
Model-based analysis of hypothalamus controlled fever:

the non-equilibrium thermodynamic aspect

Feng Lin 1

Institute of blood transfusion,

Chinese academy of medical science and Peking union medical college

Huacai Road No.26, Chengdu, 610053, People’s Republic of China

Abstract

We focus on the symptom of hypothalamus controlled fever, which is in fact a problem related to
non-equilibrium system. Since live human body has constant temperature, whose dissipation is easy
to be figured out by observation, it is a suitable candidate for non-equilibrium system to study. In our
paper, human body is regarded as a 2-compartment-system: one is the chemical-reaction network, the
other is observed by mechanical motion which means the vital signs apart from body temperature.
Van der Pol model is used to describe the overall effect of chemical reaction network in human body.
When the parameter of mathematical model is set to guarantee the mathematical model to be in
limit cycle oscillation state, the energy absorbtion and releasing is computed. With the help of body
temperature, which can be observed, the energy metabolism of overall effect of chemical reaction
network is figured out. We have figured out the conditions when human is at healthy and fever how
the mathematical respond. This response is just the overall effect of chemical reaction network. This
research may be capable of answering the question whether fever is a kind of illness or some response
of body to maintain its life? From our study, hypothalamus controlled fever is beneficial to maintain
life.
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1 Introduction: Motivation and approach

Fever is a kind of symptom caused by several reasons: infectious disease, immunological diseases,

metabolic disorders and so on [1]. For convenience, we are to use fever to denote both the sickness

fever and symptom febrile in the following passage. The cause of fever can be divided into 2 kinds [1]:
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hypothalamus controlled, and non-hypothalamus controlled. The former is the case which we are

interested in. Fever is a symptom related to many kinds of sickness [1,2]. It is after some diagnosis that

one can understand what kind of sickness causes the symptom. Physiologists have already studied fever

by experiment. Whether fever is beneficial, different researchers have different opinions. Sometimes

their opinions are controversial [3, 4]. In this paper, we tried a different approach to answer whether

fever is beneficial. Even though fever has been studied for quite a long time, because of the complexity

of human body, the confident results of experimental study are limited [2]. While body temperature

is one of the important vital signs [5], the result of our study is of importance to clinical doctors.

We use mathematical method to study physiology. Mathematical physiology can be dated back to

last century [6]. In this point of view, human body is in fact a complex network with chemical reaction,

immune and nervous system. The most basic network is the chemical reaction network [7]. Though

human body system is complex, it is still possible to use limited vital signs to describe life. Inspired

by this method in medical science and the approach in mathematical physiology, though the chemical

reaction network is extremely complex, still its regulation is periodic and stable, and is possible to use

2 variables to describe [8, 9]. That is, the overall effect of chemical reaction network is in fact a limit

cycle [6]. Similarly, the cardiac rhythmicity is also a stable limit cycle [6]. According to the knowledge

of physiology, cardiac rhythmicity is relevant to respiration rate [5]. The vital signs apart from body

temperature is oscillating at a certain interval, because of the limit cycle mechanism.

In view of mathematical physiology, hypothalamus controlled fever is regarded as the perturbation

of limit cycle system [10] or some regulation of parameter of limit cycle system. Any stable limit cycle

has the property of stability and periodicity [11,12]. These properties implies that it is possible to use

a simpler limit cycle model. In this paper we are to use 2 variables (q1, q2) whose evolution orbit is a

limit cycle to describe the overall effect of chemical reaction network.

On the other hand, with the help of physics, a living human body is a typical system far from

equilibrium, with energy exchange from environment [13]. And its temperature is kept constant. It is

not difficult to figure out energy dissipation per unit time of systems with constant temperature [14–18]:

d

dt
ED = Tb

dis

dt
(.)

= −Tbκ5 T (T−1b − T−1en )σ

in which E means energy and the subscript D denotes dissipation. T for temperature the subscript b

denotes body, and the subscript en denotes environment. Most of the time Ten < Tb. σ is the cross-

sectional area, as it is a unit area, we set σ = 1. κ > 0 is thermal conductivity constant. According to

Fourier’s law, this leads to constant thermal flux. dis
dt is the entropy production rate of unit volume.

(.) gives constant entropy production rate.

Any dissipative system has a source [16–18]. For the system we study, the source is just the

chemical reaction network [7]. Divide the human body system into 2 compartments: one is observable,

the other is unobservable. The former is observed by vital signs such as body temperature, pulse or
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blood pressure, the latter is given by some mathematical model consists 2 variables such as (q1, q2),

which are used to describe the overall effect of chemical reaction network. The human body system

absorbs substance from environment. Substance is changed into energy by chemical reaction network.

Part of the energy is detected by vital signs, such as pulse, and the other part is related to dissipation

which can be detected by body temperature [5]. This way of thinking provides us approach to study

the symptom of hypothalamus controlled fever. The following sections will follow this approach in

detail.

Before moving on let us give the organization of this paper: In section2, we proposed the calcu-

lation principal. In section 3.1 we explained the reason why we choose limit cycle model (.) to be

the mathematical model and used a working function (.) to figure out the energy absorbtion and

releasing. In section 3.2, we found the Lyapunov function of (.). In section 4, we analyzed the 2

cases: healthy and fever. We found the response of mathematical model (.) to the 2 cases.

2 Balance of energy

Following the proposal in section 1, the human body system consists of 2 parts: observable part and

unobservable part. The observable part is related to vital signs, the unobservable part is related to

overall effect of chemical reaction network. The time scale of chemical reaction in human body is much

smaller than that of macroscopic motion [5, 6, 19]. Or the energy produced by chemical reaction can

not support human body’s macroscopic motion sustainedly.

