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ABSTRACT 

 
 In 1977 an expression for the magnetic moment of a massive Dirac neutrino 
was deduced in the context of electroweak interactions at the one-loop level. A 
linear dependence on the neutrino mass was found. Alternatively, a magnetic 
moment for a massive neutrino arising from gravitational origin is predicted by the 
so-called Wilson-Blackett law. The latter relation may also be deduced from a 
gravitomagnetic interpretation of the Einstein equations. Both formulas for the 

magnetic moment can be combined, yielding a value for the smallest neutrino mass m1. 
 The gravitomagnetic moment, i.e., the magnetic moment from gravitational 
origin, may contain different g-factors for the massive neutrino eigenstates m1, m2 
and m3, respectively. Starting from the Dirac equation, a g-factor g = 2 has been 
deduced for a neutrino in first order, related to the derivation of the g-factor of 
charged leptons. When a value g = 2 is inserted, a value of 1.530 meV is obtained 
for the lightest neutrino mass m1, the main result of this work. The remaining 
neutrino masses can then be calculated from observed neutrino oscillations. The so-

called geometric mean mass relation between the three neutrino masses appears to 
be in fair agreement with our results. A possible dependence of the neutrino mass on 
the electroweak coupling constant is discussed. 
 The neutrino with the smallest mass m1 may also possess the smallest 
magnetic moment of all known elementary particles. Its gravitomagnetic formula is 
a combination of three Planck units. 

 
1. INTRODUCTION 
 

 It is generally accepted that an electrically neutral neutrino may possess 

electromagnetic properties through electroweak interactions with photons. The neutrino 

magnetic moment arises at the one-loop level from a minimal extension of the standard 
model with right-handed neutrinos. For a left-handed Dirac neutrino with a positive mass mi 

(i = 1, 2, 3) the following electromagnetic moment μi(em) has been deduced [1, 2] 
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where GF = 1.16638×10
–5

 GeV
–2

 is the Fermi coupling constant, c is the velocity of light, 

ħ is the reduced Planck constant, σ is the Pauli matrix and μB = |e|ħ/2me is the Bohr 
magneton. Equation (1.1) predicts that the neutrino magnetic moment is proportional to 

the neutrino mass mi, but the value of mi does not follow from the calculation. The 

formula for μi(em) has been deduced from the one-loop contributions to the neutrino 
electromagnetic vertex function. To leading order in ml

2
/mW

2
, the result is independent of 

the charged lepton masses ml (l = e, μ, τ) and of the neutrino mixing matrix U [1, 2]. 

 Observed neutrino oscillations from different sources (Sun, Earth’s atmosphere and 

samples in the laboratory) provide strong indications for the existence of massive 
neutrinos. A description of neutrino oscillations [3, 4] is possible by connecting three 

neutrino flavour states neutrinos να (α = e, μ, τ) to three massive eigenstates νi with masses 

mi (i = 1, 2, 3). In that case three different magnetic moments μi(em) may exist, 
corresponding to the three neutrino masses mi.  
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 In this work the electromagnetic moment μi(em) of (1.1) for the neutrino will be 

compared with the so-called gravitomagnetic moment μi(gm). As will be discussed in 

section 2, it is assumed that the magnetic fields from μi(em) and μi(gm) are equivalent. 

For an elementary particle like a neutrino with mass mi (i = 1, 2, 3) and angular 
momentum S = (ħ/2)σ the gravitomagnetic moment μi(gm) may be written as 
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where G is the gravitational constant and k = (4πε0)
–1

 is Coulombʼs constant. The 

parameter gi (i = 1, 2, 3) is a dimensionless quantity of order unity, related to the gl -factor 
for charged leptons (l = e, μ, τ). In addition, another unknown dimensionless constant β 

has been added to μi(gm). Note that μi(gm) does not explicitly depend on neutrino mass. 

