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Abstract

The commonly accepted no-hair conjecture postulates that all black holes can be
completely characterized by three and only three externally observable classical
parameters: mass, electrical charge, and angular momentum. The Kerr-Newman
metric describes the spacetime geometry in the region surrounding a charged,
rotating mass. These three parameters are also the basic parameters of many
subatomic particles. In light of the similarities between the black holes and the
subatomic particles, this paper applies the Kerr-Newman metric to investigate the
spacetime properties of a spinning Planck mass particle carrying an angular
momentum of one half Planck constant. Depending on the angular frequency of the
rotation of the particle, the results exhibit a group of particles with properties
similar to those of the stable subatomic particles, including the neutrino, electron,
position, proton, and anti-proton. The highly curved spacetime surrounding the
particle in Planck scale, together with the rotation of the particle, make the Planck
mass particle to appear as a laboratory mass similar to the mass of the respective
particle. The laboratory measurable size of these particles is in the same order of
their respective Compton wavelengths. Interacting forces between these particles
in the Planck scale exhibit strengths similar in magnitudes to the strong force,
electrical force, weak force and the gravitational force depending on the spacetime
curvature at the point of interaction. This preliminary attempt of investigating the
“spinning Planck mass” using the Kerr-Newman metric has resulted with an
interesting model that resembles many particles in nature and raised two
interesting questions:
(1)  Are there any relationships between the fundamental particles and the
“spinning Planck masses”?
(2)  Could the particle-particle interacting forces be expressed in terms of the
interactions of spacetime curvatures in Planck scale?
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Background and Introduction:

One hundred years ago, in November of 1915, Einstein presented what are now
known as the Einstein field equations.
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These equations specify how the geometry of space and time is influenced by
whatever matter and radiation are present, and form the core of Einstein’s general
theory of relativity (1) (2) (3), By the end of 1915, the astrophysicist Karl
Schwarzschild found the first non-trivial exact solution to the Einstein field
equations, the so-called Schwarzschild metric 4

-1
cidr? = (1 — %) cdt? — (1 — %) dr? —r?(d6? + sin?6dg) (2)

2MG
where r;=—- .
C

In the following years, generalizing Schwarzschild’s solution to include electrical
charge resulted in the Reissner-Nordstrém solution )
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In 1917, Einstein applied his theory to the universe as a whole, initiating the field of
relativistic cosmology. In 1965, Ezra “Ted” Newman found the axisymmetric
solution of Einstein’s field equation for a black hole, which is both rotating and
electrically charged. This formula for the metric tensor g,, is now the Kerr-

Newman metric. Itis a generalization of the Kerr metric for an uncharged spinning
point-mass, which had been discovered by Roy Kerr two years earlier. The Kerr-
Newman metric (6) describes the geometry of space-time in the vicinity of a rotating
mass M with charge Q. The formula for this metric depends upon what coordinates
or coordinate conditions are selected. In spherical coordinates,[*! (Boyer-Lindquist
coordinates):
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Where the coordinates (r, 9, ¢) are standard spherical coordinate system, and the length-
scales:



Here r, is the Schwarzschild radius (in meters) of the massive body, which is related
to its mass M by
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Where G is the gravitational constant, and 7, is a length-scale corresponding to the
electric charge Q of the mass
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Where 1/47e, is Coulomb’s force constant

An alternative metric form of the Kerr Newman Metric can also be written as:
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All these equations and metrics are widely used for describing massive astronomical
scale objects from the size of the earth, the sun, neutron stars, quasars, and black holes.

Application of Space Time Metrics to Planck scale particles:

The Planck constant h is one of the fundamental quantities of nature. The energy of the
electromagnetic wave, light, is E = hv, or hw, where v is the frequency and # is the

h . .
reduced Planck constant A = po and w = 2mv is the angular frequency. Together with
the velocity of light ¢, the gravitational constant G, there are three fundamental units that
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are naturally composed from these constants: gk L, is the Planck length (1.61619926 x

10 meters); \[@ = T, is the Planck Time (~5.39106x10~** sec), and \/E = m, is the
[ G

