DEMONSTRATION DE LA CONJECTURE DE C.GOLDBACH

BERKOUK Mohamed

Email: bellevue-2011@hotmail.com

Christian Goldbach
Adresse une lettre à Euler
Où il affirme que
a) tout nombre PAIR supérieur à 2
Est la somme
De deux nombres premiers

b) tout nombre IMPAIR supérieur à 3

Est la somme

De trois nombres premiers

Dans son esprit, Christian Goldbach, considérait 1 comme nombre premier, d'où la nécessite de reformuler sa conjecture d'une manière moderne en décalant respectivement les premiers 2 et 3 d'un autre qui suit : La conjecture, dans sa version forte devient :

Tout nombre PAIR supérieur à 3 Est la somme De deux nombres premiers

La conjecture, dans sa version faible s'énonce :

Tout nombre IMPAIR supérieur à 5
Est la somme
De trois nombres premiers

C'est ces deux dernières versions que nous allons essayer de démontrer.

INTRODUCTION

La démonstration repose essentiellement sur trois théorèmes que je vais développer par la suite , le premier dite « théorème 1 » qui définit nécessairement tout nombre premier sous forme de 6m \pm 1 , \forall m \in N* , et suffisamment quand m ne soit pas sous forme (6xy+x+y) ou (6xy-x-y) pour tout nombre 6m+1 , et différent de la forme (6xy-x+y) pour tout nombre 6m-1. Nous appliquerons le « théorème 2 » qui définit la primalité de 6m \pm 1 sans avoir à déterminer x et y de la forme. (v. la multimorielle).

Le troisième théorème dite « théorème 3 » traite de la propriété de la parité en ce qui concerne le produit puis la somme de deux nombres entiers.

Après avoir passé en revue tout les cas possibles de la somme de deux, puis de trois nombres premiers et de vérifier leurs conformité avec les deux conjectures, nous en déduisons la démonstration des conjectures de C.GOLDBACH. Par l'analyse logique de leurs réciproques par les deux démonstrations, et leurs équivalences avec les conjectures.

1° THEOREME -1:

Avec $m \in N^*$;

6m+1 soit premier, il faut points que m soit compris sous la forme (6xy+x+y) ou (6xy-x-y). 6m-1 pour être premier, il faut points que m soit compris sous la forme (6xy-x+y) (x et y permutables).

DEMONSTRATIONS:

Soit n > 6; $\in a$ N; l'ensemble des entiers naturels.

Divisons n par 6 ==> n=6m+r, m et r \in à N. r prend les valeurs des restes de la division soit 0, 1, 2, 3, 4 ou 5.

n ne peut être premier si r=0, 2, 3 ou 4 car il sera respectivement divisible par ces derniers

Pour être premier, le reste de sa division devra nécessairement être égale à 1 ou 5,

C'est-à-dire que n soit de la forme 6m+1 ou 6m+5.

Si on considère la suite 6m+5 et si on définit son premier terme par 5, il sera la même chose que 6m-1, m commençant par la valeur entière 1.

Néant moins cette condition que le nombre premier soit de la forme $6m \pm 1$ n'est pas suffisante étant donné qu'il existe des entiers non premiers respectant la forme $6m \pm 1$.

Mr Krafft, le 12 avril 1798 devant l'académie des sciences impériales en Europe ; présenta son « essai sur les nombres premiers » [1]. Il s'en sort qu'il fallait une deuxième condition suffisante pour que tout nombre de la forme 6m ± 1 soit premier :

