWERS:

3. We observe the recurrence relation:

= Jf2 +a .
al‘l—l-.'l. ™
a) The monotony:
a - a= _/ 2+ a - a .
el Lal ™ 1]
In order to compare this difference to zero, we make a

choice, for example 41 = @y, that we then transform through
equivalences:

a = a <=> /2 + a >a <=>2 +a = a° ¢=>
il ™ | ] ™ ™ L]

a —a —2 =0 - w -2 =0 =>

“""1’ =2
i z

So apyq1 = a, a, € (—1,2).
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We have thus reached the conclusion that the sequence is
increasing if and only if it is bounded between —1 and 2. We
obviously have a,, > 0 > —1 so we still have to prove that a, < 2.

This inequality can be proven by induction:
Pin): a = 2
Veerification:
Pi1): ais 2 <=3 1/; = 2 (true).

Fin) => Pin *+ 1k

Pim + 1): aM’-EZ(-} 2+lh z 2 <=»

<=> 2 +a = 4 <=>» a = 2,
n m

So we have proven the monotony and the bounding.

li

m . .
Therefore [ = a, exists. To determine [ we move on to the

limit in the recurrence relation (this time this type of relation is

given initially):

/2 =» lim a =
reed

i =FOD

= lim /2 ah}l——- 2+1

LY = =]
=>t’=2+ 1 =»1=-1 or L =2,

As | = —1 is impossible, because a,, > 0, we deduce | = 2.

. 2k+3 . .
6. We decompose the fraction oo ina difference of

consecutive terms:
2k + 3 _ Ak + B - C-k + D (3.4
s* 5~ 5*
To determine the four parameters:
a) we use the identification method and
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b) we state the condition that the terms from the right

member in (3.4) be consecutive.

a) 2x + 3 = Ak + 3B - Ck - D <=3}

€m> 2k + 3 = k(3 - C) + SB - D
c) the denominators are consecutive, so we state the
condition that the numerators be in the same relation as
consecutives; the denominator of the first fraction is obtained from
the denominator of the second one, by replacing k with k — 1, so
we must have the same relation between the numerators:
A-k + B = Cik -1} + D

oy A-k + B=C-k + (D -LC)
We have thus obtained the system:
5/ - C = 2
SB - D =3
A=LC
B=D-2C
with the solution:
A=C = % . B-'% , D = é—
It follows that:

1 ht 1 i
,E zk-w @ T w |l
ey 51-1 =It
1 3 .'J- ‘l
_i-r**'r-_g ¢ F
k¥ ﬁk-‘ k=1 !k
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consequently:
1
lim a_ = T
-

7. We have:

. 1 1
~ b b 7

L ™

1

b

L2 ]

SO:

a 2 (b-b) + (b-b) + ...+

+ (b _-b)=h - b —> o
Fired byl Pyl i

8. We apply the conclusion from 7.
II. Study the convergence of the sequences defined through:
S-a + 3
1. a = a:r - . with a given.

2. x = x°— 2-% 4+ 2 , with x_given.
rawd L] g i

M

&) . -
e —— with x > O given.
s 1 + n-x? ’ i
ba ]

4 =1 + o _
% T-[in-:. a ]- with a_ > 0 given.

a
x "t with x € [0 , 1]
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2-3-1:“‘_'
6. %= ——— ,‘H’lthi.,!u * O given.
Fre=1
el
it 2
7. a = I e dx.
L]
™
Indications:

4. sequence with positive terms (induction) and decreasing.

e B T 8, 20 5% T ., f 0
1
andlakl<-§-.

Let l; and I, be the limits of the subsequences of even and

uneven value. Show that [; = [,.

12. Using the Cesaro-Stolz and Rizzoli Lemmas

Lemma: | (Cesaro-Stolz) Let (@p)nen be a random sequence and

(Br)nen a sttictly increasing sequence, having the limit
lim apyi-an

infinite. If ——=—"= =] exists — finite or infinite,
n — 00 Bn+1—Pn

then:
lim an _
n — 00 Bn

This lemma can be used to calculate the limits of sequences

that can be expressed as a fraction:

ur:
nl—:'; 'ﬂn (3.9

and of the limits of the form:

o - o
lim ——T
Ll == ﬁm ﬁr'

presupposing that this limit exists and (fp)peny iIs strictly

monotonic.
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CONSEQUENCES:
a ..
(A) If 1lim ——= 1, then 1im Jfa = 1-
no=rCD n no=rem n
Indeed,
in a_
1n ",z"an kl-Tm 2]
1im Ya = lim e = g =
no=¥ oo n LS
g in a - In a_ Lim 1m o
ﬁl-Tm n+*l1l-—-n no-rem ah
=g = e =
a'|'|.1n--l.
n o =3
= @ b = Eln . = 1
Example:
l1im ",f‘n = 1 ,
h e = =

because for a,, = n, we have:
a

n+i

= 1.

lim

nores n
(B) The limits of the arithmetic, geometric and harmonic
averages of the first n terms of a sequence having the limit [, have

the value [ also:
. + ' + L I ] + .

- i L] 5 Li]
lim = = lim a-a-, . -a =
n =k Rt = =] n
n
= lim = lim a
1 1 1 n
-] _— A — L. = L - -
a a a
1 z "

Observation: a variant for the Cesaro-Stolz lemma for the case
when ap, B, = 0 has been proven by LRizzoli [Mathematic Gazette,
no 10-11-12, 1992, p. 281-284:
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Lemmai (LRizzoli) If (@) nen, (Bn)nen ate two sequences
of natural numbers that fulfill the conditions:
(i) Iim a =0 ; 1lim 3=20

™ =00 L Wl ==
(i) the sequence (Bp)nen is strictly monotonic
(increasing or decreasing)
(iii) there exists:

a - a
1 = 1lim e ™
B ] ﬁﬂ*i - ﬁ:ﬁ
Then: lim n—
n — o fn
EXERCISES:
I 1. a= 200!
" F
n
z 2 F
P _1+2+ cea * 0
n 3
n
1P+ 2P% (.. + QF
3. a = -
nP
P P - P
4. a= AL*3* ...+ (20 1)
n nF"'l
P, P P
s, a_l+2+-..+n - n
]
nP P
il
z (4k - 1P
&. a= k=51
n Pt
7. am= 1:3 % 35 % ... +#(2n =-1)(2n + 1)
n 2
"
12 k423 o (k+ D)+ +(n—k+1)-(n—k+2)-....n
8. an = o
n
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’ z
_1,4-:" 2! +: 3! + ... +:' n!
n

Li ]

1
I1. 1. am= n
™ n

_n/ 3" (n1)?
2. &=/ —T=o

— (n+llin+2) ... t?ﬂ]
3. aﬁ—_/

n!'

™
4_.,2[ 1+_'=_-1]
™ W+ i
k=1 n

(Indications:  amplification ~with  the conjugate, the
minoring/majoring method, the Cesaro-Stolz lemma).

5. Let Xp41 = In(1 + x,,), %9 > 0. Using the Cesaro-Stolz
lemma show that l;moon. X = 2.

(Indications: nxy, = %)

III.  Calculate the limits of the following sequences,
presupposing they exist:

m+d al
1. L= Y (n + 1)! + ¥ n'! (Lalescu sequence)

a0 * 2000 + 3) wee l2n + 2)

2. a = n+ i
Lym +1)in + 2) ... (2n)
n!
2

I i1 « L4 +L]

3‘ ann — - mow
I

knowing that:
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F
lim 1+L+____+_1_._ = 1
n =-roo 2= n: e
& amppf3inl  sin2 , __ .=200
n n+ 1 nl+2 n®+ n
Pl P
8. a-= 1P+ 2P+ ... nfP- 2 __ - .;.

6. a= nPo1 +%-+-:1i~+... +71_~ -1lnn - g)

whete p > 0 and c is Eulet’s constant.

Apnswers:

1. We apply the Cesaro-Stolz lemma for:
a = ¥(n+l)' and ﬂ‘n = n,
We have:
Maa/ o, s g Y mat =1
and through the hypothesis it follows that:

lim {an_u— a‘n}’;{ﬁhfi_ f‘i‘“} =1,501 = ]_fl.
6. We consider:
i 1

1
an-1+?+...T—lnn—cand ﬁ‘n=-n—-
We have:

_ 1 n
s ~ % mE T T MEIT
Iqﬂ"'l-ﬁﬁ 1_ — iﬂ—
in + 13" n®
P -] 1 n
=n{n+1)[n+l+1nn+1]
P - (n+ 13°
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and keeping into account that:

1 + 1n n
n + 1 n + 1 1
Lim = =
LT - -] 1 2
n!

(we can use the attached function), we obtain:

O if p e (0 1)

13. Utilization of Lagrange’s theorem
Theorem: (Lagrange, (1736-1813)). If f: [a, b] —» Ris
continuous on [a, b] and differentiable on

(a’ b)9
then: 3€€ (g, b)a.i. LD = £.(c),
This theorem can be used for:

(A) The calculation of the limits of sequences in which we

can highlight an expression with the form:

fib)y — ¥la}
R (3.8)
for the attached function.
Example:
1 et 1 )"
a:*’?[[i* "—M} e ?] ]
Solution:

a) we highlight an expression of the form (3.6), considering:
b -
£0x) ={1 + —1—] . f : [n,n+1]1—>R,n e N,
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b) we apply Lagrange’s theotem on function f on the
interval [n,n + 1]:

fin+l) — fim)
n+ 1 -n

fb)-f(a)

b—a

A e (n,n+l}

= f'{e ).
M

c) we replace in a,, the expression with f*(c,). We

obtain:

a= 7w [1 . %;]cn.[ln[i-k-%;] - E—é—E:]

d) we use the inequalities: n<c¢, <n+1 to obtain

convenient majorings (minorings). In our case, we have:

1 1 1 1 1 1
AT R ORI T TR ‘R
L]

It follows that:

. c
1 n 1 1
ac v [1e2 ] [1"[1 cx)- e
P

L] -
Tl &)l )
n + 2 c n
—> 0-e-0 = 0
(B) The calculation of the limits of sequences that can be put
under one of the formulas:

1.- a = FoU1) + FO{2) + ... + F7(n)
Z2er Aa=T (1) +f(2)+ ...+ 1 (n) = f(n),

f being a function that is subject to Lagrange’s theorem on the
intervals: [n,n + 1],n € N.
Observation: the sequences of the form 2pare always

monotonic and bounded (so convergent) if f is a function
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differentiable on R and so that f and f° have different
monotonies.
Demonstration: to make a choice, let’s assume f is increasing
and f~ is decreasing:
1. the monotony:
a - l.n-[f"lll +1 {2+ ...+ () = Fine) ]-

Tl
= [ty +f(2) + .0+ £ = fln) |

=+ (n+1) = ( f(n+1) = f(n) )]

2. we apply Lagrange’s theorem to function f on the interval
[n,n+1]:
3 c € (nyn+l) a.l. fin+li) -

= fin) = 1"(c ) {(3.7)
ndedn+l =>1(n)> (e ) > 1 (n+1) (3.8)
so:

a —a=F (nrl}) = F'(c ) < O

el L 3]

(f’- decreasing), wherefrom we deduce the sequence is decreasing.

3. the bounding: being decreasing, the sequence is superiorily
bounded by a;. We have only to find the inferior bound. For this,
we write (3.8) starting with n =1 and we thus obtain the
possibility of minoring (majoring) the sequence a,.
n=1 1 < c’{ 2 =» T'{1) > f.t:l] > 12D
n=2 2<c<3 = 1U2) > file) > £(3)
n=3 3 <c<4 = T7(3) > flc)) > t7(4)
n=nn < cﬂ-i n+ 1=>f"(n) > f'l‘,:h} >F(n+l)
50 a = f (1) + £°(2) + .- .. + T In) = fin) >

= f‘{l:‘] + f'l'cz.'! * .. * f'LCn] = fin}
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We obtain a convenient replacement for the sum:
‘ + ¥ + ... + f'(c
£ c, ] 4 <, ) ( - )

We write the relation (3.7) starting n = 1 and we add the
obtained equalities:
n=1 3‘:1'! (1 , 2) f(2) = f(1) = 1".'1:"]

n = 2 3 €= (2 , 3) 1i3) = f(2) = f'[l:z'.i

n =3 3 € .= (3 , 43 fla) — {3} = ‘f'{l’.":i

n =n ac"e fn , n +# 1) f(n + 1) = f(n) = f'(cﬂl

fin + 1) — f{1) =
= 1".'121] + f'[l:z'.i *+ .. * ‘I"{Cn]
it follows that:
a=f(n + 1) - f(1) - fin} < = (1) ,

consequently, the sequence is inferiotly bounded. It is thus

convergent. Its limit is a number between —f (1) and a;.

Exercises
I. Using Lagrange’s theorem, calculate the limits of the

sequences:

S 1
l.an-np a” -—a™ s & >0

n o+ 1
n

2. a=n"1n
™

3. a = np[ arctg(n+i} - arctg I':)

d.a:np 1 = 1
n nt (n + 139
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L2 - ™
5 a= 2 a
™ np
. 1 N 1
5. a= Sin ?' S1Mn P——
) n in n + 1
n
7. a = n! arctg n _ arctgin + 1)
n n n + 1
II. Study the convergence of the sequences:

(the limit of this sequence is called Eulet’s constant ¢ €

(0,1))

1 1 i
2. a= F —— = . —_
r 1 2 3 * n

. . 1
(the partial sums of the harmonic sequence Y, ; ?)

3-an= 1+—ia+ia+...+i
2 . n

(the partial sums of the generalized harmonic sequence)

1
4. 1
B kz K-1n K

i 1 1
5. = -+ —_— F L .. *
ﬂ'n n + 1 n + 2 n + k
1 1 1
B.anﬂ + 1 + — +"'+F
_ 1 i i
foa= z v m et/ — T arcun

n + 1

Indication: 4. In otder to have one of the forms 1g or 25, we

determine f, keeping into account that:

. 1 . 1
v = e 0 T TSR

and fi{x) =Iﬁde= LELE N
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We apply for this function the steps from the demonstration
at the beginning of this paragraph.

II1. Show that:
1 i

1. 1998 < 1 + +*= T . *
/2 3
P2 < 1999
10°
2. 2010 -2 ¢t + 2+ L2+ L+
2 ¥ 3
+ ! ¢ z10-1
10%¥
a. P a¥P P g ] c1 o+
p — 1
+ 1 + 1 * L ew ¥ 1 i
P F
¥ 2 ¥ 3 aF*
¢ 1 [ak:p—.u 1 }
p - 1 . p
1 1 1 . 0 + 1
4.1+.2—+3_+,,_+2P =
Indication: 1. we must show that:
1998 < F' (1) + £ {2} + ... 1'1106} < 1999
for:
t) = [ ——dx = 2V % .

£

The harmonic sequence
1,1 1. .
The sequence 1+-+2+-+—is called a harmonic
sequence because it has the property: any three consecutive terms

. . . . 1
are in a harmonic progression. Indeed, if we note b, = —» we have:
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For a long time, it was believed that this sequence has a
defined sum s. In antiquity they sought to obtain the approximate
value of s, by calculating the sum of as many terms of the sequence
as possible. Today it is a fact that § = 00 (the harmonic sequence is
divergent). We mention a few of the methods that help prove this,
methods that use exercises from high school manuals, or exercises

of high school level:
1. Lagrange’s theorem (exercise 1.2)

2. The inequality:

1 1 1 13
A+ 1 n+3z Tt Y o 7 T

that is proven by induction in the X grade. Indeed, if s had a finite

value:
1+—"'i—+a%-+....+—r-]_'l-—-+...=s<m
then, by noting:
- 1 i
R=w+1T * 7+ *---
we would have:
a+R==
™ Li ]
and because s = Lim ay, we deduce Lim R, =0.
n - o n - o
But:
_ 1 1 1
ﬂn_n+l+n+2+-.-+2ﬂ+
1 i 1
*Zn+1 Yt wm T Y vzt
1 13




C. Dumitrescu m F. Smarandache

so R, doesn’t tend to zero. Therefore, S isn’t finite either.

3. Using the limit studied in the XII grade:

1 1 17
lim [ n * L + n o+ 2 * ana * zn]—lﬂ 2
o=k oo

4. Using the inequality:

1 1

1 1 1 d 4 - 1 1
14-3_-‘-?1'?4‘5 r= >

4
2" 2

5. Using the definition of the integral (Riemann sums) (see
method 10, exercise II).

14. Sequences given by recurrence relations
(A) The linear Recurrence

1. The first degree linear recurrence
Is of the form:

a = a‘a° with a_ given
fred n " o B

The expression of the general term follows from the
observation that:

= g-a=aqa%a = - qh-i._i
"f.ﬂ a 2] q =4 e o
so:
rord

& 9 % -
Example:

i B B

- = Ven .

l|'|'l--: 'n 10 .n » with aﬂ &t
We have:

]I'rrl.‘ .

11 11
am:' i0 .“* ( 10
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2. Second degree linear recurrence
Is of the form:

a = aa + aoa with a
ned i ™ Iﬂ--!.' 4]

and a given.

In order to find the expression of the general term, in this
case, we will use the expression of the general term from the first
order recurrence. We saw that for this recurrence we have: a, =
aoq™. For the second order recurrence, we search for the general
term with the same form:

a, = ¢ q", c being an undetermined constant.