Planck Mass (2.17651(13)x10* kg). When these fundamental units are used in the space-
time solutions of the Einstein’s Equations, some interesting results have followed. An

object with the mass of one half Planck Mass, M =2 m = ; \/% has a Schwarzschild

radius of one Planck Length \/EZ =1,
c
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The curvature term of Schwarzschild Equation (2), (1 - %) becomes zero and (1 — %)_1

term becomes infinite for a half Planck Mass object at the Schwarzschild radius of [,,. At
the distances approaching this [, radius, space-time is highly curved just like an
astronomical black hole. It has all the properties just like a “micro-black hole”. The
local time element, dt, at a distance r away from the object is slowed down in
comparison to the far-away time dt. The local line element in the radial direction is
lengthened in comparison to the far away dr according to the following relationship:
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Also, a “probe” particle of mass m, interacting in this field has a constant energy to mass
ratio, E/'m © of
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i.e. with a space-time curvature of o = (1 — ) For a particle with mass equal to

one half Planck mass ; J%, o becomes zero at the Schwarzschild radius of one Planck

fha . . . e
length = and the reciprocal of this space-time curvature term is infinite at [,, (a shell of

singularity).

Particle with angular moment:

For an object spinning with an angular momentum of J and carrying a charge Q, we can
use the Alternative form of Kerr-Newman Metric ©

A—a?sin39 2
sin?9d¢? 2asin?9cdtde

(a?Asin?9 — r* — 2r2a? — a%) (A—12—a?)

pz p?
Wh =J 2 — .2 2,02 — .2 2 4 .2 2_ 0@ G
erea=——, p°=r-+a‘cos®d, A=r—nr+a“+r) ,and 15 = =
Mc 4TTEY C
By re-grouping the time dependent terms, ® we have
A-a?sin?9 2asin?Ycdtd .
c?dt? = wczdtz —(A—12—-a? 2asin"dedtdd +(terms without t) (8)

p? p?

By replacing d¢p with wdt where w = %
—a2¢in2
CZd.L.Z — (Aap+l9)02dt2 _ (A _ T'Z _ az)
(a-a?sin?¥)
p2

2acwsin?9dt?

2 +(terms without t)

2awsin?9

czdrzz[ —(A—-7r?—a? = ]czdt2 + (terms without t)



A small segment of 7 can then be written as
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If a 7 is divided into two sub-segments T = 74 + T and the respective r’s from M is
written as r = 14 + 1, together with Ay, py4, for the respective A, and p. Let T be the

total elapsed time so that if t is for the segment A, and (T-t) is the elapsed time for
segment B. For segment A,
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The time differentiation of the above for the segment of A will take the form of:
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The time differentiation of the segment B will take the form of:
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Each part of Equation 8c depends only on the parameters of the respective segment. It
displays a quantity that is constant from one segment of the path to another. The value of
either side of this equation must be independent of which segment we choose to look at.
We have therefore a constant of the motion, the same for all segments. This is the same
differential notation to identify the constant of motion as the energy. It is related to the
relativistic expression for the total energy of the particle.
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Case I: For Q=0, (rQ ek O) , a = 0, a non-rotating electrically neutral object:
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ForM = SMp =3 ?C , the space-time curvature term [1 — o | becomes zero at
Planck length, [,, and the reciprocal of this term becomes infinite and it is similar

to a “micro black hole”. This result is the same as using the Schwarzschild Metric
of Equation (2) above.
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An electrically neutral object with an angular momentum,
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(Case ITIA) On the equatorial plane, 9 = T je.cosd = 0,sind =1
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That is to say: If the spinning frequency w = i, then the space-time curvature is

always equal to 1 on the equatorial plane. It is independent of its mass. The
spacetime curvature on the equatorial plane is always “flat”, just like an object of
“zero gravitational mass”, i.e. equivalent to M = 0. Nevertheless, this object

carries a non-zero angular moment of J (a = i) spinning at a frequency of
w = i Furthermore, the condition of 2aw = ¢ can be written as 2 i w =C.

