
G8,2 Geometric Algebra, DCGA
by Robert Benjamin Easter

1 Introduction

This paper1 introduces2 an application of the G8;2 geometric algebra [3][4], tenta-
tively named in this paper the Double Conformal Geometric Algebra (DCGA).

The G8;2 geometric algebra contains two subspaces of the G4;1 conformal geo-
metric algebra (CGA) [1][5][7][8][9]. The �rst CGA subspace, called CGA1, is

ei � ej =

8<: 1 j i= j; 1� i� 4
¡1 j i= j=5
0 j i=/ j:

The second CGA subspace, called CGA2, is

ei � ej =

8<: 1 j i= j; 6� i� 9
¡1 j i= j= 10
0 j i=/ j:

The metric we use for G8;2 is [1; 1; 1; 1;¡1; 1; 1; 1; 1;¡1]. This metric makes it very
simple to use the CGA subalgebras of the CGA1 and CGA2 subspaces in a way
fully compatible with CGA. These two CGAs are used as mirror copies or doubles
to create bivector-valued entities for points and surfaces. As such, the G8;2 geo-
metric algebra of these new bivector-valued point and surface entities could be called
Double-Conformal Geometric Algebra (DCGA), or even Bi-conformal Geometric
Algebra (Bi-CGA or 2-CGA).

The G8;2 DCGA surface entities include all of the types of surface entities avail-
able in G4;1 CGA and in the G6;3 geometric algebra [10] known as G6;3 Quadric
Geometric Algebra (QGA) [2][6]. DCGA also includes a new toroid (torus) surface
entity. All DCGA entities (both GIPNS and their GOPNS duals) can be rotated,
isometrically dilated, and translated by versor operations on the entities. The DCGA
rotor, dilator, and translator are each a new form of bi-versor or double-versor of
multivector-grade four. The DCGA entities will refer to all entities of the DCGA
algebra, and the bi-CGA entities will refer speci�cally to the CGA-subset of entities
(points, lines, circles, planes, and spheres) as they exist in DCGA. The CGA1 and
CGA2 entities also exist within their CGA subalgebras, o�ering the �exibility to use
them separately, or also to double them to form bi-CGA entities when it is desired
to bring them into the larger DCGA space.

1. Revision v2, August 14, 2015 , with some minor corrections and improvements.

2. DCGA is the work of an independent research by this author. No prior published work on DCGA
was consulted or known to this author at the time of original research and publication of this paper (v1)
on August 11, 2015 .
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Compared to QGA, DCGA extends CGA in a new way and has a new toroid
entity. While QGA can only rotate the CGA 6,3D entities, DCGA provides a rotor
that can rotate all DCGA entities around any axis by any angle. While QGA has an
isotropic dilator and methods for anisotropic dilation, DCGA has only an isotropic
dilator. Both QGA and DCGA have a translator for translations of all entities.
While QGA supports intersecting all QGA GIPNS entities, DCGA can intersect all
DCGA GIPNS entities only with the subset of bi-CGA GIPNS entities.

Depending on the needs of a particular application, DCGA may provide a larger
set of operations and entities than QGA. As with QGA, there may be performance
issues when working with a high-dimensional Cli�ord algebra such as DCGA. For
applications where anisotropic dilation is not required, but where rotation of all sur-
faces is required and intersecting them with CGA entities is su�cient, then DCGA
provides a powerful geometric algebra with all of the standard operations as versors.

2 CGA1 and CGA2

The CGA1 and CGA2 entities follow ordinary G4;1 CGA and these subalgebras
would be easily available to an application that is also using the G8;2 algebra. This
subsection gives a quick review of CGA.

2.1 CGA point

In G4;1 Conformal Geometric Algebra (CGA), the embedding of a 3D point p =
xe1+ ye2+ ze3 in R3 starts with a stereographic embedding of p onto a hypersphere
or 3-sphere S3 using e4 as the stereographic 3-sphere pole. As shown in Figure 1, this
requires �nding the intersection of the line through e4 and p with the 3-sphere. The
vectors e4 and p are perpendicular, and we can treat the embedding of p similarly
to a 1D axis embedding into a stereographic 1-sphere or circle.

The identities

jpj = x2+ y2+ z2
p

p̂ =
p
jpj

p = jpjp̂
p2 = jpj2= x2+ y2+ z2

are used in the following.
The stereographic embedding of jpjp̂ is the intersection �p̂ + �e4 of the unit

3-circle on the p̂ e4-hyperplane with the line through e4 and jpjp̂. The Minkowski
homogenization is �p̂+ �e4+ e5. The point at the origin embeds to eo=¡e4+ e5
and the point at in�nity embeds to e1 = e4 + e5. It is convenient to scale eo as
eo=

1

2
(¡e4+e5) such that eo �e1=¡1. The values for � and � are solved as follows.
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The initial relations are the unit circle �2+ �2=1 and, by similar triangles, the
line 1¡ �

�
=

1

jpj .

�2 = 1¡ �2=(1+ �)(1¡ �)= ((1¡ �)jpj)2

(1+ �) = (1¡ �)jpj2

� jpj2+ � = jpj2¡ 1

� =
jpj2¡ 1
jpj2+1

� = (1¡ �)jpj

=

�
1¡ jpj

2¡ 1
jpj2+1

�
jpj

=

�
jpj2+1
jpj2+1

¡ jpj
2¡ 1

jpj2+1

�
jpj

=
2 jpj
jpj2+1

The stereographic embedding of jpjp̂ , denoted S(jpjp̂), can now be written as

S(jpjp̂) = �p̂+ �e4

=

�
2 jpj
jpj2+1

�
p̂+

�
jpj2¡ 1
jpj2+1

�
e4:

The homogenization of S(jpjp̂), denoted HM(S(jpjp̂)), can be written as

P=HM(S(jpjp̂)) =

�
2jpj
jpj2+1

�
p̂+

�
jpj2¡ 1
jpj2+1

�
e4+ e5:

Since this point entity is homogeneous, and jpj2+ 1 is never zero, it is permissible
to scale it by jpj2+1

2
and de�ne

P = HM(S(jpjp̂))'C4;1(p)

= jpjp̂+ jpj
2¡ 1
2

e4+
jpj2+1

2
e5

= jpjp̂+ jpj
2

2
(e4+ e5)+

1
2
(¡e4+ e5)

= p+
1
2
p2(e4+ e5)+

1
2
(¡e4+ e5):

When jpj=0,

Pjpj=0 =
1
2
(¡e4+ e5)= eo

representing the point at the origin. In the limit as jpj!�1, we �nd that

Pjpj!1 = e4+ e5= e1

represents the point at in�nity. By taking inner products, it can be shown that these
points are all null vectors on a null 4-cone, and the inner product eo �e1=¡1. The
CGA embedding of vector p as point P can now be de�ned as

P=PC = C(p)= C4;1(p)

= p+
1
2
p2e1+ eo:
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Figure 1. CGA point embedding

Figure 1 shows the CGA embedding procedure. The upper-left image shows
a 3D vector p in R3 = G31 that is intersected with the 3-sphere S3, similar to an
ordinary circle, at S(p) and then raised or homogenized to HM(S(p)) = C(p) as
the CGA embedding of p. The null cone is the space of all homogeneous CGA
points. A CGA point may be arbitrarily scaled along a line in the null cone without
a�ecting the point being represented. A normalized CGA point has its eo component
scaled to 1. The upper-right image shows p at the origin where it is embedded as
2eo = ¡e4 + e5; but after scaling this by 1

2
to our preferred normalization, then it

embeds to C(p) = eo =
1

2
(¡e4 + e5). The lower-left image shows p moved very far

from the origin o� screen, and it approaches the embedding C(p)=e1=e4+e5 as it
moves to an in�nite distance from the origin in any direction. The lower-right image
shows p at a relatively negative position where it embeds into a di�erent quadrant
of the null cone. The �gure was generated using the program CLUCalc written by
Christian Perwass, and is a modi�cation of Fig 4.14 in [7].

2.2 CGA GIPNS surfaces
A CGA point TC= C(t)= C4;1(t) is on a CGA GIPNS surface S if T �S=0.

2.2.1 CGA GIPNS sphere

The CGA GIPNS 1-vector sphere S, centered at CGA point PC with radius r, is
de�ned as

S = PC¡
1
2
r2e1:
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2.2.2 CGA GIPNS plane
The CGA GIPNS 1-vector plane �, normal to unit vector n at distance d from the
origin, is de�ned as

� = n+ de1:

2.2.3 CGA GIPNS line
The CGA GIPNS 2-vector line L, in the direction of the unit vector d, perpendicular
to D=d�E=d/IE, and through 3D point p, is de�ned as

L = D¡ (p �D)e1:

The Euclidean 3D pseudoscalar is IE= I3=e1e2e3, and the Euclidean 3D dual of any
multivector d in this space is de�ned as d�E=d/IE.

2.2.4 CGA GIPNS circle
The CGA GIPNS 2-vector circle C is de�ned as

C = S^�

which is the intersection of a sphere S and plane �.

2.3 CGA GOPNS surfaces
A CGA point TC= C(t)= C4;1(t) is on a CGA GOPNS surface S�C if T^S�C=0.

2.3.1 CGA GOPNS sphere
The CGA GOPNS 4-vector sphere S�C is the wedge of four CGA points PCi on the
sphere

S�C = PC1^PC2^PC3^PC4
= S/IC

and is the CGA dual of the CGA GIPNS 1-vector sphere S.
The CGA pseudoscalar is IC = I5= e1e2e3e4e5, and the CGA dual of a value S

in this space is de�ned as S�C=S/IC. The CGA GOPNS and CGA GIPNS entities
are CGA duals of each other.

2.3.2 CGA GOPNS plane
The CGA GOPNS 4-vector plane ��C is the wedge of three CGA points PCi on the
plane and the point e1

��C = PC1^PC2^PC3^ e1
= �/IC

and is the CGA dual of CGA GIPNS 1-vector plane �.