a) Prenant le premier cas 6m+1, la proposition se résume que **pour être premier**, **il faut points que m soit compris sous la forme 6xy+x+y ou 6xy-x-y**, (autrement dit ,il faut que le nombre (6m+1) ne soit pas un nombre composé et produit de (6x+1)(6y+1) ou (6x-1)(6y-1).)

```
Démonstration:
            . Si N=6m+1 est un nombre composé de deux facteurs quelconques
    6m+1 = (u+t)(v+z)
          = uv + uz +tv +tz; on suppose que l'un de ces quatre produis soit = 1
Soit tz = 1; => t=1 et z=1 ou t=-1 et z=-1.
=> 6m+1= uv + u +v +1 ou 6m+1= uv - u -v +1
=> 6m = uv + u +v ou 6m = uv - u -v
Vu que m est un entier > 0 => u et v doivent tout les deux être > 0 ou tout les deux < 0.
Soit 6m = uv + u + v divisible par 2 & 3. uv +u+v d'abord divisible par 2 == > u & v doivent étre pairs == > u=2p &
v=2q
= > 6m = 2p2q + 2p + 2q == > 3m = 2pq + p + q
= > 2pq+p+q doit être divisible aussi par 3 == >2pq+p+q = 3x
              2pq+p+q = pq + p (q+1) + q = 3x = p=3x \text{ et } q=3x \text{ et } (q+1)=3x = p=3x-1
Soit 6m = uv - u - v divisible par 2 & 3. uv -u-v aussi divisible par 2 == > u & v doivent étre pairs == > u=2p &
v=2q
             2pq-p-q = pq + q(p-1) - p = 3y = p = 3y et q = 3y et (p-1) = 3y = p = 3y+1
```

Donc trois suppositions; soit p=3x & q=3y ou p=3x-1 & q=3y-1 ou p=3x+1 & q=3y+1

(x étant permutable avec y)

3m=2pq+p+q == > 3m= 2.3x.3y +3x+3y

1°-supposition p=3x & q=3y:

```
== > m=6xy+x+y

3m=2pq-p-q == > 3m= 2.3x.3y -3x-3y

== > m=6xy-x-y

2^{\circ}-supposition p=3x-1 \& q=3y-1

3m=2pq+p+q == > 3m= 2. (3x-1). (3y-1) + (3x-1) + (3y-1)

= 6x-2 (3y-1) +3x -1 +3y-1

3m=18xy-6x-6y+2 +3x+3y-2 = 18xy+3x+3y +2-2

== > m=6xy+x+y

3m=2pq-p-q == > 3m= 2. (3x-1). (3y-1) + (3x-1) + (3y-1)

= 6x-2 (3y-1) +3x -1 +3y -1

3m=18xy-6x-6y+2 +3x+3y-2 = 18xy-3x-3y +2-2

== > m=6xy-x-y
```

 3° -supposition p=3x+1 & q=3y+1

```
3m=2pq+p+q == > 3m= 2. (3x+1). (3y+1) - (3x+1)-(3y+1)
                       = 6x+2 (3y+1) - (3x+1) - (3y+1)
                  3m = 18xy + 6x + 6y + 2 - 3x - 1 - 3y - 1 = 18xy + 3x + 3y + 2 - 2
== > m=6xy+x+y
     3m=2pq-p-q == > 3m= 2.(3x+1).(3y+1) -(3x+1)-(3y+1)
                             = 6x+2 (3y+1) -3x +1 -3y -1
                          3m = 18xy + 6x + 6y + 2 - 3x - 1 - 3y - 1 = 18xy + 3x + 3y + 2 - 2
==> m=6xy-x-y
```

Donc N=6m+1 pour être premier, il faut points que m soit compris sous la forme 6xy+x+y ou 6xy-x-y .fin de démonstration.