Iszzﬁ, and if 0 = —
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The frequency w, will be called the Planck Frequency (a)p =1= \/%) in this

Tp
article. A particle with mass equal to one half Planck Mass, %mp , spinning at the

one half Planck Frequency, is carrying an angular momentum of zﬁ It satisfies the

condition of {1 — 2a0) = 0. Also, particle with mass equal to one Planck Mass
- p q

o . . h
m,, spinning at the Planck Frequency, is carrying an angular momentum of 7 It

- . 2 .
also satisfies the condition of (1 — %) = 0. The spacetime curvature term of

such a particle, even though its mass is equal to one half the Planck Mass (or one
Planck Mass) will be “observed” as a zero mass M = 0 particle on its equatorial
plane. Any force acting on this particle can cause it to travel with the velocity of
light along its equatorial plane. Unlike the particle of equation (6) and (7) above,
this particle having the mass of one Planck Mass (or one half Planck Mass), and

o . h . . .
spinning with an angular momentum of > does not contain any singularity of
curvature in spacetime, and it behaves just like an electrically neutral particle of

. . h . .
zero rest mass with spin > This zero rest mass particle nevertheless can carry
h . . .
energy and/or transfer an angular momentum of S to other interacting particles.
Many properties of this particle are very much like those of a neutrino.



(Case IIB) Along the polar axis: 9 =0, cos¥ =1, sind =0
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The space-time curvature term [1 — ==
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] is equal to % for n=1 in the polar
directions. The space-time curvature term does not have any singularity for all
n>1 (Vn = 1) both in the differential space and time coefficients of the Kerr
Newman metric. The spacetime curvature is again flat, or equal to 1,V r > [, in
the polar direction. Since the space-time curvature is not equal to 1 in the polar
direction when n is a small number, in Planck scale, this is indeed an object with
mass when 9 # g This is not a “massless object”. However, with the property
of M =0 in the equatorial direction, this particle can move along the equatorial
plane with the velocity of light just like as a massless particle when a force having
a non-zero component in the ¥ = g direction is applied to this particle. For an
omnidirectional emitting source, and for any giving direction, only one third of
the particles can be observed. If this is indeed the case, could this be the
explanation for the “missing neutrino”? For n=1 in the polar direction, the
spacetime curvature is equal to 2. The ' to 4 spacetime curvature between the
two particles could bind them together along the polar direction.

CaseIIl: Q#0, (r§ #0), aw >0
Charge Particle with an Angular Momentum:
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If this particle has an angular momentum J of > and if the w is equal to %a)p , then
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core mass is equal to one half Planck Mass. However the space-time curvature in

The particle

the equatorial plane is equal to 1 (flat) because of (1 — ZaTw) = 0 just like the
Case II(A) above.

(IITA,) Negative additive frequency

s 1 e . i
Now, if this M = > Mp particle is spmmng with an angular momentum J = 5 but
2
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having a frequency of w = SWp ~ a)e , where w, = m,—; m, being the rest

h
mass of an electron, and if Q is the charge (e) of an electron,
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Equation (14) becomes
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where m,’ = E ). This m,’ is the mass equivalent of the “self energy”
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of a charge e with a spherical radius of r.

Equation (15a) can be written as
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mp at
the term G my, — me’) is equal to a gravitating mass of one half Planck Mass

minus the equivalent mass of the “self energy of the electrical charge” divided by
c?, with a spherical radius r. Since m,’ « my, Vr = L, ,Equation (16) can be
written as
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The space-time curvature from the gravitating mass as observed by a “probe” of
meG

mass m (or test mass m) is [1 - ] where m, is like the rest mass of an

rc?
electron. The modulation frequency riding on the one half Planck Frequency has

a wavelength equal to the Compton wavelength of an electron. The interaction

between two of such particles is like two electrons with charge e in each. From
meG

. . 1
the curvature term [1 - ] , inthe 9 = % direction, the net mass of a Sm
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particle (1.088x10® kg) is the similar to the mass of an electron m,, (9.109x10'

kg) when it is spinning with a frequency of w = %a)p — %we.

(IIIAP) Positive additive frequency
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Now, if this M = S Mp particle is spinning with an angular momentum J = S and
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with a frequency of w = SWp t oW, where w, = m

e?’
1
_ a0 _ |4 _Meptee)| . hwe __me
then(l . )_[1 Tcr | = e = e (17)

This is the same as Equation (15) above with m, replaced by - m,.
Equation (16) can also be written as
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This is the space-time curvature from a mass of - m,.

