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Abstract

As the further development of the local formalism of entropy gra-
dient maximization (EGM), the construction of weak maximization
condition (local ergodicity) is established.

The concerning mathematical techniques for generation and inter-
pretation of dynamic equations for system consisting of two degrees
of freedom are consequently elaborated.

An application of the method is discussed and illustrated with
standard examples of mechanics.

1 Introduction

The local formalism of entropy gradient maximization (EGM) [1] recently
proposed as an alternative way to generate the dynamical equations for phys-
ical systems with arbitrary number of degrees of freedom (DoF’s)

On the one hand, it eliminates the classical inconsistencies of conventional
formalisms, on the other hand it provides no contradiction to their outcomes,
since the set of classical solutions of second-order dynamic equations are
the restriction of solution space of the first-order ones resulting from the
formalism.

An additional feature of the formulation of EGM, amongst others, is a
possibility to impose the additinal contition - ergodicity as a direct function
of infinitesimal variations, since we carry out the maximization on the space
of variations of arguments.
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This option allows to distinguish this kind of weak or local ergodicity from
the usual one, called in this context strong or global, as it was shortly men-
tioned in the first report [1].

This investigation was focused on the main features of the formalism,
considered there in preassumption of global-ergodic systems. In the present
note we put an attention on the alternative possibility to impose an ergodicity
condition as a local one.

It will be shown, that this approach works successfully, despite its unusual
form using differentials of variables as arguments instead of the variables
itself.

Conditions of such kind reveal the principal difference from the usual
(global) ergodic equations, and appear in fact as a generalization of them.

In particular this approach leads to, generally speaking, different dynam-
ical equations producing also different classes of solutions respectively, as it
will be shown by comparing the outcomes in examples supported below.

Starting with a brief recall of the postulates of the entropy gradient max-
imization concept, we highlight the case of local ergodicity and illustrate it
with simple problems, well known in a framework of the usual approach.

The examples discussed below suggest, that the generalization of ergod-
icity to a local approach is a promising way for extension of available classes
of dynamic systems as well as of the variety of possibilities to construct such
systems.

1.1 Formulation of the entropy-gradient-maximization

We recall briefly the local formalism of entropy gradient maximization, re-
cently proposed as a way to obtain the dynamical equations, avoding hamil-
tonian or lagrangian formalism [1].

For a closed system with n+ 1 degrees of freedom (DoF’s).

qi = {q1, q2, ..., qn+1 =: τ}

which define the state of the system completely, the states {qi} are ordered
with respect to increasing values of the scalar function S(qi)- entropy - a
scalar field on the space {qi}
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The main proposition of this formalism is to maximize the entropy vari-
ation δS around the given state q = {q1, q2, ..., qn+1 = τ} instead of the
conventional maximization of the entropy function itself (usually used to
find stationary states):

δS(qi) =
n∑
i=1

Sqidqi + Sτdτ

+
1

2

[
n∑

i,k=1

Sqiqkdqidqk + Sττdτ
2

]

+
n∑
i=1

Sqiτdqidτ +
1

3!
(higher orders) ... (1)

where the degree of freedom τ is any of the degrees of freedom {q1, ..., qn+1},
e.g. the qn+1, which satisfies the time-eligibility condition: it means, for a
chosen DoF qk =: τ with the values τ1, τ2, ... τi ... ordered so that:

S(qi, τ1) ≤ S(qi, τ2) ≤ ... ≤ S(qi, τn) ≤ S(qi, τn+1) ≤ ...)

for τ1 < τ2 < ... < τn < τn+1 < ..., for discrete set, or

S(qi, τ) is a monotonic non-decreasing function of τ :

∂

∂τ
S := Sτ ≥ 0, (2)

if the values τ1 < τ2 < ... < τn < τn+1 form a continuum.
The DoF τ obeying is called ”time-eligible” and can be used as a time-

reference degree of freedom (or simply ”time ”) for the system

{qi}, i = 1 ... n

The case of strong inequality for entropy ” ¡ ” instead of ” ≥” corresponds
to the strong time eligibilty of τ .

