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Abstract

This paper introduces the Double Conformal / Darboux Cyclide Geometric Algebra
(DCGA), based in the Gg o Clifford geometric algebra. DCGA is an extension of
CGA and has entities representing points and general Darboux cyclide surfaces in
Euclidean 3D space. The general Darboux cyclide is a quartic surface. Darboux
cyclides include circular tori and all quadrics, and also all surfaces formed by their
inversions in spheres. Dupin cyclide surfaces can be formed as inversions in spheres
of circular toroid, cylinder, and cone surfaces. Parabolic cyclides are cubic surfaces
formed by inversion spheres centered on other surfaces. All DCGA entities can be
conformally transformed in 3D space by rotors, dilators, translators, and motors,
which are all types of versors. All entities can be inversed in general spheres and
reflected in general planes. Entities representing the intersections of surfaces can be
created by wedge products. All entities can be intersected with spheres, planes, lines,
and circles. DCGA provides a higher-level algebra for working with 3D geometry in
an object/entity-oriented system of mathematics above the level of the underlying
implicit surface equations of algebraic geometry. DCGA could be used in the study
of geometry in 3D, and also for some applications.

Keywords: conformal geometric algebra, Darboux Dupin cyclide, quadric surface
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1 Introduction

This paper! introduces? an application of the Ggo geometric algebra [7][8], tentatively
named in this paper the Double Conformal / Darboux Cyclide Geometric Algebra
(DCGA). The organization of this paper is not entirely front to back and is organized
to be useful as a quick reference text. The reader should skip around as needed.

The Gg 2 geometric algebra contains two subspaces of the G4 1 Conformal Geometric
Algebra (CGA) [3]19][12][14][18]. The first CGA subspace, called CGA1, is

1 i=j,1<i<4
€ -e; = -1 : Z:j:5 (].)
0 :i#j.

The second CGA subspace, called CGA2, is

1 i=4,6<i<9
e-e; = { —1 :i=j=10 (2)

0 :i#j.

1. Revised version vA, October 2, 2015, with some minor corrections and improvements.

2. DCGA is the work of an independent research by this author. No prior published work on DCGA was
consulted or known to this author at the time of original research and publication of this paper (v1) on August
11, 2015 on viXra.org.
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The metric we use for Gg o is [1,1,1,1,—1,1,1,1,1, —1]. This metric makes it very simple
to use the CGA subalgebras of the CGA1 and CGA2 subspaces in a way fully compatible
with CGA. These two CGAs are used as mirror copies or doubles to create bivector-
valued entities for points and surfaces. As such, the Gg o2 geometric algebra of these new
bivector-valued point and surface entities could be called Double-Conformal Geometric
Algebra (DCGA), or even Bi-conformal Geometric Algebra (Bi-CGA or 2-CGA).

The Gg 2 DCGA surface entities include all of the types of surface entities available in
Gs,1 CGA and in the Gg 3 geometric algebra [19] known as Gg 35 Quadric Geometric Algebra
(QGA) [4][10]. DCGA also includes a new toroid (torus) surface entity. More generally,
DCGA has entities for quartic cyclide surfaces, including Darboux cyclides and Dupin
cyclides based on torus and quadric surface inversions in spheres.

All DCGA entities, both GIPNS and their GOPNS duals, can be rotated, isometrically
dilated, and translated by versor operations on the entities. The DCGA rotor, dilator,
and translator are each a new form of bi-versor or double-versor of multivector-grade four.

The DCGA entities will refer to all entities of the DCGA algebra, and the bi-CGA
entities will refer specifically to the CGA-subset of entities (points, lines, circles, planes,
and spheres) as they exist in DCGA. The CGA1 and CGA2 entities also exist within their
CGA subalgebras, offering the flexibility to use them separately, or also to double them
to form bi-CGA entities when it is desired to bring them into the larger DCGA space.

Compared to QGA, DCGA extends CGA in a new way and has a new toroid entity
and general cyclide entities. While QGA can only rotate the CGA 6,3D entities, DCGA
provides a rotor that can rotate all DCGA entities around any axis by any angle. While
QGA has an isotropic dilator and methods for anisotropic dilation, DCGA has only
an isotropic dilator. Both QGA and DCGA have a translator for translations of all
entities. While QGA supports intersecting all QGA GIPNS entities, DCGA can intersect
all DCGA GIPNS entities only with the subset of bi-CGA GIPNS entities including
spheres, planes, lines, and circles.

Depending on the needs of a particular application, DCGA may provide a larger set
of operations and entities than QGA. As with QGA, there may be performance issues
when working with a high-dimensional Clifford algebra such as DCGA. For applications
where anisotropic dilation is not required, but where rotation of all surfaces is required
and intersecting them with CGA entities is sufficient, then DCGA provides a powerful
geometric algebra with all of the standard operations as versors.

2 CGA1l and CGA2

The CGA1l and CGA2 entities follow the ordinary Gs1 Conformal Geometric Algebra
(CGA), and these subalgebras would be easily available to an application that is also
using the Gg o algebra. This subsection gives a quick review of CGA.

2.1 CGA point

In G4 1 Conformal Geometric Algebra (CGA), the embedding of a 3D point p=xe; + yes+
zes in R? starts with a stereographic embedding of p onto a hypersphere or 3-sphere $3
using e, as the stereographic 3-sphere pole. As shown in Figure 1, this requires finding
the intersection of the line through e, and p with the 3-sphere. The vectors e, and p are
perpendicular, and we can treat the embedding of p similarly to a 1D axis embedding
into a stereographic 1-sphere or circle.
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The identities

p| = Vit 2l

5 = P
Pl
p = |plp
p’ = [pl=a"+yt+ 2

are used in the following.

The stereographic embedding of |p|p is the intersection ap + Be, of the unit 3-circle
on the pes-hyperplane with the line through e4 and |p|p. The Minkowski homogenization
is ap + Pes + e;5. The point at the origin embeds to e, = —e,; + e5 and the point at
infinity embeds to e, =e,+ e5. It is convenient to scale e, as e, = %(—e4 + e5) such that
€, €x = —1. The values for a and [ are solved as follows.

The initial relations are the unit circle o® 4+ 3% =1 and, by similar triangles, the line
1-6 1

a  |pl”

o = 1-=(1+p)(1-8)=((1-75)p|)?
(1+8) = (1-5)pl
BplP+8 = pl*—1

8 =

21
1= i

( 5=)
_ (Ipl +1 _|p| —1>|p|

p2+1  [p[2+1

The stereographic embedding of |p|p, denoted S(|p|p), can now be written as
S(lp[p) = ap+ fBey (3)
2lp| \. (Ipf-1
= + €4.
(|p|2+1)p (|p|2+1 4
The homogenization of S(|p|p), denoted H(S(|p|p)), can be written as

P w(S(pip) = (B )+ (RE Jeres ()

Since this point entity P is homogeneous, and |p|?+ 1 is never zero, it can be scaled by

2
‘p‘TJrl to define P as

P = Hu(S(plp)) ~Cii(p) (5)
2 1 2 1
Ipb %+ﬂpg+ e

= |plp+

1 1
=p —+ §p2(e4+ 85) + 5(—64 + 85).
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When |p| =0,
Ppi=o = %(—944-95) =€ (6)
representing the point at the origin. In the limit as |p| — 00, we find that
Ppoow = estes=eq (7)

represents the point at infinity. By taking inner products, it can be shown that these
points are all null vectors on a null 4-cone, and the inner product e, e, = —1. The CGA
embedding of vector p as CGA point P can now be defined as

1
P=Pc = C(p)= C4,1(p) =p+ §eroo + €. (8)
The projection of a CGA point P¢ back to a vector p is

b — (Pc-I3)I5 (9)

—Pc * €0

where I3 =ejeses is the Euclidean 3D unit pseudoscalar.

Figure 1. CGA point embedding
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Figure 1 shows the CGA embedding procedure. The upper-left image shows a 3D
vector p in R?= G4 that is intersected with the 3-sphere $2, similar to an ordinary circle,
at S(p) and then raised or homogenized to H/(S(p)) = C(p) as the CGA embedding
of p. The null cone is the space of all homogeneous CGA points. A CGA point may
be arbitrarily scaled along a line in the null cone without affecting the point being
represented. A normalized CGA point has its e, component scaled to 1. The upper-right
image shows p at the origin where it is embedded as 2e, = —e, + e5; but after scaling
this by % to our preferred normalization, then it embeds to C(p) =e,= %(—e4 +e5). The
lower-left image shows p moved very far from the origin off screen, and it approaches the
embedding C(p) = e, =e4+ €5 as it moves to an infinite distance from the origin in any
direction. The lower-right image shows p at a relatively negative position where it embeds
into a different quadrant of the null cone. The figure was generated using the program
CLUCalc written by CHRISTIAN PERWASS, and is a modification of Fig 4.14 in [12].

2.2 CGA GIPNS surfaces

A CGA point Te=C(t)=Cy1(t) is on a CGA geometric inner product null space (GIPNS)
surface S if T¢-S=0 [12].

2.2.1 CGA GIPNS sphere

The CGA GIPNS 1-vector sphere S, centered at CGA point P, with radius r, is defined as

S = PC—%TZeOO. (10)

2.2.2 CGA GIPNS plane

The CGA GIPNS 1-vector plane IT, normal to unit vector n at distance d from the origin,
is defined as

II = n+de. (11)

2.2.3 CGA GIPNS line

The CGA GIPNS 2-vector line L, in the direction of the unit vector d, perpendicular to
D =d** =d /I, and through 3D point p, is defined as

L = D—(p-D)e. (12)

The Euclidean 3D pseudoscalar is I¢ = I3 = ejeses, and the Euclidean 3D dual of any
multivector d in this space is defined as d** =d /1.

2.2.4 CGA GIPNS circle
The CGA GIPNS 2-vector circle C is defined as
C = SAIl (13)

which is the intersection of a sphere S and plane II.
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2.3 CGA GOPNS surfaces
A CGA point Te = C(t) = Cs1(t) is on a CGA geometric outer product null space
(GOPNS) surface S*C if T¢ AS*¢=0 [12].
2.3.1 CGA GOPNS sphere
The CGA GOPNS 4-vector sphere S*€ is the wedge of four CGA points P¢, on the sphere
S** = P¢, AP, APc,APg, (14)
= S/l

and is the CGA dual of the CGA GIPNS 1-vector sphere S.
The CGA unit pseudoscalar is I = I5 = ejeseseqes, and the CGA dual of any mul-

tivector S in this space is defined as S* =S /I,. The CGA GOPNS and CGA GIPNS
entities are CGA duals of each other.

2.3.2 CGA GOPNS plane

The CGA GOPNS 4-vector plane IT*C is the wedge of three CGA points P, on the plane
and the point e,

H*C = ].:)Cl/\].:)(32/\].:)(33/\6C>O (15)
= II/1;
and is the CGA dual of CGA GIPNS 1-vector plane II.

2.3.3 CGA GOPNS line

The CGA GOPNS 3-vector line L*C is the wedge of two CGA points P¢, on the line and
the point ey,

L'C = Po AP¢, Aew (16)
= L/I,

and is the CGA dual of the CGA GIPNS 2-vector line L.
2.3.4 CGA GOPNS circle
The CGA GOPNS 3-vector circle C* is the wedge of three CGA points P, on the circle

C* = Pe, AP, N Pe, (17)
_ C/IL

and is the CGA dual of the CGA GIPNS 2-vector circle C.

2.4 CGA operations

The rotor R, dilator D, and translator T" are called versors. Their operation on a CGA
entity X has the form X’ = OXO™!, called a versor operation. The versor O of the
operation often has an exponential form which can be expanded by Taylor series into
circular trigonometric, hyperbolic trigonometric, or dual number form.
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2.4.1 CGA rotor

A rotor is a rotation operator, or versor. The CGA rotor R, for rotation around unit
vector axis n by 6 radians, is defined as

R = cos(%&)%—sin(%&)n*g (18)

1 <& 1
_ 65911 :eiﬂN.

The unit bivector N =n*¢ represents the plane of rotation. Any multivector in Gz or any
CGA entity X in G4 ; is rotated as

X' = RXR~ (19)
= RXR™!

where R™ is the reverse of R, and is also equal to the inverse R~!. Rotation is also defined
by reflection in two planes as

X' = ILILXIIIL, (20)

which rotates X by twice the angle between the planes from I to Ils.

2.4.2 CGA dilator

A dilator is a dilation operator. The CGA isotropic dilator D by factor d is defined as

D = %(1+d)+%(1—d)eoo/\eo (21)
14 Meoo Ne,

(144d)

atanh( (1;(1) )eoo/\eo _ e—%ln(d)eoo/\eo

12

~ e
Any CGA entity X in G, ; is dilated by the factor d as
X' = DXD~. (22)

The first form of D is the most applicable since it allows d < 0 and usually gives the
expected results in that case. The forms of D using atanh or In cannot accept d <0 since
those functions would return an infinite result for d = 0 or complex numbers which are
not valid in a geometric algebra over real numbers.

It should be noted that a zero dilation factor d = 0 is generally not valid. Entities
having e, or its dual ;¢ as a term will dilate by factor 0 into e, or its dual (up to scale),
which is a valid result. All other entities dilate by factor 0 into the scalar 0, which is an
invalid result. Dilation by factor 0 is valid on the CGA GIPNS sphere and CGA point
and their duals. Using d =0 in the first form of D gives

1 1
D = —4- e
9 Qeoo/\ o

which, as can be checked, dilates any normalized CGA GIPNS sphere S or CGA point
Pc into

DSD~ = DP:D~=De,D~=e,.
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A DCGA entity must have the DCGA origin point e, or its dual e:P as a term for DCGA
dilation by factor d=0 to be valid. This is explained further in the section on the DCGA
GIPNS cyclide.

Dilation is also defined by inversions in two concentric spheres as
X" = S55:X8S;S, (23)

which dilates by d = :—%, with radius r; of S; and radius ry of So. The dilator D is derived

from successive inversions in two spheres centered at the origin, but it is also possible for
the spheres to be centered at any point and to dilate relative to that point. The inversion
of an entity X in just one sphere S as X’ =SXS produces the entity X’ that is X reflected
in the sphere. The sphere S can be visualized as a mirrored surface and X’ is the image
of X in S. The inversion of a surface in a sphere also turns the surface inside-out and
is sometimes called the inverse surface, especially if the sphere is the unit sphere at the
origin.

2.4.3 CGA translator
A translator is a translation operator. The CGA translator T' by a vector d = d,e; +
dyes + d.eg is defined as

T = 1——des (24)

o ef%deOo

Any CGA entity X is translated by the vector d as
X = TXT". (25)
Translation is also defined by reflection in two parallel planes as
X' = TLIT; XTI 11, (26)

which translates by twice the vector d = (dy — di)n, with common normal unit vector n
of each plane (they are parallel) and plane distances from origin d; and ds of planes IT,
and Il,, respectively.

2.4.4 CGA motor

A motor is a motion operator. A rotation around a unit vector axis n, followed by
a translation parallel to n are commutative operations. Either the translation or the
rotation can be done first, and the other second, to reach the same final position. This
commutative operation, being a screw or helical motion, can be seen physically without
mathematics. The motor is a special case where the commutative rotor and translator
can be composed into a single versor M with an exponential form as

M = RT=TR (27)

1 *E _l _l l *E
65911 e aneoo:6 aneooGQGn

_ e—%n(ﬂlg—i—deoo)
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The exponents or logarithms of commutative exponentials can be added. A motor can
be used to model smoothly-interpolated screw, twistor, or helical motions, performed in
n steps using the nth root of M

1
M; — e—ﬁn(ﬁlg-i-deoo) (28)
applied at each step.

2.4.5 CGA intersection

CGA GIPNS intersection entities which represent the surface intersections of two or more
CGA GIPNS entities are formed by the wedge of the CGA GIPNS entities. The CGA
GIPNS circle is defined as a CGA GIPNS intersection entity C=S AIl.

Almost any combination of CGA GIPNS entities may be wedged to form a CGA
GIPNS intersection entity up to grade 4, except that the CGA GIPNS 2-vector line
and circle entities that are coplanar cannot be intersected unless their common plane is
first contracted out of each of them, then the common plane is wedged back onto their
intersection entity.

Like any CGA GIPNS entity, a CGA GIPNS intersection entity X can be taken dual
as X*¢ =X /I, into its CGA GOPNS intersection entity X*C.