2.3.3 CGA GOPNS line
The CGA GOPNS 3-vector line L�C is the wedge of two CGA points PCi on the line
and the point e1

L�C = PC1^PC2^ e1
= L/IC
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and is the CGA dual of the CGA GIPNS 2-vector line L.

2.3.4 CGA GOPNS circle

The CGA GOPNS 3-vector circle C�C is the wedge of three CGA points PCi on the
circle

C�C = PC1^PC2^PC3
= C/IC

and is the CGA dual of the CGA GIPNS 2-vector circle C.

2.4 CGA operations

The rotor R, dilator D, and translator T are called versors. Their operation on a
CGA entity X has the form X0=OXO¡1, called a versor operation. The versor O
of the operation often has an exponential form which can be expanded by Taylor
series into circular trigonometric, hyperbolic trigonometric, or dual number form.

2.4.1 CGA rotor

A rotor is a rotation operator . The CGA rotor R, for rotation around unit vector
axis n by � radians, is de�ned as

R = cos
�
1
2
�

�
+ sin

�
1
2
�

�
n�E

= e
1

2
�n�E

= e
1

2
�N

The unit bivector N= n�E represents the plane of rotation. Any multivector in G3
or any CGA entity X in G4;1 is rotated as

X0 = RXR�

= RXR¡1

where R� is the reverse of R, and is also equal to the inverse R¡1. Rotation is also
de�ned by re�ection in two planes as

X0 = �2�1X�1�2

which rotates X by twice the angle between the planes from �1 to �2.

2.4.2 CGA dilator

A dilator is a dilat ion operator . The CGA isotropic dilatorD by factor d is de�ned as

D =
1
2
(1+ d)+

1
2
(1¡ d)e1^ eo

' 1+
(1¡ d)
(1+ d)

e1^ eo

' e
atanh

�
(1¡d)
(1+d)

�
e1^eo

:
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Any CGA entity X in G4;1 is dilated by the factor d as

X0 = DXD�:

Dilation is also de�ned by inversion in two spheres as

X0 = S2S1XS1S2

which dilates by d= r2
2

r1
2 , with radius r1 of S1 and radius r2 of S2.

2.4.3 CGA translator

A translator is a translat ion operator . The CGA translator T by a vector d =
dxe1+ dye2+ dze3 is de�ned as

T = 1¡ 1
2
de1

= e
¡1

2
de1:

Any CGA entity X is translated by the vector d as

X = TXT�:

Translation is also de�ned by re�ection in two parallel planes as

X0 = �2�1X�1�2

which translates by twice the vector d=(d2¡d1)n, with common normal unit vector
n of each plane (they are parallel) and plane distances from origin d1 and d2 of planes
�1 and �2, respectively.

2.4.4 CGA motor

A motor is a mot ion operator . A rotation around a unit vector axis n, followed by
a translation parallel to n are commutative operations. Either the translation or the
rotation can be done �rst, and the other second, to reach the same �nal position.
This commutative operation, being a screw or helical motion, can be seen physically
without mathematics. The motor is a special case where the commutative rotor and
translator can be composed into a single versor M with an exponential form as

M = RT =TR

= e
1

2
�n�E

e
¡1

2
dne1= e

¡1

2
dne1e

1

2
�n�E

= e
1

2
�n�E¡ 1

2
dne1

= e
¡1

2
n(�IE+de1):

The exponents or logarithms of commutative exponentials can be added. A motor
can be used to model smoothly-interpolated screw , twistor , or helical motions, per-
formed in n steps using the nth root of M

M
1

n = e
¡ 1

2n
n(�IE+de1)

applied at each step.
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2.4.5 CGA intersection

CGA GIPNS intersection entities which represent the surface intersections of two
or more CGA GIPNS entities are formed by the wedge of the CGA GIPNS entities.
The CGA GIPNS circle is de�ned as a CGA GIPNS intersection entity C=S^�.

Almost any combination of CGA GIPNS entities may be wedged to form a CGA
GIPNS intersection entity up to grade 4, except that the CGA GIPNS 2-vector line
and circle entities that are coplanar cannot be intersected unless their common plane
is �rst contracted out of each of them, then the common plane is wedged back onto
their intersection entity.

Like any CGA GIPNS entity, a CGA GIPNS intersection entity X can be taken
dual as X�C=X/IC into its CGA GOPNS intersection entity X�C.

De Morgan's law for the intersection X of two objects A and B is

X = not((notA) and (notB))

and translates into the CGA intersection

X�C = (A�C ^B�C)�C:

This is just the creation of the CGA GOPNS intersection entity X�C of two CGA
GOPNS entities A and B. In this case, A�C and B�C are the undual CGA GIPNS
entities, which can then be intersected by wedge product. The CGA GIPNS inter-
section X is then dualized as the CGA GOPNS entity X�C. The classical view of
intersections is by working with spanning objects, which are the CGA GOPNS
entities.

2.4.6 CGA dualization

The Euclidean 3D or G3 unit pseudoscalar IE is de�ned as

IE= I3 = e1^ e2^ e3= e1e2e3
IE� = (¡1)3(3¡1)/2IE=¡IE
IE
2 = ¡IEIE�=¡1

IE
¡1 = IE�=¡IE

and is the dualization operator on multivectors in G3. A blade B2G3k of grade k is
taken to its Euclidean 3D or G3 dual B�E 2G33¡k of grade 3¡ k as

B�E = B/IE=¡B � IE:

Duals represent the same objects from two converse spatial spans, and the duals
have di�erent behavior as operators or algebraic factors on other multivectors. The
dual of a unit vector is a unit bivector that can act as the unit of a rotor around
the vector, but a unit vector can only operate as a re�ector through the vector.

The CGA or G4;1 unit pseudoscalar IC de�ned as

IC= I5 = e1^ e2^ e3^ e4^ e5= e1e2e3e4e5
IC� = (¡1)5(5¡1)/2IC= IC
IC
2 = ICIC�=¡1

IC
¡1 = ¡IC�=¡IC
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and is the dualization operator on CGA entities that takes CGA GIPNS entities
to or from CGA GOPNS entities. A CGA entity X2G4;1k of grade k is taken to its
CGA dual entity X�C 2G4;15¡k of grade 5¡ k as

X�C = X/IC=¡X � IC:

The pseudoscalar IC does not represent any CGA entity, so no CGA GOPNS entity
nor CGA GIPNS intersection entity can have grade 5. The max grade of a CGA
entity is grade 4.

2.5 CGA1 and CGA2 notations

The CGA1 and CGA2 spaces are used as exact copies of CGA. All that is needed
is a little notation to separate the two spaces.

Multivectors in the G3 subspace of the CGA1 space will use the subscript E1.
For example, a Euclidean 3D vector p in the CGA1 space is denoted in the form

pE1 = pxe1+ pye2+ pze3:

A CGA entity in the CGA1 space will use the subscript C1. For example, the
embedding of pE1 as a CGA1 point PC1 is denoted

PC1 = C1(pE1)
= pE1+

1
2
pE1
2 e11+ eo1

where

e11 = (e4+ e5)

eo1 =
1
2
(¡e4+ e5):

The CGA1 point embedding function has been named C1. Likewise, a CGA1 surface
entity is named XC1. The CGA1 point at the origin eo1 and point at in�nity e11 are
named with su�x 1 to indicate their version as being the CGA1 versions.

Multivectors in the G3 subspace of the CGA2 space will use the subscript E2
(e.g., pE2). A CGA entity in the CGA2 space will use the subscript C2 (e.g., XC2).

With this notation, the CGA1 pseudoscalars are named as

IE1 = e1e2e3

IC1 = e1e2e3e4e5

and the CGA2 pseudoscalars are named as

IE2 = e6e7e8

IC2 = e6e7e8e9e10:

A Euclidean 3D vector p in the CGA2 space is denoted in the form

pE2 = xe6+ ye7+ ze8:
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The CGA2 point embedding is

PC2 = C2(pE2)
= pE2+

1
2
pE2
2 e12+ eo2

where

e12 = (e9+ e10)

eo2 =
1
2
(¡e9+ e10):

The CGA2 point at the origin eo2 and point at in�nity e12 are named with su�x 2
to indicate their version as being the CGA2 versions.

A versor O (rotor, dilator, translator, or motor) that is in the CGA1 space is
denoted OC1, and if it is in the CGA2 space it is denoted OC2.

3 DCGA point
The DCGA 2-vector point entity PD is the embedding of a vector

pE1 = p= pxe1+ pye2+ pye3

as

PD = D(p)
= C1(pE1)^C2(pE2)
= PC1^PC2

where

pE2 = (pE1 � e1)e6+(pE1 � e2)e7+(pE1 � e3)e8
= pxe6+ pye7+ pze8:

The DCGA point PD, which could be called a double point , is the wedge of a CGA1
point PC1 with a CGA2 point PC2, which are the CGA embeddings of the same
Euclidean 3D vector p into each CGA.

CGA1 and CGA2 points and surface entities can be rotated, translated, and
dilated using CGA1 and CGA2 versors for these operations. The wedge of a CGA1
versor with its copy CGA2 versor (rotor, translator, dilator, or motor) creates the
DCGA versor on DCGA points and surface entities. The DCGA versors could be
called double versors or bi-CGA versors.

