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Abstract

The commonly accepted No-Hair Conjecture states that black holes can be
completely characterized by three and only three externally observable classical
parameters: mass, electrical charge, and angular momentum. The Kerr-Newman
metric describes the geometry of space-time in the vicinity of a rotating mass M with
charge Q. These three parameters are also the basic parameters of many subatomic
particles. In light of the similarities between the black holes and the subatomic
particles, this paper uses the Kerr-Newman metric to examine the space-time
properties of a Planck mass particle carrying an angular momentum of one half
Planck constant. Depending on the rotation of the particle, the results exhibit a
group of particles with properties similar to those of the stable subatomic particles,
including the neutrino, electron, position, proton, and anti-proton. The highly
curved space-time near the particle in Planck scale, together with the rotation of the
particle, resulted with an observable mass similar to the respective particle. The
interacting lengths and the observable size these particles are in the same order of
their respective deBroglie wavelengths. Interacting forces between these particles
in Planck scale exhibit strengths similar in magnitudes to the strong force, electro-
magnetic force, weak interaction and the gravitational force according to the space-
time curvature at the interacting point.

Background and Introduction:

One hundred years ago, in November of 1915, Einstein presented what are now
known as the Einstein field equations.
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These equations specify how the geometry of space and time is influenced by
whatever matter and radiation are present, and form the core of Einstein’s general
theory of relativity (1) (2) (3). The Einstein field equations are nonlinear and very
difficult to solve. Einstein used approximation methods in working out initial
predictions of the theory. But before the end of 1915, the astrophysicist Karl
Schwarzschild found the first non-trivial exact solution to the Einstein field
equations, the so-called Schwarzschild metric 4
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This solution laid the groundwork for the description of the final stages of
gravitational collapse, and the objects known today as black holes. In the following



years, the first steps towards generalizing Schwarzschild’s solution to electrically
charged objects were taken. This eventually resulted in the Reissner-Nordstrém
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which is now associated with electrically charged black holes.In 1917, Einstein
applied his theory to the universe as a whole, initiating the field of relativistic
cosmology. In 1965, Ezra “Ted” Newman found the axisymmetric solution of
Einstein’s field equation for a black hole, which is both rotating and electrically
charged. This formula for the metric tensor g, is called the Kerr-Newman metric.

It is a generalization of the Kerr metric for an uncharged spinning point-mass, which
had been discovered by Roy Kerr two years earlier. The Kerr-Newman metric (6)
describes the geometry of space-time in the vicinity of a rotating mass M with
charge Q. The formula for this metric depends upon what coordinates or coordinate
conditions are selected. One way to express this metric is by writing down its line
element in a particular set of spherical coordinates,[*! also called Boyer-Lindquist
coordinates:
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where the coordinates (r, U, @) are standard spherical coordinate system, and the length-

scales:
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have been introduced for brevity. Here r, is the Schwarzschild radius (in meters) of
the massive body, which is related to its mass M by
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where G is the gravitational constant, and 7, is a length-scale corresponding to the electric

charge Q of the mass
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where 1/47e, is Coulomb’s force constant



An alternative metric form of the Kerr Newman Metric can also be written as:
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All these equations and metrics are widely used for describing massive astronomical
scale objects from the size of the earth, the sun, neutron stars, quasars, and black holes.

Application of Space Time Metrics to Planck scale particles:

The Planck constant h is one of the fundamental quantities of nature. The energy of
electromagnetic wave, light, is E = hv, or hw, where v is the frequency and # is the

h . .
reduced Planck constant A = po and w = 2mv is the angular frequency. Together with
velocity of light c, the gravitational constant G, there are three fundamental units that are
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naturally composed from these constants: == L, is the Planck length (1.61619926 x 10

meters); \[i:g = T, is the Planck Time (~5.39106x10~** sec), and \/% =m,, is the

Planck Mass (2.17651(13)x10™* kg). When these fundamental units are used in the space-
time solutions of the Einstein’s Equations, some interesting results have followed. An

object with the mass of one half Planck Mass, M =2 m = ; \/% has a Schwarzschild

radius of one Planck Length \/EZ =1,
c
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The curvature term of Schwarzschild Equation (2), (1 - %) becomes zero and (1 — %)_1