De Morgan’s law for the intersection X of two objects A and B is

X = not((not A)and (not B))
and translates into the CGA intersection
X = (A*C/\B*C)*C. (29)

This is just the creation of the CGA GOPNS intersection entity X*¢ of two CGA GOPNS
entities A and B. In this case, A*C and B* are the undual CGA GIPNS entities, which
can then be intersected by wedge product. The CGA GIPNS intersection X is then
dualized as the CGA GOPNS entity X*. The classical view of intersections is by working
with spanning objects, which are the CGA GOPNS entities.

2.4.6 CGA dualization

The Euclidean 3D or Gz unit pseudoscalar I¢ is defined as

Ig:]:g = e;Nex/Neg=eeze;3 (30)
Iy = (=136 = I,
= TIy=-1
' ==L

and is the dualization operator on multivectors in G3. A blade B € G% of grade k is taken
to its Buclidean 3D or G; dual B*¢ € G57% of grade 3 —k as

B¢ = B/I;=-B-I. (31)

Duals represent the same objects from two converse spatial spans, and the duals have
different behavior as operators or algebraic factors on other multivectors. The dual of a
unit vector is a unit bivector that can act as the unit of a rotor around the vector, but a
unit vector can only operate as a reflector through the vector.
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The CGA or G,,; unit pseudoscalar I¢ is defined as

Ic = I5 = e;NexAeg/\ey/\e;=ejeseseq€es (32)
I = (—1)°6-D2. =1,
I2 = IIy=-1
L' = -TIT=-1I
and is the dualization operator on CGA entities that takes CGA GIPNS entities to or

from CGA GOPNS entities. A CGA entity X € Gf; of grade k is taken to its CGA dual
entity X*¢ € gi’;’“ of grade 5 —k as

X = X/Ic=-X-I. (33)

The pseudoscalar Iz does not represent any CGA entity, so no CGA GOPNS entity nor
CGA GIPNS intersection entity can have grade 5. The max grade of a CGA entity is
grade 4.

2.5 CGA1l and CGA2 notations

The CGA1 and CGA2 spaces are used as exact copies of CGA. All that is needed is a
little notation to separate the two spaces.

Multivectors in the Gz subspace of the CGA1 space will use the subscript £'. For
example, a Euclidean 3D vector p in the CGA1 space is denoted in the form

Pst = pz€1+ pye2+ p.es. (34)

A CGA entity in the CGA1 space will use the subscript C!. For example, the embedding
of pgr as a CGA1 point Pe1 is denoted

Pe = Clper) (35)
= Peat %P%leool + €01
where
ex1 = (es+es) (36)
e, = %(—94 +e;). (37)

The CGA1 point embedding function has been named C*. Likewise, a CGA1 surface entity
is named Xci1. The CGA1 point at the origin e,; and point at infinity e..,; are named
with suffix 1 to indicate their version as being the CGA1 versions.

Multivectors in the Gs subspace of the CGA2 space will use the subscript £? (e.g.,
pe2). A CGA entity in the CGA2 space will use the subscript C? (e.g., X¢2).

With this notation, the CGA1 unit pseudoscalars are named as

Igl — e€1€eqe3 (38)

Icl = €1€e9€e3€e €y (39)
and the CGA2 unit pseudoscalars are named as

152 = €gerey (40)

Ic2 = €geregtglqp. (41)
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A Euclidean 3D vector p in the CGA2 space is denoted in the form

Pg2 = pi€6+ pyer+ p.es. (42)
The CGA2 point embedding is

Pce: = C*(pe2) (43)
= Pe2t %szeoﬁ + €52
where
€2 = (e9+em) (44)
€2 = %(—eg—i‘elo)- (45)

The CGA2 point at the origin e,» and point at infinity e, are named with suffix 2 to
indicate their version as being the CGA2 versions.

A versor O (rotor, dilator, translator, or motor) that is in the CGA1 space is denoted
Oc1, and if it is in the CGA2 space it is denoted Og.

3 DCGA point

The standard DCGA null 2-vector point entity Pp is the embedding of a vector

Pst = P=pz€1+ pyes+p.es (46)
as
Pp = D(p) (47)
= C'(ps1) AC*(pg2)
— Pcl /\ Pc2
where
Pez = (Per-e1)es+ (Per-€z)er+ (per-e3)es (48)
= P2€6t Py€7 + P:-€3.

The DCGA point Pp, which could be called a double point, is the wedge of a CGA1 point
Pc1 with a CGA2 point Pez, which are the CGA embeddings of the same Euclidean 3D
vector p into each CGA.

CGA1 and CGA2 points and surface entities can be rotated, translated, and dilated
using CGA1 and CGA2 versors for these operations. The wedge of a CGA1 versor with
its copy CGA2 versor (rotor, translator, dilator, or motor) creates the DCGA versor on
DCGA points and surface entities. The DCGA versors could be called double versors or
bi-CGA versors.

The DCGA point at the origin e, is defined as

€, = €,/ \ey. (49)
The DCGA point at infinity e, is defined as

€x = €501/\ex. (50)
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As in CGA, these DCGA points also have the inner product
€x-e, = —1. (51)

All DCGA points are null 2-vectors, P% = 0. However, compared to CGA, all values
are squared and this changes the formulas for the metrical results known in CGA. For
example, the squared-squared distance d* between two DCGA points Pp, and Py, is
d* = —4Pp,-Pp, (52)
= —4(Pg APe) - (Pey APe)
= —A4(Per- (Pez- Pey)Pez — Pey(Pez - Pey)))
= —4((Pez-Pey)(Pep - Peg) — (Pey - Pey) (Pez - Peg))

- —(oo-(55)(5))

The squared distance d? between points is also

—Pop, e —Pop, - €2
? = -2 L : 2 53
(PD1 : eoo2) €01 (P’Dg . eooQ) * €01 ( )
- _2PC11 . Pc%

where each DCGA point is contracted and renormalized into CGA1 points.
The projection of a DCGA point Pp back to a vector p is

Pcl ~ P’D * €502 (54)
o (Pcl . 151)1§1
b= —Peiewr (55)

The DCGA 2-vector point Pp allows for the extraction of more polynomial terms than
only the z,y, z, 2% y?, 2 terms that CGA or QGA 1-vector points allow. The terms that
can be extracted from a point determine what polynomial equations or entities that can
be represented as GIPNS entities that test against the point.

When expanded, the DCGA point Tp=D(t) is

2 2
= taAtezt+teiNepg+e, Atgz+

1 1
—t2e o1 A (tez+ €p2) + =t%(ter +€41) A€o +

T’D - (tf,‘l + ltZeool + eol) A (t52 + 11329002 + eoZ) (56)

2 2
g +e
4 o o
where
t:tgl = xel+ye2+ze3 (57)
tgz = xe6+ye7+ze8 (58)
t? = 2?4y 42 (59)
tt = 2+ oyt 2t 2222+ 29222 + 22202 (60)
Fully expanding, Tp is
TD = %(x2+y2—|—22—1)el/\eg—|—%(x2+y2+22—|—1)e1Ae10+ (61)
%(x2+y2—|—22—1)e4/\eﬁ—|—%(x2+y2+22—|—1)e5/\e6+
%(:L‘2+y2+z2—1)e2/\e9+%(x2+y2—|—22—|—1)e2/\e10+
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%(z2+y2+22—1)e4/\e7+ %(x2+y2+22+1)e5/\e7+
g(x2+y2+z2—1)e3/\e9+% (22412 +22+1) es Aesg+
g(x2+y2+22—1)e4/\e8+g(x2+y2+z2+1)e5/\e8+
ryeiNer+ryes\eg+
yzey/Neg+yzeg/Ner+

rzeiNeg+rzes/\eg+

r?e; Neg+yles Ner+ 22 es Neg+

x4 xQ 2 x222 4 222 Z4 1
<Z+ L e S einent
x4 xQ y2 x2 22 y4 yQ 22 Z4 1
<Z+ D) + D) +Z+ D) +Z—Z es \eg+
ZLA {E2 y2 {E2 Z2 .132 y4 y2 22 y2 24 2
<Z+ 5> T3 T tytTa Ty Tty

13

The vector t, and its DCGA point embedding Tp="D(t), will be used as a test point for
position on surfaces. If we define the following value-extraction elements or operators on
DCGA points,

Tx = (el N €so2 + €501 N 96)
(82 N €502 1+ €501 VAN 87)

(e3/\ ex2+ €001 A\ €5)

<
|
NI N OT

(e7/\e1 +eg eg)

Tyz = (e7/\e3—|—eg/\eg)

(eg Nep+ 86/\ e3)

zZr

DO =D =] =

T2 = egAeg
Ty2 = e;Ney

Tz2 = eg/\es

T2 = (e1/N\en2)+ (e Aeg)
T2 = (eaNew)+ (e, Aer)
T2 = (e3Nes)+ (€1 /Aes)

Tl = _(eool/\eOOZ):_eoo

o3
I

_(eool Ney+es1 A\ eooQ)
Tt4 = —4(601 VAN eog) = —480

(62)
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then we can extract values from a DCGA point Tp as s = Tp - T,. These extraction
operators are used to define most of the DCGA GIPNS 2-vector surface entities. Two
properties of these extractions are

. O . TS#Ttél

e T, = {4 TlT, (77)
(0 T,+Ty

€Ty = {1 . T,=T. (78)

The first property, about the point at infinity e.,, has the consequence that all DCGA
GIPNS 2-vector surface entities without a term in Ti4 are entities having the surface
point e. In particular, the DCGA GIPNS 2-vector ellipsoid surface entity is generally
considered to be a finite closed surface, yet in DCGA it always has the surface point e...
Other surface entities can also unexpectedly have the surface point e.. This possible
problem about e, will be mentioned again in the section on the DCGA GIPNS 2-vector
ellipsoid entity E. This possible problem about e, will also be discussed further in the
sections on inversions in spheres and on cyclides. The second property, about the point
at the origin e,, does not pose any known problems.

The spherical inverse surface entity SES™ of any surface entity E without a term in
Tia will always have the inversion sphere S center point Pp as a surface point. The point
at infinity e, always reflects into the inversion sphere center point Pp, or the reverse. All
open surfaces are expected to have the point e,,, and their inverse surfaces are expected
to have the inversion sphere center point. Unexpectedly, the inverse surface entity of
the ellipsoid entity when reflected in a sphere will always have a singular outlier surface
point at the inversion sphere center point. A singular outlier point may be invisible in a
surface plot.

4 DCGA GIPNS surfaces

The DCGA geometric inner product null space (GIPNS) surface entities are constructed
using the value extractions T - Tp from the DCGA point entity. The DCGA GIPNS
surface entities are the standard surface entities in DCGA since the direct construction
of DCGA geometric outer product null space (GOPNS) surface entities is limited to the
wedge of up to four DCGA points which cannot construct all of the DCGA GOPNS sur-
face entities. The DCGA GIPNS surface entities can be rotated, dilated, and translated
by DCGA versors, and they can be intersected with the bi-CGA GIPNS surface entities.

A DCGA test point Tp that is on a DCGA GIPNS surface entity S must satisfy the
GIPNS condition

T'D'S = 0

The DCGA GIPNS k-vector surface entity S represents the set NI (S € G ) of all
3D vector test points t that are surface points

NIs(S€GE,) = {teGi : (D(t)=Tp)-S=0 }.
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4.1 DCGA GIPNS toroid

The implicit quartic equation for a circular toroid (torus), which is positioned at the
origin and surrounds the z-axis, is

t1 4+ 2t%(R? —r?) 4 (R* — %) —4R*(2®+¢%) = 0 (79)
where
t = ze;+yes+zes

is a test point, R is the major radius, and r is the minor radius. The equation is true if
the test point t is on the toroid. The radius R is that of a circle around the origin in the
xy-plane. The radius r is that of circles centered on the circle of R and which span the
z-axis dimension for z ==+r. The toroid spans z,y==+£(R+r).

The DCGA GIPNS 2-vector toroid surface entity O is defined as
O = Tu+2(RP—r)Tpe+ (R?—r?)?Ty —AR* (T2 + T,2). (80)

A test DCGA point Tp =D(t) is on the toroid surface represented by O if Tp- O =0.
Using symbolic mathematics software, such as the Geometric Algebra Module [1] for
Sympy [17] by ALAN BROMBORSKY et al., the inner product Tp- O generates the scalar
implicit surface function of the toroid when t is a variable symbolic vector. When t is a
specific vector, Tp- O is a test operation on the toroid for the specific point.

We can denote the DCGA-dual of O as O*P, and define it as
0P = 0/Ip=0Ip'=-0-Ip. (81)

The DCGA GOPNS 8-vector toroid surface entity is O*P, where a test point t on the
surface must satisfy the GOPNS condition Tp A O*FP = 0. Since Tp is a 2-vector and
O*P is an 8-vector, then Tp A O*P is the DCGA 10-vector pseudoscalar implicit surface
function of the toroid when t is a variable symbolic vector. The undual operation returns
the DCGA GIPNS surface O = O*P.Ip. The other DCGA GOPNS surface entities will

be discussed later in this paper.

Although the toroid O is created at the origin and aligned around the z-axis, it
can then be rotated, dilated, and translated away from the origin using DCGA versor
operations. Like all DCGA GIPNS surface entities, the DCGA GIPNS toroid can be
intersected with any bi-CGA GIPNS (2, 4, or 6)-vector surface, which are 2-vector spheres
and planes, 4-vector circles and lines, and 6-vector point-pairs.

Since the toroid O is constructed with an extraction term Tis = —4e,, it is a DCGA
closed-surface entity that does not include e, as a surface point, and it can be dilated
by a zero dilation factor d = 0 into e,. The inverse toroid entity, when reflected in a
standard DCGA GIPNS 2-vector sphere, does not have a singular outlier surface point
at the center point of the inversion sphere. The standard DCGA GIPNS 2-vector sphere
S also has these closed-surface characteristics, but the ellipsoid E does not.
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TROR™T™

Figure 2. DCGA toroid rotated and translated

4.2 DCGA GIPNS ellipsoid

The implicit quadric equation for a principal axes-aligned ellipsoid is

(x=po)  (y=p)®  (=pe)

r2 r2

=0 82
. (52)
where p = p,e; + p,es + p.e; is the position (or shifted origin, or center) of the ellipsoid,
and 7,1y, 7, are the semi-diameters (often denoted a, b, ¢). Expanding the squares, the
equation can be written as

-9 9 9 2 2 2 3 2 g
Pt | 2 f;zz+<x_2+y_2+z_2 N
e 7"y Ty Ty Yy T e Ty Ty

Using the DCGA point value-extraction elements, an ellipsoid equation can be con-
structed. This construction will be similar for the remaining surface entities that follow.
The DCGA GIPNS 2-vector ellipsoid surface entity E is defined as

E = —“Dete ) TPty ToPel: (84)
e ’I"y Ty
T. Tp Te
Tttty
T Ty Ty

T

2 2 2
Pz | Py | P>
Pey Py Pz g\,
( rzoorlo ol )
A DCGA 2-vector point Tp="D(t) is tested against the DCGA 2-vector ellipsoid E as

<0 : t is inside ellipsoid
Tp-ES =0 : tis on ellipsoid (85)
>0 : t is outside ellipsoid.

It was first mentioned in Section 3, on the DCGA point Tp and value-extraction operators
T, that the ellipsoid entity E has the possible problem that it includes the point at
infinity e, as a surface point according to the test just given above. We could define the
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invariant test e, - E=0 as an invalid test, or we could accept that e, is a valid surface
point of the particular DCGA ellipsoid entity E but not of ellipsoids in general.

An inverse ellipsoid surface entity, which is an ellipsoid entity E that has been reflected
in a standard DCGA 2-vector sphere S as SES™, will always have a singular outlier
surface point that is exactly the center point Pp of the inversion sphere S and the test
Pp- (SES™) =0 will always hold true. The point e, on the ellipsoid entity E is reflected
into Pp. The inverse ellipsoid surface entity SES™ is otherwise a correctly formed surface
entity of one of the types that should be expected, which is either a quartic Darboux
cyclide or a cubic parabolic cyclide. The outlier point is often invisible in surface plots.
See Figure 17, which shows an ellipsoid reflection that produces a Darboux cyclide.

E; A1l

Hz=0

Hy:O Hac=0 El A H1

Figure 3. DCGA ellipsoids rotated, translated, and intersected with planes

Figure 3 shows two ellipsoids that have been rotated and translated into their inter-

secting positions using DCGA versor operations. The DCGA GIPNS ellipsoid E; (r,=4,

ry=>5, r,=3) is rotated 25° around the line n = %(—el + e3), then rotated 45° around

the z-axis, then translated by d = 10e; + 10e;. The DCGA GIPNS ellipsoid Es (p, =6,
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ry=2, ry=3, r,=06) is rotated -35° around the line n= %(—el + ey), then rotated 35°

around the z-axis, then translated by d =10e; + 10e,. The ellipsoids intersect in a curved
ellipse which, unfortunately, could not be represented as an intersection entity.