The maximization of the entropy variation (1 ) with the additional con-
dition - ergodicity

h(qi, τ) = ε0 (3)

provides:
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� the first order differential equation (system of equations) for evolution
of the system dqi with respect to dτ called - the dynamical or trajectory
equation, which defines the trajectory of the system in the state space
{qi, τ} and

� the set of second order differential inequalities for S(qi, τ) and/or h(qi, τ)

Thus the ergodicity condition plays the role of a local metrics on the n+ 1-
dimensional state space q = {qi, τ}.

2 Local-ergodic systems

2.1 Global and local ergodicity

Consider the first order variation of entropy S(qi, τ) in the point {qi, τ}.

δS(qi, τ) = Sτdτ +
∑
i

Sqidqi (4)

(values of partial derivatives are taken in the point {qi, τ} )
Here, the variation of entropy is considered as a function of the vari-
ation vector d{qi, τ} = {dτ, dqi} about the chosen point qi, τ in the state
space.

δS = δS(qi, τ | dτ, dqi).

Thus, the components {dτ, dqi} are considered as arguments, whereas qi, τ
are parameter.

The evolution of state in q = {qi, τ} occurs in the direction, where the
entropy variation δS(qi, τ) maximizes; with {dqi, dτ} - the variation vector
obeying the additional relation constraining (dqi, dτ) - ergodicity condition:

h(qi, τ |dqi, dτ)− ε0 = 0 (5)

At this point, two principally different cases can be distinguished

1.
δh ∼ δS - strong or global ergodicity condition

2.
δh << δS - weak or local ergodicity condition
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The remaining case δh >> δS provides no ergodicity condition.

The condition in the first case defines the invariant of the state space and
corresponds e.g. to a conventional conservation law, as it has been primary
introduced and considered in [1].

In the nexti sections we consider in detail the less usual but most inter-
esting second case of the local ergodicity

h(qi, τ |dqi, dτ) = hqi,τ (dqi, dτ) = ε0. (6)

It corresponds to situations when the entropy changes sufficiently sensitiver
to dqi, dτ as the ergodic function h.

It means, the parameter ε0 remains approximately conserved. In this
sense the condition 2.can be interpreted as an invariant of a local state vari-
ation.

For example, for a quantum system in a certain state Q = Qi with the
transition probabilities P (Q → qk) =< qk|Q > in all possible states qk

(inclusive the Q itself),the normalisation of probability

h(Q, q) =
∑
k

P (Q→ qk) = 1

can be used as a local ergodicty condition.

2.2 Local ergodicity in canonical systems with two
DoF’s in the 1 order-variation formalism

Here we consider some simplest classical examples with the ergodicity con-
dition replaced by a local one.

We start like [1] with the case of the system possessiing only two degrees
of freedom {q = x, τ}

Example 1a: Local-free motion

In the problem of the entropy gradient maximization we search for a
variation vector {dx, dτ} maximizing the first order variation of entropy

δS(x, τ) = Sτdτ + Sxdx (7)

h = h(dx, dτ) =
m

2

[
dx

dτ

]2
= ε. (8)

5



This condition with the positive solution for

dx

dτ
= +
√

2mε

is equivalent to the ergodicity condition

h(dx, dτ) =
dx

dτ
= p

like the 1D local momentum for a unit mass, in opposition to a global con-
servation law x

τ
= p

The detailed application of the formalism, e.g. with the lagrangian mul-
tiplier λ like the introducing example in [1], provides

∂

∂ dx

[
Sxdx+ Sτdτ + λ

(
dx

dτ
− p
)]

= Sx + λ
1

dτ
= 0

∂

∂ dτ

[
Sτdτ + λ

(
dx

dτ
− p
)]

= Sτ − λ
dx

dτ 2
= 0 (9)

Then, the trajectory equation reads entirely:

dx

dτ
≡ ẋ = p(x, τ) = −Sτ

Sx

and the causality contition is fulfilled identically (see the example 2 below).