By replacing in the recurrence relation, we obtain:

T+ 4

L] =
ca™ o
qQ = a-q+ a-q
from where, dividing by q""!, we obtain the characteristic
equation:
2
q o -q a = ¢
We consider the following cases:
a) A> 0 (the characteristic equation has real and distinct
roots qq and q5)

In this case, having no reason to neglect one of the roots, we
modify the expression a,, considering it of the form:
3] kil
a= e, ere,
and we determine the constants ¢; and ¢, so that the first two
terms of the sequence have the initially given values.
Example:
a ., ~a +va with a=a=1
(Fibonacci’s sequence). The characteristic equation is:
- g-1=0
with the roots:

a@“c Tz
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Considering a,, of the form:

[1_:;__5_ ]“ . cz[ﬂ ] ,

=2 =
e

from the system:

s =1
o
{a=1
i

we obtain:
= LA TS S .= Y5 o+ 1
2Y 5 27 3
so:
1 1+ 357" 1 -5 3
a = 5[[ = ]—[-—?——]],nzﬂ-
1+/5

Observation: q, = is known from antiquity as #be golden

ratio. It is the limit of the sequence:

ah'/l‘i-'l/l'l-...l-fl

(n radical) (method 11 applies). This number is often found in
nature (the arrangement of branches on trees, the proportion of the
human body etc. (For details, see, for example Matila Ghika:
Esthetics and art theory, Encyclopedic and Scientific Press, Bucharest,
1981).

b) A= 0 (the characteristic equation has equal roots q; =
q2). In this case we consider a, of the form:

4!-'C'.I.“FI"I"II'IIFI
2] lqi. Iqi

(namely a, = q7" - P;(n), with P;- first degree polynomial) and we
determine ¢yand ¢;, stating the same condition, that the first two

terms have the same initially given values.
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Example:
i
a = a - o Fa . a8 1. a, 2.

Taking a,, = ¢ * q", we obtain the characteristic equation:

1 . _ 1
qz_ a+* 5 = 0 , with the roots 9, 9, & -

Considering:

i bl
() e

from the system:

a = 1
[=]
{a=2‘
i

we obtain: ¢; = —4, ¢; = 6, so:
;=_L.({,n-4}and lim a=0 .
i (4] ™
2 LI <Y

) ) A< 0 (the characteristic equation has complex roots)
Let these be:
q,= ricos t + i:sin tYand 9= ricos t—1-2in t )
We have:

n n
a= g - i =
P i ql. I:; qz o

but, in order to use only natural numbers, we show that we can

replace q7' and qJ respectively with:

q" + g » n
a, - g
: 2 = r"cos nt and -2 . rsin nt

Z 2
Then we can write:

a=r"{ ccos nt + c_sin nt Jr.
m E 2

129




C. Dumitrescu m F. Smarandache

3. Linear recurrence of degree h (bigger than 2)
Is of the form:

a = M -a 4+ @& a + + ‘l
ek i ne+h- 4 F reh=2 "= ﬁh n

with the first h terms given.

Proceeding as with the second order recurrence, we combine
a™ = ¢ q and we state the condition that the recurrence relation
be met. We obtain the characteristic equation:

?‘u—2+___+-‘:h

We distinguish the following cases:

h bed
Q—‘Rl'q +* ~,'9

a) if the characteristic equation has all the roots real and

distinct: q4, 43, -« , qp, we will consider a™ of the form:
L2l kel ™
= c - + C_g + ae. +C -
L ‘:1 qr. E: qz ch qh

and we determine the constants ¢;, [ € 1,h, stating the condition

that the first k terms of the sequence have the initially given values.
b) if a root, for example, q; is multiple of order s, (q; =

g, =+ = (), we replace the sum:

L sl

(2] ™
. + . + en. * -

EI. qi :'i." qz Ca q’

from the expression of a, with:

E:‘"F"E-’-[rrj '

Pg_; being a polynomial of degree s — 2, whose coefficient is
revealed by stating the condition that the first § terms have the
initially given values.

¢) if a root, for example, ¢4, is complex, then its conjugate is
also a root of the characteristic equation (let for example, g, = qy).

In this case, we replace in the expression of a, the sum:
o] N
cq + ¢ -
i 9 i z q?—
with:

Fe c cos nt + r:zsin nt )
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and if the root g4 is a multiple of order s (q; = q, = -+ g5 and
Voor™ ez =7 T 8.7 9, )

we replace in the expression of a, the terms that contain the

complex root with:

121 .
ro ctcus nt * nglﬁ nt ) o+

™
+ n-rF | r:;ca's nt + c‘sln nt 1 +

@=1i T
+ sae * N r{ c cos nt + ©_ sin nt ).
2e-1 2=

EXERCISES:

I. Determine the expression of the general term and calculate
the limit for:

1. a_ = ;_;-n . with a_ given

E. 4

2. a =a -ln », with a = a
bS] o]

3} a = a'a witha = In x

i ™
Z-a " @
T+ il
4. a L Rl B L 3 = -
. e - with Ell 1. !z 2
a
5. a = 2.5 - 2'a i = =
: Fied el ™ with al. 1, l! 2
G. a = Fra — 14-a + 12-a ]
el ER L T+l n

la-ﬂgﬂl’:l,i:'l

Te a = Z-a - S-a + a

®
w
.+
[
[
+
=
1
+
L]
W

+
1]

i

Dy
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II. 1. Determine a so that the sequence given by the
recurrence relation:

a = @a-a = 3-a a= 0 a= 2
n+2 et "o 1 ¥

has a limit and calculate that limit.

2. Write the recurrence relations and the general terms of the
sequences for which: a; =1, a, =2, and the roots of the
characteristic equation are:

1
a q= 1., 9° -5
By q-—.lq=1,q=|=.-1_
1 2 ; 3 2
1 + 193 1 - i3
::' qlﬂ __2.__,qzﬂ_.._.._‘]."_;_.__

d g=1+1,90=1-1,q-=1

3. et : ap=A-a™+B-B", with a,B,a,8 €R and
A,B # 0, |a| # | B]. Determine @ and fso that:

a) the sequence (x,,) is convergent;

lim
b X, = 00
) T
9 lim Y = —o
n—-oo "

4 leta,=Aa"+Bn-f", n=>1, witha B,a,f ER
and A,B # 0 . Determine a and ff so that the sequence is

COﬂVCfnglt.

(B) Nonlinear recurrence

1. Recurrence of the form ap 1 = a-a, + B,

with ag given
The expression of the general term is obtained by observing

that if | is a root for the equation | = a-1+ 3 (obtained by
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replacing a,,jand a, with [ in the recurrence relation), then the
p g dp+1 n 5

sequence (ap — 1) is a geometric progression.

neN

Example:

. I+1
From the equation | = —- we deduce =1
Then the sequence (a, — l)n ey 1S @ geometric progression.
Let b, = a,, — 1. We have:
1
b=a-1="5
a+ 1
__
2 2 2 4
The ratio of the geometric progression is, consequently: q =

1 )
> We obtain:

(417 (5]

1 ™

-n—]-l-iand lim a =1 .

2 n
-

b==b-g" "= -
i

m

|~

e BJ

s0a="hb+1m=
™ ™

2. Recutrence of the form a,q = @ - a, + f(n) (f being

a random function)
The general term is found based on the observation that, if

(b)nen is a sequence that verifies the same recutrence relation,
then any sequence (@y)pen vetifies the given relation of the form:

a=ca +b ,wth c=a-b
" " 6 o

In practice we chose by, of the form:

b= fin}
m
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the coefficients of f being undetermined. We determine these
coefficients by stating the condition that (by)nen vetifies the
recurrence relation.

Particular case: a recurrence with the form:

Ian-inl.= mlaﬁ + ﬁh'PEn]

with P a polynomial of degree s.
Example:
. L
‘n,,“3an+5{n!+2n+3]f uﬂ-.l
We seatch for the sequence by, with the form:
= n - z B -
hn—ﬁ(un+vn+w)
We state the condition that (bp)pen vetifies the given
recurrence relation:

b =3-h+5“(n=+ 2n +3]
i+l (2]

We obtain:

5"””{ utn + 1% vin + 1) +w ) =
=3-5“(un=+\m +w)+ 5“(n=+i‘n +3)

By identification, it follows that:

1 3
-2 .

SO:

b, = —2:— and a = 57 ( a- b, ) + b =

= —%—-5"-* 5“( %uz- %""‘ + —;-%- ) =
= 5" _:l?.'_n: - %n +1 ] .
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3. Recurrence of the form a1 = f(a,) (with f:[a, b] -
R continuous function)

Theorem: 1. If the function f:[a, b] = Ris
continuous and increasing on [a, b], then:

a) if a; > ay, the sequence (&, )nen is increasing,

b) if a; < ay, the sequence (@, )ney is decreasing.

The limit of the sequence is a fixed point of f, i.c. a
characteristic equation f(x) = x.

2.If f is decreasing on [a, b], then the subsequences of
even and uneven value, respectively, of (@p)ney ate

monotonic and of different monotonies. If these two

subsequences have limits, then they are equal.

Example:
2 + a
a= 10 , a = —rn
i L a_
We have:
z
flx) = 22 X

==
from the variation table we deduce that f is decreasing on (0,v/2)
and increasing on (V2,00). By way of induction, we prove that
a, > V2 , and, because a; = 5,1 < a;, then the sequence is
decreasing.

The bounding can be deduced from the property of

continuous functions defined on closed intervals and bounded of

being bounded.
The characteristic equation f(x) = x has the roots X1, =

+v/2, 50 1 = /2.

Particular case: the homographic recurrence:
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a-an + 7
a =—" , witha_given
ra + 8 °
i
We have:
a-x® o+ 3

fix) = m!
called a homographic function and:
fix) = a-& - [3-y¥
ly-xn + &°

so the monotony of f depends on the sign of the expression « -
§—p"v.

If x; # x, are the roots of the characteristic equation
f(x) = x, by noting:
i S - I
g = —2X

- +

rx, +6
it can be shown that the general term @, of the sequence is given by
the relation:

X = a ¥ -
2 nooo_ 9“ 2 Ia'|:|n
¥ - a -
- 2] Hl
Example:
=
a=1 = -
o + B T +a
™
Prove that:

a‘c ‘5{ a.ﬂf. sss L L £ aea & 1‘4 -:( a -

From here it follows that the sequence is convergent (it
decomposes in two convergent sequences). It is deduced that the

limit of the sequence is 1.

Exercises
I. Determine the general term and study the convergence of
the sequences:
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1. a=1,a = a-a +1 with |a] € 1
4 i+l ™

1 _ n z_ -
2. a= 5, a =2a+3 (n"=n 1_)
_ 1
3.a=0,8 ~~35a + —n
Z
1 2
d.a=0a 74 *%
2
a“
5. a°= 1 .'n*:i.- .
a + 1
bl
. _ 2
G. a+1ya .~ 7% a_
2-a =1
Lg]

T a = 1 s 2 =
Q Tl 2-a + o

B. a = - =i'in+'b.

Determine coefficients a@ and b so that the sequence has a

finite limit. Calculate this limit.

2 - S
9. a= 2, a s =5 I periodic

™
II. 1. x e (0, F) U [-3—4'1—_,1':]:
sin. x + cos x = 1
2] ™

]
X O+ 4-m
m (1]

B KT A Kot T

Sl Pl B, -i_[xn-1+x ]

=1

k.
la]
= = R — a,b » 0.
4. %, 1,#4/a+nlxh.!
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15. Any Cauchy sequence of natural numbers
is convergent

One of the recapitulative exercises from the XI grade
analysis manual requires to be shown that if a sequence (@) pen of
real numbers is convergent, then:

¥Y¥e>»0 InelN ¥Yman zZ e ja —a | <& (3.5
&£ L) L2l

A sequence that satisfies condition (3.8) is called a Cauchy
sequence or a fundamental sequence. It is proven that a natural
numbers’ sequence is convergent if and only if it is a Cauchy
sequence. This propositions enables the demonstration of the
convergence of sequences, showing that they are Cauchy sequences.

In this type of exercises the following condition is used:

¥Yeo>oO Entelﬂ ¥ m,n ZHE YpelN

Jan-r:a.'_ anl < {.3';'.:.
which is equivalent to (3.9) but easier to use.
Example:
1 1 1
asl+y 4t m Yt

It has to be proven that:

(a) e >0 EnEEm ‘l’nzn“fpelhl
la = a | < &

(b) let € > 0. We check to see if n, exists so that property
(a) takes place.
(c) we have:

1 + 1
in + p)! (m + p = 1)!

la - a |=
nep i

* st — =

in + 1)°

_1 1 1
‘ﬁ[¢n+11tn T2 n py Tt el ]<
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CH[F ()T b

1
1 __[_?_]_ L1 2.2
n' 1 n n' " n
2

nt
'2'

.. . 2
(d) we state the condition: ; < g and we obtainn >: —, SO
2
we can take: ng = [;] + 1.
Exercises
1. Show that the following sequences are fundamental:
1
i. —_
. =
i 1 1
2. _—— #oenan
13 7 4 M T
3-a-1+i+-§-+..,_+-l—.
™
2% z* ne
4.a=1+=n5x +'|:l'.'l'l"2?i * s M
" 3 3* 3
5, g = SiN % _ sin 2% +.... + 3in nx
" nz+ i nz + 2 n" + n
ﬁ_a_:nﬁx 4+ f£os 2x + ... + EO= nx
n 2 2% 2"
cos Gl cos -ﬂ.: cCoOs cxh
Ta + * —
& 1 YT 3 et e+ 1)

].

1 1 1 n-1 1
. = - - * anew ®w[=1 e
8 i'r: 1 T * 3 ; ( )

9. Llet a= b+ b+ .... + b where:
ki i F | 3]

ad bklbku< ¢

139




C. Dumitrescu m F. Smarandache

I > ...
B | B> | b > > 1 b_|

cl lim b= 0O
Ll

LT - -]
Show that |@p4p — ap| < byyq for any n,p € N. Deduce

from this that the sequence is a Cauchy sequence.

INDICATIONS:
1
3. Ein-l-p-' inl < nin + 1)

1 . . 1
(n + 1)¢tn + 2y " °° in +p - 1)(in + p)

and we decompose in simple fractions.

_ L 1 +
B. tamp a | = [{-1} T
g PP Z 1 +._ ™ 1
+ (1) NI S e
1 1 1 _ p=i 1
“lv+ T " n+z "hws Teee D) n+pl

If p is uneven, we deduce:

la - a | =
e n

1 _ 1 _ 1 _
+ 1 [n+2 n + 3

n
1 1 . 1

and if it is even:

= _ 1 _ 1 _ 1 _
*amp ﬂ|'|.1_ n + 1 n+ 2 n + 3
_ _ 1 _ i ]_ 1 < L
- n+p- 2 n+p-1 n+p n+1
So:
1
| lnfp anr 4 T

.. 1 ) 1
From the condition: —t < g, we obtain: ng = [E - 1] + 1.
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9. We proceed as we did in the previous exercise, where we
had:

n 1
b= -1y & -

16. Using the definition of the integral

It is known that the Riemann sum attached to the function
f:[a, b] = R, corresponding to a division:

A#{n-uﬂ{ x‘< 311( (uﬁn b 3
and to the intermediate points:

T Dx_po%d s

1s:
s
o (f,8) = Z 108 ) Cx=x%x_0)  (3.10)
iS4

If the points x; are equidistant, then:
b - a
i -1 Fi
and we have:
o, (1.2) =
- b-a [f(fi] . f[rl] P +f[-','ﬁ}] (3.11)

A function is integrable if:
lim = ﬁ( f.F)
1Al 3o
exists and is finite. The value of the limit is called the integral of

function f on the interval [a, b]:

B
lim o,(1,2) = [ fo0 dx
TAE >0 a

To use the definition of the integral in the calculation of the
limits of sequences, we observe that for divisions A formed with

equidistant points, we have:
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lim D‘a[f,f] = lim crﬁllf,{'}
fal o n ko
So we can proceed as follows:
a) we show that the general term a, can be written in the

form:

a = mb‘n~_—i[f(!:1]+ G R :ﬂ]]

with f as a continuous function on [a, b], and §; being the points

of an equidistant division.
b) f being continuous, it is also integrable, and:
A has equidistant
lim a= lim o (1,7) caneessam==a
™ o points

Lot = ] no=2 00

. b

f-

lim o {f,a;==icﬁ12§ﬂij‘ fin) du .
=3

1AE o &
Example:
= nz 1
a
n 8y n® o+ k?

a) we write a,, in the form:
o h_r:-l_[f( :1} * *{ra ]‘+"" +f|: :n]]

highlighting the common factor % We have:

1 »
a = =
4] 3 3
" (3 T 1 I 3
3 ] 3
=-':"..— _-.E.—'f—'_ 1-‘.."'—"'1-—,—
n n|41§ . o? n? +n
b) in
.
- n
t(z) =
( 1_] n3+il
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. . b-a)i
we make the equidistant points: ¢ na)l appear:
n® 1
E] s 1 43
n o+ i 1+ (_-l:.'—)

and we deduce the function f. We have:

Tfixw) = —];"—_,‘-
1+ =

c) we arrange the equidistant points on a straight line:

n _
*-L

-1--3'&"

——:|u
-|-:||u

and we deduce the division:

= 1 2 n
-1 iﬂ""""_ﬁ-’?"""?-l}

and the interval [a, b].
d) we observe that a,, is the Riemann sum corresponding to
function f (continuous, thus integrable) and to the deduced division

A, on interval [a, b]. As the points of A are equidistant, we have:

lim a = 1im cra{f,z} = lim d-'ﬁ[f,fj =
-] n o= FTAY -»o
1
1 3.
= ‘r I dx = T .
s 1 + =

Exercises:
I. Using the definition of the integral, calculate the limits of
the following sequences:

1_

- -1
s k¢
=1

l. a =
Ly
n
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1 n L
IL.a = ~— 7T i.e’"
" z
M v=d
n—4
T im
4. n.n = L cos S0
=4
mn

n & R
izi (n+i)f 2z 2
=t L

6. a_ = —={n(n*1)(n+2)...(n+n)

r
7. a =2 (Ein(if+n®)=2(n—1) 1n n)

" n
1=1
Indications:
a _ m/2 ,E (n/21i
i n n
=1
o /2
L — = . I cos X dx.
-

6. By making logarithms, we obtain:

Ima =- 1In n +?];=—{ln n o+ Indn+tl) +...+
kil
Inintn)) = = In n +

+ X (inn+innit+ )+, +1n nets Dy =
Fl [a] mn

R N 1217 TS S
i
+ 1nE3.+%H L, In(1+x) dx.

o

I1. 2) Write the Riemann sum

o, (1,2)

corresponding to the function:
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f i [£a1] —hE,f{x}#%,

the division:

1 £ n
A=, T Foeeeem T Y

and the intermediate points:
Z, = i/n.(b)
b) Calculate:
lim o (.00 = i(e) .
¢) Calculate:

lim L{ieg)
E =D

and deduce that:

1 1. _
Ll__l';.m (1 + —_.'2—""--. + ?I—N.
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IV. Continuity and derivability

Continuity

DEFINITION: the function f: D = R is continuous in xo €
D if:

1. it has a limit in X €,

2. the limit is equal to f(xg),
ie.