The electrical interaction between a particle in Case III(A ) with a particle in
2
Case III(AP) will be a repulsive force of F;, = K 67 However, since the mass of

the particle in Case III(AP) is negative, the acceleration from this “repulsive force”
is in the reversed direction, i.e. the interaction between these two particle will be

“attractive”. This is equivalent to treating the particle in Case III(Ap) (positive
added frequency) as a charge of +e and a positive mass of m,, similar to a

positron, and treating the particle in Case III(A)) (negative added frequency) as a
charge of -e with a positive mass of m,, similar to an electron. These two
particles will be attractive to each other and annihilated each other when they are
combined.



(IIIB) Along the polar axis: ¥ =0, cosd =1, sind =0
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where a = ~ — (s the fine structure constant
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Let r be equal to an integer n times [,,, i.e. r=nl,

Then Equation (19) can be written as

E _ rsT 1§ nly’— aly?® at _ (n-a) jdt
me?2 [1 r2+a? [dr =[1- (n2+1)lp ] [1- (n?2+1) ] dt (20)
where n is the number of Planck lengths away from the pole of the spinning
object. For n=1, the space-time curvature term o = [1- /2 + %] = HTa This is

very much similar to that of the Case II B except with the addition of a/2 from
the electrical charge. Forn>> 1, 0 = 1 leads to a flat space-time.

CaseIV: Q#0, (rj #0), aw <0, Charge Particle with Angular
Momentum and negative angular velocity: (see footnote 2)
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(Case IVA)  On the equatorial plane, 9 = % 1e.cosv =0, sind =1

.2
E [1——“1;0 (1—2“—“’)]E 1)

mc? c dt

Ifaw <0, and if —2aw=c

2
E _ T dt
Then — = [1 = (2)] = VM and Vr (22)

E

mc?2

—[1—2 +2
d‘L’



For a particle of M = % m,,, the Schwarzschild radius is equal to one

Planck length 7, = [,,.
At two times the Schwarzschild radius r = 27y = 21,,,
E 5 lat  1al? 1

? = [2 W] e L (222)
In this Case IV (and for the following two Cases), aw < 0 is rotating in a
direction opposite to the Case III above. In here, this model has to assume
that space-time is not totally symmetrical in rotation. This is similar to
being inside the Ergosphere of a rotating black hole where the spacetime is
dragged along in the direction of the rotation. The energy of a spinning
particle inside the dragged spacetime of the ergosphere depends on the
direction of rotation. If the creation (or pair production) of a particle is
inside the ergosphere of another rotating object (the host object), e.g. in

Case III, when w = %a)p and aw > 0 with respect to rotation of the

“host”, the rotational energy cancels the core mass energy. The result is a
zero rest mass particle along the equatorial plane. Whereas, in Case IV

(and the Cases below), rotational frequency of w = — %w oram <0

p ’
with respect to the dragged spacetime inside the ergosphere of the host,
the rotational energy adds to the core mass energy. The result is a non-
zero more massive particle with a very small space-time curvature o at

r = 2715. Since all particles in this model have a Planck mass at the core,
the close vicinity of the rotating core of one particle may serve as a host to

the creation or the pair production of another particle.

(CaseIVAp) Positive additive frequency

If the particle is spinning at an angular frequency of

1
W= Wy — S Wp (23)
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Compton wavelength of the particle m,,
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i.e. the space time curvature at 21, is 0 = [ﬂ] (25)

Mp

The mass/energy of this object observed (or measured) from a far away
distance 7 > 21, will be

E=(m, mo)[ ]02 = myc?. (25a)
mp
It will appear like a particle of mass mg, spinning with an angular moment

of | = -, carrying a charge of e. At short distances, the curvature term

Z(mp mo)
[1 rc?
the Schwarzschild Metric from an object of mass M = m,, —m,. The
“gravitational interaction” between two of these masses will be
G (mp—mo)2