 The gravitomagnetic moment μi(gm) of (1.2) for a neutrino with mass mi may be 

distinguished by different gi-factors. Starting from the Dirac equation, however, in first 

order the same factor gi = +2  is deduced in section 3 for all neutrinos mi, analogously to 

the factor gl = +2 for all charged leptons. 
 When the magnetic moments μi(em) from (1.1) and μi(gm) from (1.2) are taken 

equal, the following expression for mass mi results 
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Note that μi(em) from (1.1) and μi(gm) of (1.2) have the same direction for a negative 

value of the product giβ. Since a positive value gi = +2  is deduced from the Dirac 
equation in section 3, β must be negative. This result is important, for the sign of the β-

factor was unknown, so far. Insertion of the value g1 = +2 and a value β = –1 into (1.3) 

yields a value of 1.530 meV for neutrino mass m1, the main result of this work. 
 At present, no magnetic moment of any neutrino has been measured. The tightest 

constraint on μi comes from studies of a possible delay of helium ignition in the core of 

red giants in globular clusters. From the lack of observational evidence of this effect a 
limit of μi < 3×10

–12
μB has been extracted [5]. This limit still exceeds the value μi = 

3.2×10
–22

(mi /meV)μB from (1.1) by many orders of magnitude. Conformation of the 

proposed value of mass m1, however, may provide a first indication of the existence of 

non-zero neutrino magnetic moments (1.1) and (1.2). 
 According to the neutrino oscillation theory [3, 4], the masses of the three neutrino 

flavour states να (α = e, μ, τ) can be expressed as a superposition of three massive 

eigenstates νi with masses mi (i = 1, 2, 3). In addition, mass-squared splittings Δm21
2
 ≡ m2

2
 

– m1
2
 and Δm31

2
 ≡ m3

2
 – m1

2
 follow from observations. So, two relations between the 

masses m1, m2, and m3 are available, whereas three masses mi are initially unknown. Thus, 

when the neutrino mass m1 is known, the remaining masses m2 and m3 can be calculated. 
In section 4 such a calculation has been performed. In section 5 our results are compared 

with results following from the so-called “geometric mean neutrino mass relation”. In 

addition, a possible dependence of the masses mi on the weak coupling constant αW is 

discussed. Conclusions are drawn in section 6. In section 2, however, we first consider 
the deduction of relation (1.2) and the corresponding electromagnetic magnetic moments. 

 

2. GRAVITOMAGNETIC AND ELECTROMAGNETIC MOMENTS 
 

 Since 1891 many authors have discussed a gravitational origin of the magnetic 

field of rotating celestial bodies. Particularly, the so-called Wilson-Blackett formula has 

often been considered [6–15] 
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where μ(gm) is the gravitomagnetic moment of the massive body with angular momentum 

S. For a sphere with a homogeneous mass density the angular momentum S is given by S 

= 2/5 mr
2
ω, where m is the mass of the sphere of radius r and ω its angular velocity. Note 

that μ(gm) is proportional to the mass m. The parameter β is assumed to be a 

dimensionless constant of order unity. So far, the sign and value of β are unknown, 

however (see ref. [14] for an ample discussion of this point). 

 Analogously to the electromagnetic counterpart μ(em) of (1.1), the gravitomagnetic 
moment μ(gm) leads to a dipolar gravitomagnetic field at distance R of magnitude 

 

 0

5 3

3 (gm) (gm)
(gm) .

4 R R





 
  

 

μ R μ
B R  (2.2) 

 
According to the Wilson-Blackett relation, the field B(gm) may be identified as an 

electromagnetic induction field. In that case the magnetic moments μ(em) of (1.1) and 

μ(gm) of (1.2) are equivalent. 
 Attempts to derive (2.1) from a more general theory have been given by several 

authors (see, e.g., [10–14, 16] and references therein). For example, Bennet et al. [10] 

already gave a five-dimensional theory resulting into (2.1). Luchak [11] found a relation 

related to (2.1) from another five-dimensional theory. He gave a relativistic generalization 
of the Maxwell equations by combining them with gravitational fields. Other authors like 

Biemond [12–14] and Widom and Ahluwalia [16], tried to explain equation (2.1) as a 

consequence of general relativity. The former author [12–14] started from the Einstein 
equations in the slow motion and weak field approximation and deduced a set of four 

gravitomagnetic equations, analogous to the four Maxwell equations. The so-called 

“magnetic-type” gravitational field in these equations is identified as a magnetic induction 
field, resulting into the gravitomagnetic moment μ(gm) of (2.1). 