Although not rigorously proved here, in tests performed by this author, the ellipsoid
and all other DCGA entities can be intersected with the standard DCGA sphere, plane,
line, and circle entities (bi-CGA entities), but DCGA entities cannot be intersected in
full generality.

The upper-left image in Figure 3 shows the ellipsoids with standard planes drawn. The
upper-right image shows the ellipsoids drawn with DCGA GIPNS plane IT; representing
the plane z=0, and with the DCGA GIPNS plane IT, representing the plane z=0 rotated
60° around the x-axis. The lower-left image shows the DCGA GIPNS intersection entity
E; AIIy; the green elliptic cylinder H is an intersection entity component and represents
the ellipse in which they intersect. The lower-right image shows the DCGA GIPNS
intersection entity Eq AIly; the green hyperboloid of one sheet 3 and the red non-parallel
planes pair X are intersection entity components which are also coincident and represent
the intersection.

4.3 DCGA GIPNS sphere

The standard DCGA GIPNS 2-vector sphere S will be defined as a bi-CGA sphere, not
the DCGA GIPNS ellipsoid E with equal semi-diameters r =7, =7r,=r..

The DCGA GIPNS ellipsoid E with r = r, = r, = 7. can be reformulated into the
DCGA GIPNS 2-vector ellipsoid-based sphere entity © as

© = “2pTa+p, Ty + L) + Lot T+ Tt (pr 49y + 0% =) (86)
~ (peTet pyTy+ p-Te) = 5o+ py+ p2) i — 5(Te+ Typ+ To) + 57T

Taking r =0 suggests that the sphere ® degenerates into some type of point entity. With
T, = —e., the middle term has a familiar CGA point form. However, if this were a CGA
point, the last term should reduce to e,, but it does not. The result here is that, the sphere
entity ©® with r = 0 degenerates into a DCGA GIPNS non-null 2-vector point entity,
which is not the standard DCGA null 2-vector point that we might expect. The DCGA
GIPNS ellipsoid E can be reformulated into a kind of sphere entity ® that degenerates
into a kind of non-null point entity when r=0. However, r =0 is nvalid for an ellipsoid
entity E, and only in the limit » — 0 does E approach a point ® with »r=0. We can also
form a sphere in another way which does degenerate into a standard DCGA point.

The standard DCGA GIPNS 2-vector sphere surface entity S, also being called a bi-
CGA GIPNS 2-vector sphere, is defined as

S — SeiASe (87)

where
Sei = Pcl—%r2eool (88)
Sc: = PCQ_%TQeOOQ. (89)

The CGA1 GIPNS sphere Sgi and the CGA2 GIPNS sphere Sez, both representing the
same sphere, with radius r at center position p in our main 3D Euclidean space &', are
wedged to form the DCGA or bi-CGA GIPNS sphere S. If r=0, the sphere is degenerated
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into a DCGA point
Pp = PaAPe (90)

that would represent the center position of the sphere. This form of sphere allows greater
consistency, and it can also be intersected with any DCGA GIPNS entity. A sphere that
is formed using the DCGA GIPNS ellipsoid can only be intersected with bi-CGA GIPNS
entities. In general, the other bi-CGA GIPNS entities for lines, circles, and planes follow
this same pattern, that they are the wedge of the CGA1 and CGA2 copies of the entity.

A DCGA 2-vector point Tp="D(t) is tested against the standard DCGA GIPNS 2-
vector sphere S as

<0 : t is wnside sphere
_2( —Tp- e )( —S - ex ) =0 : tis on sphere (91)
(Tp- €x02) * €col (S-ex2) - exl >0 : tis outside sphere
>0 : =d?, squared tangent.

To determine inside or outside, this incidence test requires the bi-CGA point Tp to be
contracted into a CGA1 point, and the bi-CGA sphere S to be contracted into a CGA1
sphere, and both are renormalized. The entity e, is both a CGA2 point and a CGA2
sphere of infinite radius, and it serves as the contraction operator on both the point and
sphere into CGA1 entities, up to scale. The result is reduced to a CGA1 incidence test.
When the test is positive, it is the squared distance d? from the point to the sphere along
any line tangent to the sphere surface. Similarly for other bi-CGA entities, they can be
contracted into CGA1 entities and then all the usual CGA tests are available on them.

4.4 DCGA GIPNS line
The DCGA GIPNS 4-vector line 1D surface entity L is defined as

L — LoALe (92)

where
Ler = Deir— (per-Der)eca (93)
Lez = Dgz— (pez- Dez)eso. (94)

This is the wedge of the line as represented in CGA1 with the same line as represented
in CGA2. It could also be called a bi-CGA GIPNS line entity. The D are unit bivectors
perpendicular to the line, and p is any sample point on the line. The undual unit vector
d =DI;, or dg1 = Dgilgr and dgz = Dg2lg2, is in the direction of the line.

4.5 DCGA GIPNS plane
The DCGA GIPNS 2-vector plane surface entity IT is defined as

II = Il ATl (95)
where

IIer = ngi+des (96)

IIe: = nge+deys. (97)

This is the wedge of the plane as represented in CGA1 with the same plane as represented
in CGA2. It could also be called a bi-CGA GIPNS plane entity. The vector n is a unit
vector perpendicular (normal) to the plane, and the scalar d is the distance of the plane
from the origin.
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The DCGA GIPNS 4-vector line L can also be defined as the intersection of two
DCGA GIPNS planes as
L = II, AT (98)
= (g1 +dieser) A (g2 + di€os2) A (Nge1 + drescr) A (Nae2 + doeso2)
= —((mgr 4 diecor) A (Dge1 + dzesc1)) A ((D1g2 + di€sc2) A (Noe2 + dresc2))
~ (me1 Anggr — (dinggr — donygr)€qcr) A (Nig2 ANggz — (diNgez — donyg2)€ncn)
= (Dg1— (per- Der)ec1) A (Dgz — (pez - Dez)eocr)

= Lei ALe2
where
Dei = njeiAngea
Dg2 = Njg2/\Nogg2
psi-Der = (pei-Nygi)nggr — (Per - Nogt )Ny g1
= dingg1 — dony o1
ps2-Dez = (pe2-Nyg2)nogz — (Pe2 - Nog2) Ny g2

= dingg2 — dony 2

such that p is any point on both planes (the line), and D =d*¢ =d /I¢ is the unit bivector
perpendicular to the line. The unit vector d = DI¢ points in the direction of the line.
Other bi-CGA GIPNS entities are formed similarly as the wedge of the entity in CGA1
with the same entity in CGA2.

Some of the subscripting notation may seem confusing. For example, n;¢1 is the first
of the two Euclidean 3D unit vectors in the CGA1 space, and this could also be denoted
as ngi. Recall that &' is the space of the unit pseudoscalar I¢1 = I51 = ejeses and it is a
subspace of the C! CGA1 space Ip1 =I5 = e eseseqses. The CGA2 space uses notations nyg2
or ngz, where Ig2= I3 = egereg and Iez =152 = egeregegero. The subscripting indicates the
index number for multiple entities sharing the same name, and also the space in which
the entity exists. Finally, nig1 and njg2 have the same index number 1, so they represent

the same 3D unit vector n copied or doubled into the £' and £2 Euclidean subspace of
the C* CGA1 and C? CGA2 space, respectively.

4.6 DCGA GIPNS circle

A circle is the intersection of a sphere and plane. We can intersect a bi-CGA GIPNS 2-
vector plane IT with either a bi-CGA GIPNS 2-vector sphere S or with a spherical DCGA
GIPNS 2-vector ellipsoid E and get two different GIPNS 4-vector circle entities. The
first can be intersected again with any other entity, but the latter can only be intersected
again with another bi-CGA GIPNS entity.

Intersections are limited to an GIPNS intersection entity of maximum grade 8, so
up to four 2-vector entities, two 4-vector entities, or a 4-vector entity and two 2-vector
GIPNS entities can be intersected, but only one of the intersecting entities can be a non-
biCGA quadric surface or toroid GIPNS entity.

As the standard DCGA GIPNS 4-vector circle 1D surface entity C, we will define it
as the bi-CGA GIPNS circle

C = SAIl (99)
- SclASCQ/\Hcl/\HCQ
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= —(Scl VAN Hcl) VAN (SC2 VAN HCQ)
>~ Ccl A Ccz.

4.7 DCGA GIPNS elliptic cylinder

An axes-aligned elliptic cylinder is the limit of an ellipsoid as one of the semi-diameters
approaches oo. This limit eliminates the terms of the cylinder axis from the implicit
ellipsoid equation.

The z-axis aligned cylinder takes r, — oo, reducing the ellipsoid equation to

_ 2 _ 2

100
Ty T (100)
Similarly, the y-axis and z-axis aligned cylinders are

(z = pa)® | (2= p2)?
-1 =0 101
r2 + r? (101)

)2 2
i 20 Lt 1) (102)

ra Ty

where p = p,e; + pye2+ p.es is the position (or shifted origin, or center) of the ellipsoid,
and ry, 7,7, are the semi-diameters (often denoted a, b, ¢).

The DCGA GIPNS 2-vector x,y,z-axis aligned cylinder surface entities H/® ¥} are
defined as

gle = —2ly =2pele T T (P, P2 gy (103)

H||y = r?c + 7’2 +r_§+r_§+(7’_§+7’_§_1 T (104)
—opTe  —2p,T, T T z

HIF = fz + f;f y+r—;+ g2+<f—2+%— )Tl- (105)
x Yy x Yy x )

These elliptic cylinders are created as axes-aligned, but like all DCGA entities, they can
be rotated, dilated, and translated using DCGA versor operations.

TRHR™T™

TDHD~T~

Figure 4. DCGA elliptic cylinders
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Figure 4 shows a red DCGA GIPNS z-axis aligned elliptic cylinder H at the origin
with semi-diameters 7, = 1 and r, = 3. The cylinder is the red cylinder dilated
by factor 2 and translated 5e; — bes using DCGA versors. The blue cylinder is the red
cylinder rotated 45° around the y-axis and translated —5e; + 5es.

4.8 DCGA GIPNS elliptic cone

An axis-aligned elliptic cone is an axis-aligned cylinder that is linearly scaled along the
axis.

The implicit quadric equation for an z-axis aligned cone is

(y=p)*  op) @op (106)

2 2 -
Ty rZ Ty

where p = p,e; + p,es+ p.es is the position (or shifted origin, or center) of the cone apex,
and r,, 7y, 7, are the semi-diameters (often denoted a, b, ¢) of the ellipsoid upon which
the cone is based. When

(@—pa)* _ 1 (107)

r:

the cross section of the cone is the size of the similar cylinder. When x = p, the cross
section of the cone is degenerated into the cone apex point.

Similarly, the implicit equations for y-axis and z-axis aligned cones are

(z Tpr) e T2pz) _(y T2py> — 0 (108)
T z Y

(x 2pz) +(y 2py) _(z 2]9z) - 0. (109)
Tz TZ/ U

The GIPNS cone entities are constructed similarly to the ellipsoid and cylinder entities.

The DCGA GIPNS 2-vector {z,y,z}-axis aligned elliptic cone surface entities K Iz vz}
are defined as

pali . pyly . Pl T T,

T, 2 pr

Kz — 9 _ta?  fyr ) 122 Py Pz Pz \p 110
r? rfj r? r? + rfj + r2 + T‘Z + r: r2 ! (110)
2 r2 r2 2ol oor? rzoorlo ol
sz T sz Tz T Tz 3: : 2

Kle = of Bz _Puoy _Peoe | ety op o2 %Jr%—% T). (112)
Z Y T T Y z T Y z

These elliptic cones are created as axes-aligned, but they can be rotated, dilated, and
translated using DCGA versor operations. All the DCGA surfaces can have general
position, but we initially define them in axes-aligned position for simplicity. Defining the
surfaces in general position may be possible if the value-extraction operations T, T,
and T, are employed.
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Figure 5. DCGA elliptic cones

Figure 5 shows some DCGA GIPNS cones positioned and transformed similar to the
elliptic cylinders of Figure 4. The dilation of a cone does not change the cone shape, but
it does dilate the cone center position to effectively translate a cone that is not initially
at the origin to be further from the origin by the dilation factor.

4.9 DCGA GIPNS elliptic paraboloid

The elliptic paraboloid has a cone-like shape that opens up or down. The other paraboloid
that would open the other way is imaginary with no real solution points.
The implicit quadric equation of a z-axis aligned elliptic paraboloid is

_ 2 _ 2 _
rs s r,
The surface opens up the z-axis for r, >0, and opens down the z-axis for r, < 0. Similar

equations for z-axis and y-axis aligned elliptic paraboloids are

2 2 _

(z TQPZ) _|_(y 7ﬂpy) . (zrpx) -0 (114)
z Y r

xr — ,:c2 Z— 2’2 -

( 7ﬂp) L 7Jp) _(yrpw — 0 (115)
x z Y

Expanding the squares, the z-axis aligned equation is

—2pz -2 x? T z
s 1 B A G +py+p =0 (116)
rs Ty r. 12 ry 2 Ty Tz

and the z-axis and y-axis aligned equations are

—21, -2 — 2 2 '~ T
e x+z—2+y—2+<p +py+p—> = 0 (117)
T 7’y Ty ry ry z Ty Tz

—Opr  —2p. 2 >
Dot | Pz+_y+x += +(p2+p—2+—y = 0. (118)
T:z; Tz y TZ‘ Z z TZ ry
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The DCGA GIPNS 2-vector {z,y,z}-axis aligned elliptic paraboloid surface entities
VIt# vz} are defined as

Vil = Z2Pelzy ZPuly | The Sy S (P2 Py Doy (119)
T Ty T z Y z Y z

vy — 72 + 7{'; +— y+r—;+—;+(%+p—2+@)ﬂ (120)
x z i x z x z Y
—2p. T —2p, T, —T. Tp T 2 ops o pe

Vi Lete B0y s 2 o0 (p—2+%’+f—>T1. (121)
T Y Z z Y T Y z

A DCGA 2-vector point Tp="D(t) is tested against the DCGA 2-vector paraboloid V as

<0 : t is inside paraboloid
Tp-V{ =0 : tis on paraboloid (122)
>0 : t is outside paraboloid.

This is similar to the ellipsoid incidence test, and this test is similar for many of the
surfaces.

TRVRT~

TDVD~T~

Figure 6. DCGA elliptic paraboloids

4.10 DCGA GIPNS hyperbolic paraboloid

The hyperbolic paraboloid has a saddle shape. The saddle can be mounted or aligned on
a saddle axis with another axis chosen as the up axis. The third axis may be called the
straddle axis.

The implicit quadric equation of a hyperbolic paraboloid is

(w=po)*  (y=py)* (2=p:) _ (123)

2 2
T ry
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This particular form of the equation has saddle z-axis, straddle y-axis, and up z-axis
for r, > 0 or up negative z-axis for r, < 0. By its similarity to the z-axis aligned elliptic
paraboloid with the elliptic y-axis inverted, this particular form can be seen as z-axis
aligned. Other forms can be made by transposing axes, or by rotation around diagonal
lines using DCGA rotor operations.

Expanding the squares, the equation is

—20z 2 — 2 —1? % : z
]; {E_'_ p;/y_'_ Z_'_x_2_'_ g + p_2_p_g_|_p_ = 0. (124)
rs Ty T, TI Ty r Ty T2

The DCGA GIPNS 2-vector z-azis aligned hyperbolic paraboloid surface entity M is
defined as

—2 :L'T:L' 2 T _Tz ng _T 3} ; z
M = —hrme PPl Ty Ce 2"2+<p—z—p—§’+p—>T1- (125)
T;Ij ry z z Ty Tm Y Iz

rotation R4

RoR{MRT Ry

Yy rotation R,

Figure 7. DCGA hyperbolic paraboloid rotated twice

Figure 7 shows the hyperbolic paraboloid entity M, which is centered on the origin
with parameters r, =7, =r,=1, and which was initially z-axis aligned. It was then rotated
twice. The first rotation was 45° around the blue z-axis, pointing nearly out of the page.

The second rotation was 25° around the line n = %(—el + e3) pointing toward the lower-

right of the page. The rotations follow the right-hand rule on a right-handed axes model.