. . 2MG] .
] is the same as the space-time curvature term [1 — ] in
T

The “electrical interaction” from the charge e will be
2
E, = ,where K = L
TE,

The ratio between these two interactions will be
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Since this particle is spinning at an angular frequency of

W= Wy, — S0 p» (Equation 23), where w, =m, Ch, if
Ao c

h
= = — 1is the Compton wavelength of a proton,
21 Wm mgcC

then the F; (at short range) that is 137 times stronger than the electrical
force F;. This is very much like the short range “nuclear strong interaction”

of a proton. The reduced Compton wavelength of m,, is:
AO Cc h
7{/ 0 = = = —

cumo mgocC

At short range, when r = 21,,, 0 = [%] At this space-time curvature, the
p

relativistic distance is lengthened by 071 = [%] (for extremal Kerr black
0

hole). The energy from the electrical force between two particles at this
distance can be written as
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Ke?
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c

where « is the fine structure constant (~1/137).

If m, is the mass of a proton, (~938 Mev/c?),

then €, = 6.85 Mev is approximately equal to the (per nucleon) binding
energy of nucleus.



For r > 21,,, the o changes from an extremely small number of % to
14

~(1 - %) forr =nl, .For (n> 2) 0 = 1 (flat space-time).

. . . o1
According to this model, at far away distance, the net mass of this S Mp

particle (1.088x10° kg) is observed according to Equation (25a) as the
mass of a proton (1.6726x10™ kg) when it is spinning with a frequency of

W= Wy, — %wp. If the two particles are separated by 2 Planck length

along the equatorial plane, the (attractive) force between them will have
the magnitude of a “strong force” (Equation 26). At this distance, the
electrical force (repulsive) between them is 1/137 times weaker than this
attractive strong force (Equation 26a). The storage energy from the
electrical potential is of 6.85 Mev. (Equation 27) When the separation of
these two particles is more than 2 Planck lengths, the repulsive electrical
force will overcome the attractive force. The two particles will fly apart
releasing the 6.85 Mev energy.

(CaselVA,) Negative additive frequency
If the particle is spinning at an angular frequency of

1
W= —Wm, = Wy (28)
c? A c h .
where wp,, =m, - and ﬁ = o = mee” A is the Compton

0

wavelength of the particle m,,
and  ifQ=e.M=2m,and J =",

then (1-222) =242
Cc mp
and Lz = [1 - rsr;ré <2 + ﬂ)] a
mc T mp dt
- 2myG  2moG dt 2(my+mo)G, dt
=1 -5 - g (29)

using 1§ < 757
. h .
Together with the angular momentum of | = 5 the space-time curvature

of this M :%mp object is like an object of mass M = m,, + m, for

E - dt dt
r>2l,. Atr=2L, :ﬂ_:ﬂ_’
p p mc? my | dt my| —dt

i.e. the space time curvature at 21, is 0 = [%] with —drt,
4

i.e., local time of the particle is in reversed direction:
similar to an Anti-particle.



The mass/energy of this object as seen (or measured) from a far away

distance 7 > 2l, willbe E = (mp + mo) [_mo
14

]cz =~ —mgyc?, just like
m

. . o . i
an anti-particle of mass m,, spinning with an angular moment of /| = 2

carrying a charge of e. At short distances, the curvature term [1 —

2(mp+m,)G, . . 2MG] .
%] is the same as the space-time curvature term [1 — ] in the
Schwarzschild Metric from an object with mass M = m,, + my. The

“gravitational interaction” between two of these masses will be
G (mp+mg)? L . .
F, = %, and the “electrical interaction” from the charge e will

The ratio between these two interactions

F G(mpy+mg)? Gmy,? G% hc 1
will be £ = —2L = P - 6 - — = -~ 137
Fq Ke?2 Ke?2 Ke? Ke?2 a

using m, K my,.