The DCGA point at the origin eo is de�ned as

eo = eo1^ eo2:

The DCGA point at in�nity e1 is de�ned as

e1 = e11^ e12:

As in CGA, these DCGA points also have the inner product

e1 � eo = ¡1:
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All DCGA points are null 2-vectors, PD2 =0. However, compared to CGA, all values
are squared and this changes the formulas for the metrical results known in CGA.
For example, the squared-squared distance d4 between two DCGA points PD1 and
PD2 is

d4 = ¡4PD1 �PD2
= ¡4(PC11^PC12) � (PC21^PC22)
= ¡4(PC11 � ((PC12 �PC21)PC22¡PC21(PC12 �PC22)))
= ¡4((PC12 �PC21)(PC11 �PC22)¡ (PC11 �PC21)(PC12 �PC22))

= ¡4
�
(0)(0)¡

�
¡d2
2

��
¡d2
2

��
:

The squared distance d2 between points is also

d2 = ¡2 ¡PD1 � e12

(PD1 � e12) � e11
� ¡PD2 � e12

(PD2 � e12) � e11

= ¡2PC11 �PC21

where each DCGA point is contracted and renormalized into CGA1 points.
The DCGA 2-vector point PD allows for the extraction of more polynomial terms

than only the x; y; z; x2; y2; z2 terms that CGA or QGA 1-vector points allow. The
terms that can be extracted from a point determine what polynomial equations or
entities that can be represented as GIPNS entities that test against the point.

When expanded, the DCGA point TD=D(t) is

TD =
x
2
(x2+y2+z2¡1) e1^ e9+

x
2
(x2+y2+z2+1) e1^ e10+

x
2
(x2+y2+z2¡1) e4^ e6+

x
2
(x2+y2+z2+1) e5^ e6+

y
2
(x2+y2+z2¡1) e2^ e9+

y
2
(x2+y2+z2+1) e2^ e10+

y
2
(x2+y2+z2¡1) e4^ e7+

y
2
(x2+y2+z2+1) e5^ e7+

z
2
(x2+y2+z2¡1) e3^ e9+

z
2
(x2+y2+z2+1) e3^ e10+

z
2
(x2+y2+z2¡1) e4^ e8+

z
2
(x2+y2+z2+1) e5^ e8+

xy e1^ e7+xy e2^ e6+
yz e2^ e8+ yz e3^ e7+
xze1^ e8+xz e3^ e6+
x2e1^ e6+y2 e2^ e7+ z2 e3^ e8+�
x4

4
+
x2 y2

2
+
x2 z2

2
+
y4

4
+
y2 z2

2
+
z4

4
¡ 1
4

�
e4^ e10+�

x4

4
+
x2 y2

2
+
x2 z2

2
+
y4

4
+
y2 z2

2
+
z4

4
¡ 1
4

�
e5^ e9+�

x4

4
+
x2 y2

2
+
x2 z2

2
¡ x2

2
+
y4

4
+
y2 z2

2
¡ y2

2
+
z4

4
¡ z2

2
+
1
4

�
e4^ e9+�

x4

4
+
x2 y2

2
+
x2 z2

2
+
x2

2
+
y4

4
+
y2 z2

2
+
y2

2
+
z4

4
+
z2

2
+
1
4

�
e5^ e10
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where

t = xe1+ ye2+ ze3

t2 = x2+y2+z2

t4 = x4+ y4+ z4+2x2y2+2y2z2+2z2x2:

The vector t, and its DCGA point embedding TD = D(t), will be used as a test
point for position on surfaces. If we de�ne the following value-extraction elements
or operators on DCGA points,

Tx =
1
2
(e1^ e12+ e11^ e6)

Ty =
1
2
(e2^ e12+ e11^ e7)

Tz =
1
2
(e3^ e12+ e11^ e8)

Txy =
1
2
(e7^ e1+ e6^ e2)

Tyz =
1
2
(e7^ e3+ e8^ e2)

Tzx =
1
2
(e8^ e1+ e6^ e3)

Tx2 = e6^ e1
Ty2 = e7^ e2
Tz2 = e8^ e3

T1 = ¡(e11^ e12)=¡e1
Tt2 = ¡(e11^ eo2+ eo1^ e12)

Tt4 = ¡4(eo1^ eo2)=¡4eo

then we can extract values from a DCGA point TD as s=Ts �TD. These extraction
operators are used to de�ne the DCGA GIPNS entities.

4 DCGA GIPNS surfaces

The DCGA geometric inner product null space (GIPNS) surface entities are con-
structed using the value extractions Ts �TD from the DCGA point entity. The DCGA
GIPNS surface entities are the standard surface entities in DCGA since the direct
construction of DCGA geometric outer product null space (GOPNS) surface entities
is limited to the wedge of up to four DCGA points which cannot construct all of the
DCGA GOPNS surface entities. The DCGA GIPNS surface entities can be rotated,
dilated, and translated by DCGA versors, and they can be intersected with the bi-
CGA GIPNS surface entities.
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A DCGA test point TD that is on a DCGA GIPNS surface entity S must satisfy
the GIPNS condition

TD �S = 0:

The DCGA GIPNS k-vector surface entity S represents the set NIG(S2 G8;2k )
of all 3D vector test points t that are surface points

NIG(S2G8;2k ) =
�
t2G31 : (D(t)=TD) �S=0

	
:

4.1 DCGA GIPNS toroid
The equation for a circular toroid (torus), which is positioned at the origin and
surrounds the z-axis, is

t4+2t2(R2¡ r2)+ (R2¡ r2)¡ 4R2(x2+ y2) = 0

where

t = xe1+ ye2+ ze3

is a test point, R is the major radius, and r is the minor radius. The equation is
true if the test point t is on the toroid. The radius R is that of a circle around the
origin in the xy-plane. The radius r is that of circles centered on the circle of R and
which span the z-axis dimension for z=�r. The toroid spans x; y=�(R+ r).

The DCGA GIPNS 2-vector toroid surface entity O is de�ned as

O = Tt4+2(R2¡ r2)Tt2+(R2¡ r2)T1¡ 4R2(Tx2+Ty2):

A test DCGA point TD=D(t) is on the toroid surface represented byO ifTD �O=0:
Using symbolic mathematics software, such as the Geometric Algebra Module for
Sympy by Alan Bromborsky et al., the inner product TD � O generates the
homogeneous scalar expression of the toroid when t is a variable symbolic vector.
When t is a speci�c vector, TD �O is a test operation on the toroid for the speci�c
point.

We can denote the DCGA-dual of O as O�D, and de�ne it as

O�D = O/ID=OID
¡1=¡O � ID:

The DCGA GOPNS 8-vector toroid surface entity isO�D, where a test point t on the
surface must satisfy the GOPNS condition TD^O�D=0. Since TD is a 2-vector and
O�D is an 8-vector, then TD^O�D is a homogeneous DCGA 10-vector pseudoscalar
expression of the toroid when t is a variable symbolic vector. The undual operation
returns the DCGA GIPNS surface O=O�D � ID. The other DCGA GOPNS surface
entities will be discussed later in this paper.

Although the toroid O is created at the origin and aligned around the z-axis,
it can then be rotated, dilated, and translated away from the origin using DCGA
versor operations. Like all DCGA GIPNS surface entities, the DCGA GIPNS toroid
can be intersected with any bi-CGA GIPNS (2, 4, or 6)-vector surface, which are 2-
vector spheres and planes, 4-vector circles and lines, and 6-vector point-pairs.

DCGA GIPNS surfaces 13



Figure 2. DCGA toroid rotated and translated

4.2 DCGA GIPNS ellipsoid

The homogeneous quadratic equation that characterizes a principal axes-aligned
ellipsoid is

(x¡ px)2

rx
2 +

(y¡ py)2

ry
2 +

(z ¡ px)2

rz
2 ¡ 1 = 0

where p = pxe1 + pye2 + pze3 is the position (or shifted origin, or center) of the
ellipsoid, and rx; ry; rz are the semi-diameters (often denoted a; b; c). Expanding the
squares, the equation can be written as

¡2pxx
rx
2 +

¡2pyy
ry
2 +

¡2pzz
rz
2 +

 
x2

rx
2 +

y2

ry
2 +

z2

rz
2

!
+

 
px
2

rx
2 +

py
2

ry
2 +

pz
2

rz
2 ¡ 1

!
= 0:

Using the DCGA point value-extraction elements, an ellipsoid equation can be con-
structed. This construction will be similar for the remaining surface entities that
follow.

The DCGA GIPNS 2-vector ellipsoid surface entity E is de�ned as

E =
¡2pxTx
rx
2 +

¡2pyTy
ry
2 +

¡2pzTz
rz
2 +

Tx2

rx
2 +

Ty2

ry
2 +

Tz2

rz
2 + 

px
2

rx
2 +

py
2

ry
2 +

pz
2

rz
2 ¡ 1

!
T1:
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A DCGA 2-vector point TD=D(t) is tested against the DCGA 2-vector ellipsoid E
as

TD �E

8<: <0 : t is inside ellipsoid
=0 : t is on ellipsoid
>0 : t is outside ellipsoid.

Figure 3. DCGA ellipsoids rotated, translated, and intersected with planes

Figure 3 Shows two ellipsoids that have been rotated and translated into their
intersecting positions using DCGA versor operations. The view is from the �rst
quadrant, the x-axis is red, the y-axis is green, and the z-axis is blue. The cyan
DCGA GIPNS ellipsoid E1 (rx = 4, ry = 5, rz = 3) is rotated 25� around the
line n =

1

2
p (¡e1 + e2), then rotated 45� around the z-axis, then translated by

d = 10e1 + 10e2. The magenta DCGA GIPNS ellipsoid E2 (pz = 6, rx = 2, ry = 3,
rz = 6) is rotated -35� around the line n = 1

2
p (¡e1 + e2), then rotated 35� around

the z-axis, then translated by d= 10e1+ 10e2. The ellipsoids intersect in a curved
ellipse which, unfortunately, could not be represented as an intersection entity.
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Although not rigorously proved here, in tests performed by this author, the
initial assessment appears as though the ellipsoids and other DCGA entities can be
intersected with DCGA planes and other bi-CGA entities, but the DCGA entities
cannot be intersected in full generality.