Y>>0 3&>0 ¥Wxeb |x—x|{p5 =3
P o £

=>  |fx) = f(x )] < =
THE CONSEQUENCE: Any continuous function in a
point has a limit in that point.

(A) Methods for the study of continuity

1. Using the definition
Example:

fix) = Soas

is continuous in x = 1.
Indeed, let’s show that:

3
Ye>0 36>0 ¥YxeR\ -3}

— = ¥+ 1
- tl<s, ’!m‘”“l“
Let there be any € > 0. We must determine §,. We have:

w + 1 l* * + 1 2|_

Ex+3_f[1] §x+3--ﬁ_
Iz = 1] S 5:

SZx =3I ¢ STER v 3T ¢ 18
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because on the interval [0,2], for example, [2x + 3] is bounded
between 3 and 7. We determine &, from the condition:

ét
i3 <€ -

We can take, for example §, = 2¢. Then:

-3
Ye2>0 3&‘?2;: 'ﬂ'uil‘.ﬁ\lwz—l-

% = 1] « 28 =3 |[fix) —Ff{1)]| < &
therefore f is continuous in x = 1.

2. Using the criterion with the lateral limits
f is continuous in:
n A= Esixal =1, tn ) = Ffl= )}
where

L ix,) and Lt )

are the left and right limit, respectively in Xq.
EXAMPLE: Let’s study the continuity of the function:

2
.2 ® . ¥
/slnn-il_xlxnair-%— x e [0, 1]

fin})=
1s2 ¥ =1
_.__..._._: ®x e [1 , 2]
2(x +x+l)

for a € [0, 2m].

SOLUTION: Because we ate requited to study the
continuity, with a certain point being specified, we must make the
study on the whole definition domain. The points of the domain
appear to belong to two categories:

1. Connection points between branches, in which continuity
can be studied using the lateral limits.
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2. The other points, in which the function is continuous,
being expressed by continuous functions (elementary) (but this
must be specified each time).

In our case:

(a) in any point xy # 1, the function is continuous being
expressed through continuous functions.

(b) we study the continuity in xy # 1. We have:

L1y = l1im Ff(u) =
- ® =3 4
<1

2
- .2 H x
= lim sin a — + ' =
® =>4 F
EEE) x

. . 1 F] . 1
tin, /(sin - 5 ) =l sina- 5,
b
- 14 oy 3 2 1
and ldtl} = }lcz_-;tlﬂx.‘r = :E"—?:T” + ® o+ 1) = 5 -

g d
The value of the function in the point is f(1) =%, so f is

continuous in:

) 1 1
= < = - — P—
¥ 1 L= 151.n o = = = -

To explain the module we use the table with the sign of the

. . 1
function sina — P
o [v3 fh - Sn/b 2

sin a — 1/2 - [ + o) - J

l.ifa € [0, %] U [5?71, 2m], the equation becomes:

—51na+é==;— {=> sin a =0 =>

=2 a=0,as1, a=2n
. T 5T . . b4
2.ifa € (E,?),We obtain sin a = 1, so = <.

For this four values of @ the function is continuous also in

point x = 1, so it is continuous on R.
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3. Using the criterion with sequences

This criterion is obtained from the criterion with sequences
for the limits of functions, by replacing | with f(xy) and
eliminating the condition X, # X (which is essential in the case of
limits, because we can study the limit of a function in a point where

f(x) doesn’t exist).

EXAMPLE:

3x2+2x if * & 0
) =
=) X o+ 4 if *xe R @

Proceeding as we did with Method 10, with the two
adaptations mentioned just above, it follows that f is continuous in

the points X for which:

+ 2x =}rn+4,i-E-J¢ =

(B) Types of discontinuity points

The point Xg € D in which f is not continuous is said to be
a first order discontinuity point if the lateral limits in Xy exist and
are finite.

Any other discontinuity point is said to be of a second order.

(C) The extension through continuity
To extend the function f: D = R means to add new points

to the domain D, where we define the correspondence law willingly.

If M is the set of added points and h is the correspondence

law on M, the extension will be:

fix) if = &« D

f :Dun —s R, fOO =
P hix) if » &M
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For example:

s5in ¥

f : RN {0 3 %

E, fix) =

can be extended to the entire set R by putting:

Bin % if x e R \ {0}
f (x) = *
P a if x=0

There are many extensions to a function. Nevertheless, if f
is continuous on D and has a finite limit in a point xy € D, there is
only one extension:

foeDUl %) —R

that is continuous, named the extension through continuity of f in

point Xg.
So, for our example, because lim sinz = 1, the function:
x—-0
2% i x#0
F (x) =
F 1 if x=20

is the only extension of sinx/x that is continuous on R.

(D) The continuity of composite functions
If f is continuous in X and g is continuous in f(xg), then
g ° f is continuous in xg.
D E F

wy, — f{xu‘! E— gtf[NnH = tqnﬂixu}

So the composition of two continuous functions is a
continuous function. Reciprocally it isn’t true: it is possible that f

and g are not continuous and g o f is.

For example:
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1 if xe@
f(x) =

o if " ea® \ @

isn’t continuous in any point, but the function g(x) = (f o f)(x)
is the identically equal function to 1, so it is continuous in any point

from R.

Exercises
I. Study, on the maximum definition domain, the continuity

of the functions defined by:
1. fix) = =-[x]

2. Tlx) = [x]-s1in ax

. P
Mo " zn
® + 1

: nx
4 TOD = Qe T+ Tl

3. fi=x)

]
ET

® if » e @
Se Fx) =
2% if » e B N\ @

uix) if = &« @

B. f(x) = 4
wix) if x eR \ @

T fix)

% if = -%
{ Riemann's function )
-1
I-—-—“-:: I-- =T i x %0
B. f(x) =

a if =20

|
an v 2
|
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. x - p ifKE[D,F+'%'1pEz
« Fix) {pa-j,-uifxe[p"‘-:;—:ﬂ"‘-‘}
{Manual)
27 1n (-1-%) if x < O
10. ‘Hxl-{l . if x =0
1+e if x »0

II. Specify the type of discontinuity points for the functions:

8% =0
1. f{x) =
ol X = 0
¥ 1+ x -1
" w = 0
2. fix) =
¥ =0
in®x
—__'1fcniw: w = 2kn
J. Tix) =
fu ® = Zkm
. nr
rl—sl.n —_—
( 2) x#-‘-,”j?
)
W= Bx + 7
4, f(x) = x = 4
o
Inl=| 1 1
T+ inxl * SR M0
9. flxl=
1 1
o x edn g0}

Determine the extensions using the continuity, where

possible.

III. Study the continuity of the functionsf,g,fcg,ge°f,
for:

¥ o x e @
1. fix) = sgn = gix) =

¥ e R v @
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2. fin) [x1 gix) = In =

3. f(x) = [1 + [x]] gix) = sgn =

b x» & @
4. f{x)=sgnisgn x) gin) = .
3K x e ByE

IV. 1. Let f,g:R = R be a continuous function so that
f(x) = g(x) for any x € Q. Show that f = g. (Manual)

2. Let fil >R, I €S> R be a function with Darboux’s
propetty. If f has lateral limits in any point I, then f is continuous
on I. (Manual)

3. f:R - Rso that:

ifix) = Flydy| = ¥ Ju—y|

for any x,y € R. Prove that a > 0 exists so that for any x with
|x| < a we have |f(x)| < a. Deduce the existence of a fixed point
for f. (xq is a fixed point for f if f(xg) = x). (Mannal)

4.Let f:[a,b] = R, continuous. Then:
ve>o 3é6>0 ¥ %,y & [a,b] ,|x—y] < 5, =

= [fixi-fi{v}] < &£ (4.1}
(Manual)

A function with the property (4.1) is called an uniform
continuously function on [a, b].

The uniform continuity is thetefore defined on an interval,
while continuity can be defined in a point.

Taking ¥y = xo in (4.1) it is deduced that any uniform
continuous function on an interval is continuous on that interval.

Exercise 4 from above affirms the reciprocal of this
proposition, which is true if the interval is closed and bounded.
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Derivability

(A) Definition. Geometric interpretation.
Consequences

Definition
The function f:D = R is differentiable in Xy € D if the

following limit exists and is finite:

. fix) = fixa)
i —T:u: K — Ha
=]
The value of this limit is noted by f*(x¢) and it is called the

derivative of f in X.

Geometric interpretation
The derivative of a function in a point Xg is the slope of the

tangent to the graphic of fin the abscissa point xy.

-

Fixd

f{xa]

Fig. 4.1

When x tends to Xy, the chord AB tends towards the
tangent in A to the graphic, so the slope of the chord
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fix) =Tixo)
AB ® = ¥o

tends to the slope of the tangent. Therefore, f(xg) is the slope of
the tangent in the abscissa point X to the graphic.

The geometric interpretation of the derivative thus follows
from the next sequence of implications:

W o—F = x

& = =
8F ————— AT => m“. ——— m*' >
=y 1im S4¥) = Tixe) o => f' (%) = m
® e ® = Xe AT AT

L]

Consequences

1. Any function differentiable in a point is continuous in that
point.

2. The equation of the tangent to the graphic of a
differentiable function.

It is known that equation of a straight line that passes
through the point (xq, f(xg)) is:

y — fixe) = mi{x ~ xo)

3. The equation of the normal (the perpendicular on the

tangent) is deduced from the condition of perpendicularity of two

straight lines (My - my = —1) and it is:
= fl = ) S S— { - %}
Y o 0 xu} * &)

(B) The derivation of composite functions

(Flu{xd)r) = £ (ul=))-u (x) (4.2)
From formula (4.2) it is deduced that:
!faf.fz('fii‘.ﬂ]}}]' = f;(f:[fltlll.'l'f;{fitﬂ]]‘f;‘('ﬁ}

So, in order to derive a composite function we will proceed
as follows:
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(a) we derive the last function that is composed (in our case
f3) and we replace in this function the wvariable x with the
expression issuing from the composition of the other function (in
our case f, o f7).

(b) by neglecting the derived function in the previous step (in
our case f3), we derive the function that became last (for us f,) and
we also replace the variable x with the expression that resulted from
the composition of the functions that have no yet been derived (in
this step we only have f; (x).

(c) we continue this procedure until all the functions are
derived.

EXAMPLE:

2 33
cos"sin ¥ %+ 1
1. By applying formula (4.2) we have:

f'i{x} = 2-cos sin af Wi 1 [ cos =in 31" w1 ]I=
a
Z2-cos sin :’ wie 1 { —sin sin ¥ x°+ 1 ]
3 a
( sin ¥ x=+ 1 ]= 2'cos sin :u:=+ 1
a .
'("‘I.i.i"l sin ¥ x5+ 1 ]'cui ¥ x%+ 1 ( ¥ w®s 1 ) =
3 3
2-cos sin ¥ x°+ 1 - ( -sin sin ¥ #2+ 1 )

2 ] 1
‘Cos X+ 1 +2X

2 2
39 (x7+ 1)

We can obtain the same results much faster, using the

generalization of formula (4.2) presented above.

Therefore, the composite functions are:

3
fix) = x"+ 1, f(ny =+ x, T,0) = s1n x
i z ]
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f‘f,x} = COoB X . fs{:-'.':' = x°

and fEx.‘;=.1!If‘{f3{‘f:[1‘1[x}]l}l, S0z

T ix) = f;{f‘{faffz{flinﬂlll'
'f;[fslfz{fiix.'lﬁl]'f;{fszxi)i'.i]]'f'z(fil)d]]'f;llx.'l =

= 2-cos sin ’ w1 - [—sin 3in :" x4 1 )

- cos e 1 - -—-;—-;t—-—— " 2%
-0 &+ 1
CONSEQUENCES:

1. The derivative of the inverse function.
From f~1(f(x)) = x, by applying formula (4.2), it follows
that:
() - frx) =1,
ot by noting y = f(x):
(f_l.ty}] = tf {x1 7"

EXAMPLE: For f(x) = Inx, f:(0,0) = R we have:
t7Hx) = @

and as y = Inx => x = e¥ we obtain:
( e’ :]-=' (tin x?r"]‘-" = (%—]-l =x =@,
2. High order derivatives of composite functions.

From (f (u(x)) = fr(u(x)).w(x) , deriving again in
relation to x it follows that:

(‘f{uhi}J”'F (f‘{u(x‘.r-u’Ex}) =
= F fulxd)yu (x)ut(x) +
+ Fru(x))ut(xn) = 'l'"tuix}ll-,[u'{x)]z +

+ Frludxid-u” " (x)

157




C. Dumitrescu m F. Smarandache

We have therefore obtained the second order derivative of
the composite function and the procedure can go on.

EXAMPLE: lets calculate f»(x) if f(x) =g(g7™%), g
being a function two times differentiable on R.

We have:

f ix) = g (e’ ) (e

and

:::lz'+ g'{a-u]l:&- ) =

f o(x) =g’ (e i-e

- .-"{g'{a'“} - g {e_*}-e_“] .

(C) Dertvatives of order n

For the calculation of the derivative (™ (x) we can use one
of the following methods:

1. We calculate a few derivatives (f*, f~, f, ...) in order to
deduce the expression of f (M which we then demonstrate by way
of induction.

2. We use Leibniz formula for the derivation of the product
of two functions:

fix)-giny }J°7 = S c*
( ) 35:23 "

The formula can be applied to a random quotient, because:

() g (x)®

fi=)

Bixi = f{x}-

. S
gix}

(D) The study of derivability

In order to study the detivability of a function:

(a) we distinguish two categories of points that the domain
has: points in which we know that the function is differentiable
(being expressed by differentiable functions) and points in which we
pursue the study of derivability (generally connection points
between branches).
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(b) for the study of derivability in this second category of
points, we use one of the following methods:
(1) we calculate the lateral derivatives using the
definition
(2) we calculate the lateral derivatives using the
Corollaty of TLagrange’s theorem: If f s
differentiable in a vicinity of Xy and if it

continues in X and if there exists:

A = 1lim F°(xn)
= ® —hx

o
{ :'n.d = ii_r:wof " {®) , respectively }
then, f has a detivative on the left (on the right,
respectively) in X and:

F =
8 Eﬂa] hn

{ f;! (%) = A . respectively )

The continuity condition in Xy that is required in the
hypothesis of the corollary is essential for its application, but it
doesn’t constitute a restriction in the study of derivability,

because if f isn’t continuous in X, it isn’t differentiable either.

EXAMPLE: Let’s determine the patameters @, € R so
that the function:

lnzx o B
fix) = {

ax + 3 X 4 e

is differentiable. What is the geometric interpretation of the result?
Apnswer. Method 1. (using the lateral derivatives)
a) in any point X # e, the function is differentiable, being
expressed through differentiable functions.
b) we study the derivability in x = e.
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Because of the proposition: f non continuous ==> f non
differentiable, we study the continuity first.

1.{E]='1_i..‘l= fix) = lim (ax +3F) = e+ 3

x —e
Xl %@
. 2
L (e} = 1im f(x) = lim In"x = 1
L o e ® e
Xla LNl

and fi{e) = lnte.- 1

so: f continuous ine <=>ae + f = 1. (4.3)

If the continuity condition in X = e isn’t met, the function is
also not differentiable in this point, so we study the derivability
assuming the continuity condition is fulfilled.