b) Prenant le deuxième cas 6m-1 , la proposition dit que pour être premier , il faut point que m soit compris sous la forme 6xy+x-y, autrement dit, il faut que (6m-1) ne soit pas un nombre composé et produit de (6x+1)(6y-1) ou (6x-1)(6y+1)

```
Démonstration :
            . Si N=6m-1 est un nombre composé de deux facteurs quelconques
    6m-1 = (u+t)(v+z)
6m-1 = uv + uz +tv +tz ; l'un de ces quatre produits peut être supposé =- 1
Soit tz = -1; => t=1 et z=-1 ou t=-1 et z=1.
=> 6m-1= uv - u +v -1 ou 6m-1= uv + u -v -1
=> 6m = uv - u +v ou 6m = uv + u -v
Sachant que m est un entier > 0 => u et v doivent tout les deux être > 0 ou tout les deux < 0.
Soit 6m = uv + u - v divisible par 2 & 3. uv +u-v pour être divisible par 2 == > u & v doivent être pairs == > u=2p
& v=2q
= > 6m = 2p2q + 2p - 2q == > 3m = 2pq + p - q.
= > 2pq+p-q doit être divisible aussi par 3 == >2pq+p-q = 3x (ou = 3y)
             2pq+p-q = pq + q(p-1) + p = 3x = p = 3x + q = 3y + et (p-1) = 3x = p = 3x + 1
    == >
Soit 6m = uv - u + v divisible par 2 & 3. == > uv -u+v divisible par 2 == > u & v doivent être pairs == > u=2p &
v=2q
= > 6m = 2p2q - 2p+2q == > 3m=2pq-p+q.
=> 2pq-p+q devra être divisible aussi par 3 == >2pq-p+q = 3x (ou = 3y)
==>2pq-p+q=pq+pq-p+q=pq+p(q+1)-q=3y ==>p=3x et q=3y et (q+1)=3y==>q=3y-1
Donc deux suppositions ; soit p=3x & q=3y ou p=3x+1 & q=3y-1
    (x étant permutable avec y)
1°-supposition p=3x \& q=3y:
      3m=2pq-p+q == > 3m= 2.3x.3y -3x+3y
== > m=6xy-x+y (1)
2^{\circ}-supposition p=3x+1 & q=3y-1
    3m=2pq-p+q == > 3m= 2. (3x-1).(3y+1) -(3x-1)+(3y+1)
                           = 6x-2 (3y+1) -3x +1 +3y+1
                        3m = 18xy + 6x - 6y - 2 - 3x + 3y + 2 = 18xy + 3x - 3y - 2 + 2
==> m=6xy+x-y
                     (2)
```

Finalement : pour que N=6m-1 soit premier, il faut points que m soit compris sous la forme 6xy+x-y.

A cause de la permutabilité de x & y les expressions (1) & (2) reviennent au même

2° THEOREME-2:

Théorème sur les nombres premiers (Berkouk)

définition:

soit n, un entier naturel, la Multimorielle de n, notée n(=), est le produit de tous les restes issus de la division respective de n par chaque nombre entier m compris en 1 et n.

Théorème:

 \forall n, un entier naturel > 2, n est premier si et seulement si sa Multimorielle n(=) \neq 0.

Démonstration :

Soit m et n deux entiers : $n(=) \Rightarrow 1 < m < n$

a)- si n est premier ⇒ n/m conduit à un reste nul, si m=n ou m=1

Or 1 < m < n, donc tous les restes des n/m \neq 0 \Rightarrow la multimorielle n(=) \neq 0.

Ou bien

b)- si n est un nombre composé, ⇒ n= k. p (k et p entiers)

comme k < n et p < n $\Rightarrow \exists$ m =k, ou m =p qui divise n et conduit à un reste Nul

 \Rightarrow n(=) = 0.

CQFD.

3° THEOREME-3:

a) Seule la multiplication de 2 nombres impairs donne un produit impair. Dans tous les autres cas, le produit est pair.

Et

b) La somme de deux nombres de même parité est un nombre pair. La somme de deux nombres de parité différente est un nombre impair.

Démonstration a -:

Produit de deux nombres pairs :

Prenons deux nombres pairs. Le premier est 2n et le second 2p. (Un nombre impair est du type 2 x+1) Nous avons : (le symbole * est ici le signe de multiplication)

Ce résultat est de la forme 2 x

, (Multiple de 2), donc le produit est pair.

Produit de deux nombres impairs :

Prenons deux nombres impairs. Le premier est 2n + 1 et le second 2p + 1. (Un nombre impair est du type 2×1)

$$(2n + 1) * (2p + 1) = 4np + 2n + 2p + 1 = 2 (2np + n + p) + 1$$

Ce résultat est de la forme 2 x + 1, donc le produit est impair.

Produit d'un nombre pair et d'un nombre impair :

Considérons un nombre pair 2n et un nombre impair 2p + 1

$$2n * (2p + 1) = 4np + 2n = 2(2np + n)$$

Ce résultat est de la forme 2 x , (Multiple de 2), donc le produit est pair.

Seule la multiplication de 2 nombres impairs donne un produit impair. Dans tous les autres cas, le produit est pair. CQFD.

Démonstration b-:

Somme de deux nombres pairs :

Prenons deux nombres pairs. Le premier est 2n et le second 2p. (Un nombre impair est du type 2 x+1) Nous avons:

2n + 2p = 2(n + p)

Ce résultat est de la forme 2 x

, (Multiple de 2), donc la somme est paire.

