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A simple exact solution to the Navier Stokes
equation.
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Abstract. In this paper it is demonstrated that the Navier Stokes equation has a
smooth nontrivial exact solution. The solution is a heuristic and is the smoothly glue-
ing together of x>0 with z; <0 solutions.
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1 Introduction

In the present paper a simple solution to the Navier-Stokes equation is proposed that
observes the requirements of vanishing divergence, finite energy and bounded absolute
differentials of velocity and force [1]. The claim is that the pair of exact solutions (u,p)
exists that observe the requirements. Here, the velocity vector, u, {ui}g’:l, is matched with
a simultaneous solution for pressure p. We have for the i-th element w;=u;(x1,z2,23,t), (i=
1,2,3) of the velocity vector and p=p(x1,z2,23,t) in the NS equation
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Following [1] it is allowed to have v=1. The function f; is external and we may assume to
be able to select f;,(i=1,2,3) such that requirement (5) of [1] also applies. This assumption
will be checked. The solution, u; in (1.1) must have finite energy [1]
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and a vanishing divergence Z?Zl %ui =0. The challenge is to demonstrate that a non-

trivial smooth exact solution (type A, [1]) is possible with the zero time initial conditions
uo,i(21,22,23) =u;(T1,22,23,0).
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2 Solution heuristics

Let us define a heuristic solution for u; =wu;(z1,z2,23,t), with,

ci€xp [—at—Zizlakxk] , Va>0&k=1,2,3
uzz{ (2.1)

C; €Xp [—at+22:1akxk] , Va<0&k=1,2,3
and, a>0 real and ay >0 real, with ||a||=1. If ;=0 for k=1,2,3, then u; =c;exp|[—at].
We may assume that the constants {¢;}3_; and {a;}?_; are such that Z?ZlajCj =0.
2.1 Finite energy

The requirement of finite energy is given in equation (1.2). Per entry of the sum ||u||? this

can be written
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Looking at equation (2.1) we see
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For finite ay >0, k=1,2,3, the requirement of finite energy in equation (1.2) is observed.

2.2 Solution for z;, >0, (k=1,2,3)

From (2.1) observe that, if the dot denotes the time differentiation, then, ; = —au;.
Subsequently
ou; 5
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From this equation it follows that
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Hence, the divergence of u, vanishes, i.e. V-u=0, as required. In addition,
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Hence,
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Because, Z?:1 ajcj=0,we see that
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From equation (2.6) it also follows that V2u;=w;, when it is noted that ||a||=1. Hence,
the Navier-Stokes equation reduces for x>0 with £k=1,2,3, to (v=1)
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Suppose we select pzZizlexp[—xk]dk, with {dj}3_, constants, then,

fi = —diexp[—xi] — (a—l—l)uz
on fz

and the requirement of multiple differentiability and finite bounded forms | g% | is observed

for z;, >0,k=1,2,3.

2.3 Solution for z; <0, (k=1,2,3)

The time differentiation does not change, ; = —au;. Furthermore,
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k=1

similarly to the previous case this leads us to vanishing divergence for z; <0 (k=1,2,3)
because Z?Zlaj ¢;=0 remains unaffected for a change in the sign of the x;. With a similar

argument one can also arrive at
3
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for 1, <0 (k=1,2,3). In this domain of x we also have for u;
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Because, ||a||=1, it also follows that V2u;=u; for 7, <0 (k=1,2,3). Hence,

p — f.
=1 (2.13)

—(a+1)u;+
in the case that ;<0 (k=1,2,3). Similarly we can have p:Zizlexp[xk]dk and
fi=diexp[x;]—(a+1)u;

in x<0(k=1,2,3).
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3 Conclusion

In the previous section it was demonstrated that the Navier Stokes equation has a smooth
type A , citel, solution. Basically R? is dissected in Ri and R3 and, via £=(0,0,0) the two
parts can be ”glued” together resulting in a smooth solution. The algebraic construction
of a vanishing sum Z?Zlciai with ¢; from the entries u; and «; from the exponent in the
entries, stands at the foundation of resolving the problem. Zero time initial conditions can
be found at the t=0 point of the solution and obey the requirements as well.

References

[1] C.L. Fefferman, Existence and smoothness of the Navier Stokes equation, (2000), Clay In-
stitute.

[2] A. Kozachok, Navier-Stokes Millennium Prize Problem., preprint and XII International Sci-
entific Kravchuk Conference,(2008) 197-198.

[3] C. Sun, and H. Gao, Hausdorff dimension of random attractor for stochastic Navier Stokes
Voight equations, Dynamics of PDE, (2010) 7(4), 307-326.

[4] C. Foias, R.M.S. Rosa, and R. Temam, Properties of the time-dependent statistical solutions
of the three dimensional Navier Stokes equation, (2012), arXiv math.AP:1111.6257.

[5] J.L. Guermond, Faedo-Galerkin weak solutions of the Navier Stokes equations with Dirichlet
boundary conditions are suitable, J. Math. Pures. Appl. (2007), 88, 87-106.

[6] N.S. Bakhvalov, Ya.M. Zhileikin, E.A. Zabolotskaya, Nonlinear theory of sound beams, AIP
press (1987), 67-68.