 Since charges in rotating bodies may affect the value of the parameter β in many 

different ways, one can hardly expect that the observed value of β is a constant. Different 

values for the empirical value of β have indeed been found for about fourteen rotating 
bodies: metallic cylinders in the laboratory, moons, planets, stars and the Galaxy [13, ch. 

1]. For pulsars a separate analysis has been given in ref. [17]. From a linear regression 

analysis of the series of the fourteen rotating bodies an almost linear relationship between 
the observed magnetic moment |μ(obs)| and the angular momentum |S| was found. Such a 

linear relationship between μ(gm) and S is predicted by (2.1). From this analysis an 

average value of |β | = 0.076 was calculated. Although this result is distinctly different 

from a gravitomagnetic prediction for a theoretical value like |β | = 1 in (2.1), the correct 
order of magnitude of β for so many, strongly different, rotating bodies is amazing 

(values of |μ(obs)| and |S| vary over an interval of sixty decades!). So, the gravitomagnetic 

hypothesis, embodied in the Wilson-Blackett law (2.1), may be basically valid. 
 For a macroscopic rotating sphere of mass m with a homogeneous charge density and 

a total charge Q, the magnetic moment is given by (see, e.g., ref. [18, 19]) 

 

 (em) .
2

Q

m
μ S  (2.3) 

 

It is noted that the derivation of (2.3) from the Maxwell equations and the deduction of 

(2.1) from the gravitomagnetic equations are analogous. Recently, Barrow and Gibbons 
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[20] suggested that for charged rotating black holes un upper bound (G/k)
½
 may hold for 

the quantity |Q|/(2m). 
 

 For elementary particles like charged leptons with masses ml (l = e, μ, τ) the z-

component of the angular momentum S is given by Sz = ½ħ, as has been discussed by 

Pauli [21]. As an example, for an electron with mass me and charge e the z-component of 

the electromagnetic moment μ(em) of (2.3) transforms into 
 

 (em) .
2 2

e
z

e

g e

m
   (2.4) 

 

Since more contributions to the dimensionless factor ge can be distinguished, the ge-factor 
is usually written as a series expansion 
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where α = ke
2
/ħc = 1/137.036 is the fine-structure constant. The leading term in the series 

expansion of ge, ge = +2 , has been deduced by Dirac [22]. Later on, Schwinger [23] 

deduced the first and largest one-loop correction α/π to ge from the theory of quantum 
electrodynamics (QED). 

 Analogous to μz(em) of (2.4), the following gravitomagnetic moment μz(gm) can be 

obtained, both for charged leptons and neutrinos (compare to (1.2)) 
 

 

1
2

(gm) .
2 2

z

g G

k




 
   

 
 (2.6) 

 

Whereas μi(em) of (1.1) is proportional to neutrino mass mi, μz(gm) of (2.6) does not 

explicitly depend on mass. For this reason, this mass dependence will be combined with 
the factor g-factor in this work. 

 As an example, for a neutrino of mass m1 we substitute g1 = +2 and β = –1 into 

(2.6), and for an electron ge = +2  into (2.4), respectively. From (2.6) and (2.4) one then 

obtains the following expression for the ratio |μz(gm)|/|μz(em)| 
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It appears that the gravitomagnetic moment |μz(gm)| for the neutrino is extremely small 

compared to the electromagnetic moment |μz(em)| of the electron. This results shows that 

a magnetic induction field from gravitomagnetic origin may easily be masked by the 
electromagnetic field generated by a small amount of charge. Note that the products G

½
me 

and k
½
e in (2.7) have the same dimension. 