Ke?
be F, = — ,where K =
q r2

€o

(CaseIVB)  Along the polar axis: ¥ =0, cosd =1, sind =0

E rr—14] dt
=1|1= at
r2+a?|dt

1 i
ForQ=e, M:Emp, ]=E,
hc
Gm N nG
r,= —£= l
s c2 c2 c3 P
J r 2G G
_ J _ 2 — | 2 _ _¢€ _ & 2
= = = r5 = = ah—= al
Mc %mpC p> Q 7 4meyct c3 p
62

1 . .
~ — (s the fine structure constant.
4meghc 137

Ifr=n lp, then
E rsr—ré dat nlpz—a’lpz dt [ (n—a)] dt
me2 r2+a2 | dr ~ n21p2+lp2 dr m2+1)l dr

where a =

(30)

Summery, extension and interesting questions:

Based on the similarity of the basic mass, charge, and angular momentum properties of
black holes and fundamental particles, when the Kerr-Newman solution to the Einstein

Field equation is applied to a spin ! particles Planck mass, many interesting space-time
properties resulted.



Other than the non-spinning Planck mass of case I, the space-time curvature of all the
spinning particles in the equatorial plane is different from the curvature in the polar
directions.

For Case II and Case III, the space-time curvature on the equatorial plane is equal to one
or just slightly different from one because of the mass equivalent from the energy of the
electrical charge of the particle.

The properties of the particles in case II and III are very much like those of leptons.

However, equatorial plane curvature ( o ) for particles in Case IV is very small but not
zero. At Planck length, the gravitational interaction of two such particles (Gm,m,,) is
very strong. When the particles are separated by a large distance, (n >>1), the observable
mass is o times the Planck Mass and becomes m. This is similar to the observed mass
m, of the particle as measured in the lab. The gravitational interaction will simply be
proportional to (Gmym,). At Planck length, (Gm,m,) has a similar magnitude as the
“strong force”

Along the polar direction, all the particles from Case II, III, and IV have similar curvature
:2+al)’ or (1 - n2n+1
one Planck length (n=1), the curvature is practically equal to 2. A mass of m, at infinity
will have a relativistic mass of 2m, at Plank length (n=1) from the interacting mass of
am,, along the polar direction. The gravitational interaction between these two masses
will simply be proportional to (Gmym,). This magnitude is in between (Gm,m,) and
(Gmym,) similar to the “weak interation”.

terms of (1 — ) when there is no electrical charge. At the distance of

Furthermore, the ‘ré term in Equation 10 arises from an energy equivalent of a times the
rotational energy of the particle. Since this fine structure constant « is closely related to
electrical charge, in many ways, the rotation-rotation interaction, such as spin-spin
interaction of the two rotational objects resembles the electrical charge including the sign
of the additive frequency and the sign of the charge.

Should this be the case, then, could all four interactions in nature be expressed in terms of
the curvature interactions of the spacetime geometry?

This also leads to two interesting questions:

(1)  Are there any relationships between the fundamental particles and the
“spinning Planck mass”?

(2)  Could the particle-particle interacting forces be expressed in terms of the
interactions of spacetime curvatures in Planck scale?



The properties of the spinning 2m,, entities resemble many of the basic and stable
subatomic particles:

(1) Neutrino (Case Il above): This particle carries an angular moment of g

Spinning at one half Planck frequency %. It is electrically neutral; it may carry

energy and has a zero rest mass. It travels with the speed of light along the
equatorial plane. It can interact with other particle with a “weak force” along the
polar direction. Since it can only travel along the equatorial plane, only 1/3 of
them can be detected from any isotropic emitter. Could this be the reason for the
“missing neutrinos” from the Sun or from any neutrino source on Earth?

(2) Electron (Case IITA, above): This particle carries an angular moment of b oltis
2

spinning with a frequency — % less than one half of Planck frequency (“negative

mec?

side band”) where w, = is the Compton frequency of an electron. The size

of this particle arriving from the “side band” is in the order of the Compton
wavelength of an electron. It carries a unit charge of -e and interact with other

. . . Ke? . .
charge particles with the coupling constant of k, where h—ec is the fine structure

constant a. In the polar direction, it also interacts with other particles with “weak
interaction” in additional to the interaction from electrical charge.

(3) Positron (Case IIIAp above): With spinning frequency+ % more than %
(“positive side band”), this particle carries a positive charge of +e. It can be
considered as —e with —m,, just like an anti-particle of electron. The
gyromagnetic dipole properties of electron (or positron) in Kerr-Newman metric
has also been discussed by other physicists.

a)mo

2
meoc?