Somme de deux nombres impairs :

Prenons deux nombres impairs. Le premier est 2n + 1 et le second 2p + 1. (Un nombre impair est du type 2x + 1) Nous avons:

(2n + 1) + (2p + 1) = 2n + 1 + 2p + 1 = 2n + 2p + 2 = 2(n + p + 1)Ce résultat est de la forme 2 x

, (Multiple de 2), donc la somme est paire.

Somme d'un nombre pair et d'un nombre impair :

Considérons un nombre pair 2n et un nombre impair 2p + 1

Nous avons:

2n + (2p + 1) = 2n + 2p + 1 = 2(n + p) + 1

Ce résultat est de la forme 2 x + 1, donc la somme est impaire.

Le résultat est similaire si le premier nombre est impair et le second pair.

La somme de deux nombres de même parité est un nombre pair. La somme de deux nombres de parité différente est un nombre impair. CQFD

CONJECTURES DE C. GOLDBACH **DEMONSTRATION**

A) Toute somme S de deux nombres premiers > 3 est pair :

Soit deux nombres premiers de la forme $6m \pm 1$ Et $6n \pm 1$, m et $n \in N^*$.

(D'après la démonstration du théorème 1),

Nous aurons les sommes possibles suivantes, qui vérifient la propriété PAIRE d'après le « théorème 3 » :

```
1° soit S = (6m+1) +(6n +1) = 6(m+n)+2 = 2 (3(m+n) +1) \Rightarrow S est PAIRE, \forall m&n ∈ N*
```

2° ou
$$S = (6m+1) + (6n-1) = 6(m+n)$$
, d'après théorème $3 \Rightarrow S$ est PAIRE \forall m& $n \in N^*$

3° ou
$$S = (6m-1) + (6n+1) = 6 (m+n)$$
, d'après théorème $3 \Rightarrow S$ est PAIRE \forall m& $n \in N^*$

4° ou S = (6m-1) + (6n -1) = 6 (m+n) -2 = 2 (3(m+n) - 1)
$$\Rightarrow$$
 S est PAIRE ∀ m& n ∈ N*

La première condition nécessaire pour qu'un nombre soit premier est la forme

6m ± 1 , ou 6n ± 1 vérifiée , la parité est établi aussi , ∀ m &,n ∈ N*, S est divisible par 2 ⇒ donc ∀ m & n ∈ N*,la somme de 2 premiers est PAIRE , y compris quand :

m et n \neq 6xy +x + y ou m et n \neq 6xy -x - y; condition suffisante pour que 6m +1, ou 6n +1 soient premiers. (D'après théorème 1)

```
\Rightarrow \exists k \text{ et } k' \text{ tel que, } k= (6m + 1)(=) \text{ et } k'= (6n + 1)(=)
                                                                          (multimorielle)
      a) si k > 0 \Rightarrow (m+k) et (n+k) \neq 6xy +x + y ou (m+k) et (n+k) \neq 6xy -x - y
Idem si k' > 0 \Rightarrow (m+k') et (n+k') \neq 6xy + x + y ou (m+k') et (n+k') \neq 6xy - x - y \Leftrightarrow 6m + 1, ou 6n + 1 sont
Surement Premiers sans avoir à déterminer x et y puisque k #0.
Ou bien
```

b) si k et k' = $0 \Rightarrow$ m et n = 6xy + x + y ou m et n = $6xy - x - y \Leftrightarrow 6m + 1$, ou 6n + 1Sont surement nombres composés sans avoir à déterminer x et y. k= 6m+1(=)=0 et k'= 6n+1(=)=0 d'après le **théorème 2** de la multimorielle.

2) - $\frac{y \text{ compris aussi quand :}}{1 + y + y + y + y}$ condition suffisante pour que 6m - 1, ou 6n - 1 soient premiers. (D'après théorème 1)

```
\Rightarrow 3 k et k' tel que, k= (6m - 1)(=) et k'= (6n - 1)(=) ( multimorielle)
a) si k > 0 et k' > 0 \Rightarrow (m+k) et (n+k') \neq 6xy +x - y
\Leftrightarrow 6m - 1, ou 6n - 1 sont surement Premiers sans avoir à déterminer x et y. (car k#0)
```

b) si k et k' = 0 \Rightarrow m et n = 6xy +x - y \Leftrightarrow 6m - 1, ou 6n - 1 sont surement nombres composés sans avoir à Déterminer x et y. Alors, k= 6m-1(=)=0 ou k'= 6n-1(=)=0_ , D'après **le théorème 2**.