4.11 DCGA GIPNS hyperboloid of one sheet

The hyperboloid of one sheet has a shape that is similar to an hourglass which continues
to open both upward and downward. The implicit quadric equation is

(z—pa)®  (y —2py)2 =)t (126)

r2 T r?
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This particular form opens up and down the z-axis. Planes parallel to the z-axis cut
hyperbola sections. Planes perpendicular to the z-axis cut ellipse sections. At z=p., the
ellipse section has a minimum size of the similar cylinder. Other forms can be made by
transposing axes, or by rotation around diagonal lines using DCGA rotor operations.

Expanding the squares, the equation is

Ty T Tz z Y : ry o Ty T:

—2p.z . —2pyy  2p.z  xr y? —22 p2 pi p?
7t 3 Tttt St st -5l =0 (127)

The DCGA GIPNS 2-vector z-azis aligned hyperboloid of one sheet surface entity 3 is
defined as

2 2 2
z

2 2 2
T ry z

r T

Figure 8. Rotation of DCGA hyperboloid of one sheet

Figure 8 is an orthographic (parallel projection) view from above the zz-plane that
shows the hyperboloid X with r, =1, r, =2, r, =3, initially with green color, positioned
at p, =10, and aligned up and down the z-axis. It is then rotated using a DCGA rotor R
by 90° in 10° steps as its color fades to blue, with final position at p,= —10 and aligned
up and down the z-axis. The rotation is counter-clockwise around the y-axis coming out
of the page on a right-handed system of axes. The x-axis is red and positive up, the y-
axis is green (not visible), and the z-axis is blue and positive to the right. The axes are
drawn by rendering thin elliptic cylinder entities. The right-hand rule, holding the y-axis,
provides orientation for this rotation. The hyperboloid is rotated about the origin, around
the y-axis, as a rigid body of points. In the symbolic computer algebra system (CAS)
Sympy [17], the hyperboloid equation itself, as a DCGA entity, was rotated symbolically
and graphed at each step using the MayaVi [13] data visualization software.
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4.12 DCGA GIPNS hyperboloid of two sheets

The hyperboloid of two sheets has the shapes of two separate hyperbolic dishes; one
opens upward, and the other one opens downward. The shape is like an hourglass that
is pinched closed and the two halves are also separated by some distance. The implicit
quadric equation is

_ _ I Gt 2 P RS (129)

This particular form has the two dishes opening up and down the z-axis. The dishes are
separated by distance 2r, centered at p,. At |z — p.|= V/2r., the sections perpendicular
to the z-axis are the size of the similar cylinder.

Expanding the squares, the equation is

2p.x | 2pyy  2p.z a? YR 2P I
e e AP §+ s+ r%—Fry‘f’—— = 0. (130)

o r T3 ry T r? " r?

The DCGA GIPNS 2-vector z-azis aligned hyperboloid of two sheets surface entity E is
defined as

- pzng pyTy pZTZ T:L.Q T 2 T22 pg p% p2
z Yy z x Y z z T Y

«— Hz:()
Figure 9. Rotation of DCGA hyperboloid of two sheets
Figure 9 shows a perspective view of the hyperboloid of two sheets E initially with

green color, centered at p, =5, p, = —5, and with semi-diameters r, =1, r, =2, r, = 3.
The black dots (small sphere entltles) are the center positions as the surface is rotated
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around the white line through the origin and the red point 5e; + 10e; + 5e3. The rotation
is by 90° in 10° steps until it reaches the position of the blue surface. The first black dot
is on the xy-plane (blue plane), and then the black dots go under the blue plane along
an arc directly around the axis of rotation. The surface is carried along as a rigid body
by the rotation using a DCGA rotor operation. The symbolic CAS Sympy was used for
each rotation step, where an exact symbolic equation of the hyperboloid was generated
by the rotated entity and graphed using Maya Vi data visualization software.

4.13 DCGA GIPNS parabolic cylinder

The implicit quadric equation for the z-axis aligned parabolic cylinder is

_ 2 —
(:U 2]91) _ (y py) = 0. (132)
rs Ty
The z coordinate is free, which creates a type of cylinder with parabolic sections that
open up the y-axis for 7, >0, and open down the y-axis for 7, <0. The similar equations
for z-axis and y-axis aligned parabolic cylinders are

=p) _(=p) _ (133)
wopl_Gop) _ ™

with parabolas that open up or down the z-axis. Other forms can be made by transpo-
sitions or by using DCGA versor operations.

Expanding the squares, the equations are

2
p—§+—y) — 0 (135)
T Ty

T p r
_9 2 2 2
ny 1+y_2+<29_z2/+_> 0 (136)
Ty Ty Ty ry T
—2pzr z @ P: |, -
ST (IS 1) 137
B (e Y

The DCGA GIPNS 2-vector {r,y,z}-azis aligned parabolic cylinder surface entities
B!{=v2} are defined as

—_ z T2 2 z
Bllz — —2%?’Ty—£+ g+<p—§+—>T1 (138)
ry T, Ty Ty Tz
_2 xTz TZ T:DQ % z
Bly = —2Pels 1z, Zo +<p—2+p—)T1 (139)
T T, {9 % Tz
_ 2
Bl — 2p2wa_§+T—f+(p—g+@)Tl. (140)
T Ty T ry Ty
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These are created as axes-aligned surfaces, but can be rotated, dilated, and translated
using DCGA versor operations.

Figure 10. DCGA parabolic cylinders and toroid rotated and translated

Figure 10 shows multiple perspective views of the DCGA GIPNS 2-vector parabolic
cylinders and toroid surface entities rendered together in one scene. The red cylinder
is x-axis aligned, r, =1, r, = 1, rotated 20° around the z-axis, and then translated by
d = —10e; from the origin. The green cylinder is y-axis aligned, r, = 2, r, = 1, rotated
40° around the y-axis, and then translated by d =10e; — 10e3 from the origin. The blue
cylinder is z-axis aligned, r, =4, r, =1, rotated 60° around the z-axis, and then translated
by d = —10e; + 10ey from the origin. The toroid, with R =4 and r = 1, is rotated 25°

around the axis n = %(—el + e3), and then translated by d = 10e; + 10e; + 10e3 from

the origin. The rotations follow the right-hand rule on right-handed axes. The rotation-
translations were performed as compositions of DCGA rotors and translators. Symbolic
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CAS Sympy was used to generate exact equations of the transformed entities, which were
then graphed using the Maya Vi data visualization software.

4.14 DCGA GIPNS hyperbolic cylinder

The implicit quadric equation for the z-axis aligned hyperbolic cylinder is

(z—pa)®  (y=py)*

= 0. (141)

2 2
T 7ny

The z coordinate is free, which creates a type of cylinder with hyperbolic sections that
open up and down the z-axis. The hyperbola branches are separated by distance 2r,
centered at p = p,e; + pyes>+ zes. The asymptotes are the lines

(y=p) = £z —p) (142)

through (ps, py), where in the limit as x — £oo the —1 becomes insignificant.

The similar equations for z-axis and y-axis aligned hyperbolic cylinders are

N2 2

(y szy) _(z 7nzz?z) 1 — 0 (143)
Y z

z — 22 xr — x2

( Tf)—( Tf)—lzo (144)

z x

with hyperbolas that open up and down the y-axis or z-axis. Other forms can be made
by transpositions or by using DCGA versor operations.

Expanding the squares, the equations for x, y, z-aligned hyperbolic cylinders are

9 2, 2 2 2 2
Py p22+y_2_2_2+<29_g_1’_2_1 = 0 (145)
Ty T Ty T3 Ty T:
—2p.2  2p.x 2% @ P pa
7t et e tt) = 0 o
—2pr | 2 N
Pt pgy+x_2_y_2+<P_2_P_g_1 _ 0. (147)
r2 Ty T, Ty Ty Ty

The DCGA GIPNS 2-vector {z,y,z}-axis aligned hyperbolic cylinder surface entities
JIH=9:2} are defined as

. T, T 2 2
Jlle — 2PZyTy+2p2T +—“§—TZ;+ p_g_p_;_l T (148)
r r? Ty T’ ry Ts
—2p.T. | 2pT [T Te (PP PP
Jllv — Z_ e Pz _Pr_1\T 149
e () e

. 2 2
Jlz — 2f2xTw+2p@;Ty+T_ﬂ;2_T_@;+<&_@_1>T1_ (150)

T /ry
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translation T

Yy
“
TRIlzR~T~ rotation R

Figure 11. DCGA hyperbolic cylinder rotated and translated

Figure 11 shows the z-axis aligned hyperbolic cylinder, with initial parameters p, =0,
py=0, r,=1, and r,=2. The second rendering of it is rotated 60° around the z-axis and
then translated by d = —10e; + 10e; using a composition of DCGA rotor R and translator
T operations.

4.15 DCGA GIPNS parallel planes pair

Parallel pairs of axes-aligned planes are represented by the simple quadratic equations in
one variable

(* = par)(x = pa2) = 0 (151)
(Y —py)(y —py2) = 0 (152)
(2 =pa)(z—pw2) = 0. (153)

Each solution is a plane. Expanding the equations gives

132 - (p:vl + pr)ZL‘ + Pz1Pz2 = 0 (154)
Y* = (Py1+Py2)y + pyipye = 0 (155)
22 - (pzl + pzZ)z + Pz1Pz2 = 0. (156)

The DCGA GIPNS 2-vector parallel {x,y,2}-planes pair entities II*{#¥#} are defined as

HJ_z = Tx2 - (p:vl + px2)Tx + pzlprTl (157)
I = T2 — (py1+ py2)Ty + pyipyTh (158)
HLZ - Tz2 - (pzl + pzZ)Tz + pzlpzZTl- (159)

These surfaces can also be described as being types of cylinders with cross sections being
two parallel lines.
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Figure 12. DCGA parallel planes pairs rotated

Figure 12 shows the DCGA GIPNS parallel planes pair entities rotated using DCGA
rotor operations. The red planes pair is initially perpendicular to the x-axis through
points p,1 =4 and p,o = 8, then it is rotated 30° around the y-axis. The green planes
pair is initially perpendicular to the y-axis through points p,; = —5 and p,2 =5, then it
is rotated 60° around the z-axis. The blue planes pair is initially perpendicular to the z-
axis through points p,; =—10 and p,o = —7, then it is rotated 90° around the x-axis until
it is perpendicular to the y-axis through the points p,; =10 and p,=7.

4.16 DCGA GIPNS non-parallel planes pair

The implicit quadric equation for a pair of intersecting, non-parallel planes that are
parallel to the z-axis is

— 2 —
(w=pa” WP _ (160)
rl‘
This equation can be written as
r
(y—py) = £ 2(z—p) (161)
with the z coordinate free to range. This surface can also be described as a kind of
cylinder with a cross section in plane z that is two lines with slopes j:% intersecting at
P=p.€1+ by€2 + zes.
Expanding the squares, the equation is

—2p.x | 2y 2%yt [0 Py
2t Té’ +T—§—T—§+ S-=] =0 (162)

The DCGA GIPNS 2-vector {z,y,z}-azis aligned non-parallel planes pair entities X ({92}
are defined as

. 2 2
Ty Ty T'y Ty Ty Ty

. 2 2
xlly — 2psz+2prw+2_T_§+<&_p_§)ﬂ (164)

2 2 2 2
T Tz T Tz T T
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; —2p. T 2p,T, Tp Tp P2 Pl
XH = 7”2 + T_y2 y—f—?—r—g"‘ ﬁ_r_g Tl- (165)
T Yy x Yy x Yy

RXIIZR~

Figure 13. DCGA non-parallel planes pair rotated

Figure 13 shows the entity X%, initially having planes with slopes j:% = j:% that cross
at the origin point p, =0, p, =0 in the zy-plane. It is then rotated usinxg a DCGA rotor
R around the y-axis by 70°. The line of crossing points was initially the z-axis, but after
rotation the crossing line is at 70° off the z-axis, around the y-axis. Like the other DCGA
entities, the non-parallel planes pair entities can be transformed into general positions
using DCGA versor operations.

4.17 DCGA GIPNS ellipse

The ellipse is a conic section, and like all conic sections it can be made as the intersection
of a plane and cone, but we are not limited to intersecting with cones. A simple ellipse
representation is made as the intersection of a plane and elliptic cylinder. The parabola
and hyperbola are also conic sections, and their simple representations are as planes
intersecting parabolic and hyperbolic cylinders. We can just define these conic sections
as these plane and cylinder intersections, but these conic sections could be formed by a
wide variety of other possible intersections.
The DCGA GIPNS 4-vector zy-plane ellipse 1D surface entity €/*¥ is defined as

el = M= A HI? (166)

where the DCGA GIPNS 2-vector plane IT*=Y is the entity for the plane z = 0, and
the DCGA GIPNS 2-vector elliptic cylinder H!I* is as previously defined and directly
represents an ellipse in the xy-plane. Other similar ellipse entities are the wedges of other
planes with other elliptic cylinders that are aligned differently.

A DCGA GIPNS ellipse entity €, or its dual DCGA GOPNS ellipse entity P =€ /Ip,
can be rotated, dilated, and translated using DCGA versor operations, where wversor
outermorphism is applied to the wedge of plane and cylinder that form the ellipse entity.
In versor operations on the ellipse entity, the plane and cylinder are each transformed by
the versor operations, and then the transformed plane and cylinder are intersected.
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The invariant test e - €/1*¥ =0 seems to indicate that the ellipse reaches to infinity,
but this should be considered as an invalid test.

4.18 DCGA GIPNS parabola
The DCGA GIPNS 4-vector zy-plane parabola 1D surface entity p!I*¥ is defined as

pley = TI*=0 A Bl (167)

where the DCGA GIPNS 2-vector plane IT*=° is the entity for the plane z = 0, and
the DCGA GIPNS 2-vector parabolic cylinder B!? is as previously defined and directly
represents a parabola in the zy-plane. Other similar parabola entities are the wedges of
other planes with other parabolic cylinders that are aligned differently.

4.19 DCGA GIPNS hyperbola
The DCGA GIPNS 4-vector zy-plane hyperbola 1D surface entity n/l*¥ is defined as

nllzy = T1*=0 A Jllz (168)

where the DCGA GIPNS 2-vector plane IT*=° is the entity for the plane z =0, and the
DCGA GIPNS 2-vector hyperbolic cylinder J? is as previously defined and directly
represents a hyperbola in the zy-plane. Other similar hyperbola entities are the wedges
of other planes with other hyperbolic cylinders that are aligned differently.

4.20 DCGA GIPNS cyclide

The implicit quartic equation for a Darbouz cyclide [11] surface is

At'+ Bt? + (169)
Cat?+ Dyt? + Ezt? +
Fo? +Gy?+ H2% +
Izy+ Jyz+ Kzx +
Lx+My+Nz+0O = 0

where t =ze; 4+ yes + zes is a test point and the A...O are 15 real scalar constants. The
point t is on the cyclide surface if the equation holds good.
The DCGA GIPNS 2-vector Darbouz cyclide surface entity €2 is defined as

Q = ATu+ BT+ (170)
CTy2+ DTyt2 + ET, 2+
FT+GTpe+ HT.2+
IToy+JTy.+ KT.0 +
LT, +MT,+ NT,+OT;.

All DCGA versor operations are valid on the Darboux cyclide entity Q and its dual *P.
The Darboux cyclide entity €2 can be intersected with DCGA GIPNS planes, spheres,
lines, and circles.
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Entities with A # 0 have valid dilator operations with all dilation factors, including
dilation factor 0. If A#£0, then Q dilates by factor 0 into ATia=—4Ae,, which is a valid
result representing the point at the origin. If A=0, then €2 dilates by factor 0 into scalar
0, which is an invalid result. Said differently, GIPNS entities that have e, as a term dilate
by factor 0 into e, (up to scale), and other GIPNS entities dilate by factor 0 into scalar
0. The duals of such dilations are either ;P or 0.

It was first discussed in Section 3, on the DCGA point Tp and extraction operators T,
and then mentioned again in the section on the DCGA GIPNS 2-vector ellipsoid surface
entity E, that any DCGA GIPNS 2-vector surface entity without a term in T4 has the
surface point e,. This includes some closed surfaces that would not be expected to have
the point e.

The constant B and the constants F', G, H allow alternative formulations of an entity
Q. If F=G=H, then F could be added to B to form a simpler entity having fewer terms
by eliminating F', G, H. If an amount b is subtracted from each of F', G, H, then it can
be added back as (B +), or the reverse. The surface represented by the entity €2 is not
affected by the specific choice of how to use B, F', G, H, but other metrical properties
could be affected. Metrical properties include the scalar results returned by the inner
products of entities, which are often distance measures between surfaces.