. - . fir) — fie}
fler =50 %
ML
= LT mx+r_i“1£[1-“+ﬂ]=
e %
= lim ax+ﬁ-—m-—|r?_tn_
W H — B
XC@
z
f ey = lim fix) — fle) .0 dnwx -1
d P r4d ® - a x3e x- e
¥ Le

For the calculation of this limit we can:
(1) apply the definition of the derivative,
(2) permute the limit with the logarithm,
(3) use 'Hospital’s rule.
(1) We observe that by noting g(x) = In?x, we have
g(e) = 1 and the limit becomes:

gix}) — gie)
® =2

lim

=g (]

(because ¢ is differentiable in e)

1 . 2
g’ (x) = (In“x) = 2:1n x = => g'(e) = =

» £
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. _ =z
s0 fd(E:l ==
z

2 2
Im = — 1 _ ) In"s = lne _

2y e —m—e— = M= =
-] -]

= 1 (In % — In 2){ln ®x + 1ln e}

- X =FaE X - &

R

_ . In »x = ln e . In(x/e}

_zili:l-:‘- ] =2 lim < —2
EEX XL

Therefore, f is differentiable in:

2
=7 ¥ = ¥ == = —
e L= (e] (e} <=>» a

and from the continuity condition we obtain f = —1. We thus
have:
irrzx € re
ix) =
2 ¥=1 wd<em
e

The geometric interpretation of the result: the straight
liney = %x — 1is tangent to the curve y = Inx?.

If the branch of a function is expressed through a

straight line (y =ax+ ), the function is

differentiable in the point X, of connection

between the branches, if and only if the

respective straight line is tangent in the point of

abscissa X to the graphic of the other branch.
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Method 2: (Using the corollary of Lagrange’s theorem)
(@) In any point x # e, the function is differentiable, being
expressed by differentiable function and we have:
-§— In = X oe
L
o L e
(b) We study the derivability in x = e. We first state the

continuity condition:

I (e} = E&{E] = fle) <=r o= + 3=1.
=

In order to use the corollary of Lagrange’s theorem we
calculate the lateral limits of the derivative:

lim a = o .
oo
i
From the corollary we deduce f*(e) = a. Analogously:
el
fdlEJ = ”1‘_21‘: Friin) = -
L@

If f is differentiable in x = e if and only ifa = 2. From the

continuity condition we deduce f = —1.

(E) Applications of the derivative

1n economics
(See the Calenlus mannal, IXth grade)

1. Let () be the benefit obtained for an expenditute of x
lei. For any additional expenditure of h lei, the supplementary
benefit on any spent leu is:

Alx + hy —- @{x)
h

If his sufficiently small, this relation gives an indication of
the variation of the benefit corresponding to the sum of x lei.
If this limit exists:
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CLim ln + h; = F{x)

h k0 = 3 x)

it is called the bound benefit corresponding to the sum of x lei.

2. Let y(p) be the total cost for the production of p units of
a particular product. Then, the cost per each supplementary unit of
product is:

¥ip + h) = y(p)
h

and the limit of this relation, when h tends to zero, if it exists, is
called a bound cost of production for p units of the considered
product.

EXAMPLE: The benefit obtained for an expenditure of x
lei is:

2

A} = w5 —= Zx + 2

For any additional expenditure of h lei, calculate the
supplementary benefit per spent leu and the bound benefit
corresponding to the sum of 1000 lei.

Answer: The supplementary benefit per spent leu is:

Aix + h) = B(x) _ . (x + h)*= 3I(x + h) + 2
h = R

For x = 1000 this is equal to 1997 + h and
im fflx + h) — 3=}

e h

= 1997

Exercises
I. The following atre required:
1. The equation of the tangent to the graphic f(x) =

InV1 + x? in the abscissa point xo = 1.
2. The equation of the tangent to the curve f(x)=

Vx? — k2, that is parallel to 0x.
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3. The equation of the tangent to the curve f(x) = x3,
parallel to the first bisector.

. 3x+2 .
4. The equation of the tangent to the cutve y = P that is

parallel to the chord that unites the abscissae points x = 1 and x =
3.

5. Determine & and 8 so thaty = ax + ff and y = xT_l are
tangent in x = 1. Write down their common tangent.

6. Show that the straight line y = 7x — 2 is tangent to the
curve y = x2 + 4x. (Mannal)

II. 1. Calculate the derivative of the function:

F4
®

Fim}) = J. Elﬂ- sin t% dc
0

2. Let fi(—,0) > R, f(x) =x?—3x. Determine a
subinterval ] € R, so that f: (—0,0) — ] is bijective. Let g be its
inverse. Calculate g’(—1) and g”(—1). (Manual)

3. 1f:

[tix) = fiy)| < M- jxe = p |5,
with @ > 0 for any X,y € I, the function f is constant on I.

4. If f has a limit in point a, then the function:

gin) = (x — ay -fix)
is differentiable in a.

5. If f is bounded in a vicinity of Xy, then g(x) =
(x — x0)?f (x) is differentiable in x,. Particular case:

fiw) = sln{-t—] .

Indications:

1. Let f be a primitive of the function:
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&
Fit}y = 8 =sin

We have:

r+

1(x) = F(x*) = F(OY, so I'(x) = (F(x*)).

3. For x #y the inequality from the enunciation is
equivalent to:

fix) = Tiy)

=
— =M fx = v|

from where, for y — x we obtain f(x) = 0, so f is constant on I.

II1. Calculate the derivatives of order n for:

1
1. fin) = T‘_3
E.'I'{xj = .___1..___
ak + b
3, fix) = A

Wi 3x o+ 2
d. fin) = ln{2x + 5)

S, fix) = In(x— 3x + 2)

G. fix) = {x'-— 2u®+ 8y - 3) e
¥ x

et = s

" - |
- M
B Tix) w =2 =D

8. f(x) = arctg x

10. f(x) = ™ + eP* from the expression of the derivative

of order n, deduce Newton's binomial formula.
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IV. 1. Show that:

iy _ nT
a) (sin =) = s:.n( ¥ + = } »
B} (cos )™ = l:n:rs( H o+ L_g— ] .
2. Applying Leibniz’s formula for:
fi=) = 1 i
= 3x + 2
show that:

. 1 B S
(x ~ 1y™t (x - 237

= i X tn - k)oKt 4
o (x = 1)1 (=2)"™

Find similar formulas, using the functions:

1

Fix) = and fix) = —2r.* 1

x*- 8¢ + & ¥— Ox + 4
3, Let I =(0,1) and the functions u,v:l — R, u(x) =
_ inf 2 __ Sup 2
u(x) = ye I(x —y)*, v(x) == ye [(x—¥)" . Study the
detivability of the functions u and v and calculate ;:PIu(x) ,

inf v(x). (Manual)

x €l
4. If f,(x) is a sequence of differentiable function, having a
limit in any point x, then:

fi:ﬁn}iﬁ fﬁﬂb‘! :l = Fl_&& £ (m) {Manual )

V. Study the derivability of the functions:

]’lh[xz + 3x) ¥ & (0,1)
1. f0) =& g
L =tx =1 ¢+ 221n2 x21
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2. fix) = min { w'— % , 4x — 2}
3. f (x} = |ix = 2)ix =3 |

—_ z. —
k) = [J{x - 2)7{x - 3|

foin) = jix - 217 (¢ = 3|
3
' p—
% wom -1
" 2
iy = 41—t dr e (-i,1)
=
oL -t
,T =
+ = b

2. Fiu) if fi=) =

tg“ XEQ
-é[lq-‘:'] 1;/; % ¥ 0
B, f{x) = = 1+e
1 ® =0
si:x 0
e Fin) =
i ®x =0

is indefinitely differentiable on R and:

L
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=T *x =0
B. f(n) = el o ¥ & (O,1)
E-l
- ¥ = 1
moom
arccos{cos x) x E[-T’_Z—]
. fix) =
i
arcsini{sin x)} x e( —E-,Ert]
na 2 -
10. f(x) = jx = 1] e + a(x + 1) e
Enu’ + E—nx
a €R
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V. Fermat, Rolle, Lagrange,
Cauchy Theorems

(A) Fermat’s theorem

1. Enunciation
If f:[a,b] = R is continuous on [a, b] and differentiable
on (a, b), then in any point of extremum from (a, b) (from
the interior of the interval), the derivative is annulled.
(Fermat, 1601-1665)
Observation: xy € (a,b) point of extremum ==> f"(x,) =
0. If xq is a point of extremum at the ends of the interval, it is
possible that the derivative isn’t annulled in xg.
Example:
Flx) = 32 + 2 , Fi1[-1,2] —> B
has two points of extremum: in x; = —1 and in x, = 2, and:
f (-1} = ¥°{(2) = 5 .

2. Geometric and algebraic interpretation
a) The geometric interpretation results from the

geometrical interpretation of the derivative: if the conditions of
Fermat’s theorem are fulfilled in any point from the interior of the
interval, the tangent to the function’s graphic is parallel to the axis
Ox.

b) The algebraic interpretation: if the conditions of

Fermat’s theorem are fulfilled on [a, b], any point of extremum
from (a, b) is a root to the equation f*(x) = 0.
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Exercises
1. If aq, ay, ... a, are positive numbers, so that:
£ b ; Ed
a +a + ... + >
. - a >n

for any x € R, then we have:

@ " a8 " as.s -
. 2 l._n*.'l.

{ Manual )

2. Let aq, ay, ...y, by, by, ... by, be positive real numbers, so
that:

(generalization of the previous exercise)
3. If f is continuous on [a, b] and differentiable on (a, b),
and f(a) = f(b) = 0, then:
@) if f~ is increasing, it follows that f(x) < 0 on [a, b];
(i) ) if f~ is decreasing, it follows that f(x) = 0 on [a, b].
4.1f a* = x% forany x > 0, thena = e.

592 - %0<a<bhb<Z
tgb b 2
SOLUTIONS:

1. The exercise is a particular case of exercise 2.

2. We highlight a function that has a point of extremum
(global) on R, observing that the inequality from the hypothesis can
be written:

fix) = f(0Q), with:

» L -
= . * : ¥ aee ta - b .
fimx) a, bi a, bz " "

Because this inequality is true for any real x, it follows that x = 0 is
a global point of minimum for f. According to Fermat’s theorem,
in this point the derivative is annulled, so f*(0) = 0. We have:
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# - "J J“-
1 (ﬂ.'!-i‘ I;rl In b~1+lz hz in b2+.-- +

+a- blnb
2] m ™

so: T {0) = 0 =3 a‘-ln b + tz-ln !::t= +
a a a

+...a-lnb =0 <= b: + baz + ia. * bn" =1

3. (i) Let’s assume there exists ¢ € (a, b) so that f(c) > 0.
We can even assume that ¢ is a point of maximum, because such a
point exists, according to Rolle’s theorem, so we have f*(c) = 0.

Between ¢ and b at least one point d exists in which
f'(d) <0, because, if, let’s say f'(x) = 0 for any x € (¢, b), it
follows that f is increasing on (c,b) and so f(c) < f(b) =0
implies f(c) = 0. Then, from f(d) =< 0 = f*(c) we deduce the
contradiction:

f'(d) < f'(c) with ¢ < d

1 1
4.a* 2 x*<=>x.Ina > a.lnx <=>%2% (for any

x > 0). So a is the abscissa of the maximum of the function:

In

fi{x) = ---T' -
We have:
f'(2) = 0 <=> x =€ , 5 a=eg.

tg a a _ tg a tg b
e B 7 Ta ¢ 7w
(ifO <a<hb< i;_ Y.
It is sufficient to prove that f(x) = thx is increasing, i.e.

f(x)>0.
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(B) Rolle’s theorem

1. Enunciation
If f: [a, b] = R is continuous on [a, b], differentiable
on (a,b) and f(a) = f(b), then there exists ¢ €
(a, b) so that f*(c) = 0. (Rolle, 1652-1719)

Fermat’s theorem states that in a point of extremum from
the interior of an interval the derivative is annulled, but it doesn’t
mention when such a point exists.

Rolle’s theorem provides a sufficient condition for the
existence of at least one such point, adding to the hypothesis from
Fermat’s theorem the condition: f(a) = f(b).

2. Geometric and algebraic interpretation

a) The geometric interpretation: if the conditions of
Rolle’s theorem are met, there exists at least one point in the
interval (@, b)in which the tangent to the graphic is parallel to Ox.

b) The algebraic interpretation: if the conditions of
Rolle’s theorem are met, the equation f’(x) = 0 has at least one
root in the interval (a, b).

The algebraic interpretation of the theorem highlights a
method used to prove that the equation f(x) = 0 has at least one
root in the interval (a, b). For this, it is sufficient to consider a
ptimitive F of f, for which the conditions of Rolle’s theotem ate
fulfilled on [a, b]. It results that the equation F’(x) = 0 has at least
one root in the interval (a, b), i.e. f(x) has a root in the interval
(a,b).

A second method to show that the equation f(x) = 0 has

at least one root in the interval (a, b) is to show just that f is
continuous and f (a). f(b) < 0.
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3. Consequences

1. Between two roots of a differentiable function on an
interval, there exists at least one root of the derivative.

2. Between two roots of a function’s derivative on an
interval, there exists, at most a root of the function.

Consequence 2. allows us to determine the number of roots of
a function on an interval with the help of its derivative’s roots
(Rolle’s sequence):

Let X1, X5, ..., X, be the derivative’s roots.

Then f has as many real, simple roots as thete are variations
of sign in the sequence:

fl—wm) ﬂxll e LT AN fleo!

(if we have f(x;) = 0, then x; is a multiple root)

Exercises
I. Study the applicability of Rolle’s Theorem for the
functions:
z

w® = 8Bx + 1 w e [2,4]
1. f(x) = =15 o= {(4,3)
x% - 10% + 10 w & [5,7]
[ x® - 2x +2 x & [1,2]
2. fix) = 4 1 #oa (=1,1)

[ %% 4+ 2x + 2 x & [-2,-1]

-s.i.n;n X = O,Zr:]
. T
3. f(x) = 4 1 ::_E[?,Eﬂ]
[ on
COoOSs *® X - ?rr,—-T]

What is the geometric interpretation of the result?
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Indication: 1. We obtain ¢ € [4,5]. In any point from the
interval [4,5], the graphic coincides with the tangent to the graphic.
I1. Given:

A 3 B 4 ses g @& ,h,b,...,bnEEE.
Show that the equation:

E ( a -cos kx +'bk-sin ke } = O

kS1
has at least one solution in the interval (0, 21). (Manual)
2. 1f:
_ i+ - °:
L=

then the equation:
ax"+a «"tae ... ax+a =0
Ll =1 i o
has at least one root in the interval (0,1).
3. () If

al,az,-.-an.llﬂ,

then the equation:
na %2 * +fn-11a ® 4+....+a =20
L] ri—i i
has at least one root in the interval (0,1).

(i) in what conditions the same equation has at least one
root in the interval (—1,0)?
(i) The same question for the equations:

m Ir=d
a_ “H + a "M *  saas + a =0
3 Zrn-4 o

Zre+i Faa]
a “ + a_ = + ... ¥+ a =0
Zr+d n o

on the interval (—1,1).

4. TLet f:R = R be differentiable and a; < a; < -+ < ay,
roots of f. Show that f°has at least n — 1 roots.

(Mannal)
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Consequences:

a) A polynomial function of degree n has, at most, n real,
distinct zeros.

b) If all the roots of a polynomial are real and distinct, its
derivative has the same property.

c) If all the roots of a polynomial are real, then its derivative
has the same property.

5. Given:

fix) = (x* - 1)".

Show that the equation f™(x) = 0 has n distinct roots in
the interval (—1,1).

6. If f is n times differentiable on I and it has n + 1 distinct
roots on I, then f™(x) has at least one root on 1.

7. Let f,g:[a,b] = R, continuous on [a, b], differentiable

. . @ _ @)
on (a, b) with g(x) # 0 and g’(x) # 0 on [a,b], and @ 9oy

Show that ¢ € (a, b) exists, so that:

fic) _ *(c)

gic) g’ lc)

8. Letf:[a, b] = R, continuous on (a, b), differentiable on
(a, b). Then between two roots of f there exists at least a root of
a.f+f.

9. If the differentiable functions f and g have the propetty:

frfmd-glix) — Fin}-g (x) = O
on an interval, then between two of its roots there is a root of g and
vice versa.

Consequence: If f'(x).cosx + f(x).sinx # 0, in any
length interval bigger than 7 there is at least one root of f.

10. If £, g: [a, b] = R, continuous on [a, b], differentiable
on (a,b),g(x)+ 0,9 (x)# 0and f(a) = f(b) =0, thenc, €
(a, b) so that:
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=) s (s)
o(c,) " 9 (<)
SOLUTIONS;

7. The required equality can also been written:
f{c)-g'tc) — ¥ (c)-glec) =0

This equality appears in points ¢ that are roots of the

. . X P .
derivative of h(x) = %, so it is sufficient to demonstrate that the

function h fulfills the conditions of Rolle’s theorem on [a, b].

8. The equation a.f(x)+ f'(x) =0 comes from the
equalizing with zero the derivative of the function F(x) =
e f(x), so it is sufficient to show that F satisfies the conditions of
Rolle’s theorem.