 The leading QED correction to μz(em) in (2.4) (see (2.5)) equals to δμz(em) ≈ 
(α/2π) μz(em). When g1 = +2  and β1 = –1 are again substituted into (2.6), and ge = +2  is 

again inserted into (2.4), the ratio |μz(gm)|/|δμz(em)| appears to be 
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So, for the electron the gravitomagnetic moment |μz(gm)| is still much smaller than the 

contribution δμz(em). 
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3. CALCULATION OF THE g-FACTOR FOR LEPTONS 

 

 For comparison, we first review the derivation of the gl-factor of a charged lepton 

before considering the gi-factor of a neutrino. For a system of particles with charge e and 
mass m, moving with velocity v through an external uniform magnetic induction field 

B(em), the following term has to be added to the Lagrangian (see, e.g., Landau and 

Lifshitz [24, ch. 45]) 
 

  (em) (em) ( ) (em).
2 2

e e
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In deriving (3.1), use has been made of the expression for the external uniform 

electromagnetic vector potential A(em) = ½B(em)×r. If all charges of the system have 
the same ratio of charge to mass and the velocities |v| of all charges are much smaller than 

c, then (3.1) can be rewritten as 

 

 ( ) (em) (em) (em) (em),
2 2

e e
L m

m m
        r v B S B μ B  (3.2) 

 

where S = Σ r×p is the angular momentum of the system, p = mv is the momentum of a 
particle and μ(em) is the magnetic moment of the system. 

 For a lepton with charge e and mass m the contribution to the Hamiltonian, H ′, 

corresponding to (3.2), is given by 
 

 (em) (em) (em),
2

l
l

g e
H

m
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where S = (ħ/2)σ is now the angular momentum of the charged lepton and μl(em) its 
magnetic moment. In order to calculate the gl-value in (3.3) the Dirac equation will now 

be considered below. 

 The Dirac equation in the presence of an external electromagnetic covariant four-
vector potential Aμ(em) = {A0(em), – A(em)} (or alternatively written in terms of the 

contravariant four-vector A
μ
(em) = {A

0
(em), A(em)}) for a charged lepton is given by [22] 

 

  (em) 0.p eA mc

     
 

 (3.4) 

 
Here the matrices γ

μ
 (μ = 0, 1, 2, 3) are 4×4 matrices and pμ is a four-vector defined by pμ 

≡ iħ∂/∂x
μ
 with x

μ
 = (ct, r), whereas the wave function ψ is a four-component column 

matrix. When the electromagnetic vector potential A(em) = {A
1
(em), A

2
(em), A

3
(em)} and 

the scalar potential A0(em) = A
0
(em) = ϕ/c in (3.4) are relatively small, the components of 

the wave functions ψ are approximately solutions of the Dirac equation for the free 

particle (this approximation is usually denoted as the principle of minimal coupling). 

Analogously to the Schrӧdinger equation, the Dirac equation (3.4) can then be written as 
a differential equation first order in time 
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Here the components of α are defined by the 4×4 matrices α

i
 ≡ γ

0
γ

i
 (i = 1, 2, 3) and the 

components of momentum p by p
i
 ≡ (p

1
, p

2
, p

3
), respectively. Note that α

i
 is no spatial 

part of a four-vector (there is no α
0
); so, its superscript index i is no contravariant index. 

The 4×4 matrix β is defined by β ≡ γ
0
 and A(em) is the vector potential. From (3.5) the 
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expression for the Dirac Hamiltonian HD follows. 

 Since the time dependence of the wave function is governed by the energy (energy 

eigenstates have the time dependence e
–iEt/ħ

), a factor of e
–imc2t/ħ

 may be split off from the 
Dirac wave function ψ in first order. In addition, the four-component spinor ψ may be 

decomposed into two two-component spinors φ and χ. So, ψ will be rewritten as 
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In addition, the four 4×4 matrices γ
μ
 in the so-called Dirac representation and α

i
 are 

partitioned into 2×2 matrices 
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where I is a 2×2 unit matrix and σi are the Pauli 2×2 matrices. These matrices are, 
respectively, given by 

 

 
1 2 3

1 0 0 1 0 1 0
and , , ,

0 1 1 0 0 0 1

i
I
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where the 4×4 matrix β is replaced by the 2×2 matrix I and the 4×4 matrices of α are 

replaced by the 2×2 Pauli matrices σ1, σ2 and σ3. 