term becomes infinite for a half Planck Mass object at the Schwarzschild radius of [,,. At
the distances approaching this [, radius, space-time is highly curved just like an
astronomical black hole. It has all the properties just like a “micro-black hole”. The
local time element, dt, at a distance r away from the object is slowed down in
comparison to the far-away time dt. The local line element in the radial direction is
lengthened in comparison to the far away dr according to the following relationship:
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dr(local) = (1 - 2y2dt, and dr(local) = (1 —25) *ar. (6)
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Also, a “probe” particle of mass m, interacting in this field has a constant energy to mass
ratio, E/'m @ of
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- ) For a particle with mass equal to

1.e. with a space-time curvature of o = (1 —

one half Planck mass ; J%, o becomes zero at the Schwarzschild radius of one Planck

fha . . . e
length = and the reciprocal of this space-time curvature term is infinite at [,, (a

singularity).
Particle with angular moment:

For an object spinning with an angular momentum of J and carrying a charge Q, we can
use the Alternative form of Kerr-Newman Metric ©
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If a 7 is divided into two sub-segments T = 74 + T and the respective r’s from M is
written as r = 14 + 1p,
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The constant of motion as the energy for an interacting particle of mass m can be written
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Case I: For Q=0, a = 0, a non-rotating electrically neutral object:
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ForM = My =2 [ the space-time curvature term [1 — = | becomes zero at

Planck length, [,, and the reciprocal of this term becomes infinite and it is similar
to a “micro black hole”. This result is the same as using Schwarzschild Metric of
Equation (2) above.

Case II: For Q =0, (TQZ =0), a#0,
An electrically neutral object with an angular momentum,

st 2awsin?9.] dt
(- )|+

. E
From Equation (10): — = [1 - =

r2+a2cos?9 c

(Case IIA) On the equatorial plane, ¥ = % 1e.cosv =0, sind =1
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This is to say: If the spinning frequency w = i , then the space-time curvature is

always equal to 1. This is independent of its mass. The space-time curvature on
the equatorial plane is always “flat”, just like an object of “zero gravitational
mass”, i.e. equivalent to M = 0. Nevertheless, this object carries a non-zero

angular moment of J (a = i)
Furthermore, the condition of 2aw = ¢ can be written as 2 i w = C.
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This angular frequency w,, will be called the Planck Frequency <a)p = %) in this
p
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article. A particle with mass equal to one half Planck Mass,
the one half Planck Frequency, is carrying an angular momentum of zﬁ It

satisfies the condition of (1 — ZaTw) = 0. Also, particle with mass equal to one



Planck Mass m,,, spinning at the Planck Frequency, is carrying an angular

p ”
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momentum of > It also satisfies the condition of (1 - ZaTw) = 0. The space time

curvature term of such a particle, even though its mass is equal to one half the
Planck Mass (or one Planck Mass) will be “observed” as a zero mass M =0
particle on its equatorial plane. Any force acting on this particle can cause it to
travel with the velocity of light along its equatorial plane. Unlike the particle of
equation (6) and (7) above, this particle having the mass of one Planck Mass (or

one half Planck Mass) , and spinning with an angular momentum of g, does not
contain any singularity of curvature in space-time, and it behaves just like an
electrically neutral particle of zero rest mass with spin g With the equivalent of
zero mass, this particle nevertheless can carry energy and/or transfer an angular
momentum ofg to other interacting particles. Many the properties of this particle
are very much like those of a neutrino.

Could both of these particles, spinning %mp and spinning m,,, be the neutrinos?

