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An exact radial smooth type A solution to the
Navier-Stokes equation.
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Abstract. In this paper it is demonstrated that the Navier Stokes equation has a
smooth type A nontrivial exact solution combining two radial solutions inside and out-
side the unit sphere.
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1 Introduction

One of the Clay institute millenium problems is the yes or no existence of an exact solution
of the Navier-Stokes equation for the velocity vector, with elements {ui}?:p matched with
the pressure p . We have u; =u;(x1,22,73,t),(1=1,2,3) and p(z1,x2,23,t) in the Navier
stokes equation

0 <~ 0 , 0
at“iJr;“j(?a;j“"_”v ui—l—a—mip—fi (1.1)

The function f; is considered externally given. Furthermore, the solution, u; in (1.1) must
have finite energy. We have v >0 and

3
/ ZU?($1,$2,$37t)d3$§C(t) (1.2)
R

and a vanishing divergence Zg’zl %ui =0. The idea is to demonstrate that an exact
solution is possible or not given the requirements and the zero time initial conditions

UOJ(JIl,l’Q,IEg) :Ui(Q?l,l'Q,l'g,O)
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2 Solution

Let us start to define x;=rf; for fixed 5;,(i=1,2,3) and Zg’:lﬁle. Here, r=1/z%+25+23.

Subsequently, let us define a heuristic solution for u; =wu;(z1,z2,23,t), with,

ciexp[—at—>b/r], 0<r<1

ui={ (ci/r)expl—at—br|, r>1 (2.1)

with, @ >0,b >0 real and ¢; € R. The initial value function equals ug;(x1,22,23) =
u;(z1,29,23,0). The function in equation (2.1) is ”sufficiently smooth” for >0 and ¢ >0.

2.1 Finite energy

In the inspection of the requirements, given in the introductory section, let us check (2.1)
for finite energy. We note that generally the solution must show,

3
/ ZU?(%,@,%J)d%SC(t) (2.2)
R

The C(t) is finite. The angular terms of (2.1) give a finite contribution to the energy.
Below it will be demonstrated that the velocity in radial terms, including the 72 from the
Jacobian J =12siné, gives finite energy too. Firstly,

/OO 202 (r,t)dr < Cy(t) (2.3)
0

From the definition in (2.1) the requirement is

1 00
/ rzu?(r,t)dr—&—/ r2u? (r,t)dr < Cy(t) (2.4)
0 1
Inside the unit sphere we see, for b>0 , 72 <1 together with % —b
1
/ 202 (r,t)dr < ? exp|—2(at+b)] (2.5)
0

Secondly, for r>1, including the 72 from the Jacobian

—2b

o0 o0
/ 2 2(7“ t)dr—ch 2‘”/ e_%rdrgc?e_%t—e (2.6)

Here, b>0 and finite real. Hence, from the previous equations (2.3)-(2.6) it follows that
Ci(t)>max{1, % }c?exp[—2(at+b)] can be finite. The finite energy requirement is correctly
observed for the solution in (2.1).
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2.2 Vanishing divergence of the solution

If we suppose 0<r <1 then

3

I

i=1

1o (27)

Hence, from the assumption

3
> Bici=0 (2.8)
=1

it follows that V-u=0. Suppose then that, r>1. The requirement for r > 1, is to have,

3 0 —
> et oz, Ui =0 so
ou; T bx;
—at v _—br v _—br
=c;e ——e ——e€ 2.9

ox; 73 r2 (2.9)

In this equation the product ¢;5; is identified and note, ZZ 163 =0. Hence, the required
vanishing divergence also applies to the »>1 case.