Define 2 symbols div+, div− to be proportional to available energy (related to pulse, respiration etc)

and energy absorbed in an oscillation period, and let τ be the oscillation period of system (q1, q2) which

is the period of overall effect of chemical reaction network. The energy absorbed from environment is

proportional to div−, part of which is changed into available energy proportional to div+ i.e. div+ ∝
dEk. The subscript k denotes kinetic energy which is available. In the period τ , the energy that

can not be converted into available energy is changed into thermal energy which can be observed

by body temperature. This means that the difference between available energy and energy absorbed

which changes into thermal energy. Correspondingly, (|div−| − |div+|) ∝ dED. Since the time scale

of chemical reaction network is much smaller, it is reasonable to assume that in a oscillation period,

the difference of energy absorbtion and releasing is proportional to the macroscopic system’s energy

dissipation rate. Then:

1

τ
(|div−| − |div+|) ∝ −Tbκ5 T (T−1b − T−1en )σ (.)

here we assume the scale that τ ∼ dt. The reason why we use the symbol proportional to rather than

equal to is that the model of system (q1, q2)’s dimension might be different from energy.

Next step is to construct a mathematical model to compute the exact expression of div±, and get

the exact relation between div± and energy. The dimension of |div−|− |div+| can be removed by some

constant such as β. Using (.) we get:
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kTb
β

1

τ
(|div−| − |div+|) =

d

dt
ED (.)

β is a coefficient guarantees (|div−|−|div+|)
β dimensionless. k is Boltzmann constant. In practice, we use

the explicit expression of (.) like this

d

dt
ED = −Tb

Ten − Tb
TenTb

κ
Tb − Ten

∆r
(.)

For instance axillary temperature is Tb = 310.15K, and the environmental temperature Ten = 298K.

∆r is the thickness of air layer (in fact very thin) [20,21], which means the distance ∆r from armpit.

Next section, we are to use a mathematical model to describe the overall effect of chemical reaction

network, in order to get div± .

3 Mathematical model: description of overall effect of chemical re-
action network

Our assumption is that the overall effect of chemical reaction network system is in fact phenomeno-

logically modeled by a 2-variable limit cycle [5–7] and any limit cycle model is attractive and periodic.

Lots of research work has been done to analyse limit cycle, which is dated back to the middle of last

century [22,23]. In this paper we only use a simplest and typical limit cycle model called Van der Pol

model [24] as an example to show how to use double variable system to estimate the energy produced

by the huge chemical reaction network of human body.

3.1 Van der Pol model

In this section, readers should bear in mind that the time scale for overall effect of chemical reaction

network is much smaller than the macroscopic world. We should have used another alphabet to

substitute the parameter t. However, it is conventional to use t to be the time variable, so we use also

t, but it has much smaller time scale than that in (.). The Van der Pol model is given below [24]:

q̇1 = −q2 (.)

q̇2 = ω2q1 + µ(1− q21)q2

in which q1 and q2 are thermodynamic variables, and µ is the parameter externally controlled. ω is

the oscillation frequency if µ = 0. It is conventional to set ω = 1 convenience.

Most of the time, searching for limit cycle is by qualitative linearized stability analysis (see 7.1)

and numerical calculation, but it can not give the analytical information of limit cycle. To get the

analytical information, we need to analyse the vector field in phase space. System (.) forms a vector

field in phase space (q1, q2). Directly we can compute the divergence of (.):

div =
∂q̇1
∂q1

+
∂q̇2
∂q2

= µ(1− q21) (.)
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One can immediately notice that (.) can be both positive and negative depending on the value of

q1. If the exact solution of (.) is got, we can figure out div± by integrating along the orbit in phase

space:

div+ = 2

∫ q1=1,q2(q1=1)

q1=−1,q2(q1=−1)
ds div(s) (.)

div− = 2(

∫ q1=1,q2(q1=1)

q2=0,q1(q2=0)>0
ds div(s) +

∫ q2=0,q1(q2=0)<0

q1=−1,q2(q1=−1)
ds div(s)) (.)

div± are exactly those in (.) mentioned in section 2. The reason why we multiply the above integra-

tion by 2 is that as the symmetry of (.), integration path only covers half of the limit cycle. When

the shape of limit cycle is got, explicit form of div± is figured out. In mathematical language, limit

cycle is a limit set for dynamic system. In physics language, it is a thermodynamic limit. Thermo-

dynamic property in physics corresponds to Lyapunov function in mathematics. It is quite natural to

construct a function V (q1, q2), such that [25]

d

dt
V (q1, q2) =

∂V (q1, q2)

∂q1
q̇1 +

∂V (q1, q2)

∂q2
q̇2 (.)

If d
dtV (q1, q2) does not change sign, then V (q1, q2) is Lyapunov function. In particular, d

dtV (q1, q2) ≤ 0

the limit set is the ω−limit set [12], i.e. system is stable at long time limit.