Example 1b: Local oscillator

The next example of the standard template list is the local version of a
harmonic oscillator with a generalized (not necessary a space) coordinate q

δS(q, τ) = Sτdτ + Sqdq (10)

h = h(dqi, dτ) = dq2 +
m

2

[
dq

dτ

]2
= ε, (11)

instead of a global case, which would be h = q2 + m
2

[
dq
dτ

]2
.
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The procedure like that outlined above is applied as follows:

Sq + λ

(
2 dq +m

dq

dτ 2

)
= 0

Sq + λ

(
−mdq2

dτ 3

)
= 0

providing with q̇ := dq
dτ

:

−2
(
dτ 2 +

m

2

)
= mq̇

Sq
Sτ

and with the ergodicity

q̇2
(
dτ 2 +

m

2

)
= ε

leads finally to the evolution trajectory determined by the nonlinear 1-order
ODE

Sq
Sτ
q̇3 = −2ε

m
,

which is very diffrerent from the canonical 2-order form q̈ + ω2q = 0

Example 2: Local hamiltonian system

The generalized system with the local ergodicity condition

h(dx, dτ) =
m

2

(
dx

dτ

)2

+ U(dx) = ε0

(1D mechanical energy conservation),
and the entropy variation

δS(x, τ) = Sτdτ + Sxdx,

includes the both of the above examples as particular cases.

The formalism provides the equation for evolution trajectory in the form:

U−1
(
ε0 −

mẋ2

2

)
= − mẋ2

SτU ′ (dx)
(Sτ + ẋSx)
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or

ε0 −
mẋ2

2
= U

[
−mẋ

2(Sτ + ẋSx)

SτU ′ (dx)

]
(12)

where

U ′ (dx) = U ′ (ẋdτ) = U ′
[
U−1

(
ε0 −

mẋ2

2

)]
Especially:

2.1 For U(dx) = 0 this case is equivalent to the previous one.

ẋ = v = −Sτ
Sx
, Sτ > 0

for the trajectory equation.
The causality condition∣∣∣∣∣∣

hdxdx hdxdτ

hdτdx hdτdτ

∣∣∣∣∣∣ ≤ 0⇒

∣∣∣∣∣∣
0 − 1

dτ2

− 1
dτ2

2dx
dτ3

∣∣∣∣∣∣ ≤ 0

is fulfilled automatically.

2.2 For the special case U(dx) = dx2 (local oscillator) the formula (12)
provides:

2ε

mẋ2
= ±

(
ẋ
Sx
Sτ

+ 1

)
+ 1

which reproduces the result of the example 1b in the (also physically mean-
ingful) case of the lower sign ”-” . The case of the upper sign ”+”

2ε

mẋ2
= ẋ

Sx
Sτ

+ 2

can be interpreted as a pointer to the possible presence of a rest energy and
belongs together with the analysis of causality, which is postponed here for
the next report.

As a short note concerning this thema, we perform the causality condition
for the local oscillator, which reads here:∣∣∣∣∣∣

hdxdx hdxdτ

hdτdx hdτdτ

∣∣∣∣∣∣ =

∣∣∣∣∣∣
(
2 + m

dτ2

)
−2m ẋ

dτ2

−2m ẋ
dτ2

3m ẋ2

dτ2

∣∣∣∣∣∣ ≤ 0,
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resulting finally in

ε

T
≤ 4

3
, T :=

mẋ2

2
− generalized kinetic energy,

while the ε can only be intrepreted as a total energy of the oscillator, if the
coefficient at dx2 is the corresponding U ′

2
.