9. Let x4, X5 be roots of f. By hypothesis, we haveg(x;) #
0 and g(x;) # 0. If, for example, there can be found a root of g

between X1, X5, this means that the function h(x) = % satisfies

the conditions of Rolle’s theorem and so h’(x) is annulled in at least

one point between x; and x,, which contradicts the hypothesis.
.t € ' | c
1¢. 3 c e ta,b) ___._...[ “} = _{.'l_ll_.-__[.._“l{=;
9 [ :ﬁ} gl [cn.]
f=3 3 c & {a,b} n"l‘lcnl-g‘{cn} -
- gle ) f'ic ) =0 <=> the equation:
n-flx)-gifz) —gix)-F () =0
has at least one root in (a, b)) <=> h’(x) = 0 has at least one root
. fx)
a,b), where h(x) = )
in (a, b), where h(x) prren
We will present next, two methods for the study of an

equation’s roots. The first of these uses Rolle’s Theorem and the
other is a consequence of the fact that any continuous function has
Darboux’s property.
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Methods for the study of an equation’s
roOots

1. Using Rolles’s theorem (its algebraic
interpretation)
2. Using Darboux’s properties (f f has Darboux’s

propetty (patticulatly if it is continuous) on [a,b] and:
f(a).f(b) <0, then f has a root in [a, b]).

Examples:

1) If f: [a, b] = [a, b] is a continuous function, then u, v €
[a, b] exists so that f(u) = u and f(v) = v. Manual)

2) Let f:[0,2m] = R be a continuous function so that
f(0) = f(2m). Show that ¢ € [0,7] exists so that f(c) = f(c+
n). (Manual)

Consequences: 1f a traveler leaves in the morning from spot
Aand arrives, in the evening in spot B, and the next day he leaves
and reaches again spot 4, show that there is a point between A and
B where the traveler has been, at the same hour, in both days.

Indication: 1f S(t) is the space covered by the travelet, we
have: S(0) = S(24) and so ty € [0,12] exists, so that: S(ty) =
S(ty +12).

By formulating the problem like this, the result might seem
surprising, but it is equal to saying that two travelers that leave, one
from spot A heading to spot B, and the other from B to A, meet on
the way.

3. Using Rolle’s sequence
Example: Let’s study the nature of the equation’s roots:

Hl-3N=+i=U

a being a real parameter.

Answer. The derivative’s roots are:
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w'= 0 and w''= 2
and we have:
fix'}) = a anmd fi(x ") =a — 4 .

The results are illustrated in the following table:

* - Q 2 +eo

fin) —= & a = 4 +wm!| The nature of the roots
a<o - - - + areal root % 7 2

a w{'_i _ U - + H’.:“z: Q!}:!}z
as(0,4}] - + , = + xlﬁi-m,OI,HzEIG;Z:‘}“;}Z
a=4 - + 0 + 3‘1{0, x==x’-2

a > 4 - + + + a real root “,40

4. 'The graphical method. The equation F(x,m) = 0 s

reduced to the form f(x) = a. The number of roots is equal to the
number of intersection points between the graphics: y = f(x) and
y=m.

Example:

a3
® o+ 1

w4 mxTE Zmy + 1= 0 <= mo= - SrTETt
The number of roots of the given equation is equal to the

number of intersection points between the graphics:

3
L § =
Y_—Wnndy m

5. Viette’s relations
Example: Show that the equation:

3 a

H"+al + 1)-= +(.12 +?+ 1}-x'+ Bex + =0,

with a, b, ¢ € R has, at most, two real roots.
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Answer: we have:

w o+ ®_ + x_ +x =-—a=1
!’:. z 1 4 2 a =
3 +* - = + + 1
WoH_ O+ WK .- H a
| 172 23 . £ 2
.z _ 2 - .
=% § M * ¥ *+ w + X 3 = a + Za + 1 <=}
i 3 3
. z ]
= P+ T eou e x o+
i Fi 3 &

F
# Z{n .t MM O+ ... xR )= a+ 2a+ 1
i 9 &

z i3
t=.‘:¢z+x=+uz+:.:=-aiﬂ-a—:'.f.ﬁ,
i 2 - ]

so the equation has at least two complex roots.

0. Using the theorem of the average
Theorem: | If f: [a, b] — R is a Riemann integral (so it is

bounded), u € [m, M] exists, so that:
b
J ) éx = wip - a)
=

Example: Let f:]0,1] = R be continuous, so that:

i
Zf fix) dx = 1.
o

Show that the equation f(x) = x has a root xy € (0,1).
Answer: f(x) =x <=>f(x)—x=0, so by noting:
h(x) = f(x) — x we have to show that the equation h(x) = 0 has

a root in the interval (0,1). We have:
t 1
J": Fim} du = 1, C==> Efc!h(}:;!w-xj Ay = | <==3

4
C==3 zj Riw) = 0.
[¥]

But: fZ h(x) =0, according to the theorem of the average,
with u € (m, M). The function f, being continuous, has Darboux’s
propetty, so, for f there exists Xg € (0,1)so that u = h(xg).
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Exercises
1. The equations:
al x‘—x'+xz+m¢+ﬁ=ﬂ

b x* = (sin a) !-:3+xz+,ri'x+r=0

4 ——
c} x = 7 2o x +axz+.|'?x+1=t)

can’t all have real roots if , 8,y € R.

Indication:
i}x’*uz+x=+x=<0
1 z 3 &
2 2 2 2 .2
hlx’+xz+xs+x‘=51ha-2<t}
c) R: + H: * :v,': -Il--“i =0, ‘ﬁ" H:' r."' H‘ﬁ_(}

2. 1If f:[0,1] = Ris continuous and with the propetty:

i
[ fin) an = 2
) T

then, the equation f(x) — sinmx = 0 has one root in (0,1).
3.If f:[0,1] = Ris continuous and with the property:

1
':J"F{y.]dx==2::+3b+bc,
o

then, the equation f(x) —ax? —bx —c =0 has one root in
(0,1).

4. If f:[0,1] = R s continuous andn > 1 exists for which:

i
J fowy ax =1 + é- P S
a L]
o
the equation: (1 — x)f(x) = 1 — x™ has one root in (0,1).
Indication: We apply the theorem of the average to the
function:

Fi) = FUx) = ( 1 + X + wuw + 2" 1)
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(C) Lagrange’s Theorem
1. Enunciation:

Let f:[a,b] > R be a continuous function
on[a, b] and differentiable on (a,b). Then c €
(a, b) exists, so that:

fib) — fla) = ¥ () (b - a}

(Lagrange, 1736 — 1813)

2. Geometric and algebraic interpretation

a) Geometric interpretation:

If the conditions of the theorem are met, there exists a point
¢ € (a,b) in which the tangent to the graphic is parallel to the
chord that unites the graphic’s extremities.

b) Algebraic interpretation
If the conditions of the theorem are met, the equation:

f(b) = f(a)
B - a

Tt iw) =
has at least one root in the interval (a, b).

3. The corollary of Lagrange’s Theorem

If f is continuous on an interval I and differentiable on
I\{x(} and in x; there exists the derivative’s limit:

1im £ (%)} = A ,

X -y
then f is differentiable in x and:

frix ) =X .

This corollary facilitates the study of a function’s derivability
in a point in an easier manner that by using the lateral derivatives.

Examples:

1. Study the derivability of the function:
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1
- 1
* w 4 1

2
fin) = 2
ing = — 2% + 2 ) w o= 1
Solution: In any point x # 1, the function is differentiable,
being expressed by differentiable functions. We study the
derivability in x = 1 using the corollary of Lagrange’s theorem.

- the continuity in x = 1:

1(1) = lim f(x) = lim 2 =T =29

= => 1 o o=-> i
®ed X4
Ed{:!.] = lim fi{x) = lim In( u’- 2% + 2 ) = 0O
® =5 i ® -k 4
®r i ®ri

f()=In1=0, so f is continuous on R (and
differentiable on R{1}).
- detivability. For the study of derivability in x = 1, we have:
-t
- —52" 71 sm2 oy
(x = 1)

f'(x) =
2ix = 1)
2
o= 2% + 2

(we know that f~ exists just on R — (1)).

Exercises
I. Study the applicability of ILagrange’s theorem and

determine the intermediary points ¢ for:

Z2n - 2 ¥ & [0,1)
1. fix) = §{ %% + 1 w e [1,2]
4% - 8 *» e (2,3)
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o

sin x EA [G,-b_]
2. f(g] - z . o
¥ + a-x + 7 H & ITFT]
3. Fix) r' [x - %)' cos x|« % & [O,m]
4. f{x) = arctg x + arctg 1= %, % e to,n)
. 1 +x
_1 )m
<2
e ® - [._1-,1]| = = 0
:- f[“} =
o n =0
Indication:

2. The continuity condition in X = %is:
z
Goeal oo b,
and the derivability condition (the corollary to Lagrange’s theorem)
is:
b ¥ 3

- 4
] ol -
s

Point c¢ is the solution of the equation:
T
‘ £ [?) - flm _
frix)y = =0 .
LI
2
IL 1. Let f(x) = ax? + bx + c¢. Apply the theorem of the
finite increases on the interval [xq,x,], finding the intermediary

point ¢. Deduce from this a way to build the tangent to the

parabola, in one of its given points.
2. Wehavem < f'(x) < M for any x € [, if and only if:
m-|x = y| = [fix) = fiy)]| =

ZHM-fw = vl ¥ u,y el. (L1
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3. (The generalization of Rolle’s theorem). If f is continuous
on [a, b]and differentiable on (a, b), then ¢ € (a, b) exists so that:
sgn[ fib) — fila) ] = sgn 1 {c) L2y
4. Supposing f is twice differentiable in a vicinity V of point
a, show that for h, small enough, thete exists p,q € V so that:

fia + Y - fla - h)

a} h

= 1" (p)

fla + h) - fl a - h) -2f(a)

hl

bl

= f (g}

(Manual)
5.Let f:[0,00) = R be a differentiable function so that:

lim fix) = O
N o=k
and let a > 0 be fixed. Applying the Lagrange theorem on each
interval:
[a+n ,a+n+17,n=MH,
show there exists a sequence (X, )pnen, having the limit infinite and
so that:

™

1im Zﬂf'[x{]--f{ll

® =¥ Cr =

6. The theorem of finite increases can also be written:
filx + h} - fi{u}) = hof'{x + ch) withc & (0,1).
Apply this formula to the functions:

a) f(x) = %= b) f(x) = x°,

c} finw) = mu + n

and study the values corresponding to the real point c.

SOLUTIONS:
l.c= xlTerz, so, the abscissa point ¢ being given, in order to

build the tangent in point (c, f(c)) of the graphic, we consider two

points, symmetrical to C:
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H= C—& X _=Cc+rL.
i z

The tangent passes through (c, f(c)) and is parallel to the
chord determined by the points:
(%, » fin) }J and [ %, ., fix ) ]

2. The necessity: For x = y (L1) is verified, and for x # y,
we have:

fix) - fiy) | _
T | s m<=>

(L1} <=> m Ei
c=>m = f° (cx_];: M
1

inequalities which are true due to the hypothesis.
Reciprocally, let x € I, randomly. Making y tend to x, for:

Ffiu) = fiy)
o=y

# o=y (L1) <=> m = =Hn

we have:

m = f'(x) =M .

3. We distinguish three cases:

{1y TF{a) < fi{b}

In this case we must prove that ¢ € (a, b)exists, so that:
f'(c) > 0. If we had, let’s say, f(c) < 0 on (a, b), it would follow
that f is decteasing, so f(a) > f(b).

(2)y fi{a) = ¥(b)

We are situated within the conditions of Rolle’s theorem.

(3) The case f(a) > f(b) is analogous to (1).

4. 2) We apply Lagrange’s theotem to f on [a — h,a + h].

b) We apply Lagrange’s theorem twice to the function
g(x) = f(a+ x) — f(x) on the interval [a — h, a].

6. 2) c=1/2, ¢) is obtained mh = mh, so ¢ cannot be

determined.
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(D) Cauchy’s Theorem

1.Enunciation

Let If f, g:[a, b] & R be continuous on[a, b] and
differentiable on (a, b) so that:
g'ix) = 0 ¥ x & (a,b).

Then ¢ € (a, b) exists, so that:
fib) - fl{a} - T ({c}
gi{b} = gla) g’ (c)

(Cauchy, 1789-1857)

2. Geometric and algebraic interpretation

d) The (geowem'c iﬂl‘é’?’ﬁ%l‘dﬁOﬂl in the conditions of the

theorem, there exists a point in which the relation of the tangents’
slopes to the two graphics is equal to the relation of the chords’
slopes that unite the extremities of the graphics.

b) The algebraic interpretation: in the conditions of the

theorem, the equation:
f'[x}(g[b} - g{ll]-g'tul[ffb) - fEa3]=0

has at least one root in (a, b).

Exercises
I. Study the applicability of Cauchy’s theorem and determine

the intermediary point ¢ for:
1.f(x)=1n x, gix) = =, f,g:l1,e]—> R
2.F(x)=1n %, g(x)=2%x—-1,f,g:[1,8] —s R

Z. fir) = sin » , gix) = cos u ,

f,g=[% " %] (Manual )
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- |
= - x +1 x&(1,3]
4. f(x) = s
—x + X ¥ & [041]
=x"+ 1, £,9:(0,31 — R

gin) =
IL. If f has derivatives of any order on [a, b], by applying

Cauchy’s formula to the functions:
a) g(x) = f(x), h(x) = b — x, show that ¢ € (a, b) exists,

so that:

f(b) = f(a) + (b - a)f'(c)
b) @(x) = F(x)+ (b=x)F (x), hix) =(b-x)%

show that ¢ € (a, b) exists, so that:
2

f(b) = t(a)+ (b - a)t(a) « S22 ¢ ()
b - % _.
cl U{H}ﬂf{u]-l-—i-r_'l' (x) +

F4
+ b Iui T''(x), hi(x%) = (b - ”s,

show that ¢ € (a, b) exists, so that:

fib) = fla) + i}if'ul +
2 .
(b - a)® .. ., . B 5-” P

* 2
z
d) glx) = t(a) + h%-r'{':] + ..“’;+H+

LB = ®) ¢ ™y, gix) = (b - "™,

I ~
show that ¢ € (@, b) exists, so that:
2
b — a ‘f-[a}q.—{l-;“r—l;l]—-f-.{i}+

fib) = ‘f{al""—r
{b - a}n (hE {b = a}nﬂ' iPELl
* rea * BGE f (a) + h o+ 17 1 fc}h
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2. Applying the conclusion from point b) show that thete
exists no functions f: R = R twice differentiable, so that:

f(x)=0and fr(x) <0
(there are no non-negative and strictly concave functions on the
entire real axis).

SOLUTION:

2. From f»(x) < 0 for any x € R, we deduce that f~ is
strictly increasing and so we cannot have f*(x) = 0 for any x € R.
Therefore, for any Xy € R exists, so that f*(x) # 0.

But then, from the relation:

(o = x njz
Fix) = flx d+ix = uq]f' ix )+ 2—1" "lel
it follows that:

fin) - 'f[)lg.’! < {x - “u’f'tnn, (C1}
We have two situations:
(1) if f(x9) > 0, making x tend to —o0 in (C1), we have:
Lim (Hx} - HHD}] =
X =) =cD
= lim [ = xnl'l"{ Hu]""'m'
o el = =
consequently:
iim f(») = — = -— contradiction .

¥ =3 =gT

2. If f(xg) < 0, we obtain the same contradiction if we
make x tend to +00.
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VI. Equalities and Inequalities

Equalities

It is known that if the derivative of a function is equal to
zero on an interval, the respective function is constant on that
interval. This observation allows us to prove certain equalities of
the form:

fx) =g(x)+C.
ot, in particular,

f(x) = g(x) and f(x) = C = constant.

Indeed:

fix) = gin) + C <=3 TF(m) - gin) =C
and in order to prove this equality it is sufficient to prove that:

fx)—g) =0.

Observation: 1f the derivative is equal to zero on a reunion of
disjunctive intervals, the constant may vary from one interval to the
next.

To determine the constant C, we can use two methods:

1. We calculate the expression f(x)—g(x) in a
conveniently chosen point from the considered interval.

2. It the previous method cannot be applied, we can

calculate:

lim [ f(x) - gtx) )

X -rE

X also being a conveniently chosen point (one end of the interval).
Example: Show that we have:

I
-5 * (-, —1)

- »
arctg = + arctg %—i_—l = -
ry #E(=1, =)
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Solution: For:

hix) = arctg = + arctqH

we have I'(x) = 0 for any x € R(—1), domain that is a reunion of
disjunctive intervals. We calculate the value of the constant on each
interval.

(1) For x > —1, we choose the point x = 0 where we can
easily make the calculations:

hi(0) = arctg(0) + arctgll) = é%_

(2) For x < —1, we can’t find a point in which to easily

calculate the value of h, but we observe that we can calculate:

. _ _m _ _lt_. - 3n
P -tk i R S S
xi—4

Inequalities
Method 1. Using Lagrange’s or Cauchy’s

theorem.

In some inequalities, we can highlight an expression of the
form:

fiby = fia)
b - a

f and the points a, bbeing conveniently chosen. In this case, we can
use Lagrange’s theorem to prove the respective inequality, by
replacing the expression:
fib}) = fia)
b - a
from the inequality, with f*(c). The new form of the inequality can

be proven taking into account the fact that a < ¢ < b and the

monotony of f.
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A similar method can be used if in the inequality an
expression of the following form is highlighted:

fib) - fia)
gib) —g(a)
using Cauchy’s theorem.