(.) is a Hamiltonian system if µ = 0. According to [26–28] system (.) consists of 2 parts:

Hamiltonian term which is of O(µ0) and perturbation term which is of O(µ). The shape of limit cycle

is related to the Lyapunov function:

∂V (q1, q2)

∂q1
q̇1 +

∂V (q1, q2)

∂q2
q̇2 = V (q1, q2)(

∂q̇1
∂q1

+
∂q̇2
∂q2

) (.)

limit cycle is contained in V (q1, q2) = 0, when V (q1, q2) is not the exact form in phase space. Following

the steps in reference [26, 27], we just take the first order approximation of the V (q1, q2), that is

V (q1, q2) = V0(q1, q2) +µV1(q1, q2). The exact equation is given in appendix 7.1. It is more convenient

to use polar coordinate to show the solution of (.) explicitly. q21 +q22 is the square of radius in (q1, q2)

plane. Solving (.) order by order, the first order explicit solution is√
q21 + q22 = 2− 8µ cos θ sin3 θ (.)

by convention q1 =
√
q21 + q22 cos θ, q2 =

√
q21 + q22 sin θ. The second term is in fact 8µω cos θ sin3 θ, and

ω = 1. Details are discussed in 7.1. The solution explicitly shows that the distance of each point on

the limit cycle to the singular point is 2− 8µ cos θ sin3 θ. Readers can consult [26] and [27]. Here θ is

in fact the re-parametrization of time i.e.
∫ τ
0 dtθ(t) = 2π. The first order approximation of radius and

θ is given by fig.1 with comparison to numerical result.

The period τ which appears in (.) is changed into 2π. When µ = 0, τ = 2π
ω = 2π. The period

appears in this paper is proportional to 2π multiplied by a small parameter ξ → 0 with dimension

[t] [29], so as to keep the right time scale.
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Figure 1: Polar coordinates of the limit cycle’s radius and its corresponding parameter θ with µ = 0.7.
The dashed line is the numerical result by solving the differential equation, and the true line is the
first order approximation

Solutions of the equations below determine θ where makes div changes sign:

(2− 8µ cos θ sin3 θ) cos θ = 1 (.)

(2− 8µ cos θ sin3 θ) cos θ = −1 (.)

(.) and (.) are difficult to solve, and the solution shows that θ is in fact the function of µ. Solution

of (.) is θ1 and (.) is θ2 in θ ∈ (0, π) are approximately fitting by the polynomials

θ1 = 1.05479− 1.11732µ+ 0.767715µ2 − 0.183246µ3 (.)

θ2 = 2.09199− 0.655212µ+ 0.673129µ2 − 0.279221µ3 (.)

the solution about θ ∈ (−π, 0) is not necessary, because of symmetry. When µ = 0, θ1 = π
3 , and

θ2 = 2π
3 . Details of the numerical result are shown in section7.2. Then div± are

div− = 2{
∫ θ1

0
dθµ[1− (2− 8µ cos θ sin3 θ)2 cos2 θ] (.)

+

∫ π

θ2

dθµ[1− (2− 8µ cos θ sin3 θ)2 cos2 θ]}

div+ = 2

∫ θ2

θ1

dθµ[1− (2− 8µ cos θ sin3 θ)2 cos2 θ] (.)

The integration is discussed in 7.3. The divergence in a period is represented by µ
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Figure 2: limit cycle of (.) numerically depicted with the parameter µ = 0.7 and initial condition
q1(t0) = 3, q2(t0) = 2.

|div−| − |div+| = |div+ + div−| (.)

= −
∫ 2π

0
dθµ[1− (2− 8µ cos θ sin3 θ)2 cos2 θ]

=
1

2
µ(4 + 3µ2)π

In order to check whether . gives the right result, one can compute the characteristic multipliers

of (.). Characteristic multipliers reflects the stability of the system. The characteristic multipliers

Λ1,Λ2 are:

Λ1 =
Λ1 + Λ2

2
+

√
(Λ1 + Λ2)2

4
− exp[

∫ τ

0
div(s)ds] (.)

Λ2 =
Λ1 + Λ2

2
−

√
(Λ1 + Λ2)2

4
− exp[

∫ τ

0
div(s)ds]

in which div(s) is given by (.). Details of computing characteristic multipliers (.) is shown in

appendix 7.4. The final result shows that the real parts of characteristic multipliers are less than 1,

which means that the periodic solution of (.) is a limit cycle.

Mathematical behavior of system (.) when µ > 0 coincides with a biological system: the property

of periodicity and stability.

The stability is more directly shown by Lyapunov function. In next subsection, we are to calculate

the Lyapunov function in first order approximation.
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Figure 3: Contour figure of Lyapunov function V (q1, q2) in first order approximation with the param-
eter µ = 0.7

3.2 Lyapunov function of Van der Pol model

Any limit cycle is a limit set, which means that there exists some potential which dominates the

evolution. The potential is called the Lyapunov function. Lyapunov function is negative definite when

system is tending to steady state. When V (q1, q2) = 0, it is related to the shape of limit cycle, as

we have mentioned in section 3.1. In section 1 we have mentioned the entropy production which is

positive definite when the system is tending to steady state. [17] has already pointed out that entropy

production plays the role in the thermodynamic system just as Lyapunov function plays the role in

dynamical system. Lyapunov function and entropy production are proportional to:

− V (q1, q2) ∝
dis

dt
(.)

When entropy production is at steady state i.e. dis
dt is constant, V (q1, q2) = 0.

When the system is perturbed, the orbits in phase space (q1, q2) is deviated from the limit cycle,

so V (q1, q2) equals to some infinitesimal higher order quantity. This perturbation does not change the

value of parameter µ. Fig 2 schematically shows that when µ does not change, orbit tends to limit

cycle at long time limit. Contour graph of Lyapunov function is shown by Fig 3. Compare fig. 2

with fig 3 one can intuitively find out that the trajectories choose the way which is in the ”potential

valley”.