PREMIERE CONCLUSION: Toute somme S de deux nombres premiers > 3 est pair

Soit la proposition P = Toute somme S de deux nombres premiers > 3 est pair Et sa réciproque Q = Tout nombre pair > 3 est la somme de deux nombres premiers

Notez bien que Q est bien la réciproque de P, car tout les pairs et les nombres premiers, dont il est question ici sont > 3 Puisse que le premier pair commence par 4, et les nombres premiers sont de la forme $6n \pm 1$ dont le premier commence par 5. $(\longrightarrow : implication « si... Alors »)$

 $P \longrightarrow Q$ est vrai, sa réciproque $Q \longrightarrow P$ peut être vraie ou fausse comme le montre le tableau de vérités suivant :

P	Q	$P \rightarrow Q$	Q → P (réciproque)
V	V	V	V
V	F	F	V
F	V	V	F
F	F	V	V

Nous avons démontré que P est vraie, $P \rightarrow Q \Leftrightarrow Q \rightarrow P$ (équivalentes) si Q est vraie aussi?

Supposons que Q est Fausse :

a) \Rightarrow 3 un nombre IMPAIR > 3 qui est la somme de deux nombres premiers Ou

b) ⇒ ∃ un nombre PAIR > 3 qui n'est pas la somme de deux nombres premiers

Démonstration du a):

Soit p et p' 2 nombres premiers, \exists un nombre IMPAIR i / i = p + p'

Or le « théorème-3 » nous apprend que seul la somme de 2 nombres de parité différente est un nombre impair

- ⇒ l'un des deux premiers p et p' doit être pair
- $\Rightarrow \exists$ un nombre premier pair > 3
- ⇒ Donc ce nombre premier pair > 3 sera divisible par lui-même, 1 et 2 puisse qu'il est pair , donc ce n'est pas Un nombre premier, Absurde.
- \Rightarrow II n'existe pas de premiers p ou p', pairs > 3
- ⇒ Donc il n'existe pas de nombre IMPAIR >3 qui est la somme de deux nombres premiers (1)

Démonstration du b):

 \exists un nombre PAIR > 3 qui n'est pas la somme de deux nombres premiers or \forall x \in N , x > 3 ; \forall p et p' , premiers \in N ; \exists y \in N , que si x > y , alors (x-y) = p+p' ou bien si x < y , alors (y-x) = p+p'

comme p et p' premiers > 3 sont toujours impairs , leurs somme (p+p') est toujours pair selon le « théorème-3 » , donc (x-y) ou (y-x) = (p+p') sont toujours pairs aussi $\forall x > 3 \in N$.

Donc il n'existe pas de nombre PAIR > 3 qui n'est la somme de deux premiers. (2)

(1) et (2) ⇒ Q n'est pas Fausse
 ⇒ Nous déduisons alors, selon le principe du tiers exclu, que Q est Vraie

 $P \ \, \text{est vraie}, \ \, Q \ \, \text{est Vraie} \ \, \Rightarrow \ \, P \ \, \Leftrightarrow \ \, Q \quad \text{, autrement dit si } \ \, \text{Toute somme S de deux nombres premiers} \, \, \text{, autrement dit si } \ \, \text{Toute somme S de deux nombres premiers} \, \, \text{, comme nous avons démontré que } P \ \, \text{est vraie} \, \, \text{donc } Q, \ \, \text{la conjecture forte de Goldbach} \, \, \text{est vraie aussi} \, \, CQFD.$

B) Toute somme S de trois nombres premiers > 5 est impair:

Soit trois nombres premiers de la forme $6m \pm 1$. $6n \pm 1$, et $6p \pm 1$ avec m, n et p $\in N^*$. Nous aurons 8 sommes à trois, possibles :

```
1° soit S = (6m+1) + (6n+1) + (6p+1) = 6(m+n+p) + 3 \Rightarrow d'après théorème 3
    ⇒ S est IMPAIRE \forall m, n & p ∈ N*
2° soit S = (6m+1) + (6n+1) + (6p-1) = 6(m+n+p) + 1 \Rightarrow d'après théorème 3
    \Rightarrow S est IMPAIRE \forall m, n & p \in N*
3° soit S = (6m+1) + (6n-1) + (6p+1) = 6(m+n+p) + 1 \Rightarrow d'après théorème 3
    ⇒ S est IMPAIRE \forall m, n & p ∈ N*
4^{\circ} soit S = (6m+1) + (6n-1) + (6p-1) = 6(m+n+p) - 1 \Rightarrow d'après théorème 3
    ⇒ S est IMPAIRE \forall m, n & p ∈ N*
5^{\circ} soit S = (6m-1) + (6n-1) + (6p -1) = 6(m+n+p) -3 ⇒ d'après théorème 3
    ⇒ S est IMPAIRE \forall m, n & p ∈ N*
6° soit S = (6m - 1) (6n + 1) + (6p - 1) = 6(m + n + p) - 1 \Rightarrow d'après théorème 3
    ⇒ S est IMPAIRE ∀ m, n & p∈ N*
7^{\circ} soit S = (6m -1) + (6n -1) + (6p+1) = 6(m+n+p) -1 ⇒ d'après théorème 3
    \Rightarrow S est IMPAIRE \forall m, n & p \in N*
8° soit S = (6m - 1) + (6n + 1) + (6p + 1) = 6(m + n + p) + 1 \Rightarrow d'après théorème 3
    \Rightarrow S \text{ est IMPAIRE } \forall \text{ m, n \& p} \in N^*
```

La première condition nécessaire pour qu'un nombre soit premier est la forme

 $6m \pm 1$, $6n \pm 1$ ou $6p \pm 1$ vérifiée , la propriété IMPAIRE est établi pour ces sommes aussi , quelque soit m, $n \& p \in N^*$, S est impaire, non divisible par 2

⇒ Donc \forall m, n & p ∈ N*, la somme de 3 premiers est IMPAIRE, <u>v compris_quand</u> :

```
1)- m, n et p \neq 6xy+x+y ou m, n et p \neq 6xy-x-y; condition suffisante pour que 6m + 1, ou 6n + 1 ou 6p + 1 soient premiers. (D'après théorème 1)

\Rightarrow \exists k, k' \text{ et } k'' \text{ tel que, } k = (6m + 1)(=), k' = (6n + 1)(=) \text{ et } k'' = (6p+1)(=).
a) si k > 0, k'>0 et k''> 0 \Rightarrow (m+k), (n+k') et (p+k'') \neq 6xy +x + y ou (m+k), (n+k') et (p+k'') \neq 6xy -x - y

\Leftrightarrow 6m + 1, 6n + 1 \text{ et } 6p + 1 \text{ sont surement Premiers sans avoir à déterminer x et y.}
Puisque k, k' et k'' sont différent de 0 selon théorème 2.
```

Ou bien

- b) si k, k' et k" = $0 \Rightarrow$ m, n et p = 6xy + x + y ou m, n et p = 6xy x y $\Leftrightarrow 6m + 1$, 6n + 1 et 6p + 1 sont Surement nombres composés sans avoir à déterminer x et y.
 - k = 6m+1(=)=0, k' = 6n+1(=)=0 et k'' = (6p+1)=0, d'après le **théorème 2** de la multimorielle.
- 2) y compris aussi quand: m, n et p \neq 6xy +x y; condition suffisante pour que 6m 1, 6n 1 ou 6p 1 soient premiers. (D'après théorème 1)
- ⇒ \exists k, k' et k" tel que, k= (6m 1)(=), k'= (6n 1) (=) et k''= (6p-1)(=) a) si k > 0, k'>0 et k"> 0 ⇒ (m+k), (n+k') et (p+k") ≠ 6xy +x - y
- ⇔ 6m 1, 6n 1 et 6p 1 sont surement Premiers sans avoir à déterminer x et y.