EXAMPLES:
1. Using Lagrange’s theorem, show that:
b - a b b - a
5 < 1In = < —a
if0<a<h.

Solution: We go through these steps:
(a) We highlight an expression of the form:

fib) = fia}
b - a

observing that:

In2 =inb-1n a
=1

and dividing by b — a. The inequality becomes:

1 In b = In a 1
B b - a ST

(b) we apply Lagrange’s theorem to the function f(x) = Inx
on the interval [a, b]. ¢ € (a, b) exists so that:

1

Inb - 1lna _ .. -
—fl:f.-'.'—?

b - a
(¢) the inequality becomes:
1 1 1
v ¢ T ¢ 3

This new form of the inequality is proven considering the
fact that @ < ¢ < b and that f*(x) = %is decreasing.

2. Using Lagrange’s theotem, show that e* > 1 + x for any
x # 0.

191




C. Dumitrescu m F. Smarandache

Solution:

To use Lagrange’s theotem, we search for an interval [a, b]

fb)-f(a) .

————in
b—a

and a function so that we can highlight the relation our

inequality. For this we observe that, if x # 0, we have two
situations:
(1) x > 0. In this case we can consider the interval [0, Xx].
a) We highlight, in the given inequality, an expression of the
fG)-f(a)
m: ————
x—0

for: , observing that, if x > 0, we have:

] Ex—l

e > 1 + ® =23 m R S

(b) We apply Lagrange’s theorem to the function:

fit) = e

£

on the interval [0, x]. ¢ € (0, x) exists so that:
e — 1

= i {c) = e".
"

(c) The inequality becomes:

E': o1

This form of the inequality is proven considering the fact
that 0 < ¢ < x and the derivative f*(x) = e*is increasing (so el <
ec).

(2) If x < 0 the demonstration is done analogously.

Method 2: The method of the minimum

This method is based on the observation that if X is a global
point of minimum (the smallest minimum) for a function h on a
domain D and if h(xy) = 0 (the smallest value of h is non-
negative), then h(x) = 0 for any x € D (all the values of h are
non-negative). We can demonstrate therefore inequalities of the
form f(x) = g(x),ie. f(x) — g(x) = 0, in other words, of the
form: h(x) = 0.
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Example: Using the method of the minimum, show that e* >
1+ x forany x # 0.

Solution: In order to use this method, we proceed as follows:

(a) We write the inequality under the form: h(x) = 0:

> 14+ x <¢=> e -x-1>0

(b) Let h(x) = e* —1—x. Using the variation table, we

calculate the global minimum (the smallest minimum) of h:

® - o 0 +

R ixl = = = = = = = O 4+ + + + + *

vl N N N o S ]

From the table it can be observed that h has a single

minimum, in x = 0, so this is also the global minimum. Its value is

h(0) = 0. So, for x # 0, we have h(x) > 0.

Method 3: (Inequalities for integrals, without

the calculation of the integrals)
To prove an inequality of the form:

b
ag [ fix) dx = 7

a
without calculating the integral, we use the observation that if m, or

M respectively, are values of the global minimum and maximum of

f on the interval [a, b], we have:

m= fix} =H for any # & [a.b]

and so, by integrating, we obtain:
|-
mib - a) £ [ fix) dx £ M(b - a)

a
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so, in order to prove the required inequalities, the following
inequalities (numerical) still have to be proven:
a = mib -~ a) and Mib - a) = 3

Example: Show that:
2

i 2 i
27 ® Ejexdx+_r e dy £1 + e
o [=]

Solution: (a) The inequality can be written under the form:
2 z

i
2ve = | [Ex"‘e"x]d‘.:‘_:l*e
o
(b) Using the variation table, we calculate the
global minimum and maximum of the function f(x) = e*’ +

e1**on the interval [0,1]:

b} o —_'1'..._. 1
L
.I..I“” 0 - - - ¥ * + +
i) |1 + @ \ \ 298 "' -" L+e

We thus havem = 2y/eand M =1 + e
() We integrate the inequalities m < f(x) < M

on the interval [a, b] and we obtain:
i i 4

J2re ax s _ff{.ﬂ dus‘fl1+t! dx ¢=>
o o o

i

é=x 24 @ Efﬂx‘j de = 1 + & .
& ]
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Method 4: Using the inequality from the
definition of convex (concave) functions

Let I be an interval on a real axis.
Definition: | The function f:1 = Ris convex on I if between any
two points Xq,Xx, € I, the graphic of f is situated
underneath the chord that unites the abscissae points

x; and x,.
i - B
fth}
¥
fix)
flx ) 4 . J
n} H‘ o Hz
Fig. &.1

With the notations from the adjacent graphic, this condition
is expressed through the inequality:f (x) < y.

In order to explain x and y, we observe that:

1. x is in the interval [x4, x,] if and only if it can be written
in the form:

o =c|:-:.'.1 + (1 ‘-L:l}"}’:z.wi_th a s [0,1] (E.L.1)

Indeed, if X € [xq,x,], it is sufficient that we take & = (x —
X2)/X1 — X3) to meet the required equality.

Reciprocally, if x has the exptession from (E.1.1), in order
to show that x € [xq, x,], the inequality system must be checked:

{ arx o+ (1 - e::}-:r:z = "

a-x + {L — @b-w_ = xn
i 2z 2

195




C. Dumitrescu m F. Smarandache

The first inequality is equivalent to @ < 1, and the second
inequality is equivalent to a < 0.
Observation: 'The condition « € [0,1] from (E.I.1) is

therefore essential.
The inequality from the convexity becomes:

f|: arx o+ (1= o), ) £ v

2. To express Y, we observe that:

x- X ga Y T TO)

Ky, T X = fE:n;} - ¥

so:

a-x_+ (1 = a)=, = x - ¥ fla )
x= - ;:;11-.::1 - {1 —m:r-:--:z 'f{xz} -

from which it follows:
¥ = a-f{n‘} + {1 - a]-f{x:}

By replacing x and y, we obtain:
f:I = Ris convex <=>

Q:}[‘!‘ xl,:;zel Y os({0,17

flox +(1-adx )< afix)+ {1—a}ﬂ}:2}]

f:1 = Ris said to be concave if, for any X4, X, € I, between
the abscissae points x; and x,, the graphic of the function f is
above the chord that unites these points, namely:

¥ x el ¥ ae[(0,1]
flax +l1-a)x_ ) 3 af(x) + (1-alfix)

It is known that we can verify the convexity and concavity of
a function twice differentiable on an interval with the use of the

second detivative:
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F''Ux) 3 0 om I <=3 f convexom I
1‘"{}:_] &« O on J {=>» f concave on [

Using the two ways of expressing convexity, we can
formulate and prove certain inequalities.

Example: Show that for any x4 and x, from R, we have:

X+ X
4 ¥ W L
. -

e L

Solution: The function f(x) = e*is convex on R(f”(x) >
0), so:

v R % @ E Yae (0,1)
f[a.x1+ tl—‘cl.'lx:} 'Y alflx"} + (A=) fix)

1 . . .
from where, for a = 5 we obtain the inequality from the

enunciation.

Exercises
I. Show that:

1. arcsin = + arccos x = _;..

foramy =% & [-1,1]

. 1 X € (—w;0)
2. arcctg x + arctg - =

SENYE

H e (l,=m)

3. Zarctg % + arcsin —2% .

1+ x2
{ m woaE [1,o)

=Tt X & (—>,=-1)
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4. arcsin =95Y x *+ 2' S _sin ¥ x -

-y o= -
W o= -, x @ [0,1- ]

5. For the intervals I, I, € R let’s consider the continuous
and injective functions:

f:Il —_— ', t;r:I"z —— R

and the constant ¢ in the interior of f(I;) . From the
condition: f(u(x)) = c + g(x) it follows that u(x) = f~(c+
g(x) for any x that fulfills the condition ¢ + g(x) € f(I,). Using

this observation, construct equalities of the form h(x) = c for:

{2) f{x) = arccos % , glx} = u°

(b) fix) = tg ®x , gix) = Zx + 2

te) f(x) = "™ , gi(x) = tg x

Apnswer. (a) We have:

Fi[-1,4i}—— P, f([-1,17) = {‘—;'—: %]:

9:[0,%) ——— R .
We determine function © from the condition f (u(x)) =
¢ + g(x) that becomes:

2 Z,
afccos u(x) = ¢ + x°, 50 ulx} = cosic + x").

s
For c = > for example, we have:

Yz

_ F , 2
u{x!——z-—-[r_nsx - sim o®w .
and from the condition:
T z
e + »x & [-1,1]

we deduce:
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e [STESE)

and so we have:

¥ 2 i cos :vs2 = min xz:r z b
arccos = - =

e[ SF L SE

II. Using Lagrange’s theorem, prove the inequalities:

b - _

1. —— 2 L ety a — ctg B < b-a s
, & - -

sin b sin a
a,bl ¢ (0, % )

b - -
2. —Ta.... & Etg a — ctg B < L_.._.i_ .

sin a E.i,nz b

fa,pl € (= , n)

¥ o+ 1
B Sintx v 2) I+, x> -l
X o+ M
1 z x x,
2 e + 2
4, e & ——— ?xllxzeﬂe

1 1 i
E-H—W'ﬂlﬂ[l*?]ﬁl—ﬂ-—-,ﬁ}l
6. Using Cauchy’s theorem applied to the functions:
fit) = (1 + t)ln{(l + t), gi{t) = arctg t ,
t,9:[0,x] — R

show that:

1n“+,¢])L“-’t.’g—L,fur:}0.

1 + =
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III. Using the method of the minimum, demonstrate the

inequalities:

1. 2 § 2x-arcsin x + 29 1 + xZ =

-x*den-1, xe&(~-1,1)

2. =3 { Prcos ¥ - cos 2% %.xqﬂ:
- z _ 1
3+1n[1+¢x+2x]} Tkim

.3
4.3-E—{uina-ﬁx,x}0

S.% - o <Infl+x) <x, x>0

*x n
B-Etﬂx}-“—i_rv‘)(ﬂ[ﬁ,—z-]

7. 2[1 + x“"‘]n > (1 o+ )™

¥ >0, ns M
IV. Without calculating the integrals, show that:

1 "% = 3
13 geE ot
E 1

lxl
E.I{Iadx(e
o

is s '’
e A T

il
-3
4. ¥ 10 < J‘fx’i-zdx(-r‘u
-4

o
4

1
5. 0 ¢ I * Inf1 + xz]dﬂ g In5

i
z
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2
B-j- e ™" *ax < (1 - %}

V. Without calculating the integral, show which one of the
following integrals has the highest value:

2 2
1. Iln(l + x) dx or _f "}‘—'}Td“
3 i
Im
7. J' sin e" dx < m — 1
o
. 10
2. j' x-arctg = dx or _f 1"[1 * “z) dx
s ' z
m T
z z

z
3. _[ ein™ % dx or I 2in"™" w dw
o o

Indication: Using the method of the minimum, we prove
inequalities of the form f;(x) < fo(x) or f1(x) > f,(x) on the
considered intervals. We then integrate the obtained inequality.

VL 1. If f: I —» Ris convex, then for any X1, X5, ..., X, € I,
we have the inequality (Jensen’s inequality):

f[ x ¥ x;—n..- + o ] ‘. Tix) + ﬂx:)n*' see * Flx )

(Manual)

2. Using Jensen’s inequality applied to the convex function

f(x) = e*, prove the inequalities of the averages:

a+ a+ ... + a
mn i 2 n
_/a-in-.---'i %

i F n n

3. Show that for any x4, X3, ..., X, € [0,%], we have:

Xt M ¥+ ... X
A 2 n

sin = 2
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sin :‘+-.1.1nx + Les ¥ s1In X
(4]

z
3

n

x‘+ }:z+ - +xn
cos ]
n
COS X + €oO= % + ... + CcOs

3 Fl 2 "

n

What are the maximum domains that contain zero and in
which these inequalities take place? Give examples of other
domains, that don’t contain the origin and that host inequalities like
those illustrated above. In what domains do inverse inequalities take
place?

4. Using the concavity of the logarithmic function, prove that
for any x4, X, ..., Xp > 0 we have:

T n

anw ¥
" [:l. F K"]
L - T 4
i 2 ] M

5. Show that the function f(x) =x%, a>1, x>0 is
convex. Using this property show that for any non-negative

numbers Xq, X3, ..., Xp, the following inequality takes place:

(}:’+ R ]a £ l‘im_l[ J:? + 512' * .. * Rc:)
2

6. Applying Jensen’s inequality to the function f(x) = x*,
show that for any X4, X5, ..., X, € R, we have:

R RETRES R CEE SIS )

What analogous inequality can be deduced from the convex
function f(x) = x3, for x > 0? And from the concave function
f(x) =x3 forx < 0?

7. Applying Jensen’s inequality for the convex function
f(x) = %, for x > 0, show that, if:

™ =41
= +* W + ... *+ ax %+ a
Fi{x} ahx a . a
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is a polynomial with all real and positive roots, we have:

2 ] 4
mn = — -
Y #

n—4 o

What can be said if the polynomial has all the roots real and
negativer

SOLUTIONS:

By comparing the right member of the required inequality
with the right member of Jensen’s inequality, we deduce that the
points Xq, X3, ..., Xp, are deduced from the conditions:

ﬁxiﬁ =a 'H:-ez!' S 'Hxna = a
We have:

e =a =»x=ln a and, generally, x=1ln a

L

With these points, Jensen’s inequality, for f(x) = e*, becomes:

ma «lma_ + ... +Llna
1 z . bal

a+a+ ... + a
™ 9 2 4]

2 <

n
Making the calculations in the left member we obtain the inequality
of the averages.

3. On the intetval [0,%], the functions sinx and cos x are
concave. The biggest interval that contains the origin and in which
sin x is concave, is the intetval [0, ]. On [m, 21], for example, the
same function is convex, so the inequality from the enunciation is

changing.
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VII. Primitives

Connections with other notions
specific to functions

Definition : | The function f:1 = R has primitives on the interval
I if there exists a function F: 1 = R, differentiable
and F'(x) = f(x) on .
It is known that two primitives differ through a constant:
F (x) = F_(x) +C
The set of all primitives is called an undefined integral of the
function f and is noted by:

j Fiwu) dx

In order to enunciate the method employed to show that
a function has primitives and the method to show that a
function doesn’t have primitives, we recall some of the
connections that exist between the main notions of calculus studied
in high school, relative to functions:

1. THE LIMIT

2. THE CONTINUITY

3. THE DERIVABILITY

4. DARBOUX’S PROPERTY
5. THE PRIMTIVE

6. THE INTEGRAL

The connections between these notions are given by the
following properties:

P, ) Any continuous function in a  point
X has a limit in this point:

L ————
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P, ) Any differentiable function in a  point
X is continuous in this point:

D —» C

P3) Any continuous function on [a,b] has Darboux’s
propetty on [a, b]:

c ——— Dark.

P,) Any continuous function on [a, b] has ptimitives on
[a,b]:

C ————— F

P5) Any continuous function on [a,b] is integrable on
[a,b]:

C — I

Pg) Any function that has primitives on [a, b] has Darboux’s
propetty on [a, b]:

P o———————s Darb.

Py) If a function has Darboux’s property on [a, b], then in
any point Xg in which the limit (the lateral limit) exists, it is equal to
f(x0).

Consequences: 1. A function with Darboux’s property (so a
function that admits primitives) can’t have an infinite limit (lateral
limit) in a point Xg.

The functions for which at least one lateral limit is
infinite or different from f(x() doesn’t have primitives.

2. If f has Darboux’s property on [a,b] and Xy is a
discontinuity point, AT LEAST ONE LATERAL LIMIT
DOESN’T EXIST.

Darb.+ w, discont. ====> a ?_nﬁxﬂ} or 3 1d{:¢ﬂ}

Due to the implications stated above, we can form the Table:
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DERIVABILITY
], CONTINUITY i
| INTEGRABILITY : )
! (Riemanmn) ‘__PMMH-WE THE LIMIT
! DARBOUX
! . ]
]! ®," discont. = j Ia{;:ur or j -'.dl.xa,l

OBSERVATION: If x, is a discontinuity point for f, one of
the following situations is possible:

(1) the lateral limits exist and they are finite

(2) a lateral limit is finite, the other is infinite

(3) both lateral limits ate infinite

(4) one lateral limit is infinite, the other doesn’t exist

(5) one lateral limit is finite, the other doesn’t exist

(6) both lateral limits don’t exist

FROM ALL THE FUNCTIONS DISCONTINUED IN
AT LEAST ONE POINT, THE ONLY ONES THAT CAN
HAVE PRIMITIVES ARE THOSE FOR WHICH AT LEAST
ONE LATERAL LIMIT DOESN’T EXIST (AND THE OTHER,
IF IT IS EXISTS, IS FINITE).