By solving (.), it shows that different value of µ gives different thermodynamic limit, though all

these thermodynamic limits are of periodicity and attraction. One may have already noticed that the

thermodynamic behavior strongly depends on the parameter µ. When µ < 0 the thermodynamic limit

is not a limit cycle, but the singular point (0, 0). When µ = 0, the system turns out to be a harmonic
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Figure 4:
δV (
√
q21+q

2
2 ,θ)

δµ with the limit cycle constraint in first order approximation with parameter
µ = 0.9

oscillator. So the how the parameter µ influences Lyapunov function δV (q1,q2)
δµ is more crucial than the

Lyapunov function itself. δV (q1,q2)
δµ of (.) is:

δV (q1, q2)

δµ
=

1

4
q1q2(4− 5q21 + q41 − 3q22 + q21q

2
2) (.)

By solving equation (.) gives the result that δV (q1,q2)
δµ expressed by q1, µ:

δV (q1, q2)

δµ
=

1

4

∫ ∞
−∞

dµδ(µ− µ0) (.)

×q1q2(q1, µ)[4− 5q21 + q41 − 3q22(q1, µ) + q21q
2
2(q1, µ)]

In which δ(µ− µ0) is the Dirac δ-function and µ0 is the parameter system (.) originally chosen. It

is more convenient to rewrite (.) into polar coordinates:

δV (
√
q21 + q22, θ)

δµ
= cos θ sin θ(2− 8µ cos θ sin3 θ)2 (.)

− 1

16
(8 sin 2θ + sin 4θ)(2− 8µ cos θ sin3 θ)4

+
1

4
cos3 θ sin θ(2− 8µ cos θ sin3 θ)6

in which
√
q21 + q22 = 2 − 8µ cos θ sin3 θ which we have already computed in section 3.1. Schematic

pictures are shown by fig.4 and fig.5 as example.

For
δV (
√
q21+q

2
2 ,θ)

δµ , the larger the parameter µ, the farther the deviation of variation from 0 in a

period. This implies that the larger µ is chosen, the larger |div+ + div−|. Lyapunov function is the

dominate potential which dominates the system’s evolution. Just like some thermodynamic function
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Figure 5:
δV (
√
q21+q

2
2 ,θ)

δµ with the limit cycle constraint in first order approximation with the parameter
µ = 0.7

which sustains the system’s stability.
δV (
√
q21+q

2
2 ,θ)

δµ directly reflects how the Lyapunov function change

with parameter µ. This implies that µ characterizes the state of the system. When the system’s

structure state is unchanged, µ does not change. Perturbation to the system will disappear at long

time limit.

4 Coupling of chemical reaction network to the energy of observable
part: physic behind

We assume in section 3.1 that the environmental temperature is unchanged. According to (.) we

can figure out β:

β−1 =
2κτ

N0kµπ
(4 + 3µ2)−1

1

TenTb

(Tb − Ten)2

∆r
(.)

in which N0 is some dimensionless constant such as avogadro constant, considering the entropy pro-

duction is related to thermodynamics. If human is at quiescent condition, energy dissipation is at

minimum.

4.1 Non-quiescent but healthy condition

However human is not always at quiescent condition, as we can not sleep all the day. Healthy human

corresponds to our model that the parameter µ is unchanged, so daily exercises is the perturbation to

the chemical reaction network. That is, µ remains unchanged and the Lyapunov function

V (q1, q2) = ε̃ (.)

in which ε̃→ 0, an infinitesimal higher order term. Rewrite the Lyapunov function in polar coordinate

and solve (.). Since ε̃ is the perturbation, the system tends to the state which corresponds to
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V (q1, q2) = 0. The evolution to V (q1, q2) = 0 is limit-cycle-like oscillation state. In 0-th order

approximation, it turns out to be

[2− 1

2
(q21 + q22)]

1

2
(q21 + q22) = ε̃ (.)

it is easy to figure out 1
2(q21 +q22) = 1±

√
1− ε̃, and only 1

2(q21 +q22) = 1+
√

1− ε̃ is of physics meaning.

It is more convenient to write 1
2(q21 + q22) = 2± ε in which ε̃ = ∓2ε− ε2. When ε̃ and ε go to 0, they are

of the same order. Notice that before being at limit set the system’s Lyapunov function is negative

definite, so ε̃ < 0 so ε̃ = −2ε− ε2 and 1
2(q21 + q22) = 2 + ε in which ε > 0. When perturbation is added,

the solution is:

√
q21 + q22 = 2− 8µ cos θ sin3 θ (.)

−εµ(sin 2θ − 2 sin 4θ − 1)

+ε2µ(
5

4
sin 4θ − sin 2θ)

+ε3µ(
1

2
sin 2θ +

1

4
sin 4θ)

Because kTb
(|div−|−|div+|)

βτ = dED
dt , the energy dissipation is unchanged in O(ε0). And in O(ε) and

higher order is the extra energy dissipation corresponding to daily exercises. We get dissipation energy

is related to (.):

dED
dt

=
2κ

kµπ
(4 + 3µ2)−1

1

TenTb

(Tb − Ten)2

∆r
(|div−| − |div+|) (.)