The upper-left image in Figure 3 shows the ellipsoids with standard planes
drawn. The upper-right image shows the ellipsoids drawn with DCGA GIPNS plane
�1 representing the plane z = 0, and with the DCGA GIPNS plane �2 repre-
senting the plane z = 0 rotated 60� around the x-axis. The lower-left image shows
the DCGA GIPNS intersection entity E1 ^ �1; the green elliptic cylinder is an
intersection entity component and represents the ellipse in which they intersect.
The lower-right image shows the DCGA GIPNS intersection entity E2 ^ �2; the
green hyperboloid of one sheet and the red non-parallel planes pair are intersec-
tion entity components which are also coincident and represent the intersection.

4.3 DCGA GIPNS sphere

The standard DCGA GIPNS 2-vector sphere will be de�ned as a bi-CGA sphere,
not the DCGA GIPNS ellipsoid with equal semi-diameters. If r= rx= ry= rz, then
the DCGA GIPNS ellipsoid E is a kind of sphere that can be written as

E = ¡2(pxTx+ pyTy+ pzTz)+Tx2+Ty2+Tz2+(px
2+ py

2+ pz
2¡ r2)T1

' (pxTx+ pyTy+ pzTz)¡
1
2
(px

2+ py
2+ pz

2)T1¡
1
2
(Tx2+Ty2+Tz2)+

1
2
r2T1:

Taking r = 0 might suggest that this ellipsoid-based sphere may degenerate into a
type of point entity. Almost! T1=¡e1, giving the middle term a familiar CGA point
form. However, if this were a CGA point, the last term should reduce to eo, but it
does not. The result here is that the DCGA ellipsoid with r=0 is not a valid DCGA
entity of any known kind. So long as r=/ 0, the DCGA ellipsoid can form a kind of
sphere entity, but we can form a sphere in another way which does degenerate into
a DCGA point.

The standard DCGA GIPNS 2-vector sphere surface entity S, also being called
a bi-CGA GIPNS 2-vector sphere, is de�ned as

S = SC1^SC2

where

SC1 = PC1¡
1
2
r2e11

SC2 = PC2¡
1
2
r2e12:

The CGA1 GIPNS sphere SC1 and the CGA2 GIPNS sphere SC2, both representing
the same sphere, with radius r at center position p in our main 3D Euclidean space
E1, are wedged to form the DCGA or bi-CGA GIPNS sphere S. If r=0, the sphere
is degenerated into a DCGA point

PD = PC1^PC2
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that would represent the center position of the sphere. This form a sphere allows
greater consistency, and it can also be intersected with any DCGA GIPNS entity.
A sphere that is formed using the DCGA GIPNS ellipsoid can only be intersected
with bi-CGA GIPNS entities. In general, the other bi-CGA GIPNS entities for lines,
circles, and planes follow this same pattern, that they are the wedge of the CGA1
and CGA2 copies of entity.

A DCGA 2-vector point TD=D(t) is tested against the DCGA 2-vector sphere
S as

¡2
�

¡TD � e12

(TD � eo2) � e11

�
�
�

¡S � e12

(S � eo2) � e11

�8>><>>:
<0 : t is inside sphere
=0 : t is on sphere
>0 : t is outside sphere
>0 : =d2, squared tangent

To determine inside or outside, this incidence test requires the bi-CGA point TD to
be contracted into a CGA1 point, and the bi-CGA sphere S to be contracted into
a CGA1 sphere, and both are renormalized. The entity e12 is both a CGA2 point
and a CGA2 sphere of in�nite radius, and it serves as the contraction operator on
both the point and sphere into CGA1 entities, up to scale. The result is reduced to
a CGA1 incidence test. When the test is positive, it is the squared distance d2 from
the point to the sphere along any line tangent to the sphere surface. Similarly for
other bi-CGA entities, they can be contracted into CGA1 entities and then all the
usual CGA tests are available on them.

4.4 DCGA GIPNS line
The DCGA GIPNS 4-vector line 1D surface entity L is de�ned as

L = LC1^LC2

where

LC1 = DE1¡ (pE1 �DE1)e11

LC2 = DE2¡ (pE2 �DE2)e12:

This is the wedge of the line as represented in CGA1 with the same line as repre-
sented in CGA2. It could also be called a bi-CGA GIPNS line entity. TheD are unit
bivectors perpendicular to the line, and p is any sample point on the line. The undual
unit vector d=DI3, or dE1=DE1IE1 and dE2=DE2IE2, is in the direction of the line.

4.5 DCGA GIPNS plane
The DCGA GIPNS 2-vector plane surface entity �D is de�ned as

� = �C1^�C2

where

�C1 = nE1+ de11

�C2 = nE2+ de12:
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This is the wedge of the plane as represented in CGA1 with the same plane as
represented in CGA2. It could also be called a bi-CGA GIPNS plane entity. The
vector n is a unit vector perpendicular (normal) to the plane, and the scalar d is
the distance of the plane from the origin.

The DCGA GIPNS 4-vector line L can also be de�ned as the intersection of two
DCGA GIPNS planes as

L = �1^�2

= (n1E1+ d1e11)^ (n1E2+ d1e12)^ (n2E1+ d2e11)^ (n2E2+ d2e12)

= ¡((n1E1+ d1e11)^ (n2E1+ d2e11))^ ((n1E2+ d1e12)^ (n2E2+ d2e12))

' (n1E1^n2E1¡ (d1n2E1¡ d2n1E1)e11)^ (n1E2^n2E2¡ (d1n2E2¡ d2n1E2)e12)

= (DE1¡ (pE1 �DE1)e11)^ (DE2¡ (pE2 �DE2)e12)

= LC1^LC2

where

DE1 = n1E1^n2E1
DE2 = n1E2^n2E2

pE1 �DE1 = (pE1 �n1E1)n2E1¡ (pE1 �n2E1)n1E1
= d1n2E1¡ d2n1E1

pE2 �DE2 = (pE2 �n1E2)n2E2¡ (pE2 �n2E2)n1E2
= d1n2E2¡ d2n1E2

such that p is any point on both planes (the line), and D= d�E = d/IE is the unit
bivector perpendicular to the line. The unit vector d=DIE points in the direction
of the line. Other bi-CGA GIPNS entities are formed similarly as the wedge of the
entity in CGA1 with the same entity in CGA2.

Some of the subscripting notation may seem confusing. For example, n1E1 is the
�rst of the two Euclidean 3D unit vectors in the CGA1 space, and this could also be
denoted as nE11. Recall that E

1 is the space of the unit pseudoscalar IE1= I31=e1e2e3
and it is a subspace of the C1 CGA1 space IC1= I51= e1e2e3e4e5. The CGA2 space
uses notations n1E2 or nE12, where IE2= I32= e6e7e8 and IC2= I52= e6e7e8e9e10. The
subscripting indicates the index number for multiple entities sharing the same name,
and also the space in which the entity exists. Finally, n1E1 and n1E2 have the same
index number 1, so they represent the same 3D unit vector n copied or doubled into
the E1 and E2 Euclidean subspace of the C1 CGA1 and C2 CGA2 space, respectively.

4.6 DCGA GIPNS circle

A circle is the intersection of a sphere and plane. We can intersect a bi-CGA GIPNS
2-vector plane � with either a bi-CGA GIPNS 2-vector sphere S or with a spherical
DCGA GIPNS 2-vector ellipsoid E and get two di�erent GIPNS 4-vector circle
entities. The �rst can be intersected again with any other entity, but the latter can
only be intersected again with another bi-CGA GIPNS entity.
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Intersections are limited to an GIPNS intersection entity of maximum grade 8,
so up to four 2-vector entities, two 4-vector entities, or a 4-vector entity and two 2-
vector GIPNS entities can be intersected, but only one of the intersecting entities
can be a non-biCGA quadric surface or toroid GIPNS entity.

As the standard DCGA GIPNS 4-vector circle 1D surface entity C, we will
de�ne it as the bi-CGA GIPNS circle

C = S^�
= SC1^SC2^�C1^�C2

= ¡(SC1^�C1)^ (SC2^�C2)

' CC1^CC2:

4.7 DCGA GIPNS elliptic cylinder

An axes-aligned elliptic cylinder is the limit of an ellipsoid as one of the semi-
diameters approaches 1. This limit eliminates the terms of the cylinder axis from
the homogeneous ellipsoid equation.

The x-axis aligned cylinder takes rx!1, reducing the ellipsoid equation to

(y¡ py)2

ry
2 +

(z¡ pz)2

rz
2 ¡ 1 = 0:

Similarly, the y-axis and z-axis aligned cylinders are

(x¡ px)2

rx
2 +

(z ¡ pz)2

rz
2 ¡ 1 = 0

(x¡ px)2

rx
2 +

(y¡ py)2

ry
2 ¡ 1 = 0

where p = pxe1 + pye2 + pze3 is the position (or shifted origin, or center) of the
ellipsoid, and rx; ry; rz are the semi-diameters (often denoted a; b; c).

The DCGA GIPNS 2-vector x,y,z-axis aligned cylinder surface entities Hjjfx;y;zg

are de�ned as

Hjjx =
¡2pyTy
ry
2 +

¡2pzTz
rz
2 +

Ty2

ry
2 +

Tz2

rz
2 +

 
py
2

ry
2 +

pz
2

rz
2 ¡ 1

!
T1

Hjjy =
¡2pxTx
rx
2 +

¡2pzTz
rz
2 +

Tx2

rx
2 +

Tz2

rz
2 +

�
px
2

rx
2 +

pz
2

rz
2 ¡ 1

�
T1

Hjjz =
¡2pxTx
rx
2 +

¡2pyTy
ry
2 +

Tx2

rx
2 +

Ty2

ry
2 +

 
px
2

rx
2 +

py
2

ry
2 ¡ 1

!
T1:

These elliptic cylinders are created as axes-aligned, but like all DCGA entities, they
can be rotated, dilated, and translated using DCGA versor operations.