Ou bien

- b) si k, k' et k'' = $0 \Rightarrow$ m, n et p = $6xy + x y \Leftrightarrow 6m 1$, 6n 1 et 6p 1 sont surement nombres composés sans avoir à déterminer x et y.
- k= 6m-1(=) = 0, k'=6n-1(=) = 0 et k''= (6p -1)=0_d'après le **théorème 2**

PREMIERE CONCLUSION: Tout nombre impair > 5, est la somme de trois nombres premiers,

Soit la proposition P = Toute somme S de trois nombres premiers > 5 est impaire Et sa réciproque Q = Tout nombre impair > 5 est la somme de trois nombres premiers

Notez bien 'encore une fois, que Q est bien la réciproque de P, car tout les pairs et les nombres premiers, dont il est question ici sont > 3, puisse que le premier pair commence par 4, et les nombres premiers sont de la forme $6n \pm 1$ dont le premier commence par 5. (\longrightarrow : implication « si... Alors »)

Supposons que Q est Fausse :

- a) \Rightarrow \exists un nombre PAIR > 5 qui est la somme de trois nombres premiers Ou
 - b) ⇒ ∃ un nombre IMPAIR > 5 qui n'est pas la somme de trois nombres premiers

Démonstration du a):

Soit p, p' et p'' 3 nombres premiers, \exists un nombre PAIR P / P = p + p' + p''

Or le « théorème-3 » nous apprend que *la somme* p + p' est paire et que un nombre Pair + p'' impair donne un nombre impair , et pour \exists un nombre PAIR > 5 = (p+p'+p'') PAIR , il faut que l'un des nombres premiers p soit pair

- ⇒ l'un des trois premiers p, p' ou p" doit être pair
- $\Rightarrow \exists$ un nombre premier pair > 5
- ⇒ Donc ce nombre premier pair > 5 sera divisible par lui-même, 1 et 2 puisse qu'il est pair , donc ce n'est pas Un nombre premier, Absurde.
- ⇒ II n'existe pas de premiers p ou p' ou p'', pair > 5
- ⇒ Donc il n'existe pas de nombre PAIR > 5 qui est la somme de trois nombres premiers (3)

Démonstration du b):

∃ un nombre IMPAIR > 5 qui n'est pas la somme de trois nombres premiers

or \forall $x \in N$, x > 5; \forall p,p' et p'', premiers $\in N$; \exists $y \in N$, que si x > y, alors (x-y) = p+p'+p'' ou bien si x < y, alors (y-x) = p+p'+p''

Comme p, p' et p" premiers > 5 sont toujours impairs, leurs somme (p + p' + p'') est toujours impair selon le « théorème-3 » :

Si x > y , x est pair , (p + p' + p'') = I impair $\Rightarrow x - y = I \Rightarrow x = (I + Y)$, (I + Y) est pair selon le « théorème-3 » ssi Y est impair. Ou

Si x > y , x est impair , (p + p' + p'') = I impair $\Rightarrow x - y = I \Rightarrow x = (I + Y)$, (I + Y) est impair selon le « théorème-3 » ssi Y est pair.

Si x < y, x est pair, (p + p' + p'') = I impair $\Rightarrow y - x = I \Rightarrow x = (Y + I)$, (Y + I) est pair selon le « théorème-3 » ssi Y est impair.

Ou

Si x < y, x est impair , (p + p' + p'') = I impair $\Rightarrow y - x = I \Rightarrow x = (Y + I)$, (Y + I) est impair selon le « théorème-3 » ssi Y est pair.

x et y doivent être de parité différente (x et y de même parité dans la conjecture forte) , comme il y'a autant de nombres pairs que d' impairs , \forall x > 5 \in N , (x-y) ou (y-x) = (p+p'+p'') sont toujours impairs aussi .

Donc il n'existe pas de nombre IMPAIR > 5 qui n'est la somme de trois premiers. (4)

Selon (3) et (4) \Rightarrow Q n'est pas Fausse \Rightarrow Nous déduisons alors, selon le principe du tiers exclu, que Q est Vraie

P est vraie, Q est Vraie $\Rightarrow P \Leftrightarrow Q$, autrement dit si Toute somme S de trois nombres premiers > 5 est impaire, alors Tout nombre impair > 5 est la somme de trois nombres premiers comme nous avons démontré que P est vraie donc Q, la conjecture faible de Goldbach est vraie CQFD.

Casablanca le 24/10/2015 - 17:03

BERKOUK Mohamed ; email: bellevue-2011@hotmail.com

REFERENCE

[1] Conference du Mr. KRAFFT du12 avril 1798, in Nova acta Academiae Scientiarum Imperialis - p.220