To the order of O(ε) approximation the energy dissipation rate, it turns out to be:

dED
dt

= κ
1

TenTb

(Tb − Ten)2

∆r
+ ε

8 + 3µ2

4 + 3µ2
κ

1

TenTb

(Tb − Ten)2

∆r
(.)

the result means that when human is healthy, the energy dissipation apart from quiescent condition

is of higher order which does little influence to the quiescent condition energy dissipation. The energy

absorbed from the environment and the energy for vital signs apart from body temperature are given

by:

kTb
βτ
|div−| = −

2

τ

∫ θ2

θ1

dθ[...] (.)

and

dEk
dt

=
kTb
βτ
|div−| −

dED
τ

=
2

τ

∫ θ2

θ1

dθ[...] (.)

in which θ1 and θ2 are the same as the one in (.) and (.), because µ does not change. [...] in (.)

is the integrating term in (.) with first order approximation. And [...] in (.) is the integrating

term in (.) with first order approximation. Details of computing (.) and (.) including the

dissipation dED
dt are in appendix 7.3.
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4.2 Fever and quiescent condition

Now let us come to the case when human is not healthy, that is in this paper, with the symptom of fever.

When body temperature increases, and the environment temperature is constant, let Tbf = Tb + δT ,

in which the subscript f denotes the state fever. Compare entropy production under the 2 cases:

dis

dt
(Tbf )− dis

dt
(Tb) =

κ

∆r
[
(Tb + δT − Ten)2

Ten(Tb + δT )
− (Tb − Ten)2

TenTb
] (.)

=
κ

∆r

(Tb − Ten)(Tb + Ten)δT + δT 2Tb
TbTen(Tb + δT )

As most of the time Tb > Ten, or the environment is too uncomfortable to live, we can conclude that

fever makes energy dissipation increase. We can further compute how the entropy production change

with body temperature:

dis
dt (Tbf )− dis

dt (Tb)

δT
=

κ

∆r

(Tb − Ten)(Tb + Ten) + δTTb
TbTen(Tb + δT )

(.)

The calculation reveals when body temperature increases, dis
dt (Tbf ) > dis

dt (Tb). However, for dis
dt is still

constant, the only difference is that the constant of Tb and Tbf are different. As we have mentioned

in section 3.2, correspondingly the Lyapunov function V (q1, q2) = 0, while the shape of limit cycle

changes. For entropy production, the crucial variable is body temperature Tb. For Lypapunov function,

the crucial parameter is µ. In section 3.2 (.) shows that µ increases δV (q1,q2)
δµ decreases (absolute

value increases) on the whole. This intuitive picture shows that when body temperature increases, the

parameter µ also increases. System (.) directly related to entropy production is |div−| − |div+|. So

according to (.) and (.) we get that:

kTbf
βτ

µ(4 + 3µ2)π

2
= k

κ

Ten

(Tbf − Ten)2

∆r
(.)

As β is just a coefficient to guarantee (|div−|−|div+|)
β dimensionless, here the calculation just take β as

a constant which is figured out at healthy state (.), the only cause that makes energy dissipation

increase stems from µ, so:

β−1
∂µ

∂Tb

(4 + 9µ2)π

2
=

∂

∂Tb

dis

dt
τ (.)

= 2
κ

∆r

(Tb − Ten)(Tb + Ten) + δTTb
TbTen(Tb + δT )

τ

So ∂µ
∂Tb

is:

∂µ

∂Tb
=
N0kµ(4 + 3µ2)[δTTb + (Tb − Ten)(Tb + Ten)]

(4 + 9µ2)τT 3
b (δT + Tb)(Tb − Ten)2

(.)
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It is easy to get the conclusion that ∂µ
∂Tb

> 0, so the parameter µ will increase if body temperature

increases. And it is able to show the parameter µf , which is the parameter µ in system (.).The

subscript f is used to emphasis fever state.

µf = µ+
N0kµ(4 + 3µ2)[δTTb + (Tb − Ten)(Tb + Ten)]

(4 + 9µ2)T 3
b (δT + Tb)(Tb − Ten)2

δT (.)

4.3 Examples

Suppose at healthy state µ = 0.5. Consider daily exercises at healthy state and take fever state when

Tbf = 332K,Ten = 298K as an example. We can compute div± to get intuitive picture of how the

human body react to perturbation and unhealthy condition. First we can figure out (.) and (.)

at quiescent condition:

div− = −4.68089 div+ = 0.950251

Then the corresponding dEk and dEk + dED are:

dEk =
kTb
β
div+ = 0.950251

2κτ

kµπ
(4 + 3µ2)−1

1

TenTb

(Tb − Ten)2

∆r
(.)

and

dEk + dED = −kTb
β
div− = 4.68089

2κτ

kµπ
(4 + 3µ2)−1

1

TenTb

(Tb − Ten)2

∆r
(.)

When daily exercises is added, the (.) and (.) has a little change, to the order of O(ε):

div− = −4.68089− 6.62093ε div+ = 0.950251− 0.251304ε

the corresponding dEk and dEk + dED are:

dEk =
kTb
β
div+ (.)

= (0.950251− 0.251304ε)
2κτ

kµπ
(4 + 3µ2)−1

1

TenTb

(Tb − Ten)2

∆r

and

dEk + dED = −kTb
β
div− (.)

= (4.68089 + 6.62093ε)
2κτ

kµπ
(4 + 3µ2)−1

1

TenTb

(Tb − Ten)2

∆r

We can see that the energy absorbtion increases in order to sustain the energy supply for daily exercises

while the kinetic energy releases less which means that daily exercises can influence quiescent condition
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energy metabolism, as ε is of higher order and at long time limit it will tend to 0, as a result the system

returns to quiescent condition.

Now when human is at fever state, take fever state when Tbf = 332K,Ten = 298K as an example.

The parameter µ changes very slightly:

µf = µ+
N0kµ(4 + 3µ2)[δTTb + (Tb − Ten)(Tb + Ten)]

(4 + 9µ2)T 3
b (δT + Tb)(Tb − Ten)2

δT (.)