DCGA GIPNS surfaces 19



Figure 4. DCGA elliptic cylinders

Figure 4 shows a red DCGA GIPNS z-axis aligned elliptic cylinder at the origin
with semi-diameters rx=1 and ry=3. The green cylinder is the red cylinder dilated
by factor 2 and translated 5e1¡ 5e2 using DCGA versors. The blue cylinder is the
red cylinder rotated 45� around the y-axis and translated ¡5e1+5e2.

4.8 DCGA GIPNS elliptic cone
An axis-aligned elliptic cone is an axis-aligned cylinder that is linearly scaled along
the axis.

The homogeneous equation for an x-axis aligned cone is
(y¡ py)2

ry
2 +

(z ¡ pz)2

rz
2 ¡ (x¡ px)2

rx
2 = 0:

where p= pxe1+ pye2+ pze3 is the position (or shifted origin, or center) of the cone
apex, and rx; ry; rz are the semi-diameters (often denoted a; b; c) of the ellipsoid upon
which the cone is based. When

(x¡ px)2

rx
2 = 1

the cross section of the cone is the size of the similar cylinder. When x= px the cross
section of the cone is degenerated into the cone apex point.

Similarly, the homogeneous equations for y-axis and z-axis aligned cones are
(x¡ px)2

rx
2 +

(z¡ pz)2

rz
2 ¡ (y¡ py)2

ry
2 = 0

(x¡ px)2

rx
2 +

(y¡ py)2

ry
2 ¡ (z ¡ pz)2

rz
2 = 0:
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The GIPNS cone entities are constructed similarly to the ellipsoid and cylinder
entities.

The DCGA GIPNS 2-vector {x,y,z}-axis aligned elliptic cone surface entities
Kjjfx;y;zg are de�ned as

Kjjx =
2pxTx
rx
2 +

¡2pyTy
ry
2 +

¡2pzTz
rz
2 +

¡Tx2
rx
2 +

Ty2

ry
2 +

Tz2

rz
2 +

 
¡px2
rx
2 +

py
2

ry
2 +

pz
2

rz
2

!
T1

Kjjy =
¡2pxTx
rx
2 +

2pyTy
ry
2 +

¡2pzTz
rz
2 +

Tx2

rx
2 +

¡Ty2
ry
2 +

Tz2

rz
2 +

 
px
2

rx
2 +

¡py2

ry
2 +

pz
2

rz
2

!
T1

Kjjz =
¡2pxTx
rx
2 +

¡2pyTy
ry
2 +

2pzTz
rz
2 +

Tx2

rx
2 +

Ty2

ry
2 +

¡Tz2
rz
2 +

 
px
2

rx
2 +

py
2

ry
2 +

¡pz2
rz
2

!
T1:

These elliptic cones are created as axes-aligned, but they can be rotated, dilated,
and translated using versor operations. All the DCGA surfaces can have general
position, but we initially de�ne them in axes-aligned position for simplicity. De�ning
the surfaces in general position may be possible if the value-extraction operations
Txy, Tyz, and Tzx are employed.

Figure 5. DCGA elliptic cones
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Figure 5 shows some DCGA GIPNS cones positioned and transformed similar to
the elliptic cylinders of Figure 4. The dilation of a cone does not change the cone
shape, but it does dilate the cone center position to e�ectively translate a cone that
is not initially at the origin to be further from the origin by the dilation factor.

4.9 DCGA GIPNS elliptic paraboloid

The elliptic paraboloid has a cone-like shape that opens up or down. The other
paraboloid that would open the other way is imaginary with no real solution points.

The homogeneous equation of a z-axis aligned elliptic paraboloid is

(x¡ px)2

rx
2 +

(y¡ py)2

ry
2 ¡ (z¡ pz)

rz
= 0:

The surface opens up the z-axis for rz > 0, and opens down the z-axis for rz < 0.
Similar equations for x-axis and y-axis aligned elliptic paraboloids are

(z¡ pz)2

rz
2 +

(y¡ py)2

ry
2 ¡ (x¡ px)

rx
= 0

(x¡ px)2

rx
2 +

(z¡ pz)2

rz
2 ¡ (y¡ py)

ry
= 0:

Expanding the squares, the z-axis aligned equation is

¡2pxx
rx
2 +

¡2pyy
ry
2 +

¡z
rz

+
x2

rx
2 +

y2

ry
2 +

 
px
2

rx
2 +

py
2

ry
2 +

pz
rz

!
= 0

and the x-axis and y-axis aligned equations are

¡2pzz
rz
2 +

¡2pyy
ry
2 +

¡x
rx

+
z2

rz
2 +

y2

ry
2 +

 
pz
2

rz
2 +

py
2

ry
2 +

px
rx

!
= 0

¡2pxx
rx
2 +

¡2pzz
rz
2 +

¡y
ry

+
x2

rx
2 +

z2

rz
2 +

�
px
2

rx
2 +

pz
2

rz
2 +

py
ry

�
= 0:

The DCGA GIPNS 2-vector {x,y,z}-axis aligned elliptic paraboloid surface entities
V jjfx;y;zg are de�ned as

V jjx =
¡2pzTz
rz
2 +

¡2pyTy
ry
2 +

¡Tx
rx

+
Tz2

rz
2 +

Ty2

ry
2 +

 
pz
2

rz
2 +

py
2

ry
2 +

px
rx

!
T1

Vjjy =
¡2pxTx
rx
2 +

¡2pzTz
rz
2 +

¡Ty
ry

+
Tx2

rx
2 +

Tz2

rz
2 +

�
px
2

rx
2 +

pz
2

rz
2 +

py
ry

�
T1
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V jjz ¡2pxTx
rx
2 +

¡2pyTy
ry
2 +

¡Tz
rz

+
Tx2

rx
2 +

Ty2

ry
2 +

 
px
2

rx
2 +

py
2

ry
2 +

pz
rz

!
T1:

A DCGA 2-vector point TD=D(t) is tested against the DCGA 2-vector paraboloid
V as

TD �V

8<: <0 : t is inside paraboloid
=0 : t is on paraboloid
>0 : t is outside paraboloid.

This is similar to the ellipsoid incidence test, and this test is similar for many of the
surfaces.

Figure 6. DCGA elliptic paraboloids

4.10 DCGA GIPNS hyperbolic paraboloid

The hyperbolic paraboloid has a saddle shape. The saddle can be mounted or aligned
on a saddle axis with another axis chosen as the up axis. The third axis may be
called the straddle axis.

The homogeneous equation of a hyperbolic paraboloid is

(x¡ px)2

rx
2 ¡ (y¡ py)2

ry
2 ¡ (z¡ pz)

rz
= 0:

This particular form of the equation has saddle x-axis, straddle y-axis, and up z-
axis for rz>0 or up negative z-axis for rz< 0. By its similarity to the z-axis aligned
elliptic paraboloid with the elliptic y-axis inverted, this particular form can be seen
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as z-axis aligned. Other forms can be made by transposing axes, or by rotation
around diagonal lines using DCGA rotor operations.

Expanding the squares, the equation is

¡2pxx
rx
2 +

2pyy

ry
2 +

¡z
rz

+
x2

rx
2 +

¡y2
ry
2 +

 
px
2

rx
2 ¡

py
2

ry
2 +

pz
rz

!
= 0:

The DCGA GIPNS 2-vector z-axis aligned hyperbolic paraboloid surface entityM is
de�ned as

M =
¡2pxTx
rx
2 +

2pyTy
ry
2 +

¡Tz
rz

+
Tx2

rx
2 +

¡Ty2
ry
2 +

 
px
2

rx
2 ¡

py
2

ry
2 +

pz
rz

!
T1:

Figure 7. DCGA hyperbolic paraboloid rotated twice
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Figure 7 shows the hyperbolic paraboloid entity, which is centered on the origin
with parameters rx= ry= rz=1, and which was initially z-axis aligned. It was then
rotated twice. The �rst rotation was 45� around the blue z-axis, pointing nearly
out of the page. The second rotation was 25� around the line n= 1

2
p (¡e1+ e2), not

shown but pointing toward the lower-right of the page. The rotations follow the
right-hand rule on a right-handed axes model. The red x-axis points to the left, and
the green y-axis points down.

4.11 DCGA GIPNS hyperboloid of one sheet

The hyperboloid of one sheet has a shape that is similar to an hourglass which
continues to open both upward and downward. The homogeneous equation is

(x¡ px)2

rx
2 +

(y¡ py)2

ry
2 ¡ (z¡ pz)2

rz
2 ¡ 1 = 0:

This particular form opens up and down the z-axis. Planes parallel to the z-axis
cut hyperbola sections. Planes perpendicular to the z-axis cut ellipse sections. At
z = pz, the ellipse section has a minimum size of the similar cylinder. Other forms
can be made by transposing axes, or by rotation around diagonal lines using DCGA
rotor operations.