(Case IIB) Along the polar axis: 9 =0, cos¥ =1, sind =0
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Since a = -, fora particle of J = g and M =-m
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The space-time curvature term [1 - ] is equal to % for n=1 in the polar
directions. The space-time curvature term does not have any singularity for all
n>1 (Vn = 1) both in the differential space and time coefficients of the Kerr
Newman metric. The space-time curvature is again flat, or equal to 1,V r > [, in
the polar direction. Since the space-time curvature is not equal to 1 in the polar
direction when n is a small number, in Planck scale, this is indeed an object with
mass when 9 # g This is not a “non-object”. Nevertheless, with the property of
M =0 in the equatorial direction, this particle can move along the equatorial plane
with the velocity of light just like as a massless particle when a force having a
non-zero component in the 9 = % direction is applied to this particle. For an

omnidirectional source, and for any giving direction, only one third of the



particles can be observed. If this indeed were the properties of a neutrino, could
this be the explanation for the “missing neutrino”? For n=1 in the polar direction,
the space-time curvature is equal to 2. “Gravitational force” can bind two or
more of these particles together along the polar direction.

CaseIIIl: Q#0, (r§ #0), aw >0
Charge Particle with an Angular Momentum:

From Equation (10), % = [1 -
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(Case IITIA)  On the equatorial plane, 9 = % 1e.costv = 0; sind =1
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mass is equal to one half Planck Mass. Nevertheless, the space-time curvature in

The particle

the equatorial plane remains flat because of (1 — ZaTw) = 0 just like the Case
II(A) above.

(IITA ;) Negative modulation frequency

e 1 e . h

Now, if this M = > Mp particle is spinning with an angular momentum J = S but
. 1 1 2 .

having a frequency of w = S Wp — S We where w, = m, % , M, being the rest

mass of an electron, and if with the charge Q is equal to e of an electron,
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of a charge e with a spherical radius of r.

). This m,’ is the mass equivalent of the “self energy”

Equation (15a) can be written as
MpG me'
E_ _ 1— rr-14 me \|at _ 1_ & T-2-5Gr me | dt
mc?2 r2 my )| dt r2 mp dt
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the term G my, — me’) is equal to a gravitating mass of one half Planck Mass
minus the equivalent mass of the “self energy of the electrical charge” divided by
c?, with a spherical radius r. Since m,’ € m, Vr > L, , Equation (16) can be
written as

p
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The space-time curvature from the gravitating mass as observed by a “probe” of
meG

mass m (or test mass m) is [1 - ] where m, is like the rest mass of an

rc?
electron. The modulation frequency riding on the one half Planck Frequency has

a wavelength equal to the deBroglie wavelength of an electron. The interaction
between two of such particles is like two electrons with charge e in each. The

gyromagnetic dipole property of electron (g = 2) from Kerr-Newman metric has
also been discussed previously by other physicists ”. From the curvature term

yR , in the ¥ = = direction, the net mass of a Zm particle (1.088x10° kg)
2 2 D
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is the same as the mass of an electron m, , (9.109x10”"' kg) when it is spinning
with a frequency of w = Zw, — - We.
2 P 2

(IIIAP) Positive modulation frequency
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Now, if this M = S Mp particle is spinning with an angular momentum J = 5 but
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with a frequency of w = SWp towe, where w, = m, —
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This is the same as Equation (15) above with m, replaced by - m,.

Equation (16) can also be written as
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The space-time curvature from a mass of -m,.

The interaction between a particle in Case III(A ) with a particle in Case III(Ap)

2
will be a repulsive force of F;, = K 67 However, since the mass of the particle in

Case III(AP) is negative, the acceleration from this “repulsive force” is in the
reversed direction, i.e. the interaction between these two particle will be

“attractive”. This is also equivalent to treating the particle in Case III(AP) asa

charge of +e with a positive mass of m,, just like a positron.

Along the polar axis: 9 =0, cos¥ =1, sind =0
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Let r be equal to an integer n times [,,, i.e. r=nl,
Then Equation (19) can be written as
E rsr— rQ nly alp ac _ n-a) dt
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where n is the number of Planck lengths away from the pole of the spinning
=% This is
very much similar to that of the Case II B except with the addition of a/2 from
the electrical charge. Forn>> 1, 0 = 1 leads to a flat space-time.

object. For n=1, the space-time curvature term o = [1- /2 + %] =



CaseIV: Q#0, (rj #0), aw <0, Charge Particle with Angular
Momentum and negative angular velocity: (see footnote 2)
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From Equation (10), — = [1 -

(Case IVA)  On the equatorial plane, 9 = Z je.cosd = 0, sind=1
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Ifaw <0, and if —2aw=c
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For a particle of M = % m,, the Schwarzschild radius is equal to one
Planck length 7, = [,,.