Also, let’s observe that, although in case (1) the function
doesn’t have ptimitives on [a,b] (doesn’t have Darboux’s
property), still, if, moreover, the lateral limits are equal, then f has
primitives on [a, b]\{xo} through the function f, — the extension

through continuity of f's restriction to the domain [a, b]\{x,}.
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Example:

a w & O
ﬂxi={

. i
sin — HoF
e > Q@

has Darboux’s property for any a € [—1,1], but doesn’t have
primitives if a # 0.
Indeed, assuming ad absurdum that f has primitives, let F be
one of its primitives. Then F must be of the form:
ax + € EREA
Fi{x) =

_[sinidx+c: w > 0
b F

1 L1
In order to calculate fsm o dx, we observe that sin— comes

. . 1
from the derivation of the function x? cos Y Indeed,

[xzcnni J = Zx-cuiL - izn-jl-
= o x

SO:

N 2 1 o 1 )
sin — = ("Cﬂi'x—} 2% cos — and:

‘f sin %dx = _r( xzccts% )rlik - 2]’ ¥ EOS %UK =

2 1 1
= x'cos — - 2 x cos —adx .
® "
. 1 L
The function g(x) = x cos— has primitives on (0,0)
because it is continuous on this interval, but doesn’t have primitives
on [0, ) (we aim for the interval to be closed at zero in order to
study the continuity and detivability od F).
lim
We observe that, because x = 0g(x) = 0, we can consider

x>0
its extension through continuity:
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"

¥ - COS 1
” F

g (x) =
" o w o= 0
This function, being continuous on [0, ), has primitives on
this interval. Let G be one of these primitives. Then:
[ sin :;—dx = x’cos % - 2:G(x) and:
ax + C‘ ¥4 O
Fix) =

) I:ﬂ-l--l— - 2-Gix) + C ¥ >0
" 2

We state the condition that F be continuous in xo = 0. We
have:

F(o) = 1 (0) = C_, 1,0) = -2:6B(0) +C,,

so we must have C; = €, + 2.G(0) and so, for the primitive, we
obtain the following formula:

a'x +
c.l.

& 0
Fix)= L
¥ cos — - 2:Gix) + 2:-G(0O) + l.'l1 ¥ >0
We state the condition that F be differentiable in zero:
Fr (o) = 1im XL - FLO) _
s a =30 »
{0
Fr (o) = 1im FUX) = F(O)
d =20 ]
30
% cos — — 2G(x) + 26(0) =+ Ei = C
= lim —
®x =20 y
= Dy
= 2 1ip B0 _— BLO0) . oG- o)
X -20 "
x:0
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because G is differentiable in zero. We have G*(0) = gp(0) =0 (G
is a primitive of gp), so F;(0) = 0. Consequently, F is not
differentiable in zero if a # 0.

Observation: For the study of derivability we have mentioned
two methods: using the definition and using the corollary of
Lagrange’s theorem. Let’s observe that in the example from above,
we can’t use the corollary of Lagrange’s theorem because

lim
x = 0F'(x) doesn’t exist.

x>0
The table at page 193 allows us to formulate methods to

show that a function has primitives and methods to show that a
function doesn’t have primitives.

We will enunciate and exemplify these methods, firstly with
exercises from the calculus manual, XII grade, in order to highlight
the necessity of familiarizing oneself with the different notions
frequently used in high school manuals.

(A) Methods to show that a function

has primitives

The first three methods are deduced from the table, using
implications of the form a = b:

(EP;) We show that the function is differentiable.

(EP,) We show that the function is continuous.

(EP3) We construct the primitive.

(EP,) We show that the function is a sum of functions that
admit primitives.

Keep in mind that method EP, is preferred over EP,
because derivability is easier to prove that continuity, and the
method EPj3 is used only if the function doesn’t have a limit in a
discontinuity point (this is the only situation where it can still have
primitives).
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(B) Methods to show that a function

doesn’t have primitives

The first three methods are deduced from the table, using
the equivalence: a = b <> non b — non a.

We therefore have:

a) PRIMITIVES
| T
b) F. DARBOUX
J l b
b 3 lnt xDJ
or 3 i_dn; “u:'

nen <) 3 L (x)) < = and 3 lg( x,) = @ or
BLdt ¥) 4= Hld( nol=m
Y
f NS
f— { 0ON B) non DARBOUX
| !
non a) naon PRIMITIVE

This way, we deduce the following methods to show that a
function doesn’t have primitives:

(NP;) We show that in a discontinuity point, both lateral
limits exist and ate finite or at least one lateral limit is infinite..

(NP;) We show that the function doesn’t have Darboux’s
propetty..
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(NP3) We assume ad absurdum that f has primitives and we
obtain a contradiction.

(NP,) If f is the sum of two function, one of them
admitting primitives, the other not admitting primitives, it follows

that f doesn’t have primitives.

Examples:
1
1 xz
— e % # 0
®
C EP‘Z) fix) =
o X =10
has primitives because f is continuous.
Pw-sin L - cos X x =0
CEP)D f(x) = * *
8] o = 0

) L1 1
Solution: We observe that 2x.Sln; — €0s — comes from the

derivation of the function x2sin 7 80, a primitive of f must have
the form:
. 1
® sin - + C o= 0
Fin}) =
a ® = 0
We state the condition that F be continuous in zero:

_ _ z . 1 _ - _
L(0) = 1 (0) = lim (= sin — + €) =C, F(O) = a

¥ -r0
so @ = C and we have:
xzsin—!-;- + C ¥ = 0
Fix) = W
C ¥ =0

We state the condition that F be differentiable in zero:
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Frio) = 1im ¥} — FLO) _

®
X o=x0

F I 1
xs.tn? + C —-C 1
= lim = lim ®-sin— =
» ®
® -rO ®o=b0

(something bounded multiplied with something that tends to zero,
tends to zero), so F is differentiable in zero. But we must also have

F(0) = f(0), equality which is also met, so f has primitives.

Etr'jz% ¥ = 0
CEPD f(x) = .
? x =0
We have:
1 - l:ﬂ'i%
— 3 x”0
fix) = 1 = gi(x) + hix),
z ¥ =0
where g(x) = %and:
(cos =)
cos — ) /2 ® = 0O
hi{x) = ]

o % = D

and the functions g and h are primitives.

(NPy) a) f(x) = [x] —x doesn’t have primitives on R
because in points Xy = n is discontinuous and both lateral limits are
finite.

Q ® & 0
b} fix) = 1 1
sin ~ ~ S cos x ¥ >0
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lim
doesn’t have primitives because x — 0f (x) = —oo.
x>0

(NP,) The functions in which this method is used in the

manual are of the form:

gix) ¥ e @
fin) =
hix) #a R N\ D

with g and h, continuous functions, g # h. We will prove on this
general case that f doesn’t have Darboux’s property. The
demonstration can be adapted to any particular case.

We must prove there exists an interval whose image through
f isn’t an interval. We use the two conditions from the hypothesis.

Solving the exercise: We must prove there exists an interval
whose image through f isn’t an intetrval, using the two conditions
from the hypothesis.

From the condition g # h we deduce there exists at least
one point Xy in which g(x¢) # h(xg). Then, for € small enough,
the intervals (g(xg) —¢&,g(xg) + €) and (h(xy) — &, h(xg) + €)
are disjunctive (see the Figure below).

=

h{xu3+s +
"'“‘.u"' 4=
h[xa)—*s +

ﬂ{x':’}'hl? +
q{nni -
q{xn}—: +
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From the conditions g and h continuous in x, we deduce:
Ye>0 36>0 VxeR Ix = x| <8, =>

= [Q(x) —utxnll < £
¥Yeo>o0 3-!52>0 M’xe[ﬁlu—xq|<&=->

=> {hix} = hix )| < £

Considering, as we said € small enough for the intervals
(g(xg) —&,9(xg) +&) and (h(xy) —& h(xg) +€) to be
disjunctive, and § = min{d;, 8,}, it follows that the image through
the function f of the interval (xy — §,% + &) isn’t an interval,
because:

¥ & txn— c5,3-|n+ SYn@ =

=3 fix) = gix) a tntuu]—t,g[xuhn

¥ o€ (x — S, + &) n (Bv@) =3
[ ] [= ]

=3 ) = hix) & imxﬂ}-s,hinﬂhr}.

(NP3) This method presupposes the same steps as in
method EPj.
(a) we look for primitives for f's branches and we obtain a
first expression of F;
(b) we state the condition that F be continuous in the
connection point (points) between the branches;
(c) we state the condition that F be differentiable in these
points:
- if F is differentiable and F"(xy) = f (%),
we have covered method EP;.
- if F isn’t differentiable in x¢ or F'(xg) #
£ (xg), we have covered method (NP3).
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1
. —_ = 0
¥-sin " ]
{HP4) fim) =

doesn’t have primitives on R.
Indeed, we have f(x) = g(x) + h(x) with:

: 1
ROSIN == % # O

qlx}= ﬂnd.
Q wo o= ()
0O w o= 0

hix) =
1 ®x = 0

and g is continuous so it has primitives and h has lateral limits,
finite in zero, so it doesn’t have primitives. If, let’s say by absurd, f
had primitives, it would follow that h(x) = f(x) — g(x) has

primitives.

Exercises
I. Using the method (EP,), show that the following

functions have primitives in R:
z
1. f(x) = man{ x,% J

[a-In{3 — ¥} , ¢ 1
2. flu) = 4 ’
2%~ 2

= - 1 x> 1

W

1
i = | [+ 41|

4. f{x) = min| = = k |
w=d
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5. fix) =
[h] w o= Q
13-:|"I w ® O
B. f(x} =
a ®x =
-] lmfix| + = ' ¥ = 0
T. fix) =
a ¥ =0
i - )
sin{n-arccos ® e (-1,1)
i - :{z
B. f(x) =
n # =1 or n=-1

II. Using methods (EP;) — (NP3), study if the following

functions have primitives:

3x -1 x 4 2
1. f{x)y =

2% + 1 % > 2

1
# = 0
cu:’%
2. f{_x; =
a ¥ =0

3. f(x) =max( 1 - % , In = )

TOs — X <o
4. f(x) = *
arctgla + x) ¥ 2 0
ar:tq% ¥ < 0
5. fix) =
arctg = x a0 O
[a] X4 0
B. f{x) =
1 _1-1:|:|-5 ® w >0
k.4 4
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g ({x®)+=sin 91 ® o= 0

7. f(x) = (x)
a ® =0
if g: R — R and if it satisfies: g(x) = 0 <=>x = 0.
I)!-aE'Ein-]{- 0
B. f(x) = *
0 o= 0

sin!iin%} W o0

9. fix) =
O ¥ o= 0
10. The product from a function h that admits primitives
and a function g differentiable with the continuous derivative is a
function that admits primitives.
Indications: 1f H is the primitive of h, then H. g’ is continuous,
so it admits primitives. Let G be one of its primitives. We have

(Hg—Gy=h.g.

gix)-sin -j'— ® o= 0

11. f(x) = "
O X =0

g being a differentiable function with a continuous derivative on R.

III. Using method (NPy), show that the following functions

don’t have primitives:

arctq-i— € € 0

1. Ffi{x) = )
arctg = w3 0O
[#] ®o§ 0
E' fl‘.x] = -
'!..i.ni - il:i:r5 % w o> 0
* k3
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infl t5- £+ 1) x ¢ =
< 2
L Sx

3. Fi{x) =
supl -t*+ £ - 3 H ® ¥ %
L& -
H - 1—5:.:1 4 w = 0

4. f(x) = "

O & = 0

IV. Using method (NP,), show that the following functions
don’t have primitives:

Ix ¥ & O
1. (=) -{

2%+ 1 xeR \ @

sin ® ¥ e @

2: fi(x) =
cos ¥ e R N\ O
1In o= 0

3. fix) =
a”® e R N\ @
¥ u ® o= O

4. fix) =

:‘g *»a kRN O

¥e[x] x & @
5. fix) = {

-g’ » e B W@

Abnswer:

1. The functions g(x) =3x and h(x) =2x%2+1 are
continuous on R and g # h. We will show that f doesn’t have
Darboux’s property. Let xo be a point in which we have (xg) =
h(xg ), for example xy = 2. We have g(2) = 6, h(2) = 9.

h — continuous in xy = 2 <=>
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ol [V#}O 36‘}*(} ¥ x e [E,

Ix =21 <8 => |3x - 6] < & ]

g — continuous in xo = 2 <=>

L= [H.’s)ﬂ 345-2‘)0 ¥V x e R,

Ix — 2] < & => |2x*+ 1 - 9| < & ]

Let there be € so that the intervals:

(& = £,6 + g) and (? — £,F + &)
are disjunctive.  For example € =1 and let there be § =
min(dy, 6,). Then the image of the intetval (2 — §, 2 + §) through

f isn’t an interval because for:
e @ (2 - 5,2 +« &)
we have f(x) = 3x € (5,7) and for:
e (BN GQ)nmi(2-58,24+ 8)
we have f(x) = 2x? + 1 € (8,10).
V. Using methods (EP,) — (NP,), study if the following
functions admit primitives:

Eﬂﬁs—l— FE

1. f{x) = "
4] w o= 0
Indication:
tn5i= 4'cnsi—-1— -3 l‘:r.ls-!'-,
® ® *
so f(x) = g(x) + h(x), with:
femd wno

gix) = and

4] =0
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3--:1:5-;
hix) =
4]
1
1l + s5in x
2. f(r)=
a
xe[‘-T, —2—]\.{0}
¥ =0
Indication:
| 1
sin — x &
fix}) =
4]
1

We obtain a = 0.

sin™ 1
X

3. f(u) =

E

X =0
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Logical Scheme for Solving Problems
Solving problems that require studying if a function has

primitives can be done according to the following logical scheme:

START

PR S
(” cont 7 \)m FHAS __._+t sTOP ]
\ / PRIMITIVES —_

A\ TES F DOESN'T
( s HAVE
\ or ¢/ (NP3 | DRIMITIVES

k=

A
{ has \\
N Darbuuxz
\\ ? ,f

N S/

\\ /! |
I‘I'ES
WE TRY TO BUILD
PRIMITIVE F

NOD
} (NP}
z

. ;;!\\\
tF A\, NO
< deriv. ) (NP )
NTPOLS

\.Im
&
PR
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VIII. Integration

An integral is defined with the help of a limit. It is much
easier to understand the theoretical aspects regarding the integral if
one has understood why it is necessary to renounce the two broad
categories of limits considered up to this point:

1. the limit when X tends to X,

2. the limit when n tends to infinity,
and a new category of limits is introduced:

3. the limit when the division’s norm tends to zero.

The specifications that follow are aimed exactly at clarifying
this aspect.

The theory of the integral has appeared out of a practical
necessity, in order to calculate the area that lays between the graphic
of a function and the axis 0x.

Given a bounded function and (for now) non-negative
fila,b] = R we can approximate the desited atea with the help of
certain rectangles having the base on 0x.

For this, we consider the points:

a=x < %< ... . x=b .
o i L2l

The set of these points form a division of the interval [a, b]
and they are noted with A:

ﬂ'{xngﬂlgﬂzglllg:ﬁn}

The vertical strips made using the points X; have an area as
hard to calculate as the initial area, because of the supetior outline.
We obtain rectangles if we replace the superior outlines with
horizontal segments.
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Fig. 8.1

In order that the obtained approximation be reasonable, it is
only natural that these horizontal segments meet the graphic of the
function. We observe that such a horizontal is uniquely determined
by a point &; situated between X;_; and X;. In this way, we have
obtained the rectangles with which we aimed to approximate the
desited area.

The areas of the rectangles are:
(=2 )-FCL) o Cx— %)L L) ,

s === 3 t x'l"l_ xn—l}-f( Eﬂ}
The sum of these areas is called the Riemann sum attached

to the function f, to the division A and to the intermediary points
&;. This sum:
nrﬂtf.ﬂ =0 x=x )P0 L)+ (x= % )00 )+ ..
a1
ses t.“n“ Hh-ll.” En] = LZ:I.I ® “i.-i}f[ E-i_]
approximates the desired area.

The necessity of introducing the third category of limits is
due to the necessity that the approximation be as accurate as
possible.

And now, a question: Is the approximation better when:

(a) the rectangles increase in number, or when

(b) the rectangles are narrower and narrower?
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We observe that the rectangles “increase in number” if and
only if n tends to infinity, but making n tend to infinity we do not
obtain a “better approximation”. Indeed, if we leave the first
rectangle unchanged, for example, and raising the number of points
from its location to its right as much as we want (making n tend to
infinity), the approximation remains coarse. The approximation becomes
much “better” if the rectangles are “thinner and thinner”.

In order to concretize this intuitive intuition, we obsetrve that
the rectangles are thinner and thinner if the “thickest of them”
becomes thinner and thinner.

The biggest thickness of the rectangles determined by a
division A is called the norm of the division A.

n = - - R - =
&l max{ i » ® nn_i' g

= 1!?¥n1 “1.-'- K'i.—l.]

Therefore, “better approximations” <=> “thinner and
thinner rectangles” <=> “the biggest thickness tends to zero” <=>
“the norm of A tends to zero” <=> ||A|| = 0.

The area of the stretch situated between the graphic of the

function f and the axis Ox is, therefore:

lim aﬁ{f,r‘.r
AN -»o

This limit is noted with f: f(x)dx and it is called the
integral of function f on the interval [a, b].