Expanding the squares, the equation is

¡2pxx
rx
2 +

¡2pyy
ry
2 +

2pzz

rz
2 +

x2

rx
2 +

y2

ry
2 +

¡z2
rz
2 +

 
px
2

rx
2 +

py
2

ry
2 ¡

pz
2

rz
2 ¡ 1

!
= 0:

The DCGA GIPNS 2-vector z-axis aligned hyperboloid of one sheet surface entity �
is de�ned as

� = ¡2

 
pxTx
rx
2 +

pyTy
ry
2 ¡ pzTz

rz
2

!
+
Tx2

rx
2 +

Ty2

ry
2 ¡

Tz2

rz
2 +

 
px
2

rx
2 +

py
2

ry
2 ¡

pz
2

rz
2 ¡ 1

!
T1:
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Figure 8. Rotation of DCGA hyperboloid of one sheet

Figure 8 is an orthographic (parallel projection) view from above the zx-plane
that shows this hyperboloid with rx = 1, ry = 2, rz = 3, initially with green color,
positioned at px= 10, and aligned up and down the z-axis. It is then rotated using
a DCGA rotor by 90� in 10� steps as its color fades to blue, with �nal position at
pz = ¡10 and aligned up and down the x-axis. The rotation is counter-clockwise
around the y-axis coming out of the page on a right-handed system of axes. The x-
axis is red and positive up, the y-axis is green (not visible), and the z-axis is blue and
positive to the right. The axes are drawn by rendering thin elliptic cylinder entities.
The right-hand rule, holding the y-axis, provides orientation for this rotation. The
hyperboloid is rotated about the origin, around the y-axis, as a rigid body of points.
In the symbolic computer algebra system (CAS) Sympy, the hyperboloid equation
itself, as a DCGA entity, was rotated symbolically and graphed at each step using
the MayaVi data visualization software.

4.12 DCGA GIPNS hyperboloid of two sheets

The hyperboloid of two sheets has the shapes of two separate hyperbolic dishes; one
opens upward, and the other one opens downward. The shape is like an hourglass
that is pinched closed and the two halves are also separated by some distance. The
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homogeneous equation is

¡(x¡ px)2

rx
2 ¡ (y¡ py)2

ry
2 +

(z¡ pz)2

rz
2 ¡ 1 = 0:

This particular form has the two dishes opening up and down the z-axis. The
dishes are separated by distance 2rz centered at pz. At jz¡ pz j= 2

p
rz, the sections

perpendicular to the z-axis are the size of the similar cylinder.
Expanding the squares, the equation is

2pxx

rx
2 +

2pyy

ry
2 ¡ 2pzz

rz
2 ¡ x2

rx
2 ¡

y2

ry
2 +

z2

rz
2 +

 
¡px2
rx
2 +

¡py2

ry
2 +

pz
2

rz
2 ¡ 1

!
= 0:

The DCGA GIPNS 2-vector z-axis aligned hyperboloid of two sheets surface entity
� is de�ned as

� = 2

 
pxTx
rx
2 +

pyTy
ry
2 ¡ pzTz

rz
2

!
¡ Tx2

rx
2 ¡

Ty2

ry
2 +

Tz2

rz
2 +

 
pz
2

rz
2 ¡

px
2

rx
2 ¡

py
2

ry
2 ¡ 1

!
T1:

Figure 9. Rotation of DCGA hyperboloid of two sheets
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Figure 9 shows a perspective view of the hyperboloid of two sheets initially with
green color, centered at px = 5, py = ¡5, and with semi-diameters rx = 1, ry = 2,
rz=3. The black dots (small sphere entities) are the center positions as the surface is
rotated around the white line through the origin and the red point 5e1+ 10e2+5e3.
The rotation is by 90� in 10� steps until it reaches the position of the blue surface.
The �rst black dot is on the xy-plane (blue plane), and then the black dots go under
the blue plane along an arc directly around the axis of rotation. The surface is carried
along as a rigid body by the rotation using a DCGA rotor operation. The symbolic
CAS Sympy was used for each rotation step, where an exact symbolic equation of
the hyperboloid was generated by the rotated entity and graphed using MayaVi
data visualization software.

4.13 DCGA GIPNS parabolic cylinder

The homogeneous equation for the z-axis aligned parabolic cylinder is

(x¡ px)2

rx
2 ¡ (y¡ py)

ry
= 0:

The z coordinate is free, which creates a type of 2-surface or cylinder with parabolic
sections that open up the y-axis for ry>0, and open down the y-axis for ry<0. The
similar equations for x-axis and y-axis aligned parabolic cylinders are

(y¡ py)2

ry
2 ¡ (z¡ pz)

rz
= 0

(x¡ px)2

rx
2 ¡ (z¡ pz)

rz
= 0

with parabolas that open up or down the z-axis. Other forms can be made by
transpositions using the transposition operations.

Expanding the squares, the equations are

¡2pxx
rx
2 ¡ y

ry
+
x2

rx
2 +

�
px
2

rx
2 +

py
ry

�
= 0

¡2pyy
ry
2 ¡ z

rz
+
y2

ry
2 +

 
py
2

ry
2 +

pz
rz

!
= 0

¡2pxx
rx
2 ¡ z

rz
+
x2

rx
2 +

�
px
2

rx
2 +

pz
rz

�
= 0:

The DCGA GIPNS 2-vector {x,y,z}-axis aligned parabolic cylinder surface entities
Bjjfx;y;zg are de�ned as

Bjjx =
¡2pyTy
ry
2 ¡ Tz

rz
+
Ty2

ry
2 +

 
py
2

ry
2 +

pz
rz

!
T1
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Bjjy =
¡2pxTx
rx
2 ¡ Tz

rz
+
Tx2

rx
2 +

�
px
2

rx
2 +

pz
rz

�
T1

Bjjz =
¡2pxTx
rx
2 ¡ Ty

ry
+
Tx2

rx
2 +

�
px
2

rx
2 +

py
ry

�
T1:

These are created as axes-aligned surfaces, but can be rotated, dilated, and trans-
lated using DCGA versor operations.

Figure 10. DCGA parabolic cylinders and toroid rotated and translated

Figure 10 shows multiple perspective views of the DCGA GIPNS 2-vector par-
abolic cylinders and toroid surface entities rendered together in one scene. The red
cylinder is x-axis aligned, ry = 1, rz = 2, rotated 20� around the x-axis, and then
translated by d=¡10e2 from the origin. The green cylinder is y-axis aligned, rx=1,
rz= 3, rotated 40� around the y-axis, and then translated by d= 10e1¡ 10e3 from
the origin. The blue cylinder is z-axis aligned, rx=1, ry=4, rotated 60� around the
z-axis, and then translated by d=¡10e1+ 10e2 from the origin. The toroid, with
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R=4 and r=1, is rotated 25� around the axis n= 1

2
p (¡e1+e2), and then translated

by d= 10e1+ 10e2+ 10e3 from the origin. The rotations follow the right-hand rule
on right-handed axes. The rotation-translations were performed as compositions of
DCGA rotors and translators. Symbolic CAS Sympy was used to generate exact
equations of the transformed entities, which were then graphed using the MayaVi
data visualization software.

4.14 DCGA GIPNS hyperbolic cylinder

The homogeneous equation for the z-axis aligned hyperbolic cylinder is

(x¡ px)2

rx
2 ¡ (y¡ py)2

ry
2 ¡ 1 = 0:

The z coordinate is free, which creates a type of 2-surface or cylinder with hyperbolic
sections that open up and down the x-axis. The hyperbola branches are separated
by distance 2rx centered at p= pxe1+ pye2+ ze3. The asymptotes are the lines

(y¡ py) = �ry
rx
(x¡ px)

through (px; py), where in the limit as x!�1 the ¡1 becomes insigni�cant.

The similar equations for x-axis and y-axis aligned hyperbolic cylinders are

(y¡ py)2

ry
2 ¡ (z¡ pz)2

rz
2 ¡ 1 = 0:

(z¡ pz)2

rz
2 ¡ (x¡ px)2

rx
2 ¡ 1 = 0:

with parabolas that open up or down the z-axis and x-axis. Other hyperbolic cylin-
ders can be made by using DCGA versor operations to transform a cylinder with
�xed semi-diameters into general positions.

Expanding the squares, the equations for x; y; z-aligned hyperbolic cylinders are
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2
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2
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2 ¡ 1

!
= 0
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z2
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x2
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�
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2
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2
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�
= 0

¡2pxx
rx
2 +

2pyy

ry
2 +

x2

rx
2 ¡

y2

ry
2 +

 
px
2

rx
2 ¡

py
2

ry
2 ¡ 1

!
= 0:

The DCGA GIPNS 2-vector {x,y,z}-axis aligned hyperbolic cylinder surface entities
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Jjjfx;y;zg are de�ned as
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¡2pyTy
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2 +
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2 ¡
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rz
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2
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2 ¡
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!
T1
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Figure 11. DCGA hyperbolic cylinder rotated and translated

Figure 11 shows the z-axis aligned hyperbolic cylinder, with initial parameters
px= 0, py= 0, rx= 1, and ry= 2. The second rendering of it is rotated 60� around
the z-axis and then translated by d=¡10e1+ 10e2 using a composition of DCGA
rotor and translator operations.
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4.15 DCGA GIPNS parallel planes pair

Parallel pairs of axes-aligned planes are represented by the simple quadratic equa-
tions in one variable

(x¡ px1)(x¡ px2) = 0

(y¡ py1)(y¡ py2) = 0

(z¡ pz1)(z¡ pz2) = 0:

Each solution is a plane. Expanding the equations gives

x2¡ (px1+ px2)x+ px1px2 = 0

y2¡ (py1+ py2)y+ py1py2 = 0

z2¡ (pz1+ pz2)z+ pz1pz2 = 0:

The DCGA GIPNS 2-vector parallel {x,y,z}-planes pair entities �?fx; y;z g are
de�ned as

�?x = Tx2¡ (px1+ px2)Tx+ px1px2T1

�?y = Ty2¡ (py1+ py2)Ty+ py1py2T1

�?z = Tz2¡ (pz1+ pz2)Tz+ pz1pz2T1

These surfaces can also be described as being types of cylinders with cross sections
being two parallel lines.
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Figure 12. DCGA parallel planes pairs rotated

Figure 12 shows the DCGA GIPNS parallel planes pair entities rotated using
DCGA rotor operations. The red planes pair is initially perpendicular to the x-axis
through points px1 = 4 and px2 = 8, then it is rotated 30� around the y-axis. The
green planes pair is initially perpendicular to the y-axis through points py1 = ¡5
and py2=5, then it is rotated 60� around the z-axis. The blue planes pair is initially
perpendicular to the z-axis through points pz1=¡10 and pz2=¡7, then it is rotated
90� around the x-axis until it is perpendicular to the y-axis through the points
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py1= 10 and py2=7.