3 Comparison and intermediate forms

By means of the local form of ergodicity outlined above, we can remark, that
the global ergodicity can be viewed entirely as a particular form of the local
one:

h(q, τ) = ε; δh := hloc(q, τ ; dq, dτ) = hqdq + hτdτ = 0 (13)

For example, the strictly global hamiltonian function of x, τ

h(x, τ) = U(x) +
m

2

x2

τ 2
= ε;

(
U ′(x) +

mx

τ 2

)
dx− mx2

τ 3
dτ = 0 (14)

provides the trajectory equation together with relation to the entropy struc-
ture [1] as:

−Sτ
Sx

= ẋ =
dx

dτ
=

mx2

U ′(x)τ 3 +mxτ

In particular for a harmonic potential U(x) = kx2

2
we obtain

ẋ = x
1

τ
(
k
m
τ 2 + 1

) = x
1

τ ((ωτ)2 + 1)

with the solution

x(τ) =
C√

ω2 + 1/τ 2
,

quite different from the known harmonic oscillations C+e
iωt + C−e

−iωt.
Historically, the dynamical equations and ergodicity conditions respec-

tively, are formulated in terms of coordinates x and local velocities v = dx
dt

rather than x/t.
In this way we try to use the mixed approach, a kind of an intermediate

form between global and local ergodicity

h(x, τ ; dx, dτ) = U(x) + U ′(x)dx+
m

2

dx2

dτ 2
= ε; (15)
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which corresponds to the conventional Hamilton function and can be called
therefore hamiltonian ergodicity.

For this condition the formalism provides:

Sx
Sτ
mẋ2 = −U ′(x)dτ −mẋ

U ′(x)dτ =
ε− U(x)− mẋ2

2

ẋ

what results in the evolution equation.

mẋ2

2
+
Sx
Sτ
mẋ3 + ε− U(x) = 0 (16)

Here two important remarks compared to the global ergodicity case, are
in order:

� The dynamical equation contains now the entropy function, i.e. the
entropy and ergodic function are in general not discoupled anymore, as
in the global case. It means, for any conventional dynamical equation
(for example newtonian)

mẍ = −U ′(x)

a such restriction on the special class of entropy functions S(x, τ) ex-
ists, that the entropy gradient maximization (EGM) reproduces the
conventional results. In terms of dynamical equations, it comes about
if the first order equation of EGM is the first integral of the second
order conventional one.

For example, for a harmonic potential (example 1b) considered above,
the equation with a unit mass (16) is then the first integral of the
conventional

ẍ+ x = 0 (17)

if the entropy S(x, τ) satisfies

d
dτ

[
Sx
Sτ

]
ẋ2

3Sx
Sτ
ẋ+ 1

=
x

m
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for any solution of 17, fro example with the solution x(τ) = cos τ the
entropy obeys

tan τ
d

dτ

Sx
Sτ

= 3
Sx
Sτ

+
1

sin τ

(a kind of a ”step-structure”)

� The entropy construction in form of the function Sx
Sτ
ẋ contributes to

the inertial mass. It gives rise for the suggestion, it is a formulation
possible, where the ergodicity condition does not contain any mass
parameter at all and the issue of the inertial mass is displaced to the
entropy structure.

4 Conclusions

A generalization of the additional EGM condition to a local form supplies a
sufficient extension of dynamic systems available for this formalism as well
as the variety of possible solutions, as it has been shown in this note

A comparison with the existent result in the framework of EGM formalism
leads entirely to the restriction of this variety for special classes of entropy
functions.

In this way there is a possibility to relate the issue of the mass to the
entropy structure, i.e. the statistical structure of the state space

In simple cases an explicit form of these functions is available; in partic-
ular, for the case of discoupled time (or any other, which admits transforma-
tions to such classes)

Since this discussion requires an introduction and explanation of further
related concepts, it would be preferable to postpone it for the next report [2],
together with the related causality analysis, which has not been performed
in the present note.
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