= 0.5 + 1.29115× 10−9N0k

Here k ∼ 10−23, and N0k ≥ 100. However this increase of µ does influence the shape or |div−|− |div+|
of the system. If µ is larger this influence is more explicit. In order to see the influence explicitly, we

set µ = 0.51 then:

div− = −4.80586 div+ = 0.976331

the corresponding dEk and dEk + dED are:

dEk =
kTb
β
div+ (.)

= 0.976331
2κτ

kµπ
(4 + 3µ2)−1

1

TenTbf

(Tbf − Ten)2

∆r

and

dEk + dED = −kTb
β
div− (.)

= 4.80586
2κτ

kµπ
(4 + 3µ2)−1

1

TenTbf

(Tbf − Ten)2

∆r

The result shows that both energy absorbtion and energy releasing increase which is good for the

system to maintain life. If ∂µ
∂Tb

< 0, it means that system (.) tends nearer to Hamiltonian system,

which implies that the system goes nearer to equilibrium. In Hamiltonian system div ≡ 0. And

equilibrium for biological system means death, as Prigogine etc have pointed out that nonlinearity

and non-equilibrium have close relation [13].

In this section we find the physics behind that intuitive picture: to avoid death, the parameter is

regulated to guarantee the system further from the original non-equilibrium state. Of course, the cost

is that it does harm to health. Such as the increase of pulse does harm to heart, and it may cause

further damage to vessels. Anyway, this regulation drives human body far from equilibrium, that is,

far from death. So we have to say that fever is better than death.
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5 Conclusion discussion and outlook

(.) is the simplest mathematical model of limit cycle oscillation. By phenomenologically establishing

the mathematical model (.) to describe the human body system, we focus on one of the vital sign:

body temperature. In short, fever is the regulation of human body which protects life far from death.

Following the logic in this paper, it is easy to conclude that abuse of antipyretics does harm to our

health. This conclusion coincides with that in medical science. Our method is helpful to study other

symptoms caused by more than one kind of sickness.

Here are some comments on this paper. As human body is quite complex, to some extent the

mathematical model (.) is too simple. And there are some assumptions seems to be artificial: such

as in section 2, the time scale of chemical reaction network and the macroscopic vital signs and in

section4, the difference of body temperature and environmental temperature. Our discussion mostly

confined in the usual case that environmental temperature is lower than body temperature, while not

taking the extreme case into consideration: at south pole or equator.

Anyway, the approach of studying medical science used in this paper provides new aspect. As we

have already mentioned in abstract and introduction 1, this approach can be widely used to study

other medical phenomena, by starting from symptoms. Simultaneously, this paper provides some

approach to study the non-equilibrium physics.
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7 Appendix

7.1 Linearization analysis, dimensional analysis and solution of (.)

7.1.1 linearization analysis

Linearize a non-linear system to get its dynamical behavior around its singular point is a routine work.

This model has a unique limit cycle around the (0, 0) when µ > 0. Linearized part of system (.)

shows the behavior in the neighbourhood of singular point (0, 0):

tr = µ (.)

det = −ω2 = 1
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In which tr is the trace of linearized part, and det is the determinant of linearized matrix. The

eigenvalues of the linearized matrix are:

λ1,2 =
µ±

√
µ2 − 4

2
(.)

The real parts of eigenvalues are positive. This result implies that in the manifold in neighborhood of

singular point (0, 0) is unstable. Its eigenvectors are exponentially expanding.

7.1.2 Dimensional analysis and solution

Dimensional analysis shows that the system (.)’s variables dimensions: [q1] = [q2][t] and [ω] =

[t]−1, [µ] = [t]−1. This leads to [q2] = [t]−1, [q1] = [t]0. By rescaling, the 2 variables have the same

dimension. That is to rewrite (.) below such that each equation has the same dimension. i.e. let q2
ω

be a new variable:

q̇1 = −ωq2
ω

(.)

q̇2
ω

= ωq1 + µ(1− q21)
q2
ω

and set ω = 1. Anyway the rescaling does not change result.

Readers can consult [26, 27] for the detail of determination of the shape of limit cycle. The first

order approximation of limit cycle lies in the equation below:

V0(q1, q2) + µV1(q1, q2) = [2− 1

2
(q21 + q22)]

1

2
(q21 + q22) +

µ

4
q1q2(4− 5q21 + q41 − 3q22 + q21q

2
2) = 0 (.)

the solution of (.) approximately gives the shape of limit cycle and its position in phase space.

The higher the order we take the more accurate the shape of limit cycle we get. For convenience of

calculation, we just take the first order approximation into consideration. The 0-th order shows that

the variable q1 in limit cycle lies in the interval q1 ∈ [−2, 2]. Readers might immediately notice that

the dimension is not right in (.). This is just what we want to comment on. To get the 0-th order

of Lyapunov function, first find a function which is Hamiltonian like:

h =
1

2
(q21 + q22) (.)

one immediately discovers that q1 and q2 have different dimension. If we continue by using the method

provided by [26] to get the 0-th order of Lyapunov function V0(q1, q2) of (.) is

V0(q1, q2) = [2− 1

2
(q21 + q22)]

1

2
(q21 + q22) (.)

In fact here we have missed ω. We had better to rewrite (.) below such that each equation has the

same dimension. i.e. let q2
ω be a new variable:
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q̇1 = −ωq2
ω

(.)

q̇2
ω

= ωq1 + µ(1− q21)
q2
ω

So the first order of Lyapunov function is exactly written as:

V0(q1,
q2
ω

) = [2− 1

2
(q21 +

q22
ω2

)]
1

2
(q21 +

q22
ω2

) (.)