The Darboux cyclide entity 2 is the most general form of DCGA GIPNS 2-vector
surface entity that can be defined using the DCGA point Tp value-extraction operators
s =T - Tp. DCGA could be described as a conformal geometric algebra on Darboux
cyclide surface entities in 3D space. The tentative name, DCGA, could also be Gg
Darboux Cyclide Geometric Algebra. All of the DCGA GIPNS 2-vector quadric surface
entities and the toroid entity, and also their inversive or cyclidic surface forms when
reflected in DCGA spheres, can be represented as instances of the Darboux cyclide entity
Q.

An instance of the DCGA GIPNS 2-vector Darboux cyclide surface entity €2 can be
produced by one or more inversions in DCGA GIPNS 2-vector spheres S; of any DCGA
GIPNS 2-vector surface entity Y. For example, the inversion of a DCGA GIPNS 2-vector
quadric or toroid surface entity Y in a DCGA GIPNS 2-vector sphere entity S is the
reflection 2 =SY'S™, which is an instance of the Darboux cyclide surface entity €2 that
appears to be Y reflected in the sphere S. The sphere S can be visualized as a spherical
mirrored surface when Y is located entirely outside S, and the cyclidic reflection of Y is
seen on the surface of S or inside of S. Successive inversions or reflections of Y in multiple
spheres S; transforms Y into a succession of different cyclide surface entities, all based on
the initial shape of Y. The distinction between inversion and reflection, which concerns
whether or not the orientation of the surface remains the same or becomes inside-out, is
not being made here.

Dual DCGA GOPNS 8-vector surface entities Y*P can also be reflected in a sphere S,
or in its dual S*P, to produce an instance of the dual DCGA GOPNS 8-vector Darboux
cyclide surface entity €*P.

A singular outlier surface point Pp will exist on the inverse surface entity SYTS™ of
any DCGA GIPNS 2-vector closed surface entity Y without a term in Tia = —4e,. The
singular outlier surface point Pp is always the center point of the inversion sphere S.
The inverse surface entity SYS™ of an open surface entity Y that is known to reach
€, is expected to have the point Pp, as it does. If Y is a closed surface entity, then
it does not actually reach to infinity, and yet any such entity Y without a term in Ti4
has the surface point e, and has an inverse surface SYS™ that has the inversion sphere
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center point Pp as a singular outlier surface point. The inverse of point e, is always the
inversion sphere center point Pp, or the reverse. A singular outlier surface point may be
invisible on a surface plot. In particular, for any DCGA GIPNS 2-vector ellipsoid surface
entity E, its inverse surface entity SES™ has the inversion sphere S center point Pp as
an (invisible) singular outlier surface point. An unexpected ey, or outlier point Pp is a
possible problem for an application, but awareness of their existence may allow for a
workaround to mitigate any possible problem caused by their existence.

ring Dupi clide ®

Figure 14. Toroid O reflected in sphere S, 2 =S0OS™

n‘zde b .

Figure 15. Cylinder H reflected in sphere S, 2 =SHS"™

horned Dupin cyclide T’

Figure 16. Cone K reflected in sphere S, 2 =SKS™

Q

e ——— outlier of €2

Figure 17. Ellipsoid E reflected in sphere S, 2 =SES™
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Figure 18. Hyperboloid of one sheet X reflected in sphere S, 2 =SXS~

N
P

Figure 19. Hyperboloid of two sheets E reflected in sphere S, 2 =SES™

Figure 20. Paraboloid V reflected in sphere S, 2 =SVS™

Figure 21. Hyperbolic paraboloid M reflected in sphere S, 2 =SMS~
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It is beyond the scope of this paper to analyze and define every possible type of

cyclide that can be defined as instances of the Darboux cyclide entity 2. However, as an

example of what can be defined, we can consider the subsets of cyclides known as Dupin

cyclides and parabolic cyclides [5][15]. The Dupin cyclides can generalize the circular
toroid (torus) by creating cyclides based on torus inversion in a sphere. As shown in

Figures 14,15,16,17,18,19,20,21, it is possible to define many other specific cyclide entities

based on each of the quadric surfaces reflected in spheres.
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4.20.1 DCGA GIPNS Dupin cyclide

The implicit quartic equation for a Dupin cyclide surface is

(t2+ (b — p?))? —4(ax — cu)* — 40*y*> = 0

where t = ze; + yes + ze3 is a test point. Expanding this equation gives

64+ 26202 — p?) + (b — p?)? — 4(a®2? — 2acux + A p?)

The DCGA GIPNS 2-vector Dupin cyclide surface entity ® is defined as

P = Tia+ 2Tt2(62 — ,u2) +
—4&2T$2 — 4b2Ty2 -+

8acuT, + ((b* — pu?)* — 4c*u*)Th.

—4b%% = 0.

SECTION 4

(171)

(172)

(173)

The scalar parameters of the surface are a, b, ¢, i, with b always squared. The Dupin
cyclide can be described as a surface that envelops a family of spheres defined by two
initial spheres of minor radii, r1 and 79, centered on a circle of major radius R. To gain
a more intuitive expression of the Dupin cyclide equation, we can define the parameters as

a = R
1
o= §(T1+T2)
1
c = 5(7’1—7’2)
b2 = a®>—c2

(174
(175
(176

)
)
)
(177)

The Dupin cyclide ® is now defined by the three radii parameters, R, ri, ro. When
r=r1=ry, the Dupin cyclide ® is exactly the same entity as the toroid O with parameters

R and 7.
The DCGA GIPNS Dupin cyclide ® has the following related points:
Center of initial sphere S; with radius r; : —Re;
Center of initial sphere Sy with radius ro : +Re;
Center of ring or spindle hole in the cyclide : +ce;
Center of sphere enclosing entire cyclide : —ce;
Radius around —ce; enclosing entire cyclide : p+ R.
Twelve surface points on the Dupin cyclide ® are:
2 surface points on S; with radius r; : —Re;tre;
2 surface points on S; with radius r; : —Re; = 1e;3

2 surface points on Sy with radius ro : +Rej 1€

2 surface points on Sy with radius ro : +Re; +19e;3

2 surface points : —ce;+ (u+ R)ey
2 surface points : +ce; £ (u— R)es.

The Dupin cyclide @® is initially created having these 12 points. All DCGA versor oper-
ations are valid on the Dupin cyclide @ and can be used to rotate, dilate, and translate

it into another general position.
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The type of cyclide or torus represented by ® is determined by:

Ring cyclide when : (r;+rq) <2R

Spindle cyclide when : (r1+7r3) >2R

Horn cyclide when : (r;+rq)=2R
Ring torus when : (ri=rq) <R
Spindle torus when : (r1=713) >R
Horn torus when : (ri=rq)=R

= S

*c. .

Figure 22. Ring cyclide ®, (11 +r2) <2R

@0 b

Figure 23. Spindle cyclide ®, (r;+r2) > 2R

S b=

Figure 24. Horn cyclide @, (r;+12) =

Figures 22,23,24 show three types of the Dupin cyclide ®. The torus types, not shown,
are ordinary toroid surfaces and they are exactly the same entities as formed by the toroid
entity O. The inversion of a circular cylinder in a sphere can form a needle cyclide [15],
which is a ring cyclide having =0 or ro =0, 1 # ro.
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4.20.2 DCGA GIPNS horned Dupin cyclide

The horned Dupin cyclide is a modification of the Dupin cyclide that causes both of the
initial spheres to shrink until they meet in points. The horned Dupin cyclide is formed
by swapping p and ¢ in the implicit equation of the Dupin cyclide. The parameters a, b,
c, p are defined as

a = R (178)
po= glrien) (179)
¢ = n-m) (150)
v o= a®— 2 (181)
The DCGA GIPNS 2-vector horned Dupin cyclide surface entity I' is defined as
' = T+ 2T(b*— )+ (182)

—4a2T$2 — 4bQTy2 —+
8acuTy, + ((0* — )? — 4c*u®)Ty.

The DCGA GIPNS horned Dupin cyclide I" has the following related points:

Center of initial sphere S; with radius r; : —Re;
Center of initial sphere Sy with radius r, : +Re;
Center of ring or spindle hole in the cyclide : +ce;
Center of sphere enclosing entire cyclide : —ce;

Radius around —ce; enclosing entire cyclide : p+ R.
Twelve surface points on the horned Dupin cyclide I' are:

2 surface points on S; with radius r, : —Re;trie;

2 surface points on S; with radius r; : —Re; +1e;3

2 surface points on Sy with radius ro : +Rej 1€

2 surface points on Sy with radius ro : +Re; +1e;3
2 surface points : —pe; £ (c+ R)ey
2 surface points : +ue; £ (c— R)es.

The horned Dupin cyclide T is initially created having these 12 points. All DCGA versor
operations are valid on the horned Dupin cyclide I' and can be used to rotate, dilate, and
translate it into another general position.

The type of cyclide or torus represented by I' is determined by:

Horned ring cyclide when :

Horned spindle cyclide when :

Horned spheres (two tangent spheres) when :
Horned ring torus when :

Horned spindle torus when :

Horned spheres when :
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The horned spheres represents the union or product of two implicit surface functions for
two spheres of radius r; and r5 that touch in a single tangent point, and it is an instance
of a spheres pair cyclide entity. A different and more general spheres pair entity, the
DCGA GIPNS 2-vector spheres pair entity &, can be defined as the wedge of a CGA1l
GIPNS sphere Si¢: and another CGA2 GIPNS sphere Soez2 as € =Sie1 A Soe2. The spheres
pair &€ can be transformed by the DCGA versors and intersected with standard DCGA
spheres, planes, lines, and circles but not with any quadric or cyclidic surface entities.

L) °
° ° &
74 1
L] o
° @ ° ° ° ° o o o 3 ® e [ ] /oo
o L)
4 4 ¢
o . 14
L ’ . F b

Figure 26. Horned spindle cyclide T, (r1 +r2) > 2R

Figure 27. Horned spheres cyclide T, (11 +r2) =2R

Figures 25,26,27 show three types of the horned Dupin cyclide I'. The three other
types with r1 = 79, not shown, are symmetrical versions of the three types shown. As
defined, the Dupin cyclides are symmetrical across the planes y =0 and z =0, and are
also symmetrical across the plane z = 0 only when r; = 3. The horned Dupin cyclides
can be formed as the inversions of circular cones in spheres.

All of the Dupin cyclide entities have term Ti+ = —4e, and are true closed surfaces
that do not have surface point e,,. Therefore, the Dupin cyclide entities ® and T, like
the standard sphere S and toroid O entities, are well-behaved entities that do not have
a singular outlier point at the inversion sphere center under inversion in a sphere.
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4.20.3 DCGA GIPNS parabolic cyclide
The DCGA GIPNS 2-vector parabolic cyclide surface entity ¥ can be defined as
U = BT+ CTyue+ DTy + ET.2+ (183)
FT2+GTp2+ HT,2+
IT,y+JT,).+ KT, +
LT,+MT,+ NT.+OT,

with C, D, F not all zero. A degenerate parabolic cyclide has C'=D = FE=0. All DCGA
versor operations are valid on the parabolic cyclide entity ¥, and it can be intersected
with the standard DCGA GIPNS sphere, plane, line, and circle entities that are defined
as special bi-CGA entities.

The parabolic cyclide entity ¥ is simply the Darboux cyclide entity 2 with A =0,
and it is a cubic surface entity. Without a term in 7+ = —4e,, the surface entity W has
surface point e, and is generally an open-surface entity. The DCGA GIPNS 2-vector
ellipsoid entity E is a degenerate parabolic cyclide entity that becomes a closed-surface
entity with a singular outlier surface point at e.

An instance of the DCGA 2-vector parabolic cyclide surface entity ¥ can be produced
as the inversion of a DCGA GIPNS 2-vector Darboux cyclide surface entity €2 in a
standard DCGA GIPNS 2-vector sphere surface entity S that is centered on a surface
point of 2.

The inversion sphere S, with center point Pp =D(p) on the surface of an entity €2,
gives the inverse surface ¥ as

U = SQS™=(Sc1ASe2)Q(Sc2 A Set) = Se1Sc22Sc2Sc1 (184)
= (Pcl — %Tzeool) (Pc2 — %Tzemg)QSc2Sc1.

If expanded further with the surface point condition Pp - €2 = 0, then it is found that
(Pp=Pc1 APe2) «— ey, or that Pp goes to e and e goes to Pp. Surface points of
2 that are outside S are brought inside S, and surface points of €2 that are inside S are
taken outside S.

A surface point D(p +d) of €2 is transformed by inversion in sphere S centered at p
with radius r as

(

D<p+£—22d> : d?#£0
" € d2—=0
SD(p+d)S = D(p) Cd2 0o (185)
Dp+dl) :r=1
D(p+d) : d?=1r2
_ _ 1 1.

The displacement d from the inversion sphere center p is literally inversed to d=! when
the inversion sphere has radius » = 1. As an inversion operator, an inversion sphere S
could be called an inversor, especially if it has radius r = 1 where S?= —1 as a proper
versor with unit magnitude.

In general, an inversion sphere S can have any center point Pp and any radius r. If
r =0, then S = Pp, which is a finite point that could be e,. An infinite radius r = 0o is
represented by S = e,.. Inversion in any point S =Pp or S = e, sends everything into
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the point and produces the point S, unless the point S is a surface point of {2 and then
any point sent into itself produces the nil scalar 0 result for the entire surface inversion.

Open surfaces W that extend out to infinity e, are the only surfaces that reflect S¥S™
continuously into the center point Pp of an inversion sphere S. Conversely, by placing
the center point Pp of an inversion sphere S on any surface {2 and then reflecting SQ2S™
the surface outward, the resulting open surface ¥ = SQ2S™ extends out to infinity e,
and must be a plane or curved sheet that is either a parabolic cyclide ¥ or a degenerate
parabolic cyclide that is one of the quadric surfaces. Quadric surfaces are degenerate
parabolic cyclides, and all other curved-sheet cubic surface entities are instances of the
parabolic cyclide entity.

Sphere, plane, line, and circle entities can be created as the standard DCGA GIPNS
sphere, plane, line, and circle entities S, I'l, L, C which are defined as bi-CGA entities.
Sphere, plane, line, and circle entities can also be created as non-standard entities that
are instances of degenerate parabolic cyclides using only linear and quadratic extraction
terms. Only the standard sphere, plane, line, and circle entities operate as inversion or
reflection operators. All DCGA surface entities Y can be reflected in the standard sphere
S, plane II, line L, and circle C. Reflection in a line LYL™ rotates Y by 180° around
the line. Inversion in a circle CYC"™ is equal to a composition of a planar reflection
and spherical inversion as SIIYIIS where C = S A II. The results of inversion or
reflection operations on standard and non-standard sphere, plane, line, and circle entities
in the standard ones are not the same. Reflections and inversions of the standard entities
produce another one of the standard entities. Reflections and inversions of the non-
standard entities can produce cubic surfaces that represent the expected surfaces but
which also have a singular outlier surface point at the inversion sphere center point. All
parabolic cyclides and degenerate parabolic cyclides have the point e, which reflects into
an inversion sphere center point.

Figure 28. Toroid O on inversion sphere S center Pp=¢,, ¥ =S0S"~
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outlier pf E

Figure 29. Ellipsoid E on inversion sphere S center Pp=D(—10e3), ¥ = SES™

5 DCGA GOPNS surfaces

Up to four DCGA points can be wedged to form DCGA geometric outer product null
space (GOPNS) 4,6,8-vector surface entities of the surface types available in CGA. Unfor-
tunately, the wedge of more than four points, as required for the quadric surfaces, does
not work with DCGA points.

The DCGA GOPNS surface entities for quadric surfaces and the toroid would require
more than four points to define them. For quadric surfaces in general position, it takes 5
points in 2D, and 9 points in 3D to define a quadric surface. If limited to principal axes-
aligned surfaces, it still requires 6 points in 3D to define a quadric surface, as in QGA.
Therefore, it seems that it is not possible in DCGA to directly represent the DCGA
GOPNS quadric surfaces as the wedge of DCGA surface points. When more than four
DCGA surface points are required to define a surface, then more complicated formulas
are still possible but they resolve back to the GIPNS entities.

In general, we can always obtain a DCGA GOPNS surface entity S*P by taking
the DCGA dual of a DCGA GIPNS surface entity S as S*? =S /Ip. All DCGA versor
operations are valid on both the DCGA GIPNS entities and their dual DCGA GOPNS
entities.