At two times the Schwarzschild radius r = 27y = 21,,,
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In this Case IV (and for the following two Cases), aw < 0 is rotating in a
direction opposite to the Case III above. In here, this model has to assume
that space-time is not totally symmetrical in rotation. This is similar to
being inside the Ergosphere of a rotating black hole where the space-time
is dragged along in the direction of the rotation. The energy of a spinning
particle inside the dragged space-time inside the ergosphere depends on
the direction of rotation. If the creation (or pair production) of a particle is
inside the Ergosphere of another rotating object (the host), in Case III,
when aw > 0, with respect to rotation of the “host”, rotational frequency

p resulted with a zero rest mass particle along the equatorial

plane. Whereas, in Case IV (and below), rotational frequency of

1
of w = SO

1 . .
W == -wy,oram < 0 with respect to the host, resulted with a non-zero

mass particle with a very small space-time curvature o at r = 2r;. Since
all particles in this model have a Planck mass at the core, the close vicinity
of the rotating core of one particle may serve as a host to the creation or
the pair production of another particle.



(IVAP) Positive modulation frequency

If the particle is spinning at an angular frequency of
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The mass/energy of this object observed (or measured) from a far away

distance r > 21, willbe E = (m, —m,) [%] c? = myc?, just like a
4
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particle of mass m,, spinning with an angular moment of | = 5 > carrying
. 2(mp-m,)G
a charge of e. At short distances, the curvature term [1 — %
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the same as the space-time curvature term [1 — ] in the Schwarzschild
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Metric from an object with mass M = m,, — m,. The “gravitational
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interaction’ between two of these masses will be P;, = (mpr—zm())
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The “electrical interaction” from the charge e will be F, = TLZ , where
1

K = = The ratio between these two interactions will be
o
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using m, < m,. Recalling that this particle is spinning at an angular
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frequency of w = wy,, — 2 Wp> (Equation 23), where w, = m, < if
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R .
= — = — is the deBroglie wavelength of a proton, then the F,
21 Wmy mocC

(at short range) that is 137 times stronger than the electrical force F;. This
is very much like the short range “nuclear strong interaction” of a proton.



The reduced deBroglie wavelength of m, is: Ao = oo ¢ R
21 Wm, mocC

At short range, when r = 21,,, 0 = [%] At this space-time curvature, the
4
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relativistic distance is lengthened by o [%] (for extreme-spin Kerr
0

black hole). The energy from the electrical force between two particles at

this distance can be written as
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where « is the fine structure constant (~1/137).
If m,, is the mass of a proton, (~938 Mev/c?), €, = 6.85 Mev is
approximately equal to the (per nucleon) Binding Energy of nucleus.

For r > 21,,, the o changes from an extremely small number of % to
14

~(1 - %) for r = nl,, and eventually become 1 (flat space-time) for n>> 2.

According to this model, for far away distance, the net mass of this %mp
particle (1.088x10° kg) is observed as the mass of a proton (1.6726x10™’
kg) when it is spinning with a frequency of w = wy,, — %a)p. If the two
particles are separated by 2 Planck length along the equatorial plane, the
(attractive) force between them will have the magnitude of a “strong force.
At this distance, the electrical force (repulsive) between them is 1/137
times weaker than this attractive strong force. The storage energy from
the electrical potential is of 6.85 Mev. When the separation of these two
particles is more than 2 Planck lengths, the repulsive electrical force will
overcome the attractive force. The two particles will fly apart releasing the
6.85 Mev energy.