4.16 DCGA GIPNS non-parallel planes pair

The homogeneous equation for a pair of intersecting, non-parallel planes that are
parallel to the z-axis is

(x¡ px)2

rx
2 ¡ (y¡ py)2

ry
2 = 0:

This equation can be written as

(y¡ py) = �ry
rx
(x¡ px)

with the z coordinate free to range. This surface can also be described as a kind of
cylinder with a cross section in plane z that is two lines with slopes � ry

rx
intersecting

at p= pxe1+ pye2+ ze3.

Expanding the squares, the equation is

¡2pxx
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2 +

2pyy

ry
2 +

x2

rx
2 ¡

y2

ry
2 +
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2
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2 ¡

py
2

ry
2

!
= 0:

The DCGA GIPNS 2-vector {x,y,z}-axis aligned non-parallel planes pair entities
Xjjfx;y;zg are de�ned as
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Figure 13. DCGA non-parallel planes pair rotated

Figure 13 shows the entityXjjz, initially having planes with slopes � ry

rx
=�1

2
that

cross at the origin point px = 0, py = 0 in the xy-plane. It is then rotated using a
DCGA rotor operation around the y-axis (green) by 70�. The line of crossing points
was initially the z-axis, but after rotation the crossing line is at 70� o� the z-axis,
around the y-axis. Like the other DCGA entities, the non-parallel planes pair entities
can be transformed into general positions using DCGA versor operations.

4.17 DCGA GIPNS ellipse
The ellipse is a conic section, and like all conic sections it can be made as the
intersection of a plane and cone, but we are not limited to intersecting with cones.
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A simple ellipse representation is made as the intersection of a plane and elliptic
cylinder. The parabola and hyperbola are also conic sections, and their simple rep-
resentations are as planes intersecting parabolic and hyperbolic cylinders. We can
just de�ne these conic sections as these plane and cylinder intersections, but these
conic sections could be formed by a wide variety of other possible intersections.

The DCGA GIPNS 4-vector xy-plane ellipse 1D surface entity �jjxy is de�ned as

�jjxy = �z=0^Hjjz

where the DCGA GIPNS 2-vector plane �z=0 is the entity for the plane z=0, and
the DCGA GIPNS 2-vector elliptic cylinder Hjjz is as previously de�ned and directly
represents an ellipse in the xy-plane. Other similar ellipse entities are the wedges
of other planes with other elliptic cylinders that are aligned di�erently.

A DCGA GIPNS ellipse entity �, or its dual DCGA GOPNS ellipse entity ��D=
�/ID, can be rotated, dilated, and translated using DCGA versor operations, where
versor outermorphism is applied to the wedge of plane and cylinder that form the
ellipse entity. In versor operations on the ellipse entity, the plane and cylinder are
each transformed by the versor operations, and then the transformed plane and
cylinder are intersected.

4.18 DCGA GIPNS parabola
The DCGA GIPNS 4-vector xy-plane parabola 1D surface entity �jjxy is de�ned as

�jjxy = �z=0^Bjjz

where the DCGA GIPNS 2-vector plane �z=0 is the entity for the plane z = 0,
and the DCGA GIPNS 2-vector parabolic cylinder Bjjz is as previously de�ned and
directly represents a parabola in the xy-plane. Other similar parabola entities are
the wedges of other planes with other parabolic cylinders that are aligned di�erently.

4.19 DCGA GIPNS hyperbola
The DCGA GIPNS 4-vector xy-plane hyperbola 1D surface entity � jjxy is de�ned as

� jjxy = �z=0^Jjjz

where the DCGA GIPNS 2-vector plane �z=0 is the entity for the plane z=0, and
the DCGA GIPNS 2-vector hyperbolic cylinder Jjjz is as previously de�ned and
directly represents a hyperbola in the xy-plane. Other similar hyperbola entities
are the wedges of other planes with other hyperbolic cylinders that are aligned
di�erently.

5 DCGA GOPNS surfaces
Up to four DCGA points can be wedged to form DCGA geometric outer product
null space (GOPNS) 4,6,8-vector surface entities of the surface types available in
CGA. Unfortunately, the wedge of more than four points, as required for the quadric
surfaces, does not work with DCGA points.
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The DCGA GOPNS surface entities for quadric surfaces and the toroid would
require more than four points to de�ne them. For quadric surfaces in general posi-
tion, it takes 5 points in 2D, 9 points in 3D, and

�
n+2
2

�
¡ 1 points in nD to de�ne

a quadric surface. If limited to principal axes-aligned surfaces it still requires 6
points in 3D to de�ne quadric surfaces, as in QGA. Therefore, it seems that it is
not possible in DCGA to directly represent the DCGA GOPNS quadric surfaces as
the wedge of DCGA surface points. When more than four DCGA surface points are
required to de�ne a surface, then more complicated formulas are still possible but
they resolve back to the GIPNS entities.

In general, we can always obtain a DCGA GOPNS surface entity S�D by taking
the DCGA dual of a DCGA GIPNS surface entity S as S�D = S / ID. All DCGA
versor operations are valid on both the DCGA GIPNS entities and their dual DCGA
GOPNS entities.

The following four subsections de�ne the four DCGA GOPNS surface entities
which can be constructed synthetically as wedges of up four DCGA surface points.
These four DCGA GOPNS surface entities are just the DCGA analogs of the CGA
GOPNS surface entities.

A DCGA test point TD that is on a DCGA GOPNS surface entity S�D must satisfy
the GOPNS condition

TD^S�D = 0:

The DCGA GOPNS k-vector surface entity S�D represents the set NOG(S�D2
G8;2k ) of all 3D vector test points t that are surface points

NOG(S
�D2G8;2k ) =

�
t2G31 : (D(t)=TD)^S�D=0

	
:

5.1 DCGA GOPNS sphere

The DCGA GOPNS 8-vector sphere S�D is de�ned as the wedge of four DCGA
points PDi on the sphere as

S�D = PD1^PD2^PD3^PD4
= S/ID

and is the DCGA dual of the DCGA GIPNS 2-vector sphere S.

5.2 DCGA GOPNS plane

The DCGA GOPNS 8-vector plane ��D is de�ned as the wedge of three DCGA
points PDi on the plane and the DCGA point at in�nity e1 as

��D = PD1^PD2^PD3^ e1
= �/ID

and is the DCGA dual of the DCGA GIPNS 2-vector plane �.
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5.3 DCGA GOPNS line
The DCGA GOPNS 6-vector line L�D is de�ned as the wedge of two DCGA points
PDi on the line and the DCGA point at in�nity e1 as

L�D = PD1^PD2^ e1
= L/ID

and is the DCGA dual of the DCGA GIPNS 4-vector line L.

5.4 DCGA GOPNS circle
The DCGA GOPNS 6-vector circle C�D is de�ned as the wedge of three DCGA
points PDi on the circle as

C�D = PD1^PD2^PD3
= C/ID

and is the DCGA dual of the DCGA GIPNS 4-vector circle C.

6 DCGA operations

The DCGA operations are very similar to the CGA operations, but the DCGA
versors are the wedges of the two likewise CGA versors in both CGA1 and CGA2.

6.1 DCGA rotor
The DCGA rotor R is de�ned as

R = RC1^RC2:

The CGA rotors for the same rotation operation in CGA1 and CGA2 are wedged
as the DCGA rotor R. All DCGA entities X, including both GIPNS and GOPNS,
can be generally rotated around any axis by any angle by the DCGA rotor operation

X0 = RXR�:

6.2 DCGA dilator
The DCGA dilator D is de�ned as

D = DC1^DC2:

The CGA dilators for the same dilation operation in CGA1 and CGA2 are wedged
as the DCGA dilator D. All DCGA entitiesX, including both GIPNS and GOPNS,
can be dilated by the DCGA dilator operation

X0 = DXD�:
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Keep in mind that dilation also dilates the position of an entity, which may cause
an unexpected translational movement. To scale an entity, it should be translated
to be centered on the origin, dilated around the origin, and then translated back.

6.3 DCGA translator
The DCGA translator T is de�ned as

T = TC1^TC2:

The CGA translators for the same translation operation in CGA1 and CGA2 are
wedged as the DCGA translator T . All DCGA entities X, including both GIPNS
and GOPNS, can be translated by the DCGA translator operation

X0 = TXT�:

6.4 DCGA motor
The DCGA motor M is de�ned as

M = MC1^MC2:

The CGA motors for the same motion operation in CGA1 and CGA2 are wedged
as the DCGA motor M . All DCGA entitiesX, including both GIPNS and GOPNS,
can be moved by the DCGA motor operation

X0 = MXM�:

6.5 DCGA intersection
Although not rigorously proved here, the intersection tests performed by this
author supported the following claims given in this subsection about DCGA inter-
section. Detailed examinations of ellipsoid-plane and ellipsoid-sphere intersections
are shown in Figures 14 and 15. These claims should be considered preliminary,
and require additional research to prove for certain what intersections are valid
or invalid.

The bi-CGA GIPNS entities are the following:

� DCGA GIPNS 2-vector sphere

� DCGA GIPNS 2-vector plane

� DCGA GIPNS 4-vector line

� DCGA GIPNS 4-vector circle.

The DCGA GIPNS intersection entity X is the wedge of multiple bi-CGA GIPNS
entities and (optionally) up to one more DCGA GIPNS entity that is not a bi-CGA
GIPNS entity. Only one quadric surface DCGA GIPNS entity can be included in a
wedge that forms an intersection entity. Unfortunately, the quadric surface entities
cannot be intersected directly with each other by wedge products. These claims are
summarized by the following de�nition.
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The DCGA GIPNS intersection entity X of grade k� 8 is de�ned as

Xhk�8i =

(
DCGA GIPNS entity ^(

V
i=1

n bi-CGA GIPNS entityi)V
i=1

n bi-CGA GIPNS entityi:

The maximum grade for a valid intersection entity is grade 8. The grade of the
wedges is divisible by 2, making the next grade above 8 to be 10, proportional to
the DCGA unit pseudoscalar ID. No valid entity is a pseudoscalar.