(4) Proton (Case IVAp above): With spinning frequency - % where wp,,

(positive side band) is the Compton frequency w, = of a proton, this spin %2
particle carries a positive charge of +e. At 2 Planck length (21,,), the gravitational

force (Gm,m,) between two of these particles is 137 times stronger,
he . . N
(K—:Z times stronger), than the electrical force (Ke?) just like the “nuclear

strong force”. The space-time curvature o at 21,, is % Therefore, when the
4
second particle is moved from 21, to infinity, (o =1), the relativistic observed

mass become m,, i.e., a proton mass.

(5) Anti-proton (Case IVA,, above): With spinning frequency — % - % (with a
negative side band), this spin % particle carries a negative charge of —e, (or +e
with a negative mass), and just like the anti-particle of a proton.



The coupled composite of one spinning 2m,, particle with another one or more
spinning 2m,, particle(s) also has properties that resembles many of the unstable
subatomic particles. These composites have finite lifetime and often decay to the
decay products consistent of its components.

(6) Neutron (Could this be a composite particle of a proton an electron and a

neutrmo") The space -time curvature o of a proton in the polar direction is equal
tol— or (2 +— ) for n =1 (one Planck length). At this distance,

( n?+ 1)
gravitational force between a spin one half, /am,, particles can be held by the
“weak force” from the polar to polar direction space time curvature of %2 on both
sides. A positively charged proton, a negatively charged electron and a neutrino
can than be held by both the electrical force and the “weak force” from both sides
and exhibited as a spin ' particle with neutral electrical charge. The time period
of the electron at the space-time curvature of one half Planck mass /2m,, will be

dilated by a factor of 22¢ | ¢7,. Numerically, T = 607 seconds, matching
@p

the half-life of a free neutron (~ 10pminutes). This composite particle is unstable
by itself and it decays into an electron, a proton and a neutrinon = p +e +

U with a half-life of about 10 minutes. 7, here is the period of Compton wave
length of an electron.

(7) Pion (Could this be a composite particle of Case IVA, and Case II, or Case IIIAn

()

(")

(™)

or Case IIIAp?): The space-time curvature of Case IVA in the equatorial plane at
one Planck length is % A composite of this with an electron or positron will have
a space-time curvature of (2 — 1), and have a mass of (2 — 1)m,. (The composite

curvature is subtractive because one of the components is an anti-particle). This
composite particle belongs to the group of “strong interaction” particle as well as
“weak interaction” particle.

Could a composite particle with a Case II (neutrino) held together in the polar
direction be a spin zero neutral pion? This particle interacts with both “weak
interaction” and “strong interaction” like a neutral pion m°.

Could a composite particle with a Case IIIAp (positron) held together in the polar
direction be a spin zero positively charged particle, pion plus? The mass of this

particle will be ~(§ — 1)m,. The numerical value is 139.54 MeV/c? very close to
the measured value of 139.57018(35) MeV/c’.

Could a composite particle with a Case IIIAn (electron) held together in the polar
direction be a spin zero negatively charged particle like a pion minus. The mass

of this particle will be ~(§ — 1)m,. The numerical value is 139.54 MeV/c? very
close to the measured value of 139.57018(35) MeV/c* ©.



(8)

Kaon (?): Similar to Case IV: In this case, M= m,, instead of Mz% my,. If the
angular frequency is @ = w,,, — Wy, then, atr =2 [, the space-time curvature

will be ZmTO . Together with a neutrino, this will be a spin zero particle with a
14

. + .
mass about one half of a proton mass like a K™~ For w = —wy,, — o, , the

D

composite particle is like a K . K° islikea particle of w = — w,,.

So far, this model has led to a number of interesting facts below. Could these be just

(a)
(b)

(c)

(d)

(e

()

(@

(h)

“numerical coincidences” or could these be some indication of the validity of this
model?

Neutrino is massless and nevertheless carries angular momentum and energy. It
travels at the velocity of light just like the Case II particle.

1/3 of solar neutrino is missing: Case II particle only travels along the equatorial
plane. (could this be an alternative to neutrino oscillations)

Only “left handed” neutrino is observed: aw > 0 andJ = g are required to be
massless spin ¥ particle.