The following four subsections define the four DCGA GOPNS surface entities which
can be constructed as wedges of up four DCGA surface points. These four DCGA GOPNS
surface entities are just the DCGA analogues of the CGA GOPNS surface entities.
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A DCGA test point Tp that is on a DCGA GOPNS surface entity S*P must satisfy the
GOPNS condition

TpASP = 0.

The DCGA GOPNS k-vector surface entity S*P represents the set NOg(S*P € G& o)
of all 3D vector test points t that are surface points

NO(S*PeGy) = {teG) : (D(t)=Tp)AS=0 }.

5.1 DCGA GOPNS sphere

The DCGA GOPNS 8-vector sphere S*P is defined as the wedge of four DCGA points
Pp, on the sphere as

S*? = Pp,APp,APp,APp, (187)
= S/ID
and is the DCGA dual of the DCGA GIPNS 2-vector sphere S.

5.2 DCGA GOPNS plane

The DCGA GOPNS 8-vector plane IT*P is defined as the wedge of three DCGA points
Pp, on the plane and the DCGA point at infinity e, as

P = Pp, APp,APp,ANey (188)
= II/Ip
and is the DCGA dual of the DCGA GIPNS 2-vector plane II.

5.3 DCGA GOPNS line

The DCGA GOPNS 6-vector line L*P is defined as the wedge of two DCGA points Pp,
on the line and the DCGA point at infinity e, as

L? = Pp APp,Aex (189)
= L/Ip

and is the DCGA dual of the DCGA GIPNS 4-vector line L.

5.4 DCGA GOPNS circle
The DCGA GOPNS 6-vector circle C*P is defined as the wedge of three DCGA points

Pp, on the circle as

C*? = Pp,APp,APp, (190)
= C/Ip
and is the DCGA dual of the DCGA GIPNS 4-vector circle C.

6 DCGA operations

The DCGA operations are very similar to the CGA operations, but the DCGA versors
are the wedges of the two likewise CGA versors in both CGA1 and CGA2.
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6.1 DCGA rotor
The DCGA rotor R is defined as
B = ReohRen (191)

The CGA rotors for the same rotation operation in CGA1l and CGA2 are wedged as
the DCGA rotor R. All DCGA entities X, including both GIPNS and GOPNS, can be
generally rotated around any axis by any angle by the DCGA rotor operation

X' = RXR™. (192)

6.2 DCGA dilator
The DCGA dilator D is defined as

D = DA Des. (193)

The CGA dilators for the same dilation operation in CGA1l and CGA2 are wedged as
the DCGA dilator D. All DCGA entities X, including both GIPNS and GOPNS, can be
dilated by the DCGA dilator operation

X' = DXD~. (194)

Keep in mind that dilation also dilates the position of an entity, which may cause an
unexpected translational movement. To scale an entity, it should be translated to be
centered on the origin, dilated around the origin, and then translated back.

6.3 DCGA translator
The DCGA translator T is defined as

T = TeATe (195)

The CGA translators for the same translation operation in CGA1 and CGA2 are wedged
as the DCGA translator 7. All DCGA entities X, including both GIPNS and GOPNS,
can be translated by the DCGA translator operation

X' = TXT. (196)

6.4 DCGA motor
The DCGA motor M is defined as

M = M A M. (197)

The CGA motors for the same motion operation in CGA1 and CGA2 are wedged as the
DCGA motor M. All DCGA entities X, including both GIPNS and GOPNS, can be
moved by the DCGA motor operation

X' = MXM~. (198)

6.5 DCGA intersection

Inversions in the standard DCGA GIPNS 2-vector sphere S, and reflections in the stan-
dard DCGA GIPNS 2-vector plane IT are valid operations on all DCGA GIPNS entities.
The dilator D operation is defined by inversions in spheres. The rotor R operation is
defined by reflections in planes. These are operations that are known to work correctly,
based on inversions and reflections.



DCGA OPERATIONS 47

If any DCGA GIPNS 2-vector entity Y and sphere S are intersecting in curve X on
S, then the inversion of Y in the sphere 2 =SYS" is also intersecting with both Y and
S through the same intersection X. If entity Y and plane IT are intersecting, then the
reflection of Y in the plane ITYTII™ is also intersecting with both Y and IT through the
same intersection. Planar reflection is a special case of spherical inversion when the sphere
radius 7 — oo and S — IT through three plane points. As Y becomes a sphere Sy or plane
IT denoted by Y — So|I1, then Q — IT|S,, and X — C to form a circular intersection, but
Q and X have various possible surface and curve shapes when Y # Sy|TI.

For the inversion, we have

Q2 = SYS"=(S-YT+SxYT+SAY)S™ (199)
= (S-Y7)S™+ (T xS)S —S*Y AS)SS~2
= (S-T)S~+%(Ts—ST)S—S2PS+(T)
= 2(S-Y)S~+YS?-2S*Pg(Y)
X=0QAS = S})YAS)-2S?Pg(Y)S=-S%YTAS). (200)

This expression of X implies that X represents something in common with both Y and €2
in relation to S. That something is their intersection, and X is the entity that constructs
and represents their intersection.

The product x is the commutator product on 2-vectors that produces another 2-
vector. The operation Pg ()= (Y AS)S~!is the perpendicular projection or rejection of
Y from S, and Ps(Y)= (Y -S)S~! is the parallel projection of X on S [8]. The operation
PS(Y) = (Y x S)S~! is another projection of Y on S. For 2-vectors, S x ¥ = -0 x S,
but SAY =Y AS. Note that S~¥=—-S=—-82S~!, and S?= —r* where r is the radius of
sphere S. If r — 00, then S —1II, S2 - II?=—1, and X=QAS=TAS.

The pair of inverse surface entities Y and €2 could also be defined as

Y = YSS'=Pg(Y)+Pg(Y)+Ps(Y) (201)
Q = SYS'=Ps(Y)—PS(Y)+Pg(Y) (202)

and then X =QAS =" AS exactly, but 2=SYS™ will be assumed henceforth.
The test for a point Tp on the intersection entity X is

Tp-X = Tp-(QAS)=-S2Tp- (YT AS) (203)

where if Tp - X = 0, then the point Tp is on the intersection of all three surfaces
represented by S, Y, and 2.

The DCGA GIPNS 4-vector intersection entity X =Y A S is derived from the inversion
of Y in S. Proving this precisely may be simple if certain algebraic steps are taken
correctly. Y, 2, and X are generally not blades, and Tp is a null 2-blade. Most of the
usual algebraic identities are valid only on blades that are the product of non-null vectors
or blades. Therefore, the algebraic steps leading to a clear proof may require unusual
identities or other results.

DCGA GIPNS intersection entities Y AIL, Y AL, and Y A C, for intersections of any
DCGA GIPNS entity Y with the standard DCGA GIPNS 2-vector plane IT, 4-vector line
L, and 4-vector circle C, are also derived from reflections or inversions. Line L =TI; ATl
and circle C =S ATI are just intersections of sphere and plane entities.
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Inversions or reflections work only in the standard DCGA 2-vector sphere S and plane
I1. Inversions do not work in other entities, and therefore other entities cannot form
intersection entities with each other. For example, the DCGA GIPNS 2-vector quadric
surface entities do not work as inversion or reflection operators, and therefore they cannot
form intersection entities with each other. The intersection of two entities depends on at
least one of them being a valid inversion operator on the other entity.

In symbolic calculations, the simplest intersection entities, such as X =Y A S, are
4-vectors with many 4-blade terms or components. The scalar magnitude of each 4-
blade is an implicit surface function for a surface that is coincident with the intersection
represented by Y A'S. Not every blade holds a unique implicit surface function, but the
number of unique functions can exceed ten. Figures 30 and 31 are plots of intersections
that are showing all of the unique implicit surfaces that are extracted from the blades of
the intersection entities.

The foregoing discussion has not given any rigorous proof of the correctness of the
intersection entities. Gg o DCGA is a large and complicated pseudo-Euclidean algebra, and
there could be unforeseen cases where intersections do not work as expected. Therefore,
the following box serves as a mild warning before continuing.

Although not rigorously proved here, the intersection tests performed by this author
supported the following claims given in this subsection about DCGA intersection.
Detailed examinations of ellipsoid-plane and ellipsoid-sphere intersections are shown
in Figures 30 and 31. These claims should be considered preliminary, and require
additional research to prove for certain what intersections are valid or invalid.

The set S={S,II} of standard bi-CGA GIPNS entities includes all instances of the
DCGA GIPNS 2-vector sphere S and plane II. These two entities are defined in previous
sections on them. The DCGA GIPNS 4-vector line L = II; A Il and circle C=S ATl
are extended standard bi-CGA GIPNS entities that are the intersections of spheres and
planes.

The DCGA GIPNS intersection entity X is the wedge of 2 < n < 4 standard bi-
CGA GIPNS entities B; € S, or is the wedge of 1 <n <3 entities B; €S and one DCGA
GIPNS 2-vector entity A ¢ S that is not a standard bi-CGA GIPNS entity. Only one
DCGA GIPNS 2-vector Darboux cyclide surface entity A g =2 (or any degenerate) can
be included in a wedge that forms an intersection entity X. Unfortunately, the Darboux
cyclide entities, including the quadric surfaces, cannot be intersected directly with each
other by wedge products since they are invalid inversion operators. These claims are
summarized by the following definition.

The DCGA GIPNS intersection entity X of grade 4 <k <8 is defined as

2<n<4
A\ B, : B;€S and S={S,II}
Xa<k<s) = =l cn<s (204)
A<2> N /\ Bz : A<2> ¢ S and Bz €S.

=1

The maximum grade for a valid intersection entity X is grade 8. The grade of the wedges
is divisible by 2, making the next grade above 8 to be 10, proportional to the DCGA unit
pseudoscalar Ip. No valid entity is a pseudoscalar.
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Figure 30. Intersection of ellipsoid and plane in general positions

Figure 30 shows the details of a DCGA GIPNS 4-vector intersection entity E A IT
representing the intersection of a DCGA GIPNS 2-vector ellipsoid E and DCGA GIPNS
2-vector plane II, both rotated and translated differently into general positions that have
an intersection. The red ellipsoid E has initial parameters r, =5, ry, =7, r,=9, p, =1,
py=—2, p.=3, and is then rotated 30° around the blue z-axis. The Sympy test code for
the ellipsoid was:

Rotor(e3, 30*pi*Pow (180,-1)) *
GIPNS_Ellipsoid(1,-2,3,5,7,9)*
Rotor (e3,30*pi*Pow (180,-1)) .rev()

The black dot is the ellipsoid center position. The blue plane II is initially perpendicular
to the z-axis through the origin, then transformed according to the following code:
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Rotor(el, 30*pi*Pow (180,-1))*
Translator (-4*e2)*

Rotor(e3, -60*pi*Pow(180,-1))*
GIPNS_Plane(el,0)*

Rotor(e3, -60*pi*Pow(180,-1)) .rev()*
Translator(-4*e2) .rev()*
Rotor(el,30*pi*Pow (180,-1)) .rev()

Their DCGA GIPNS intersection is X = E A II. The various images in Figure 30 show
components of X that represent other surfaces that are all coincident with the intersection
of the ellipsoid and plane. There were ten unique components in X. These components
are cylinders, hyperboloids, and a cone. The intersection entity X represents the locus
of points that are simultaneously located on all ten of these surfaces, which is an ellipse-
shaped intersection of the ellipsoid and plane.

&P

Figure 31. Intersection of ellipsoid and sphere in general positions

Figure 31 shows the same red DCGA GIPNS ellipsoid E as in Figure 30, but now
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intersected with a blue DCGA GIPNS sphere S of radius » =5 at position e; + 5e; + 3es.
The DCGA GIPNS intersection entity is now X = E A S. The shape of the intersection
appears like a curved ellipse or curved circle. The components of the entity X represent 15
other unique surfaces that are also coincident with the intersection of E and S. The images
of Figure 31 show how each of these 15 surfaces intersect with the intersection of E and
S. Some of these surfaces are unusually shaped, and some have two sheets. The DCGA
GIPNS intersection entity X represents the simultaneous locus or intersection of all of the
involved surfaces and appears to be a valid intersection entity for the ellipsoid and sphere.

The DCGA GIPNS quadric surface entities, of the types not available in CGA, could
not be wedged with each other to form valid intersection entities - incorrect or invalid
intersection entities resulted from their wedge. More generally, the DCGA GIPNS Dar-
boux cyclide entities {2 cannot be intersected with each other by wedge products, but one
can be intersected with standard bi-CGA GIPNS entities. As a curiosity, it was noticed
that the sum and the difference of two intersecting DCGA GIPNS quadric surface entities
represent two more coincident intersecting surfaces.

Figure 32. Intersection ® AII of ring Dupin cyclide ® and plane IT



52 SECTION 7

6.6 DCGA dualization
The DCGA unit pseudoscalar Ip is defined as

Ip = I Al (205)

= €1€2€3€4€5€5e7€3€E9e1(

and is the DCGA dualization operator on all DCGA entities.
Properties of Ip include

Iy = (=)0 V2= —1p (206)
I3 = —Iplz=—1 (207)
I = Ig=—Ip. (208)

According to the sign rule (—1)"%=Y for the commutation of the inner product of two
blades, the DCGA pseudoscalar Ip commutes with blades of even grade r, such as the
DCGA 2-vector points, DCGA GIPNS 2,4,6,8-vector surfaces, and their dual DCGA
GOPNS surfaces.

A DCGA GIPNS Ek-vector surface entity X is dualized into its dual DCGA GOPNS
(10 — k)-vector surface entity X*P as

XP = X/Ip=-X-Ip. (209)

A DCGA GOPNS k-vector surface entity X*P is undualized into its undual DCGA GIPNS
(10 — k)-vector surface entity X as

X = XPIp=X"P. Ip. (210)

This definition of dual and undual preserves the sign on the entities, otherwise the dual
applied twice changes signs.

It is understandable that many authors may call the GIPNS entities dual and the
GOPNS entities standard, but since in DCGA we cannot wedge DCGA points into all of
the GOPNS entities, the GIPNS entities are considered the standard or undual entities
and the GOPNS entities are the dual entities. Most of the DCGA GOPNS entities can
only be obtained by the dualization operation as duals.

7 DCGA computing using Gaalop

The Geometric Algebra Algorithms Optimizer Gaalop is a Geometric Algebra Computing
and Visualization software developed by DIETMAR HILDENBRAND et al. Hildenbrand
introduces Gaalop in his book [9] and recent paper [6]. The Gaalop Precompiler is intro-
duced by PATRICK CHARRIER in his master’s thesis [2]. The Visualizer plugin for Gaalop
is introduced by CHRISTIAN STEINMETZ in his master’s thesis [16].

Gaalop uses the CLUScript domain-specific scripting language for Geometric
Algebra Algorithms that was originally written and conceived by CHRISTIAN PERWASS
as the scripting module of his CLUCALC and CLUVI1Z software packages. Perwass intro-
duces CLUCalc in his book [12].
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Using Gaalop, geometric algebra computations or algorithms can be developed in
CLUScript. Gaalop plugins can translate or compile the CLUScript into other program-
ming languages or codes for applications or visualizations. Gaalop is a tool that enables
Geometric Algebra to be used as a practical unified mathematical language for science
and engineering applications. Gaalop allows the user to define and use arbitrary geometric
algebras G, ,» of p positive-signature vector-units, ¢ negative-signature vector-units, and
r null vector-units. Gaalop comes preconfigured to support many well-known geometric
algebras that have been introduced in papers and books. Gg o DCGA, being introduced
only now in this paper, was unknown and therefore not preconfigured in Gaalop at the
time of writing this paper.

The remainder of this section shows how to define DCGA in Gaalop and then to
visualize some of the DCGA entities using the Visualizer plugin.