2

(IVA,)) Negative modulation frequency
If the particle is spinning at an angular frequency of

1

W= —Wm, = Wy (25)
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where wp,, =m, - and ﬁ =——=_ A is the deBroglie
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wavelength of the particle m,,
and ifQ=e, lem andjzg,
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using 1§ < 757
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Together with the angular momentum of | = 5 the space-time curvature
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of thisM = S My object is like an object of mass M = m,, + m, for
at _ [mo] at.
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i.e. the space time curvature at 21, is 0 = [ﬂ] with —drt,

Mp
i.e., local time of the particle is in reversed direction: Anti-particle.

r>2l, Atr=2l, ——= [""0
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The mass/energy of this object as seen (or measured) from a far away

distance r > 21, willbe E = (m,, +m,) [ =

c? = —mgyc?, just like
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an anti-particle of mass m,, spinning with an angular moment of /] = 2

carrying a charge of e. At short distances, the curvature term [1 —
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Schwarzschild Metric from an object with mass M = m,, + my. The

“gravitational interaction” between two of these masses will be

G .
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(IVB) Along the polar axis: ¥ =0, cosd =1, sind =0
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Summery, extension and interesting questions:

Based on the similarity of the basic mass, charge, and angular momentum properties of
black holes and fundamental particles, when the Kerr-Newman solution to the Einstein

Field equation is applied to a spin ! particles Planck mass, many interesting space-time
properties resulted.

Other than the non-spinning Planck mass of case I, the space-time curvature of all the
spinning particles in the equatorial plane is different from the curvature in the polar
directions.

For Case II and Case III, the space-time curvature on the equatorial plane is equal to one
or just slightly different from one because of the mass equivalent from the energy of the
electrical charge of the particle.

The properties of the particles in case II and III are very much like those of leptons.

However, equatorial plane curvature ( o ) for particles in Case IV is very small but not
zero. At Planck length, the gravitational interaction of two such particles (Gm,m,,) is
very strong. When the particles are separated by a large distance, (n >>1), the observable
mass is o times the Planck Mass and becomes m. This is the observed mass m, of the
particle as measured in the lab. The gravitational interaction will simply be proportional
to (Gmomy). At Planck length, could (Gm,m,,) be the nature of “strong force”

Along the polar direction, all the particles from Case II, III, and IV have similar curvature

n-a n
n2+1)’ or (1= n2+1

one Planck length (n=1), the curvature is practically equal to 2. A mass of m, at infinity
will have a relativistic mass of 2m, at Plank length (n=1) from the interacting mass of
am,, along the polar direction. The gravitational interaction between these two masses
will simply be proportional to (Gmym,). This magnitude is in between (Gm,m,) and
(Gmymgy). Could this be the “weak interaction”?

terms of (1 — ) when there is no electrical charge. At the distance of

Furthermore, the ‘ré term in Equation 10 arises from an energy equivalent of a times the
rotational energy of the particle. Since this fine structure constant « is closely related to
electrical charge, could the electrical charge be also a form of rotation-rotation interaction,
such as spin-spin interaction of the two rotational objects? Since the polarity of the

charge is related to the sign of the modulation frequency, could the sign of the electrical
charge carried by the particle be the direction of the spin modulation?

Should this be the case, then, all four interactions in nature could all be the interactions of
the space-time geometry.



The properties of the spinning /2m,, entities resemble many of the basic and stable
subatomic particles:

(1) Neutrino (Case Il above): This particle carries an angular moment of g

Spinning at one half Planck frequency %. It is electrically neutral; it may carry
energy and has a zero rest mass. It travels with the speed of light along the
equatorial plane. It can interact with other particle with a “weak force” along the
polar direction. Since it can only travel along the equatorial plane, only 1/3 of
them can be detected from any isotropic emitter. Could this be the reason for the
“missing neutrinos” from the Sun or from any neutrino source on Earth?

(2) Electron (Case IITA, above): This particle carries an angular moment of b oltis
2

spinning with a frequency — % less than one half of Planck frequency (“negative

2
side band”) where w, = milc is the deBroglie frequency of an electron. The size

of this particle arriving from the “side band” is in the order of the deBroglie
wavelength of an electron. It carries a unit charge of -e and interact with other

. . . Ke? . .
charge particles with the coupling constant of k, where h—ec is the fine structure

constant a. In the polar direction, it also interacts with other particles with “weak
interaction” in additional to the interaction from electrical charge.