The mass of (i — 1)m, 139.54 MeV/c? is very close to the measured value of
139.57018(35) MeV/c” for pion plus or pion minus

2w,

The free neutron half-life of 10 minutes is very close to 7 = T.. Where w, is

Wp
the Compton frequency of electron, 7, is the period of this frequency, and w, is

the Planck frequency. Numerically, T = 607 sec, just about 10 minutes.

The ratio between these strong force and the electrical force is similar to
G(mp-mp)? _ Gmy? 1
MpMo)” o M _ L~ g3y
Ke? Ke? a
The binding energy between two nucleon is am,c?, where m,, is the mass of a

proton. am,c? has a numerical value of 6.85 Mev.

In both Case IIT and Case IV, positive side-band leads to positive charge and
negative side-band leads to negative charge.

Table I summarizes the various conditions of this model and the resulting properties that
resemble many of the particles in nature.



1 Q |J dp |9 ocatr o at nl A (size) | Mass Resembling
M=_ m w=— p R
p - =1 = Compton observed Particle
2 dt (O- I ﬂat) Wavelength | from
infinity
1 “Micro
(1 - E) Slglwarzschild
Case | 0 |0 0 v - 2M G] oot L my, e
rc? @n=1 2
Stable particles
Case ITA n 1Vr 1
0 A “p 2 Ly 0 Neutrino
Case 1IB 2 2 0 L
= n?+1
Case IIIA, i IVr 1
Il i h m, Electron
Case 11IB 5 2 2 0 (-0 — =
n2+1) e electron mass
Case ITIA te |h) ©p @e | T 1Vr I R m
’ 2 22 2 mecC dt < 0 | Positron
T Z(m -m )G m
Case IVA — | p-2fr ") _0] —
p +e | h Wi, . ﬂ 2 [ rc? ] my @ n=2 h m, Proton
Case IVB 2 2 2 0 rr — 12 (n—a) P m, =
1- 72 + a2 N n? + 1) o proton mass
Case IVA, e || _Pmo By | T [1- 2(m, + mo)G] [—mo] h m, Anti-
2 S ret My m,c dt < 0 | Proton
@ n=2
Unstable particles Composite D
ofm=m;/2
M=m,/2 QI |, = d¢ 9 ocatr gatnl, | (size)| Mass | Resembling
T dt (o =1 =flat) Compton observed Particle
Wavelength from
0 To o infinity
w
Case IV Ag -2 D 0
2 2 a2
®
CaseIVA, | *|Y] -3 o ah [ Eom | gt
® (ﬁ + &) ZmeC
2 2
®
Case IV A, < |0 - 7” , ah ~ (3 - 1) m, T~
a5} (ﬁ__e) af Zmec dt<0
2 2
CaselllA,,, e |h % _ % 1V 1 A m, e
2 m,c
"
CaselllA,,, te | A “p D 1Vr 1 h m, ut
2 2 2 m,c dr <0




0 || (®mo_Yp
CaselV ApN — ( 2 2 ) 2(my, —m,)G h
2 Wy e (1 rc? I:ﬂjl @ n=2 ~
69(7; 2 Mp m,C ~m, Neutron
® (-
Unstable particles Composite @
ofm=m,
M=m Q|J _d¢ ) ocatr o at nl, R (size) Mass Resembling
1% = d_ (O' =1 = ﬂat) Compton observed Particle
Wavelength from
infinity
Case 1A n 1Vr 1
0|h w, 2 L 0 Neutrino
Case IIB 5 0 8n
_An% +1 -
a)e (]
Case IV Ape te| 0 wp + == Zm]@n 2 2h - K*
Wy  We ’ m,c +4
D+
_ m, —
Case IV Ape e |0 o [Zm ] @n=2 | 2h - K
p e P 2
S -3 m,c +5
0 |0 “p 2h m,/2 0
Case IV A —wp © () [2 @n=2 +8 K
m,c
Footnote 1: ~ This model assumes that space is quantized with a minimum length of one
Planck length [,,.
Footnote 2:  This model assumes that rotation is directional.
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