7.1 definition.csv

Following Steinmetz’s thesis, to define our “Own” algebras in Gaalop, we start by creating
a folder, which we can call algebras, to hold subfolders for each algebra we want to
define. Next, we create the subfolder algebras/DCGA to hold the files that define the
DCGA algebra. The first file we must create is algebras/DCGA/definition.csv, which
must contain the following 5 lines (the 2nd and 5th lines are blank):

1,el,e2,e3,e4,e5,e6,e7,e8,e9,el0

1,el,e2,e3,e4,e5,e6,e7,e8,e9,el0
el=1,e2=1,e3=1,e4=1,e5=-1,e6=1,e7=1,e8=1,e9=1,el10=-1

7.2 macros.clu

The definition.csv file only defines the generic Gg o Geometric Algebra basis vectors.
The next file we must create is algebras/DCGA/macros.clu, which contains CLUScript
macro/function definitions that define everything else that is specific to DCGA:

// DCGA macros.clu
// CGAl, CGA2, and DCGA origin and infinity points

eol = { (1/2)*(-ed+eb) }
eo2 = { (1/2)*(-e9%+el0) }
eil = { ed+eb }

ei2 = { e9%+el0 }

eo eol () "eo02() }

{
ei = { eil()"ei2() }

// DCGA point value-extraction operators for defining DCGA GIPNS 2-vector entities

Tx = { (1/2)*(el”ei2()+eil()"e6) }
Ty = { (1/2)* (e2%ei2 () +eil()"e7) }
Tz = { (1/2)*(e3%ei2()+eil()"e8) }
Txy = { (1/2)*(e7"el+e6”e2) }

Tyz = { (1/2)*(e7"e3+e8%e2) }

Tzx = { (1/2)* (e8%el+e6”e3) }

Txx = { e6”el }
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Tyy = { e7%e2 }

Tzz = { e8%e3 }

Txt2 = { el”eo2()+eol () e6 }
Tyt2 = { e2%eo02()+eol () "e7 }

Tzt2 = { e3%eo02()+eol()"e8 }

Tl = { —ei() }

Tt2 { eo2()”eil()+ei2 () "eo0l () }
Tt4 { —4*eo0 () }

// Pseudoscalars

IE1l = { el”e2”e3 }

IE2 = { e6”e7"e8 }

ICl = { el”e2”e3”ed”eb }

IC2 = { e6”e7"e8"%e9%el0 }

ID = { el”e2”e3”ed”eb”e6”e77e8%e9%el0 }

// DCGA dualization macro

DD = { —_P(1).ID() }

// CGAl and CGA2 dualizations

ClD = { —_P(1).IC1¢() }

C2D = { —_P(1l).IC2() }

// Euclidean 1 and Euclidean 2 dualizations

E1D = { —_P(1).IE1() }

E2D = { —_P(1).IE2() }

// special Dual macro for DCGA dualization operator *
Dual = { DD(_P(1)) }

// Normalize a non-null vector
Normalize = { _P(1l)/sqgrt(_P(1l)._P(1l)) }
// Convert degrees angle to radians
Deg2Rad = { _P(1)*acos(-1)/180 }

// CGAl_Point (x,y,z) representing point at (x,y,z) in Euclidean 3D
CGAl_Point = {
_P(l)*el + _P(2)*e2 + _P(3)*e3 +
(1L/2)*(_P(1)*_P(1l) + _P(2)*_P(2) + _P(3)*_P(3))*eil() + eol()
}
// CGA2_Point (x,y,z) representing point at (x,y,z) in Euclidean 3D
CGA2_Point = {
_P(l)*e6 + _P(2)*e7 + _P(3)*e8 +
(1L/2)*(_P(1)*_P(1l) + _P(2)*_P(2) + _P(3)*_P(3))*ei2 () + eo2()
}

// special DCGA createPoint macro

createPoint = { CGAl_Point (_P(1),_P(2),_P(3))"CGA2_Point (_P(1),_P(2),_P(3))
DCGA_Point = { createPoint (_P(1l),_P(2),_P(3)) }
Normalize_ CGAl_Point = { _P(1)/(—_P(1l).eil()) }
Normalize_ CGA2_Point = y.ei2()) }
)

{ _P(L)/(-_P(1
Normalize_DCGA_Point = { _P(1)/(—_P(1).ei() }
// Embed vector as CGAl point (shorter name for CGAl_Point)
EVl = { CGAl_Point (_P(1),_P(2),_P(3)) }

// Embed vector as CGA2 point (shorter name for CGA2_Point)
EV2 = { CGA2_Point (_P(1),_P(2),_P(3)) }

// Embed vector as DCGA point (shorter name for DCGA_Point)
EV = { DCGA_Point (_P(1),_P(2),_P(3)) }

// Project CGAl point back to a vector in Euclidean 1 space
PVl = { —(Normalize_CGAl_Point (_P(1)).IE1()).IE1() }

// Project CGA2 point back to a vector in Euclidean _2_ space
PV2 = { - (Normalize_ CGA2_Point (_P(1l)).IE2()).IE2() }

// Project DCGA point back to a vector in Euclidean 1 space
PV = { PV1(_P(1l).ei2()) }

// Rotor(x,y,z,a) with axis (x,y,z) and rotation angle a in _degrees_
CGA1l_Rotor = { t = Deg2Rad(_P(4));
cos (t/2) + sin(t/2)*E1D (Normalize (_P(1l)*el + _P(2)*e2 + _P(3)*e3))

SECTION 7

}
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}
CGA2_Rotor = { t = Deg2Rad(_P(4));
cos(t/2) + sin(t/2)*E2D (Normalize (_P(l)*e6 + _P(2)*e7 +
}
Rotor = {
CGAl_Rotor (_P(1),_P(2),_P(3),_P(4))"CGA2_Rotor(_P(1),_P(2),_P(3),_P(4))
}
// Dilator(d) with scalar dilation factor d
CGAl_Dilator = { (1/2)*(1+_P (1)) + (1/2)*(1-_P(1l))*(eil()”eo0l()) }
CGA2_Dilator = { (1/2)*(1+_P(1)) + (1/2)*(1-_P (1)) *(ei2()"e02()) }
Dilator = { CGAl_Dilator(_P(1))"CGA2_Dilator(_P (1)) }
// Translator(x,y,z) for translation by displacement vector (x,Vy,z)
CGAl_Translator = { 1 - (1/2)*(_P(1l)*el+_P(2)*e2+_P (3)*e3)*eil () }
CGA2_Translator = { 1 = (1/2)*(_P(1)*e6+_P(2)*e7+_P(3)*e8)*ei2 () }
Translator = {
CGAl_Translator (_P(1),_P(2),
}

P (3) *e8))

P (3))"CGA2_Translator (_P(1l),_P(2),_P(3))

// Ellipsoid(px,py,pz,rx,ry,rz) with center (px,py,pz), radii rx ry rz
Ellipsoid = {
pxSq = _P(1)*_P(l); pySq = _P(2)*_P(2); pzSq = _P(3)*_P(3);
rxSq = _P(4)*_P(4); rySg = _P(5)*_P(5); rzSg = _P(6)*_P(6);
-2*_P(1)*Tx () /rxSq + —-2*_P(2)*Ty()/rySq + —-2*_P(3)*Tz()/rzSq +
Txx () /rxSq + Tyy()/rySq + Tzz()/rzSq +
(pxSqg/rxSq + pySa/rySq + pzSqg/rzSq - 1)*T1()
}
// Toroid(R,r) with major radius R and minor radius r
Toroid = {
R = _P(l); r = _P(2); dSg = R*R - r*r;
Tt4 () + 2*Tt2()*dSqg + T1()*dSg*dSq - 4*R*R* (Txx () +Tyy ())
}

// Sphere(x,y,z,r) with center point (x,y,z) and radius r

CGAl_Sphere = { CGAl_Point (_P(1),_P(2),_P(3)) — (1/2)*_P(4)*_P(4)*eil () }
CGA2_Sphere = { CGA2_Point (_P(1),_P(2),_P(3)) = (1/2)*_P(4)*_P(4)*ei2 () }
Sphere = {

CGAl_Sphere (_P(1),_P(2),
}
// Plane (nx,ny,nz,d) with normal (nx,ny,nz) at distance d from origin
CGAl_Plane = { Normalize(_P(l)*el + _P(2)*e2 + _P(3)*e3) + _P(4)*eil () }
CGA2_Plane = { Normalize(_P(l)*e6 + _P(2)*e7 + _P(3)*e8) + _P(4)*ei2 () }
Plane = {
CGAl_Plane(_P(1),_P(2),_P(3),_P(4))"CGA2_Plane(_P(1),_P(2),_P(3),_P(4))
}
// Line (px,py,pz,dx,dy,dz) through (px,py,pz) in direction of (dx,dy,dz)
CGAl_Line = {
d = Normalize (_P(4)*el + _P(5)*e2 + _P(6)*e3); D = EID(d);
p = _P(l)*el + _P(2)*e2 + _P(3)*e3; D - (p.D)*eil()
}
CGA2_Line = {
d = Normalize (_P(4)*e6 + _P(5)*e7 + _P(6)*e8); D = E2D(d);

P(3)*e8; D -

P(3),_P(4))"CGA2_Sphere(_P(1),_P(2),_P(3),_P(4))

p = _P(l)*e6 + _P(2)*eT7 + _ (p.D) *ei2 ()
}

Line = {
CGAl_Line(_P(1),_P(2),_P(3),_P(4),_P(5),_P(6))"
CGA2_Line(_P(1),_P(2),_P(3),_P(4),_P(5),_P(6))

}

// Cylinder (px,py,Pz,rX,ry,rz) with center (px,py,pz) and radii rx ry rz
CylinderX = {

px = _P(l); py = _P(2); pz = _P(3); rx = _P(4); ry = _P(5); rz = _P(6);
pxSq = _P(1)*_P(1); pySq = _P(2)*_P(2); pzSq = _P(3)*_P(3);
rxSq = _P(4)*_P(4); rySqg = _P(5)*_P(5); rzSqg = _P(6)*_P(6);

—-2*py*Ty () /rySq + —-2*pz*Tz()/rzSq + Tyy()/rySq + Tzz()/rzSq +
(pySa/rySq + pzSg/rzSq — 1)*T1()
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}
CylinderY = {

px = _P(l); py = _P(2); pz = _P(3); rx = _P(4); ry = _P(5); rz = _P(6);
pxSq = _P(1)*_P(l); pySq = _P(2)*_P(2); pzSq = _P(3)*_P(3);

rxSq = _P(4)*_P(4); rySg = _P(5)*_P(5); rzSg = _P(6)*_P(6);
—2*px*Tx () /rxSq + —-2*pz*Tz()/rzSq + Txx()/rxSq + Tzz()/rzSq +
(pxSq/rxSq + pzSq/rzSq - 1) *T1()

}
CylinderzZ = {

px = _P(l); py = _P(2); pz = _P(3); rx = _P(4); ry = _P(5); rz = _P(6);
pxSq = _P(1)*_P(1l); pySq = _P(2)*_P(2); pzSq = _P(3)*_P(3);

rxSq = _P(4)*_P(4); rySqg = _P(5)*_P(5); rzSqg = _P(6)*_P(6);
-2*px*Tx () /rxSq + —-2*py*Ty () /rySq + Txx()/rxSq + Tyy()/rySqg +
(pxSqg/rxSq + pySqg/rySq - 1)*T1 ()

}
// Cone (px,py,pPz,rxX,ry,rz) with center (px,py,pz) and radii rx ry rz
ConeX = {

px = _P(l); py = _P(2); pz = _P(3); rx = _P(4); ry = _P(5); rz = _P(6);
pxSq = _P(1)*_P(1); pySq = _P(2)*_P(2); pzSq = _P(3)*_P(3);

rxSq = _P(4)*_P(4); rySqg = _P(5)*_P(5); rzSqg = _P(6)*_P(6);

2% (px*Tx () /rxSq - py*Ty () /rySq - pz*Tz()/rzSq) -
Txx () /rxSq + Tyy()/rySq + Tzz()/rzSq + (pySq/rySq + pzSqg/rzSq — pxSq/rxSq) *T1 ()
}

ConeY = {

px = _P(l); py = _P(2); pz = _P(3); rx = _P(4); ry = _P(5); rz = _P(6);
pxSq = _P(1)*_P(1); pySq = _P(2)*_P(2); pzSq = _P(3)*_P(3);

rxSq = _P(4)*_P(4); rySg = _P(5)*_P(5); rzSg = _P(6)*_P(6);

2% (py*Ty () /rySq — pz*Tz () /rzSq — px*Tx()/rxSq) +
Txx () /rxSq — Tyy()/rySq + Tzz()/rzSq + (pxSq/rxSq — pySq/rySq + pzSq/rzSq) *T1 ()
}

Conez = {

px = _P(1l); py = _P(2); pz = _P(3); rx = _P(4); ry = _P(5); rz = _P(6);
pxSq = _P(1)*_P(l); pySq = _P(2)*_P(2); pzSqg = _P(3)*_P(3);

rxSq = _P(4)*_P(4); rySqg = _P(5)*_P(5); rzSg = _P(6)*_P(6);

2% (pz*Tz () /rzSq - py*Ty () /rySq - px*Tx()/rxSq) +
Txx () /rxSqg + Tyy()/rySq - Tzz()/rzSq + (pxSqg/rxSq + pySq/rySq — pzSq/rzSq) *T1 ()
}

// Paraboloid (px,py,pz,rx,ry,rz) with vertex (px,py,pz) and radii rx ry rz
ParaboloidX = {

px = _P(1l); py = _P(2); pz = _P(3); rx = _P(4); ry = _P(5); rz = _P(6);
pxSq = _P(1)*_P(l); pySq = _P(2)*_P(2); pzSq = _P(3)*_P(3);
rxSq = _P(4)*_P(4); rySg = _P(5)*_P(5); rzSg = _P(6)*_P(6);

-2*pz*Tz () /rzSq - 2*py*Ty () /rySq - Tx()/rx +

Tzz () /rzSq + Tyy()/rySq + (pzSq/rzSq + pySq/rySq + px/rx)*T1 ()
}
ParaboloidY = {

px = _P(l); py = _P(2); pz = _P(3); rx = _P(4); ry = _P(5); rz = _P(6);
pxSq = _P(1)*_P(1); pySq = _P(2)*_P(2); pzSq = _P(3)*_P(3);
rxSq = _P(4)*_P(4); rySqg = _P(5)*_P(5); rzSg = _P(6)*_P(6);

-2*px*Tx () /rxSq — 2*pz*Tz()/rzSq — Ty()/ry +

Txx () /rxSq + Tzz()/rzSq + (pxSq/rxSq + pzSq/rzSq + py/ry)*T1()
}
Paraboloidz = {

px = _P(1l); py = _P(2); pz = _P(3); rx = _P(4); ry = _P(5); rz = _P(6);
pxSq = _P(1)*_P(l); pySq = _P(2)*_P(2); pzSq = _P(3)*_P(3);
rxSq = _P(4)*_P(4); rySg = _P(5)*_P(5); rzSg = _P(6)*_P(6);

-2*px*Tx () /rxSq — 2*py*Ty () /rySq - Tz ()/rz +
Txx () /rxSg + Tyy () /rySq + (pxSq/rxSq + pySq/rySq + pz/rz)*T1()
}

// Hyperbolic paraboloid (px,py,pz,rx,ry,rz) z-axis aligned
// with center point (px,py,pz) and radii rx ry rz
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HParaboloidZz = {

px = _P(l); py = _P(2); pz = _P(3); rx = _P(4); ry = _P(5);
pxSq = _P(1)*_P(1); pySq = _P(2)*_P(2); pzSq = _P(3)*_P(3);
rxSq = _P(4)*_P(4); rySqg = _P(5)*_P(5); rzSqg = _P(6)*_P(6);

-2*px*Tx () /rxSq + 2*py*Ty () /rySq - Tz ()/rz +

rz =

Txx () /rxSq - Tyy()/rySq + (pxSq/rxSq - pySq/rySq + pz/rz)*T1()

}

// Hyperboloid of one sheet (px,py,pz,rx,ry,rz) z-axis aligned

// with center point (px,py,pz) and radii rx ry rz
Hyperboloidl = {

px = _P(l); py = _P(2); pz = _P(3); rx = _P(4); ry = _P(5);
pxSq = _P(1)*_P(1l); pySq = _P(2)*_P(2); pzSq = _P(3)*_P(3);
rxSq = _P(4)*_P(4); rySg = _P(5)*_P(5); rzSg = _P(6)*_P(6);

2*pz*Tz () /rzSq — 2*px*Tx()/rxSq - 2*py*Ty()/rySq +
Txx () /rxSq + Tyy()/rySq — Tzz()/rzSq +