 Utilizing (3.6), (3.7) and (3.8), equation (3.5) transforms into 
 

 2 2
1 0 0 1 0

.
0 1 0 0 1

mc i c e mc
t

 


 
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             

σ π

σ π
 (3.9) 

 

The generalized momentum π is defined by π ≡ p – eA(em). Evaluation of (3.9) leads to 
two coupled equations 

 

   ,i c e
t


 


  


σ π  (3.10) 

   22 .i c e mc
t


  


   


σ π  (3.11) 

 

When in the weak field limit eϕ is small compared to rest energy mc
2
 and the function χ 

slowly varies in time, i.e. iħ∂χ/∂t ≈ 0, relation (3.11) reduces to 
 

  
1

.
2mc

  σ π  (3.12) 

 

In the non-relativistic limit σ  π << mc, so that χ << φ. Substitution of (3.12) into (3.10) 
yields 
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21

.
2

i e
t m


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This differential equation is known as the Pauli equation [21]. 

 Equation (3.13) can be evaluated by the Pauli vector identity 
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    
2 2 .i    σ π π σ π π  (3.14) 

 

In addition, the quantity (π×π)φ can be shown to be 
 

   (em) (em) .ie ie     π π A B  (3.15) 

 

Combination of the equations (3.13), (3.14) and (3.15) yields 
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Insertion of S = (ħ/2)σ into (3.16) leads to the Pauli Hamiltonian HP 
 

 
2 2

P (em) (em) (em).
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e
H e e

m m m
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From comparison of the spin-dependent term in HP of (3.17a) and that of H ′ in (3.3a) 
follows in first order that gl = +2  for a charged lepton. 

 When a mass m is considered moving with a velocity v through an external 

uniform gravitomagnetic vector potential A(gm), the following contribution to the 

Lagrangian has to be added (see refs. [13, 14]), corresponding to the electromagnetic 
Lagrangian L′ of (3.1) 
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Here the three components of A(gm) are given by A
α
(gm) (α = x, y, z). The components 

A
α
(gm) can be connected to the metric components g0α and have been deduced in the 

weak field and slow motion limit [13, 14]. 

 Utilizing the expression for the vector potential A(gm) = ½B(gm)×r and (2.1), 

equation (3.18) can be rewritten as 

 

 

1
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2
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where S is the angular momentum of mass m and μ(gm) its gravitomagnetic moment. 

 For an elementary particle like a neutrino, the contribution to the Hamiltonian, H ′, 

corresponding to (3.19) is then given by 
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2 4
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where S = (ħ/2)σ is now the angular momentum and μi(gm) is the gravitomagnetic 

moment of the neutrino, respectively. When μi(gm) and B(gm) are equivalent to their 
electromagnetic counterparts μi(em) and B(em), a deduction, analogous to (3.3a) and 

(3.17a), leads to a value gi = +2 for all neutrinos in first order. 

 Many authors have also followed the gravitomagnetic approach, but without taking 
B(gm) equivalent to B(em). They implicitly choose different values for the dimensionless 

constant β like β = +4, +2, +1 and –1 without further comment (see ref. [14] for an 

ample discussion of the sign and value of β). 
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 It appears that the sign of term – μl(em)∙B(em) in the electromagnetic Hamiltonian 

HP  of (3.17) differs from that of the term 4/β
2
μi(gm)∙B(gm) in the gravitomagnetic 

Hamiltonian H ′ of (3.20). A related difference in sign is found between the 

electromagnetic torque τ(em) = μ(em)×B(em) and the corresponding gravitomagnetic 
torque τ(gm) = –1/β

2
μ(gm)×B(gm) (see [13]; compare to [24, p. 105]). Moreover, for β = 

±1 the term 4/β
2
μi(gm)∙B(gm) contains an extra factor of four compared to the 

corresponding electromagnetic term – μl(em)∙B(em). This factor stems from the factor of 
four in the gravitomagnetic Lagrangian L ′ of (3.19b), compared to the corresponding 

electromagnetic Lagrangian L′ of (3.2). 

 It is noticed, that such a difference of a factor of four is also found between the 
gravitational and electromagnetic radiation formula. As an illustration, consider the 

system of two identical point masses moving at an angular frequency ω in a circular orbit 

of radius r around the common center of mass. The quadrupole formula for gravitational 

radiation for this system, Igrav. rad., is given by (see, e.g., Landau and Lifshitz [24, p. 356]) 
 

 
2 4 6

grav. rad. grav. magn. rad. 5

128
.