Figure 14. Intersection of ellipsoid and plane in general positions

Figure 14 shows the details of a DCGA GIPNS intersecton entity representing
the intersection of a DCGA GIPNS 2-vector ellipsoid and DCGA 2-vector plane,
both rotated and translated di�erently into general positions that have an intersec-
tion. The red ellipsoid E has initial parameters rx=5, ry=7, rz=9, px=1, py=¡2,
pz=3, and is then rotated 30� around the blue z-axis. The Sympy test code for the
ellipsoid was:

Rotor(e3,30*pi*Pow(180,-1))*
GIPNS_Ellipsoid(1,-2,3,5,7,9)*
Rotor(e3,30*pi*Pow(180,-1)).rev()
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The black dot is the ellipsoid center position. The blue plane� is initially perpendic-
ular to the x-axis through the origin, then transformed according the following code:

Rotor(e1,30*pi*Pow(180,-1))*
Translator(-4*e2)*
Rotor(e3,-60*pi*Pow(180,-1))*
GIPNS_Plane(e1,0)*
Rotor(e3,-60*pi*Pow(180,-1)).rev()*
Translator(-4*e2).rev()*
Rotor(e1,30*pi*Pow(180,-1)).rev()

Their DCGA GIPNS intersection is X = E ^�. The various images in Figure 14
show components of X that represent other surfaces that are all coincident with the
intersection of the ellipsoid and plane. There were ten unique components in X.
These components are cylinders, hyperboloids, and a cone. The intersection entity
X represents the locus of points that are simultaneously located on all ten of these
surfaces, which is an ellipse-shaped intersection of the ellipsoid and plane.

Figure 15. Intersection of ellipsoid and sphere in general positions
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Figure 15 shows the same red DCGA GIPNS ellipsoid E as in Figure 14, but
now intersected with a blue DCGA GIPNS sphere S of radius r = 5 at position
e1+5e2+3e3. The DCGA GIPNS intersection entity is now X=E^S. The shape
of the intersection appears like a curved ellipse or curved circle. The components
of the entity X represent 15 other unique surfaces that are also coincident with
the intersection of E and S. The images of Figure 15 show how each of these 15
surfaces intersect with the intersection of E and S. Some of these surfaces are
unusually shaped, and some have two sheets. The DCGA GIPNS intersection entity
X represents the simultaneous locus or intersection of all of the involved surfaces
and appears to be a valid intersection entity for the ellipsoid and sphere.

The DCGA GIPNS quadric surface entities, of the types not available in CGA,
could not be wedged with each other to form valid intersection entities - incorrect or
invalid intersection entities resulted from their wedge. As a curiosity, it was noticed
that the sum and the di�erence of two intersecting DCGA GIPNS quadric surface
entities represent two more coincident intersecting surfaces.

6.6 DCGA dualization
The DCGA unit pseudoscalar ID is de�ned as

ID = IC1^ IC2
= e1e2e3e4e5e6e7e8e9e10

and is the DCGA dualization operator on all DCGA entities.
Properties of ID include

ID� = (¡1)10(10¡1)/2ID=¡ID
ID
2 = ¡IDID�=¡1

ID
¡1 = ID�=¡ID:

According to the sign rule for the commutation of the inner product of two blades
(¡1)r(10¡1), the DCGA pseudoscalar ID commutes with blades of even grade r, such
as the DCGA 2-vector points, DCGA GIPNS 2,4,6,8-vector surfaces, and their dual
DCGA GOPNS surfaces.

A DCGA GIPNS k-vector surface entity X is dualized into its dual DCGA
GOPNS (10¡ k)-vector surface entity X�D as

X�D = X/ID=¡X � ID
A DCGA GOPNS k-vector surface entity X�D is undualized into its undual DCGA
GIPNS (10¡ k)-vector surface entity X as

X = X�DID=X�D � ID:

This de�nition of dual and undual preserves the sign on the entities, otherwise the
dual applied twice changes signs.

It is understandable that many authors may call the GIPNS entities dual and
the GOPNS entities standard , but since in DCGA we cannot wedge DCGA points
into all of the GOPNS entities, the GIPNS entities are considered the standard or
undual entities and the GOPNS entities are the dual entities. Most of the DCGA
GOPNS entities can only be obtained by the dualization operation as duals.
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7 Conclusion

The G8;2 Double Conformal Geometric Algebra (DCGA) that has been presented,
and possibly introduced for the �rst time, in this paper may be an interesting algebra
for future research or for some applications now.

DCGA provides entities for all the surfaces available in CGA, and DCGA also
has entities for all quadric surfaces. DCGA also provides a toroid entity which may
be a new entity not previously available in G4;1 CGA nor in G6;3 QGA. DCGA has
a complete set of entity transformation operations as versor operations that can
transform both the GIPNS and GOPNS forms of all entities, including the toroid.
The available versors are rotor, dilator, translator, and motor. DCGA supports the
creation of GIPNS intersection entities as the wedge of intersecting GIPNS entities,
but this support is limited to intersecting up to a single quadric surface entity or
toroid with some combination of planes, spheres, circles, and lines not exceeding a
combined grade of 8.

Although not yet tested by this author, the possible extension of G8;2 DCGA to
a G12;3 Triple or G16;4 Quadruple Conformal Geometric Algebra may be theoretically
feasible, and may allow for general cubic and quartic surface entities.

References

[1] L. Dorst, D. Fontijne and S. Mann. Geometric Algebra for Computer Science (Revised
Edition): An Object-Oriented Approach to Geometry . The Morgan Kaufmann Series in Com-
puter Graphics. Elsevier Science, 2009.

[2] Robert B. Easter. Quaternions and Cli�ord Geometric Algebras . ViXra.org, 2015.
[3] David Hestenes. New Foundations for Classical Mechanics , volume 99 of Fundamental The-

ories of Physics . Dordrecht: Kluwer Academic Publishers, Second edition, 1999.
[4] David Hestenes and Garret Sobczyk. Cli�ord Algebra to Geometric Calculus, A Uni�ed

Language for Mathematics and Physics , volume 5 of Fundamental Theories of Physics . Dor-
drecht-Boston-Lancaster: D. Reidel Publishing Company, a Member of the Kluwer Academic
Publishers Group, 1984.

[5] Dietmar Hildenbrand. Foundations of Geometric Algebra Computing . Berlin: Springer, 2013.
[6] Daniel Klawitter. Cli�ord Algebras, Geometric Modelling and Chain Geometries with Appli-

cation in Kinematics . Springer Spektrum, 2015.
[7] Christian Perwass. Geometric Algebra with Applications in Engineering , volume 4 of Geom-

etry and Computing . Springer, 2009.
[8] Bodo Rosenhahn. Pose Estimation Revisited . Christian-Albrechts-Universitat zu Kiel, 2003.
[9] Gerald Sommer, editor. Geometric Computing with Cli�ord Algebras, Theoretical Founda-

tions and Applications in Computer Vision and Robotics . Berlin: Springer, 2001.
[10] Julio Zamora-Esquivel. G6,3 Geometric Algebra; Description and Implementation. Advances

in Applied Cli�ord Algebras , 24(2):493�514, 2014.

References 43


	1 Introduction
	2 CGA1 and CGA2
	2.1 CGA point
	2.2 CGA GIPNS surfaces
	2.2.1 CGA GIPNS sphere
	2.2.2 CGA GIPNS plane
	2.2.3 CGA GIPNS line
	2.2.4 CGA GIPNS circle

	2.3 CGA GOPNS surfaces
	2.3.1 CGA GOPNS sphere
	2.3.2 CGA GOPNS plane
	2.3.3 CGA GOPNS line
	2.3.4 CGA GOPNS circle

	2.4 CGA operations
	2.4.1 CGA rotor
	2.4.2 CGA dilator
	2.4.3 CGA translator
	2.4.4 CGA motor
	2.4.5 CGA intersection
	2.4.6 CGA dualization

	2.5 CGA1 and CGA2 notations

	3 DCGA point
	4 DCGA GIPNS surfaces
	4.1 DCGA GIPNS toroid
	4.2 DCGA GIPNS ellipsoid
	4.3 DCGA GIPNS sphere
	4.4 DCGA GIPNS line
	4.5 DCGA GIPNS plane
	4.6 DCGA GIPNS circle
	4.7 DCGA GIPNS elliptic cylinder
	4.8 DCGA GIPNS elliptic cone
	4.9 DCGA GIPNS elliptic paraboloid
	4.10 DCGA GIPNS hyperbolic paraboloid
	4.11 DCGA GIPNS hyperboloid of one sheet
	4.12 DCGA GIPNS hyperboloid of two sheets
	4.13 DCGA GIPNS parabolic cylinder
	4.14 DCGA GIPNS hyperbolic cylinder
	4.15 DCGA GIPNS parallel planes pair
	4.16 DCGA GIPNS non-parallel planes pair
	4.17 DCGA GIPNS ellipse
	4.18 DCGA GIPNS parabola
	4.19 DCGA GIPNS hyperbola

	5 DCGA GOPNS surfaces
	5.1 DCGA GOPNS sphere
	5.2 DCGA GOPNS plane
	5.3 DCGA GOPNS line
	5.4 DCGA GOPNS circle

	6 DCGA operations
	6.1 DCGA rotor
	6.2 DCGA dilator
	6.3 DCGA translator
	6.4 DCGA motor
	6.5 DCGA intersection
	6.6 DCGA dualization

	7 Conclusion
	References