As we have already claimed that ω = 1 in previous section, ω is eliminated from the function. And

the 2 in V0(q1, q2) also has the dimension [t]0. So the Lyapunov function has the dimension [t]0.

The first order of Lyapunov function is µV1(q1, q2). It is immediately get that the dimension of

V1(q1, q2) is [t]. By the method provided by [26,27], and take the dimension into consideration:

V1(q1, q2) = V0(q1, q2)

∫ t

0
ds
∂[(1− q21) q2ω ]

∂ q2ω
− ∂V0(q1, q2)

∂[12(q21 +
q22
ω )]

1

ω

∫ t

0
ds(1− q21)

q2
ω
q̇1 (.)

This calculation is a bit different from the calculation in [27]. In our calculation, we have taken

dimension into consideration, so 1
ω is added in the second integration, in order to keep the 2 terms in

the same dimension. After a short calculation, it is easy to get:

V1(q1, q2) = [2− 1

2
(q21 +

q22
ω2

)]
1

2
(q21 +

q22
ω2

)

∫ t

0
ds(1− q21) + [2− (q21 +

q22
ω2

)]

∫ t

0
ds

1

ω2
(1− q21)q22 (.)

This result explicitly shows that both of the 2 terms have the dimension [t]. As ω = 1 so the terms

containing q2
ω changes into q2 and the term containing 1

ωn in which n is an arbitrary number changes

into 1. The forms seems to be unchanged but the dimension is in fact changed.

7.2 Fitting

Numerical experiment shows in table1, we can approximately fit the relation between θ and µ.

7.3 Integrating of div±

We can integrate div± as long as θ1 and θ2 are figured out. θ1 and θ2 are in fact function of the

parameter µ. So we just integrate out the indefinite integration, and leave θ1 and θ2 determined by

7.2 and 3.1.
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µ solution of (.) θ ≈ π
3 solution of (.) θ ≈ −π

3 solution of (.)θ ≈ 2π
3 solution of (.)θ ≈ −2π

3

0 1.0472 -1.0472 2.0944 -2.0944
0.1 0.961558 -1.11144 2.03016 -2.18003
0.2 0.865311 -1.1581 1.98349 -2.27628
0.3 0.779951 -1.19299 1.9486 -2.36164
0.4 0.713189 -1.22008 1.92151 -2.4284
0.5 0.661812 -1.24183 1.89977 -2.47978
0.6 0.621407 -1.25976 1.88183 -2.52019
0.7 0.588751 -1.27488 1.86671 -2.55284
0.8 0.5617 -1.28786 1.85373 -2.57989
0.9 0.538821 -1.29916 1.84244 -2.60277
1.0 0.519139 -1.30911 1.83248 -2.62245

Table 1: Numerical solution of (.) and (.)

div+ = 2{
∫ θ1

0
dθµ[1− (2− 8µ cos θ sin3 θ)2 cos2 θ] (.)

+

∫ π

θ2

dθµ[1− (2− 8µ cos θ sin3 θ)2 cos2 θ]}

= 2µ{−θ1 −
3µ2θ1

4
− 3µ cos 2θ1

2
+
µ cos 6θ1

6
− sin 2θ1 +

µ2 sin 2θ1
8

+
µ2 sin 4θ1

4

−µ
2 sin 6θ1

16
− µ2 sin 8θ1

32
+
µ2 sin 10θ1

80
+

4µ

3

−16µ+ 3(4 + 3µ2)π

12
+ θ2 +

3µ2θ2
4

+
3µ cos 2θ2

2
− µ cos 6θ2

6
+ sin 2θ2

−µ
2 sin 2θ2

8
− µ2 sin 4θ2

4
+
µ2 sin 6θ2

16
+
µ2 sin 8θ2

32
− µ2 sin 10θ2

80
}

and

div− = 2

∫ θ2

θ1

dθµ[1− (2− 8µ cos θ sin3 θ)2 cos2 θ] (.)

= 2µ{−θ − 3µ2θ

4
− 3µ cos 2θ

2
+
µ cos 6θ

6
− sin 2θ +

µ2 sin 2θ

8
+
µ2 sin 4θ

4

−µ
2 sin 6θ

16
− µ2 sin 8θ

32
+
µ2 sin 10θ

80
}|θ2θ1

7.4 Characteristic multiplier of (.)

Limit cycle is a stable periodic solution of (.). Its stability is related to the property of Floquet

multipliers [25, 30]. They are relevant to the time integration of the divergence in (.) over a period

on limit cycle [30]. Choose arbitrary point (q1o, q2o) on limit cycle. The characteristic multipliers

Λ1,Λ2 are given by div in (.):
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Λ1 =
Λ1 + Λ2

2
+

√
(Λ1 + Λ2)2

4
− exp[

∫ τ

0
div(s)ds] Λ2 =

Λ1 + Λ2

2
−

√
(Λ1 + Λ2)2

4
− exp[

∫ τ

0
div(s)ds]

(.)

The characteristic multipliers are intrinsic [25,30], so starting from any points on limit cycle gives

the same characteristic multipliers. Λ1 + Λ2 is related to the trace of matrix

exp[

∫ τ

0
ds

(
0 −1
1 µ(1− q21o(s))

)
] = exp[

n∑
i=0

(
0 −1
1 µ(1− q21o(ti))

)
] (.)

in which ti+1 − ti = limn→∞
τ
n . So

Λ1 + Λ2 = exp[
n∑
i=0

µ(1− q21o(ti))
2

] (.)