5

Gm r
I I

c


   (3.21) 

 
From the gravitomagnetic approach the same expression for the quadrupole radiation of 

this system, Igrav. magn. rad., is obtained. It appears that this result does not depend on the 

constant β (see, ref. [13, ch. 3]). For comparison, the quadrupole radiation of two 

identical point charges e moving at an angular frequency ω in a circular orbit of radius r 
around the common center of mass, equals to 

 

 
2 4 6

el. magn. rad. 5

32
.

5

ke r
I

c


  (3.22) 

 

Note that the electromagnetic dipole radiation is zero is this case. It follows that in the 

ratio Igrav. magn. rad./Iel. magn. rad. = 4 Gm
2
/ke

2
 the same peculiar factor of four appears. 

 According to (1.1), μi(em) depends on mass mi, whereas μi(gm) in (1.2) displays 
no explicit dependence on mass. Therefore, this mass dependence of μi(gm) of (1.2) will 

be combined with the gi-factor. 

 

4. CALCULATION OF THE NEUTRINO MASSES 

 

 In table 1 data deduced from the framework of three-neutrino oscillations are 
summarized. Best fit values are given for the two squared-mass differences Δm21

2
 and 

Δm31
2
 from de Salas et al. [25], Esteban et al. [26], and Capozzi et al. [27]. Three data 

series for the normal hierarchy are shown and one for the inverted hierarchy. 

 
Table 1. Best fit Δm2 values (±1σ) from three-neutrino oscillation analyses. 
 

 

normal hierarchy 

[25] 

inverted hierarchy 

[25] 

normal hierarchy 

[26] 

normal hierarchy 

[27] 

Δm2 best fit ±1σ best fit ±1σ best fit ±1σ  best fit ±1σ  

Δm21
2/10–5 eV2 7.56 7.56 7.50 7.37 

Δm31
2/10–3 eV2          + 2.550          – 2.492      + 2.524          + 2.562 

 

 Substitution of a value g1 = +2  and β = –1 into (1.3) for the neutrino mass m1, 

yields a value of m1 = +1.530 meV. The accuracy of this result depends on the relative 
inaccuracy of the gravitational constant G = 6.674×10

–11
 kg

–1
m

3
s

–2
. Subsequently, the 

masses m2 and m3 have been calculated from the values of Δm21
2
 ≡ m2

2
 – m1

2
 and Δm31

2
 ≡ 

m3
2
 – m1

2
 for the three data series in the case of normal hierarchy given in table 1. Results 
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are summarized in table 2. Note that all masses mi have a positive sign. Since the mass m1 

is relativity small compared with masses m2 and m3, comparison of tables 1 and 2 shows, 

that the masses m2 and m3 are approximately given by the roots of Δm21
2
 and Δm31

2
, 

respectively. 
 When the calculated masses m2 and m3 are subsequently inserted into (1.3) and a 

value β = –1 is chosen, the empirical gi-factors g2 and g3 can be calculated, respectively. 

For comparison, the gi-factors have been expressed relative to g1 = +2  by defining the 
relative factor g′i ≡ gi /g1. So, g′1 = 1 and from (1.3) follows that g′i = mi /m1. The values of 

g′i have been given in table 2. 

 When, instead of β = –1, a value β = –2 is introduced into (1.3) the value of m1 
doubles to m1 = 3.06 meV. Combination of this value for m1 and data from ref. [25] in 

table 1 then leads to the values m2 = 9.22 meV and m3 = 50.6 meV. 

 
Table 2. Calculated neutrino masses m2 and m3 from data in table 1 for the normal hierarchy. All 
masses are given in units of meV. The g′i-factor is defined by g′i ≡ mi/m1 and the quantity Δg′i (αW

–1) 

by Δg′i (αW
–1) ≡ (g′i – g′1)×αW

–1, respectively. For comment, see text. 
 

ref. [25] [26] [27]  [25] [26] [27] 

m1/meV 1.530 1.530 1.530  g′1 1 1 1 

m2/meV 8.83 8.79 8.72  g′2 5.77 5.75 5.70 

m3/meV 50.5 50.3 50.6  g′3 33.0 32.9 33.1 

Σi mi /meV 60.9 60.6 60.9 Δg′1(αW
–1) 0 0 0 

Rν = (m2)
2/(m1m3) 1.01 1.01 0.98 Δg′2(αW

–1) 0.146 0.145 0.144 

    Δg′3(αW
–1) 0.979 0.973 0.981 

 
a A value αW

–1 = 32.71 has been used in the calculations. See section 5 for a discussion of this parameter. 