(3) Positron (Case IIIAp above): With spinning frequency+ % more than %
(“positive side band”), this particle carries a positive charge of +e. It can be
considered as —e with —m,, just like an anti-particle of electron. The
gyromagnetic dipole properties of electron (or positron) in Kerr-Newman metric
has also been discussed by other physicists.
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(4) Proton (Case IVAp above): With spinning frequency - % where wp,,

(positive side band) is the deBroglie frequency w, = of a proton, this spin %2
particle carries a positive charge of +e. At 2 Planck length (21,,), the gravitational

force (Gm,m,) between two of these particles is 137 times stronger,
he . . N
(K—:Z times stronger), than the electrical force (Ke?) just like the “nuclear

strong force”. The space-time curvature o at 21,, is % Therefore, when the
4
second particle is moved from 21, to infinity, (o =1), the relativistic observed

mass become m,, i.e., a proton mass.

(5) Anti-proton (Case IVA,, above): With spinning frequency — % - % (with a
negative side band), this spin % particle carries a negative charge of —e, (or +e
with a negative mass), and just like the anti-particle of a proton.



The coupled composite of one spinning 2m,, particle with another one or more
spinning 2m,, particle(s) also has properties that resembles many of the unstable
subatomic particles. These composites have finite lifetime and often decay to the
decay products consistent of its components.

(6) Neutron (Could this be a composite particle of a proton an electron and a

neutrmo") The space -time curvature o of a proton in the polar direction is equal
tol— or (2 +— ) for n =1 (one Planck length). At this distance,

( n?+ 1)
gravitational force between a spin one half, /am,, particles can be held by the
“weak force” from the polar to polar direction space time curvature of % on both
sides. A positively charged proton, a negatively charged electron and a neutrino
can than be held by both the electrical force and the “weak force” from both sides
and exhibited as a spin ' particle with neutral electrical charge. The time period
of the electron at the space-time curvature of one half Planck mass /2m,, will be

dilated by a factor of 22¢ | ¢7,. Numerically, T = 607 seconds, matching
@p

the half-life of a free neutron (~ 10pminutes). This composite particle is unstable
by itself and it decays into an electron, a proton and a neutrinon = p +e +

U with a half-life of about 10 minutes. z, here is the period of deBroglie wave
length of an electron.

(7) Pion (Could this be a composite particle of Case IVA, and Case II, or Case [IIAn

()
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or Case IIIAp?): The space-time curvature of Case IVA in the equatorial plane at
one Planck length is % A composite of this with an electron or positron will have
a space-time curvature of (2 — 1), and have a mass of (2 — 1)m,. (The composite

curvature is subtractive because one of the components is an anti-particle). This
composite particle belongs to the group of “strong interaction” particle as well as
“weak interaction” particle.

Could a composite particle with a Case II (neutrino) held together in the polar
direction be a spin zero neutral pion? This particle interacts with both “weak
interaction” and “strong interaction” like a neutral pion m°.

Could a composite particle with a Case IIIAp (positron) held together in the polar
direction be a spin zero positively charged particle, pion plus? The mass of this

particle will be ~(§ — 1)m,. The numerical value is 139.54 MeV/c? very close to
the measured value of 139.57018(35) MeV/c’.

Could a composite particle with a Case IIIAn (electron) held together in the polar
direction be a spin zero negatively charged particle like a pion minus. The mass

of this particle will be ~(§ — 1)m,. The numerical value is 139.54 MeV/c? very
close to the measured value of 139.57018(35) MeV/c* ©.



(8) Kaon (?): Similar to Case IV: In this case, M= m,, instead of M:% my,. If the
angular frequency is @ = w,,, — Wy, then, atr =2 [, the space-time curvature

will be ZmTO . Together with a neutrino, this will be a spin zero particle with a
14

. + .
mass about one half of a proton mass like a K™~ For w = —wy,, — o, , the

D

composite particle is like a K . K° islikea particle of w = — w,,.

Table I summarizes the various conditions and the resulting properties that parallel some
of the particles in nature.
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Footnote 1: ~ This model assumes that space is quantized with a minimum length of one
Planck length [,,.
Footnote 2: ~ This model assumes that rotation is directional.
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