×{exp[−
n∑
i=0

√
−1 +

µ2(1− q21o(ti))2
4

] + exp[
n∑
i=0

√
−1 +

µ2(1− q21o(ti))2
4

]}

The characteristic multipliers are explicitly given by:

Λ1,2 = exp[
1

2

∫ τ

0
div(s)ds]× (ef(div) + e−f(div)) (.)

±

√
−1

2
exp[

∫ τ

0
div(s)ds] +

1

4
exp[

∫ τ

0
div(s)ds]× (e2f(div) + e−2f(div))

in which f(div) =
∫ τ
0 ds

√
1
4div

2(s)− 1. The stability condition of system (.) is |Λ1| < 1 and |Λ2| < 1,

which implies that
∫ τ
0 div(s)ds < 0.

Integrate (.) along the limit cycle, we get the exact information of characteristic multipliers,

which needs the explicit solution of limit cycle. In section 3.1 and 7.1 we have already explicitly

figured out the explicit solution of limit cycle by solving (.). Plug the solution of (.) into (.)

then:

Λ1,2 = exp[−1

4
µ(4 + 3µ2)π]× (e

∫ τ
0 ds

√
1
4
div2(s)−1

+ e
−

∫ τ
0 ds

√
1
4
div2(s)−1

) (.)

±
√
−1

2
exp[−µ

2
(4 + 3µ2)π] +

1

4
exp[−µ

2
(4 + 3µ2)π]× (e

2
∫ τ
0 ds

√
1
4
div2(s)−1

+ e
−2

∫ τ
0 ds

√
1
4
div2(s)−1

)

µ is the perturbation parameter i.e. 0 < µ < 1. Again, with the help of numerical results we

compare
∫ τ
0 ds

√
1
4div

2(s)− 1 with div++div− in table2. It is not necessary to compute div++div− =

−1
2µ(4 + 3µ2)π when

∫ τ
0 ds

√
1
4div

2(s)− 1 is a pure imaginary number. The result demonstrates that

the real parts of characteristic multipliers are less than 1.
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µ
∫ τ
0 ds

√
1
4div

2(s)− 1 div+ + div− = −1
2µ(4 + 3µ2)π

0 2πi -
0.1 6.25905i -
0.2 6.17961i -
0.3 6.02149i -
0.4 5.73412i -
0.5 5.17682i -
0.6 0.60166 + 4.18517i -4.78779
0.7 1.73889 + 3.47351i -6.01458
0.8 2.95755 + 3.22425i -7.43929
0.9 4.15364 + 3.05592i -9.0902
1.0 5.39099 + 2.91382i −7π

2

Table 2: Numerical integration of
∫ τ
0 ds

√
1
4div

2(s)− 1 in order to compare with div+ + div−

We can conclude that apart from the singular point (0, 0), the trajectories of the system starting

from any points in the phase space (q1, q2), will infinitely approach the limit cycle, as long as the

starting points are not on the limit cycle. As the real parts of Λ1,2 exponentially squeeze the trajectories

to limit cycle. Schematic figure is shown in Fig. 2

7.5 The computing details for section 4

Integration of the|div−| − |div+| and div± when human is healthy but not at quiescent condition:

dED
dt

=
2κ

kµπ
(4 + 3µ2)−1

1

TenTb

(Tb − Ten)2

∆r
(|div−| − |div+|) (.)

=
2κ

kµπ
(4 + 3µ2)−1

1

TenTb

(Tb − Ten)2

∆r

×(−µ)

∫ 2π

0
dθ {1− [(2− 8µ cos θ sin3 θ)

−εµ(sin 2θ − 2 sin 4θ − 1) + ε2µ(
5

4
sin 4θ − sin 2θ) + ε3µ(

1

2
sin 2θ +

1

4
sin 4θ)]2 cos2 θ}

=
2κ

kµπ
(4 + 3µ2)−1

1

TenTb

(Tb − Ten)2

∆r

×[
(4 + 3µ2)π

2
+ (4επ +

3

2
εµ2π + ε2π +

9

8
ε3µ2π +

73

32
ε4µ2π +

5

4
ε5µ2π +

7

32
ε6µ2π)]

The details of (.)

kTb
βτ
|div−| = −2kTbµ

βτ
[

∫ θ1

0
dθ {1− [(2− 8µ cos θ sin3 θ) (.)

−εµ(sin 2θ − 2 sin 4θ − 1) + ε2µ(
5

4
sin 4θ − sin 2θ) + ε3µ(

1

2
sin 2θ +

1

4
sin 4θ)]2 cos2 θ}
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+

∫ π

θ2

dθ {1− [(2− 8µ cos θ sin3 θ)

−εµ(sin 2θ − 2 sin 4θ − 1) + ε2µ(
5

4
sin 4θ − sin 2θ) + ε3µ(

1

2
sin 2θ +

1

4
sin 4θ)]2 cos2 θ}]

and details of (.)

dEk
dt

=
kTb
βτ
|div−| −

dED
τ

(.)

=
2kTbµ

βτ

∫ θ2

θ1

dθ {1− [(2− 8µ cos θ sin3 θ)

−εµ(sin 2θ − 2 sin 4θ − 1) + ε2µ(
5

4
sin 4θ − sin 2θ) + ε3µ(

1

2
sin 2θ +

1

4
sin 4θ)]2 cos2 θ}
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