-]
If{x‘.l- dx = lim o, (f.5)
a 1Al 2o

For functions that ate not necessatily non-negative on [a, b],
the integral is represented by the difference between the area

situated above the axis 0x and the area situated below the axis 0x.
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-]
J‘ fix) dx = 5—- S5+ §
i 2 3

a
Consequently, in order to obtain the area of the stretch
situated between the graphic and the axis Ox, in such a case, we
have to take into consideration the module of f:
A= 7 feol ax

a

Fig. 8.3

Coming back to the affirmations (a) and (b) from above,
we observe that: “the rectangles are thinner and thinner” => “the
rectangles increase in number”, namely (b) => (a).

In other words, ||A|| ->0=n- oo,

Reciprocally, this statement isn’t always true. That is why we
cannot renounce ||A|| — 0 in favor of n — co. Nevertheless,
there is a case where the reciprocal implication is true: when the
points of the division ate equidistant.

n-—oo=> ||A|| — 0 for equidistant points.
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In this case, the rectangles have the same dimension of the

b—a .
base, namely x; —X;_q = - for any i =1,2,...,m, and the

Riemann sum becomes:

ot ) = ——— (T + 10 L) + ouu + £ L))

b - a T
s free

For divisions such as these, the following equivalence takes

place:

[1Al| > 0<=>n—> o
that allows, as it was revealed by Method 16 for the calculation of
limits, for the utilization of the definition of the integral for the
calculation of sequences’ limits.

Before we enumerate and exemplify the methods for the
study of integration, let’s observe that, if the function is
continuous, among the Riemann sums op(f, &) that can be
obtained by modifying just the heights of the rectangles (modifying
just the intermediary points &;), there exists a biggest and smallest
Riemann sum, namely the Riemann sum having the highest value is
obtained by choosing the points &; € [x;_4, X;] for which:

i {‘L] = sgup { fix) | = [ xl_l.xl_] 3 o= lf"ll M

and the Riemann sum having the smallest value is obtained by
choosing the points &; for which:
T {'ll = inf { f(x) | = €L xl_‘.xl_} Y=am .

L

By noting with SA(f) and sp(f), tespectively, these sums (called
the superior Darboux sum, the inferior Darboux sum, respectively),

we have:
i}
S,(f1 = ) M =~ x ) and
[
n
Eﬁ{f) = z mLi ® xl.-ij and
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sdlﬂ( a&t‘r,{}i Sn(f} no matter what division &4 is (8.1)

The points &; that realizes the supreme, respectively, the
infimum of f on the intervals [x;_4, X;] exists because it is known
that a continuous function, on a closed and bounded interval is
bounded and it touches its bounds. It is known (see Theorens 37
trom the Calculus mannal, grade XI) that a function is integrable if and
only if:

lim (S,(f) - s,(f) } =0 (8.2)
uu-m( a 2"

Connections between integration and
other notions specific to functions

In order to formulate such connections, we fill the list of the
propositions Py — P; enunciated in the previous chapter, with the
following:

Pg) any function integrable on [a, b] is bounded,

Pg) any function monotonous on [a, b] is integrable,

P1) any function continuous on [a, b] is integrable,

Pi1) any function that has on [a,b] a finite number of
discontinuity points of first order is integrable.

The demonstration of P;q follows from the fact that if we
modify the values of a function integrable on [a,b], in a finite
number of points, we obtain also an integrable function and from

the property of additivity in relation to the interval of the integral:
b & b
Jtex) duw = [fi)%ax + [ fix) ax
a (=3 [=3

Using the proposition stated above, we can make the
following table:
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FINITE NO. [ MONOTONY —‘ | CONTINUITY
DISC. I
G
N l o
\, S
INTEGRABILITY

( Riemann )
l

and the table containing implications between all the notions that

we have dealt with is the following (l; and [, being one of the

DERIVABILITY
CONTINUITY

THE LIMIT
PRIMITIVES
< @ I = @ I
MARGINING DARBOUX
) —
(5) @au (& t

lateral limits):

INTEGRABILITY

I

NON CONTINUITY
(1) (2) (3) (4} {9 tée)

3 L‘=m 3 Il<cn

[

3 11<¢:| -
31 = 2 A L, ] t,

I s
—

e
| NON DARBOUX NON MARGINING

NON PRIMITIVES ] [ NON INTEGRABILITY l

31,1 €
1”2

NON MONOTONY i

| NON CONTINUITY

A

E NON DERIVABILITY |
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Methods to show that a function is
integrable (Riemann) on [a, b]

(1) using the definition;

(1,) we show that it is continuous;

(I3) we show that it has a finite number of discontinuity
points of first order;

(14) we show it is monotonic;

(Is) we show that the function is a sum of integrable
functions.

Methods to show that a function is not

integrable (Riemann) on [a, b]

(Ny) using the definition (we show that g,(f, &) doesn’t
have a finite limit for ||A]] = 0);

(N,) we show that the function is not bounded,;

(N3) we show that the function is the sum of an integrable

function and a non-integrable function.

Examples

(1) (a) Using the definition of the integral, show that any
differentiable function with the detivative bounded on [a, b] is
integrable on [a, b].

Solution: Tet f:[a,b] = R be differentiable. We have to
show that 05(f,§) has a finite limit when [|A]| = 0. The given
function being differentiable, it is continuous, so it has primitives.
Let F be one of its primitives. We can apply Lagrange’s theorem to
function F, on any interval [X;_q,x;]. There exists therefore ¢; €
[%;_1,x;] so that:
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FUx) = FOx ) =790l = x_) .

It follows that:
aﬁ{f.n = iﬂ EiH ®= xi_‘? =

L=4

=.S (-“: :i.} = l:i."' + .zl.} ]{ HL- :i..-a:. =

|9 |

- f{ ) x— x, Y+
~ % LY 1=41
LEi

+ S (fezpy = flc) YO x=x )=

iS4

kal
=1=2:( FUx) = FUx_) )+

+ S(ﬂ ) =t c) )t Ll I
-

We calculate the two sums separately:

SI(F': ’.‘t:r - F¢ xh—t) ) = (Ft xi.} - F Hoj } *

+ (FUx) =Flx) ]+ ... ¢

+ (Ftx)-Ftx_) )=

=Fi{ x ) - F( % ) =F(b) - Fla).
m o

We show that the second sum tends to zero when ||A]| = 0.
For this, we take into consideration that f’ is bounded, in other
words, M > 0 exists, so that |f*(x) < M| for any x from [a, b] and
we apply the theorem of Lagrange to the function f, but on the
intervals of extremities §; and ¢;. There exists 6; between &; and ¢;
so that:
fOZ)-fle) =017~ €t ( 8,
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It follows therefore that:
| £ ?.‘.ll' - ¥ l:_.l} | = | Ei._ l|':1_:|-| L E‘L} | %
| .EL- tll'ﬂ ¢ F A B-M

For the second sum, we therefore have:

. .
DLtz = tied Jox=x_0 |«
+T1

™
..zll £z = £ c) |-i x= %1 ¢

L9 il{"—cl_i-ﬂ'lxi—u 1

; -1
1=1

§1hl-ﬁ-l =N | =
. L =1
LvEL

bil

1A n-n-z € 2= % )=
i

i

)

=01 A NM(b-a) SBAN—0 .

The condition from this exercise’s hypothesis is very strong.
As it is known, it can be shown that a function that fulfills only the
continuity condition is also integrable. Still, the method used in this
exercise can be easily adapted to most exercises that require
showing that a function is integrable.

(1) (b) Show that f) X_gj, X is integrable on any interval
[a, b]. (Manual).

Solution: We will adapt the previous demonstration. The
given function is differentiable and has the derivative f*(x) = cosx
bounded. Being differentiable, it is continuous and it has primitives.

Let F be one of its primitives, F(x) = — cos x and let:

ﬁ-[aﬂxo,xi,...,}{n"h]
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be a division of [a,b]. We apply Langrange’s theorem to the
function F on each interval [x;_1,X;]. There exists therefore ¢; €
[x;—1, x;] so that:

Fi xil - Fi{ Hi.—ll = f'{ '1:1.'} - - Hi_‘} .

The function F has a bounded detivative: | cosx| < 1 for
any X from R, so for any x from [a,b]. We have to show that
0a(f, &) has a finite limit when ||A]] = 0. We will show that this
limit is (as it is known) F(b) — F(a) = —cosb + cosa.

We have:

aﬂ[f'tj B LE;f[ El] " HL- :l.-t} =

™

]

_ ‘( tee) = tie) + 102 JUx==x_) =
i=

= 3.1'[ c )l x—- = )} +
L i =1
LT

" S (fe ) - fle) JOx-x 9=
1531

= Zl[Ft x) = F(ox_) )+

*
L

1[ T Z) - fier Jtx=x_1)=

i1

Fi
= F(b) - Fta) + ) (f(2) - fle)ix =% _).

|9 |
Applying the theotem of Lagrange to the function f(x) =
sin x, on the interval determined by the points &; and ¢;, we deduce
there exists 8; between §; and ¢; so that:

S1in 1'1 = sin € = { Ei" Ei:l'ﬂlﬂ'l 51_', 50

ui;( Tt C'_‘:' - ¥ ch} )t " "'!1.—1.:r <

232




Methods of Solving Calculus Problems

™
C QI teED - fee) 1l xs ks
& & =1
L=1
= 2 | san {‘— s1in cl_l-: u‘— xi_ll =
=1
ac]
= Qlcos ol E el x k)<
LEL
fal
< _zll-u A1) x=-x | =

- I_ﬂli t!i- ﬂl-—l.] =01 AR-(b — al m—nbﬂ‘.

=41

S0: lim G‘dt'.f.z,-F{bj—F{i]-— cos b + cos a,
fAl -»o

(15) The function f:[0,3] = R defined by:

arctg -!--E—“— if x e {0,2)
f{—)'i]. = /2 if x =2
_*
Ty 20x=2)
111(---]
_[e“-z + u = 2) 2 if » & (2,31

is integrable. Indeed, it is continuous in any point x # 2 from the
definition domain, being expressed through continuous functions.

We study the continuity in x = 2:

_ _ T -
LthI = xl_l.g fix) = ar'ctl;m arctgi+m) -
K2
— r rr =
ldt2:| = ;f_ig f(x) = = {2 .

The function is continuous on the interval [0,3], so it is integrable.

(I3) f(x) = x — [x], f:[0,2v3] = R can be discontinuous

just in the points whete [x] is discontinuous. These ate of the form
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x =n,n € Z. From these, only points 0,1,2,3, are in the function’s
domain. We study the limit in these points. We have:

it (1) = L (2 = L (3} L (3} 1 and
a & ™ =

ad(m = ld{l.'r = ldn‘.z'.l = tdtll = 0o ,

so the function has a finite number of discontinuity points of first
order and is therefore integrable.

(1) For the function f(x) = [x] we can say it is integrable
cither by using the previous criterium, either using the fact that it is

monotonic on any interval [a, b].

(Is) The function f:[—1,1] = R through f(x) = sgnx +
|x| + [x] is integrable because it is the sum of three integrable
functions: f;(x) = sgnx is integrable because it has a finite
number of discontinuity points (a single point, x = 0) and the
discontinuity is of the first order; the function f,(x) = |x| is
integrable because it is continuous, and the function f3(x) = [x] is
integrable because it is monotonic (or because it has a single f
discontinuity point, of the first order).

0 » =[0,11 @
€ NID f(x) =
. 1 ¥ € (0,11 (R \ @)

isn’t integrable because, by choosing in the Riemann sum:

::rﬁtf,.t'} = iii-l‘{ Ei.” X = X H

i

the intermediary points §;, rational, we have: f(§;) = 0, so in this

case:
::rﬁtf,f.l = leﬂ'{ % = n‘_l] =0 .,

and if §; are irrational, we have:
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hicl
Zl-{}:_"}[ }=E-:x—:r= 1 = b — a
. 1 =1 ) N =1
L1=1 1:1
_ L w e (0.1
€ NLY Fix) =4 %
2 o % =0

isn’t integtable (Riemann) on [0,1] because it is not bounded.

1
® o= ® & (0,17
C NID> Ff(x) =
a2
a ¥ =0
is the sum of the functions:

L ®» e (0,13
fUx) = x and f (x)= ®

o] ®x =0

If f would be integrable, from f = fi + f, it would follow

that f, = f — fi so f; would be integrable on [0,1], as the sum of
two integrable functions.

Exercises

I. Using the definition, show that the following functions are
integrable:

1. f(x) = " 4. T(») =arclin—%—
2. f(®) = tg = 5. f(x) = cos x
3. f(x) = ¥ on0 o+ 1 B. f(x) = sin 2x

II. Study the integration of the functions:

- M E [05-1]
1. #(x) =

e ¥ € (1,2]

2. fin) = sup (ta- -%- ]
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3. f(x) = max (sin t.cos t)
eln, T -

z_'_ “_'nz
4. fix) = 1lim S T xe
2t

n o=} 1

S. fiu} = ' [

B. f(x) =
4] w o= )

7o f(x) =
3

t:fa,l] —— R , a = (0,1)

8. The characteristic function of the set [0,1] € R.
ax + b # € [-1,0]

9. fi{x} =

cx + d » & (0,17

III. For which values of the parameters a and b are the
functions below integrable? For which values of the parameters do

they have primitives?

arctgiln ®x) x e (0,1]
1. f{x) =
a x =0
NGRS
o ES
2. T{n) =
ax + b [-,%-] = 2n
51n% ® € (0.,1]
3. fix) =
a ¥ =0
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1

n":{usT % & (0,11
4. f{un}) =
{ a =0
1 ® = %
B. fir) = {
Q in rest

f:[a,b] — R , a & (0,1)

INDICATIONS:
1. 14(0) = —g, so for any value of the parameter, the

function has only one discontinuity, of first order on [0,1].
2. For any value of a € (0,1) the function has a limited
number of discontinuity points of first order.

. 1 . .

4, The function excos; comes from the derivation of
1
x?%e* sin-.
x

IV. 1. Show that any continuous function on an interval
[a, b] is integrable.

2. Adapt the demonstration from the previous point to show
that the following functions are integrable on the intetval [0,1]:

(a) 1(x) = x* (B)F(x) = sin x (c) f(x) = e"

ANSWERS:
1. We will show that:

lim [BAH‘.I = s,01) ) =0

Al »o0
We have:
- n
Splf) — s, (f) = YMlox~x ) -
Tz d
fal
_.S mi{ .= xL_i} = E { Hi- m_lJ{ x = xL_l! .
1=1 1=4




C. Dumitrescu m F. Smarandache

where:

l"li_ = sup { f(x) | x @[ x,.x_ 13,
m= inf { fox) | =« € [ » ,» 1 ¥ -
L 8 =4

We now use two properties of continuous functions on a
closed and bounded interval:

(1) a continuous function on a closed, bounded interval is
bounded and it touches its bounds; so, there exists u;, v; € [a, b] so
that M; = f(u;), m; = f(vy).

Therefore:

. . ™ .
§,(f) = 5,(f) = _E’( FOu) = 40 v) Y%= % _)

i
1=

In order to evaluate the difference f(u;) — f(v;), we use
the property:
(2) a continuous function on a closed and bounded interval is
uniformly continuous (see Chapter IV), namely:
Ye>0 36 >0 Vx,xe€la,bl,

Tl N I ds==}lf{ x b=t x )| <& .

In order to replace x; with u; and x, with v;, we have to
consider a division A having a smaller notm than &, (which is
possible because we are making the limit for ||A|| = 0). Therefore,
assuming ||A|] < 8 we have:

P flud = fFCv) | <& o

ie. M; —m; < € and so:

S,(f) = 8,(f) = Z: M= m)( = x_) <

1—4
i

-y i
i !

.~
vt

al
s{x-x)=x:£1‘.:«:_—x3‘stu—a]l-
L i £ [

%

Because € is arbitrary (small), we deduce that:

(f) ————— O

Satf) = s, Al —o
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so the function is integrable.
2. We show that Sp(f) — sa(f) tends to zero when ||A]]

tends to zero. We have:

M

S, () = s, (f) = -Z.H‘t x = % ) -
L

hal
—Emtxum: :IIZIH'I-m_HH-'x. )
. L L =i ) [ (9 L Lo §
=1 V=1
where:

2

!'I"- sup { x> I o®x €0 »x_.x1 3 = x

- d z 2
m = inf { = | ® & /[ “;-—1’xi.l o= R o»

because on the interval [0,1] the function f(x) = x2is increasing.
So:

jn]
3 F4
S,(1) — s,(f) = izla R L

- ]
L=

i L i

The function f(x) = x? is continuous on [0,1] so it is
uniformly continuous, namely:
¥Yeo>r0 3 :E-‘_} o v ul,xlﬁlﬂ,l'.l, | X~ xzt L4

¢ & =» | X =% | <«
£ F i

Considering the division A so that ||A|| < &, (possibly
because ||A|| = 0), we have x? — x2; < &, so:

Eﬁ!f} = '_-‘-ﬁif] = ‘S‘c( X - uwi} =

™™
=£E{H—‘K } = glb = a).
L5y .1 1—4

Because € is arbitrarily small, we deduce that:
1im S (f) - s, (f) ) =0,

Hal o [ 4 a ]

ie. f(x) = x? is integrable on [0,1].
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In this book, we discuss a succession of methods encountered in

the study of high school calculus to students and teachers, to higher

education entry examination candidates, to all those interested, in
order to allow them to reduce as many diverse problems as possible
to already known work schemes.

We tried to present in a methodical manner, advantageous for the
reader, the most frequent calculation methods encountered in the
study of the calculus at this level.
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