 

 Using the values Δm21
2
 and Δm31

2
 for the inverted hierarchy from ref. [25], the 

choice m3 = 1.530 meV leads to the values m2 = 50.7 meV and m1 = 49.9 meV, resulting 

into Σi mi = 102 meV. So, following our approach the possibility of an inverted hierarchy 
cannot be excluded. 

 From calculated values mi in table 2 an average sum Σi mi = 60.8 meV can be 

calculated. This value can be compared with cosmological constraints. So far, the tightest 
constraint of the sum Σi mi < 92.6 meV at 90% C. L. has been given by Di Valentino et 

al. [28]. They extracted this bound by combining the full Planck measurements, Baryon 

Acoustic Oscillation and Planck clusters data. In addition, they imposed a low 
reionization redshift prior. The obtained value for Σi mi illustrates that a cosmological 

measurement of the neutrino mass hierarchy is at reach. 

 

5. DISCUSSION OF THE RESULTS 
 

 In the past, many relations between the masses of leptons and quarks have been 

proposed in order to investigate the origin of mass of elementary particles. For example, 
He and Zee [29], and Sazdović [30] used the so-called “geometric mean neutrino mass 

relation” between the three active masses mi (i = 1, 2, 3) of the neutrinos 

 

 
2

2

1 3

1.
m

R
m m

    (5.1) 

 

The ratio (5.1) provides a third relation between the masses m1, m2 and m3, so that all 

masses can be calculated. As an example, the values for Δm21
2
 and Δm31

2
 for the normal 

hierarchy from ref. [25] in our table 1 can be chosen. Combination of these data and 
relation (5.1) yields the following masses: m1 = 1.54 meV, m2 = 8.83 meV and m3 = 50.5 

meV. These values are close to the values m1 = 1.53 meV, m2 = 8.83 meV and m3 = 50.5 

meV deduced from data of ref. [25] (see table 2). Inserting the latter values into (5.1) 
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yields a value Rν = (m2)
2
/(m1m3) = 1.01. The other values for Rν calculated from data of 

refs. [26, 27] are also given in table 2. The averaged value of these three results is Rν = 

0.999, remarkably close to the value Rν = 1 of (5.1). 

 One can also try to express the masses m2 and m3 in units of the weak coupling 
constant αW = kg

2
/ħc, a basic constant for electroweak interactions. This constant is 

analogous to the fine-structure constant α = ke
2
/ħc = 1/(137.036) for electromagnetic 

interactions. The relation between the charges g and e is given by g sinθW = e, where θW 
is the weak mixing angle. From the modified minimal subtraction scheme M̄̄S̄ a value of 

sin
2
θW = 0.23868 at low energies has been taken from ref. [31], resulting into a value of 

αW = 1/(32.71). The averaged values of the masses m2 and m3 from table 2 can then be 
written as 

 

 1

2 1(1 0.145 ) ,Wm m    (5.2) 

 

 1

3 1(1 0.978 ) .Wm m    (5.3) 

 
By defining a quantity Δg′i(αW

–1
) ≡ (g′i – g′1)×αW

–1
, the dependence of the neutrino masses 

on units of αW
–1

 can be expressed. The values of Δg′i(αW
–1

) have been given separately in 

table 2. As an illustration, for Δg′3(αW
–1

) = m3/m1 – 1 follows from (5.3) that Δg′3(αW
–1

) = 

0.978αW
–1

, or otherwise stated m3 ≈ (1+ αW
–1

) m1. For the on-shell electroweak mixing 
parameter sin

2
θW = 0.22333 a value of αW = 1/(30.60) is obtained. Results of Δg′i(αW

–1
) 

for this choice of αW have earlier been given in ref. [15]. 