(pxSqg/rxSq + pySa/rySq - pzSqg/rzSq - 1)*T1()
}

rz =

// Hyperboloid of two sheets (px,py,pz,rx,ry,rz) z-axis aligned

// with center point (px,py,pz) and radii rx ry rz
Hyperboloid2 = {

px = _P(l); py = _P(2); pz = _P(3); rx = _P(4); ry = _P(5);
pxSq = _P(1)*_P(1l); pySq = _P(2)*_P(2); pzSq = _P(3)*_P(3);
rxSq = _P(4)*_P(4); rySqg = _P(5)*_P(5); rzSqg = _P(6)*_P(6);
2*px*Tx () /rxSq + 2*py*Ty()/rySq — 2*pz*Tz()/rzSq -
Txx()/rxSq — Tyy()/rySq + Tzz()/rzSq +

(pzSq/rzSq - pxSq/rxSq - pySq/rySqg — 1)*T1()

}
// Parabolic cylinders (pxX,py,PzZ,rX,ry,rz)
// with center point (px,py,pz) and radii rx ry rz
PCylinderX = {

px = _P(l); py = _P(2); pz = _P(3); rx = _P(4); ry = _P(5);
pxSq = _P(1)*_P(1l); pySq = _P(2)*_P(2); pzSq = _P(3)*_P(3);
rxSq = _P(4)*_P(4); rySqg = _P(5)*_P(5); rzSqg = _P(6)*_P(6);

=2*py*Ty () /rySq - Tz ()/rz + Tyy()/rySq + (pySq/rySq + pz/rz)*T1()

}
PCylinderY = {

px = _P(l); py = _P(2); pz = _P(3); rx = _P(4); ry = _P(5);
pxSq = _P(1)*_P(l); pySq = _P(2)*_P(2); pzSq = _P(3)*_P(3);
rxSq = _P(4)*_P(4); rySg = _P(5)*_P(5); rzSg = _P(6)*_P(6);

-2*px*Tx () /rxSq — Tz ()/rz + Txx()/rxSq + (pxSq/rxSq + pz/rz)*T1()

}
PCylinderZ = {

px = _P(l); py = _P(2); pz = _P(3); rx = _P(4); ry = _P(5);
pxSq = _P(1)*_P(1l); pySq = _P(2)*_P(2); pzSq = _P(3)*_P(3);
rxSq = _P(4)*_P(4); rySg = _P(5)*_P(5); rzSg = _P(6)*_P(6);

-2*px*Tx () /rxSq — Ty ()/ry + Txx()/rxSq + (pxSq/rxSq + py/ry)*T1()

// Hyperbolic cylinders (px,py,Pz,rX,ry,rz)
// with center point (px,py,pz) and radii rx ry rz
HCylinderX = {

px = _P(l); py = _P(2); pz = _P(3); rx = _P(4); ry = _P(5);
pxSq = _P(1)*_P(1); pySq = _P(2)*_P(2); pzSq = _P(3)*_P(3);
rxSq = _P(4)*_P(4); rySg = _P(5)*_P(5); rzSg = _P(6)*_P(6);

-2*py*Ty () /rySq + 2*pz*Tz () /rzSq + Tyy()/rySq - Tzz()/rzSq +
(pySq/rySa - pzSqg/rzSqg - 1)*T1()

}

HCylinderY = {

px = _P(l); py = _P(2); pz = _P(3); rx = _P(4); ry = _P(5);

pxSq = _P(1)*_P(l); pySq = _P(2)*_P(2); pzSq = _P(3)*_P(3);

rxSq = _P(4)*_P(4); rySg = _P(5)*_P(5); rzSg = _P(6)*_P(6);
)

2*px*Tx () /rxSq — 2*pz*Tz()/rzSq - Txx()/rxSq + Tzz()/rzSqg +

rz =

rz =

rz =

rz =

rz =

rz =

_P(6);

_P(6);

_P(6);

_P(6);

_P(6);

_P(6);

_P(6);

_P(6);

o7
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(-pxSqg/rxSq + pzSqg/rzSq — 1)*T1()
}
HCylinderZ = {

px = _P(l); py = _P(2); pz = _P(3); rx = _P(4); ry = _P(5); rz = _P(6);
pxSq = _P(1)*_P(l); pySq = _P(2)*_P(2); pzSq = _P(3)*_P(3);
rxSq = _P(4)*_P(4); rySqg = _P(5)*_P(5); rzSqg = _P(6)*_P(6);

=2*px*Tx () /rxSq + 2*py*Ty () /rySq + Txx()/rxSq - Tyy()/rySqg +
(pxSq/rxSqg - pySqg/rySqg - 1)*T1()
}

// Parallel planes pair (pl,p2) with planes a=pl, a=p2 perpendicular to a-axis

PPlanesX = { pl = _P(l); p2 = _P(2); Txx() - (pl+p2)*Tx() + pl*p2*T1() }
PPlanesY = { pl = _P(1l); p2 = _P(2); Tyy() - (pl+p2)*Ty() + pl*p2*T1() }
PPlanesZ = { pl = _P(l); p2 = _P(2); Tzz() - (pl+p2)*Tz () + pl*p2*T1l() }

// Non-parallel planes pairs (also types of cylinders)

// XPlanesX(y,z,ry,rz) x-axis aligned, with vertex (y,z) and slope (+|-)rz/ry
XPlanesX = {

py = _P(l); pz = _P(2); ry = _P(3); rz = _P(4);

pySq = _P(1)*_P(1); pzSq = _P(2)*_P(2); rySq = _P(3)*_P(3); rzSq = _P(4)*_P(4);

—2*py*Ty () /rySq + 2*pz*Tz()/rzSq + Tyy()/rySq - Tzz()/rzSq +
(pySg/rySq — pzSq/rzSqg) *T1 ()
}

// XPlanesY(x,z,rx,rz) y-axis aligned, with vertex (x,z) and slope (+|-)rz/rx
XPlanesY = {

px = _P(l); pz = _P(2); rx = _P(3); rz = _P(4);

pxSq = _P(1)*_P(l); pzSg = _P(2)*_P(2); rxSq = _P(3)*_P(3); rzSqg = _P(4)*_P(4);

-2*pz*Tz () /rzSq + 2*px*Tx()/rxSq + Tzz()/rzSq - Txx()/rxSqg +
(pzSqg/rzSqg - pxSq/rxSq) *T1 ()
}

// XPlanesZ(x,y,rxXx,ry) z-axis aligned, with vertex (x,y) and slope (+|-)ry/rx
XPlanesZ = {

px = _P(l); py = _P(2); rx = _P(3); ry = _P(4);

pxSq = _P(1)*_P(1l); pySq = _P(2)*_P(2); rxSq = _P(3)*_P(3); rySq = _P(4)*_P(4);

=2*px*Tx () /rxSq + 2*py*Ty () /rySq + Txx()/rxSq - Tyy()/rySqg +
(pxSq/rxSq - pySq/rySq) *T1 ()
}

// DupinCyclide (R, rl,r2) with major radius R and minor radii rl and r2
DupinCyclide = {

wo= (1/2)*(_P(2) + _P(3)); c = (1/2)*(_P(2) - _P(3)); a = _P(1l); bSq = a*a—-c*c;
Ttd () + 2*Tt2() * (bSg-u*u) - 4*a*a*Txx() - 4*bSq*Tyy () +
8*a*c*u*Tx () + ((bSg-u*u)* (bSg-u*u) - 4*crcru*u) *T1 ()

}
hornedDupinCyclide = {

u = (1/2)*(_P(2) + _P(3)); c = (1/2)*(_P(2) — _P(3)); a = _P(l); bSqg = a*a-u*u;
Ttd () + 2*Tt2() * (bSg-c*c) - 4*a*a*Txx() - 4*bSq*Tyy () +
8*a*c*u*Tx () + ((bSg-c*c)* (bSg-c*c) - 4d*crcru*u) *T1 ()

}

7.3 products.csv

To finish the definition of the DCGA algebra, one more file algebras/DCGA/
products.csv must be generated using the ProductTableCreator, which is an extra
program that is available for download at the Gaalop homepage. When this program
is run, it will ask for the definition folder algebras/DCGA of the algebra and then it
generates products. csv.
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7.4 Gaalop configuration

When Gaalop is run, it has a Configure button to access the configuration tabs of Gaalop.

In the Algebra tab, enter the full path to our algebras folder into the box titled
additionalBaseDirectory.

It may be necessary to download the latest version of the Lightweight Java Game
Library (LWJGL) for use with the Gaalop Visualizer plugin. The latest LWJGL package
in the version 2.x series may work. Download and decompress the LWJGL package
to somewhere on your computer, then access the Visualizer configuration tab and set
the lwjglNativePath to the appropriate folder within the LWJGL installation folder.
The Gaalop plugins folder may need updated copies of the files 1lwjgl. jar and
lwjgl_util.jar that can be copied from within the LWJGL installation.

If all other dependencies required for the Visualizer plugin are installed, then it should
be possible to proceed with testing the DCGA algebra in Gaalop, and generating Visu-
alizer renderings of the DCGA entities.

7.5 Visualizing DCGA entities

In the preceding subsections, Gaalop was configured for the DCGA algebra, and the
Visualizer plugin was configured to use LWJGL for rendering. Assuming that the config-
uration is successful, the next step is to create your first CLUScript for developing your
first Geometric Algebra Algorithms or computations in DCGA using Gaalop.

Start Gaalop, then press the New File button to create a new CLUScript file with
any name you like. Select Own - DCGA in the Algebra to use selection box. Select Visual
Code Inserter in the VisualCodelnserter selection box. Select Table-Based Approach in the
Optimization selection box. Select Visualizer in the CodeGenerator selection box. Now,
to get started, the following CLUScript demonstrates how to use the macros that were
defined in macros.clu

/* Demo of the DCGA algebra
* Uncomment the lines to be visualized and press Optimize button.

* Visualizing one line at a time is recommended on slow computers. */
// Set the drawing color, and display a variable circular toroid
//:White; :T = Toroid (R, r); /* variable inputs (R, r) */
//:P1l = createPoint (1,2,3); /* or EV(x,vy,z) */
// :Red ;:S = Sphere(1,2,3,2); /* (px,py,pz,radius) */
//:Green ;:P = Plane(1l,2,3,sqrt (1+4+9)); /* (nx,ny,nz,distance) */
//:Blue ;:L = Line(1,2,3,0,0,1); /* (px,py,pz,dx,dy,dz) */
//:Cyan ;:C = S*P; /* circle */
//:Magenta; :E = Ellipsoid(1,2,3,4,3,2); /* (pPX,PY,PzZ,rX,ry,rz) */
//:Yellow ;:e = E”"P/16; /* ellipse (divide by 16 to help find zeros) */

// Geometric outer product null space (GOPNS) bi-CGA entities

// (Visualizer required IPNS entities, so Dual * is taken)

// Sphere, the wedge of four surface points

//:SD = *( EV(-5,0,0)"EV(5,0,0)"EV(0,5,0)"EV(0,0,5) );

// Plane, the wedge of three plane points (not collinear) and infinity
//:PD = *( EV(-5,0,1)"EV(5,0,1)”EV(0,5,1)"ei() );

// Line, the wedge of two line points and infinity
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LD = *( EV(-5,0,1)"EV(5,0,1)%ei() );
Circle, the wedge of three circle points
Ch = *( EV(-5,0,1)"EV(5,0,1)"EV(0,5,1) );

Elliptic cylinders (px,py,Pz,rx,ry,rz)
CylX = Cylinderx(0,1,0,1,2,4);

CylY = CylinderY(1,0,0,2,1,4);

CylZz = Cylinderz(1,0,0,4,2,1);

Cones (PX,PY,PZ, X, Yy, rZ)

CnexX = Conex(1,0,0,1,1,1);

CneY = ConeY(0,1,0,1,1,1);

CneZ = Conez(0,0,1,1,1,1);

Paraboloids (px,py,pPz,rx,ry,rz)

ParX = ParaboloidX(1,0,0,1,1,1);

ParY = Paraboloidy(0,1,0,1,1,1);

ParZz = ParaboloidzZ(0,0,1,1,1,1);
Hyperbolic paraboloid z-axis aligned (px,py,pPz,rX,ry,rz)
HparZ = HParaboloidz(0,0,1,1,1,1);
Hyperboloid of one sheet z-axis aligned (px,pPy,pPzZ,rX,ry,rz)
Hypl = Hyperboloidl (0,0,1,1,1,1);
Hyperboloid of two sheets z-axis aligned (px,pPy,pPz,rX,ry,rz)
Hyp2 = Hyperboloid2(0,0,1,1,1,1);
Parabolic cylinders (px,py,pz,rx,ry,rz)
PCylX = PCylinderX(0,0,1,1,2,4);

PCylY = PCylinderY(0,0,1,2,1,4);

PCylZ = PCylinderz(1,0,0,2,4,1);
Hyperbolic cylinders (px,py,pPz,rX,ry,rz)
HCylX = HCylinderX(0,0,1,1,1,1);

HCylY = HCylinderY(0,0,1,1,1,1);

HCylZ = HCylinderz(1,0,0,1,1,1);

Parallel planes pair (pl,p2)

PPX = PPlanesX(1,2);

PPY = PPlanesY (1l,4);

PPZ = PPlanesZ(1,6);

Non-parallel planes pair

XPX = XPlanesX(1,1,2,1); /* (y,z,ry,rz) */
XPY = XPlanesY(1,1,2,1); /* (x,z,rx,rz) */
XPZ = XPlanesZz(1,1,2,1); /* (x,y,rx,ry) */
Ellipse, parabola, hyperbola

e = Cylinderz(0,0,0,1,4,1)"Plane(0,0,1,1

h = HCylinderz(0,0,0,1,4,1)"Plane(0,0,1, ;
Rotate, dilate, and translate an ellipsoid

ER Rotor(0,0,1,45) * Ellipsoid(0,0,0,1,3,1) * ~Rotor(0,0,1,45);

ED = Dilator(2) * Ellipsoid(0,0,0,1,2,3) * ~Dilator(2);

ET = Translator(l,2,3) * Ellipsoid(0,0,0,2,3,4) * ~Translator(l,2,3);

DupinCyclide and hornedDupinCyclide (R, rl,rl), also translated
DC = Translator(l,1,1) * DupinCyclide(3,2,1) * ~Translator(1l,1,1);
HDC = Translator(l,1,1) * hornedDupinCyclide(3,2,1) * ~Translator(l,1,1);

Parabolic cyclide as inversion of Toroid in Sphere centered on toroid surface
PC = Sphere(2,0,0,3) * Toroid(5,3) * ~Sphere(2,0,0,3);

PC rotated 60deg around the z-axis (this computation can take a minute)

RPC = Rotor(0,0,1,60) * PC * ~Rotor(0,0,1,60);

Intersection of DupinCyclide and a Plane

DC = DupinCyclide(3,2,1); /* try (R,rl,r2) for variable inputs R,rl,r2 */

PL = Plane(2,1,0,2);

DCPL = DC"PL; /* try large epsilon=4 in Gradient Method to see DCPL points */
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Figure 33. Intersection ® AII of ring Dupin cyclide ® and plane IT

Figure 33 shows the Gaalop Visualizer plugin renderings of a DCGA ring Dupin
cyclide @, a standard DCGA plane II, and their intersection entity ® A I1. All three
entities are rendered in the upper-left image. In the upper-right image, the plane ren-
dering is disabled, showing only the cyclide and the intersection entity, which is seen
only on its edge. In the lower-left image, the cyclide rendering is disabled, showing only
the intersection entity, which is still seen on its edge. The lower-right image is a rotated
view of the intersection entity, which clearly shows that it is a curve that cuts the cyclide
exactly where the plane cut it.

8 Conclusion

The Gs o Double Conformal / Darbouz Cyclide Geometric Algebra (DCGA) that has been
presented, and possibly introduced for the first time, in this paper may be an interesting
algebra for future research or for some applications now.

DCGA provides entities for all the surfaces available in CGA, and DCGA also has
entities for all quadric surfaces. DCGA also provides a toroid entity which may be a new
entity not previously available in G4 ; CGA nor in Gg 3 QGA. More generally, DCGA has
entities for cyclide surfaces. DCGA has a complete set of entity transformation opera-
tions as versor operations that can transform both the GIPNS and GOPNS forms of all
entities, including the toroid and cyclide entities. The available versors are rotor, dilator,
translator, and motor. DCGA supports the creation of GIPNS intersection entities as the



62

SECTION

wedge of intersecting GIPNS entities, but this support is limited to intersecting up to a
single quadric, toroid, or cyclide surface entity with some combination of spheres, planes,
lines, and circles not exceeding a combined grade of 8.

Although not yet tested by this author, the possible extension of Gg s DCGA to a G133

Triple or Gia Quadruple Conformal Geometric Algebra may be theoretically feasible,
and may allow for general cubic and quartic surface entities.
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