2.3 Navier-Stokes for 0<r<1

In the first part of the solution we have %ui = —au;. Subsequently, from a%jui bgfo,] U;
3 3
0 bx;
D g =) g (2.10)
j=1 7=

In (2.10) we may note the co—occurrence of ¢; and x;=p;r, so from (2.8) it follows that
for 0<r<1 we have S° =1 dx u; =0. In addition, the algebraic consequence of (2.1) for

the Navier - Stokes is

0?2 1 3r2z? b2x?
amQU’L:b{’r?’_ 7‘7] 'Uq,‘i_ ’[”6] U; (211)
J
The previous algebraic excercise gives the following
b2
V2ui:T—4ui (2.12)
Looking back at equation (1.1) gives for %p
2 0
—aui—l/jul—l—%p:fi (2'13)

ox;

When p=p(r,t) it is a%ipzﬂip’(r,t) with the prime indicating the r derivation. Hence,

Z <_aﬁzu’ 45111’1_}_62 / T, t > Zﬁzfz (2.14)

=1
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From this equation the SG;u; in the sum warrants the vanishing of the first two terms in
(2.14) based on the vanishing divergence (2.8). Hence, because 32_ 2 =1, we see

3 T
p(Tat)—p(Oat)+Zﬁi/ fi(r1,t)dry (2.15)
i=1 70

Given 0<r<1 it then follows that (2.1) contains the (ug,u2,u3)” solution associated with
p=p(r,t) in (2.15). The choice of f; in (2.15) is still ”free”.

2.4 Navier-Stokes for r>1

Similarly to the previous algebraic construction we may observe that %ui =—au;. We
note that 3 )
Usg —at Lj —br Lj —br
=c;e ——e T ——e 2.16
ox; { r3 r2 } (2.16)

In the previous equation we see that ; =x;/r occurs. Together with ¢; from the pre-
multiplication with u; the product ¢;3; occurs. We have Z?Zlcjﬁj =0. Hence the term

3w ~i_ui:O. Subsequently we note that in the radial terms of wu;,
j=1% z; q Yy

10 0
2_ 1L O f 90
V= r2 or <T 87")
This leads us to V2u; =b%u;. Hence,

0 p=1i (2.17)

—(a+vb*)u;+ B,

If f; conveniently can be selected for r>1 such that
fi:gi—(a—i—VbQ)ui (2.18)

then p(x1,z2,x3,t)=(x-g) for g a real constant vector in r>1.

3 Requirements for f;

In the previous two sections two reduced forms for p(xi,z2,23,t) were obtained. In (2.15)
the selected f; is "free”. So, regarding the requirement that f; must be multiply differen-
tiable, let us take

fi=gi—(a+vb)u; (3.1)

for >0 and the u; come from (2.1). Suppose, for r>1 we have ¢(r)=2e=*". Then

8"257") =— <i+b) o(r) (3.2)
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for b>0 finite. Then noting radial dependence only in r >1, we may repeatedly apply %
to (3.2) and be convinced that ]%fﬂ, with, n=0,1,2,... and 4,5=1,2,3, will remain finite
for R? where r>1. For 0<r<1, we have for ¢(r)=e~%" the limit behavior lim, o (r)=0.
The multiple application of % to ¢ (r) provides powers of 1/r. Note that, %1/)(7‘):7%@&(7“).
Hence, for 8877;1/}(7“), with n finite but perhaps large, we will have (1/r)™(r) forms and
for r— 0 see a vanishing of differentials. Hence, for n=1,2,.....N with N finite integer
possibly large, ]% fi| will be finite for R3. If R3\(0,0,0) may be taken for physical space

then |5%fi] will be finit for n=1,2,3.... It appears that the \%fﬂ requirement is also
fullfilled by the heuristic in (2.1). Because, Z?:1Cj/3j:07 from (3.1) and (2.15) it follows
for 0<r<1 that p(r,t):p((),t)—krzg:lﬁjgj. Note xj=r/(;, while, we already established,
for r>1, p(z1,x2,23,t) :Z;’:legj:(x-g) .

4 Conclusion

The claim is that in the previous sections an exact smooth nontrivial type A solution to
the Navier-Stokes equation is presented. Perhaps that the exclusively radial dependence
will prove to be an unphysical form for solution. However, as far as the author can see this
is not a reason to reject the mathematics. The author would also like to refer to another
approach of getting exact nontrivial solutions of the Navier Stokes equation in [2].
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