 For comparison, the masses ml (l = e, μ, τ) of the charged leptons can be expressed 
in terms of the fine-structure constant α 

 

 1 13 3
, 1 and 17 1 .

2 2
e e e em m m m m m      
        

   
 (5.4) 

 
Using the observed electron mass me = 0.51099895 MeV, the calculated muon mass mμ = 

105.54888 MeV from (5.4) differs – 0.104 % from the observed mass mμ = 105.65837 

MeV, whereas the calculated tauon mass mτ = 1776.96 MeV differs + 0.0055 % from the 
observed mass mτ = 1776.86 MeV (see for the observed data ref. [32]). Previously, Barut 

[33, 34] deduced a series expansion for the masses of the charged leptons. For mμ he gave 

the same expression as in (5.4), whereas for mτ he obtained the following formula 
 

 4 1 13 3
2 1 17 .

2 2
e em m m m       

      
   

 (5.5) 

 
In this case the calculated tauon mass mτ = 1786.15 MeV differs + 0.523 % from the 

observed mass mτ = 1776.86 MeV. Analogous to (5.1), the following ratio Rl between the 

masses ml (l = e, μ, τ) of the charged leptons can be calculated. For the observed masses 
one obtains 

 

 
2

12.2952.l

e

m
R

m m





   (5.6) 

 

Substitution of the expressions of (5.4) into (5.6) yields a value Rl = 12.2690 that is 0.213 
% lower than the observed value. From the expressions of Barut from (5.4) and (5.5) a 

value of Rl = 12.2059 is obtained that is 0.726 % lower than the observed value. Finally, 

Sazdović [30] proposed a value Rl = e
5/2

 = 12.1825 that is 0.916 % lower than the 
observed value. 
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6. CONCLUSIONS 

 

 A value of 1.530 meV/c
2
 = 2.727×10

–39
 kg for the mass of the lightest elementary 

particle, the neutrino m1, is obtained in this work. This value is extracted from a 

combination of the magnetic moment of a massive Dirac neutrino [1, 2], deduced in the 

context of electroweak interactions at the one-loop level, and the magnetic moment from 
gravitational origin proposed by Wilson and Blackett [6–15]. The latter relation has also 

been obtained from a gravitomagnetic interpretation of the Einstein equations [12–14]. 

Combination with neutrino oscillation data yields the other masses m2 and m3 (see table 2). 
It is stressed that these results depend on the validity of the assumptions involved, 

especially the validity of the Wilson-Blackett relation (1.2). 

 Previously, the so-called geometric mean neutrino mass relation (m2)
2
/(m1m3) = 1 

between the three active masses mi (i = 1, 2, 3) of the neutrinos has been used by He and 
Zee [29], and Sazdović [30]. As an example, from data of ref. [25] given in our table 1 a 

value of m1 = 1.54 meV/c
2
 can be calculated from this relation, in fair agreement with our 

result. More research, both theoretically and observationally is necessary, however, to 
confirm the validity of the relation (m2)

2
/(m1m3) = 1. 

 It has been shown by Barut [33, 34] that the masses ml (l = e, μ, τ) of the charged 

leptons can be expressed in terms of the fine-structure constant α. Analogously, the 
masses m2 and m3 of the neutrinos may be written in terms of the weak coupling constant 

αW = kg
2
/ħc. It appears that the mass m3 can approximately be written as m3 = (1+ αW

–1
) m1. 

 It is noticed that the neutrino m1 with the smallest mass may also possess the 

smallest gravitomagnetic moment μ1(gm) = 4.899×10
–22

 μB and may thus be the smallest 
magnet. So far, no magnetic moment of any neutrino has been measured, however (see, 

e.g., ref. [5]). According to (1.2), μ1z(gm) for the lightest mass m1 equals ½(G/k)
½
ħ for β 

= –1 and g1 = +2, or μ1z (gm) = ½(G
½
/c)ħ in Gaussian units. The latter expression for 

μ1z(gm), consists of a combination of the universal constants G, c and ħ. Recently, 

renewed interest arose in the literature for such combinations of Planck units (see, e.g., 

Barrow and Gibbons [20]). 
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