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Abstract: 

A solution of general relativity is presented that describes an Alcubierre [1]

propulsion system in which it is possible to travel at superluminal speed while

reducing the components of the energy-impulse tensor (thus reducing energy

density) by an arbitrary value. Here we investigate the negative energy in the

Pfenning zone, and the quantum inequalities involved.

                                   

1. Introduction:

Alcubierre [1] in 1994 proposed a solution of the equations of general relativity which provides the

only viable means to accelerate a spaceship up to superluminal velocities without using wormholes.

A problem was soon identified: Pfenning [4] showed that the required energy is comparable to the

total energy of the universe and that it is negative. Moreover he used quantum inequalities to show

that this energy gets distributed at very short scale (about 100 times the Planck length) up to a

multiplicative factor equal to the squared speed. In the previous part of this pubblication (part I), we

presented a way to reduce the amount of energy involved and its spacial distribution within the

warp bubble. In this second part we investigate the quantum inequalities.

Note: In the following we adopt the notation used by Landau and Lifshitz in the second volume

(“The Classical Theory of Fields”) of their well known Course of Theoretical Physics [15].
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We start with the metric

ds2
=(1−v2 f ( x , y , z−k (t ))2

a (x , y , z−k (t ))2 )dt2
+2v

f (x , y , z−k ( t))
a( x , y , z−k (t))

dt dz−dx2
−dy2

−dz2

From  the components of the Einstein tensor in contravariant form [11] for 

a=a(r )=a ( x , y , z−k (t))≫1  in the Pfenning zone [4] (source of esotic matter), i. e., for 

r : R−Δ
2

<r<R+Δ
2

 where Δ≪1

where R  is the warp bubble radius, Δ the wall thickness of the warp bubble with R≫Δ

r=( x2+ y2+(z−k (t))2)
1
2    

and    

( Di=
∂

∂ xi , xi
= x , y , z (i=1,2,3) e Di ,k=

∂
2

∂ x i
∂ x k

, x i , xk
=x , y , z (i , k=1,2,3) )

       z0(t )=k (t )    and  
dk (t)

dt
=v=cost

               

can be reduced by an arbitrary value. Gtt is [11]:

G t t = - 
1

4
 

1

a x, y, z - k t( )( )4
 (v

2
 (f x, y, z - k t( )( )2 D2 a( ) x, y, z - k t( )( )2

 + f x, y, z - k t( )( )2 D1 a( ) x, y, z - k t( )( )2

 + D1 f( ) x, y, z - k t( )( )2 a x, y, z - k t( )( )2 + D2 f( ) x, y, z - k t( )( )2 a x, y, z - k t( )( )2

 - 2 D1 f( ) x, y, z - k t( )( ) a x, y, z - k t( )( ) f x, y, z - k t( )( ) D1 a( ) x, y, z - k t( )( )

2



 - 2 D2 f( ) x, y, z - k t( )( ) a x, y, z - k t( )( ) f x, y, z - k t( )( ) D2 a( ) x, y, z - k t( )( )))

Einstein Equations: Gik
=

8πG

c4
T ik

Gik  proportional to T ik  (energy-impulse tensor)      

-----------------------------------------------------------------------------------------------------

r=( x2
+ y2

+(z−k (t))2
)

1
2    and      where    

dk (t)
dt

=v

The function   f (r ) assumes the following values:

f = f (r)=0  for every r such that r>R+Δ
2

0< f = f (r )<1   for every r such that  r−Δ
2

<r<R+Δ
2

,

e.g.: f =−

(r−R−Δ
2
)

Δ  [4] (Pfenning zone)

f = f (r)=1  for every r such that 0<r<R−Δ
2

----------------------------------------------------------------------------

a (x , y , z−k ( t))  assumes the following values:

a=a( x , y , z−k (t))=1  for every r such that r>R+Δ
2

a (x , y , z−k ( t))≫1  for every r such that  R−Δ
2

<r<R+Δ
2

(Pfenning zone)
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a (x , y , z−k ( t))=1  for every r such that 0<r<R−Δ
2

INTERNAL METRIC OF THE WARP BUBBLE (which contains the spaceship):

0<r<R−Δ
2

    

where R is the radius of the warp bubble. 

ds2=(1−v2)dt 2+2 v dtdz−dx2−dy2−dz2     or   ds2=dt 2−(dz−vdt)2−dx2−dy2

   

Moving with velocity v (multiple of the speed of light c) along the z-axis.

METRIC OUTSIDE OF THE BUBBLE BEYOND THE PFENNING ZONE:

r>R+Δ
2

     

   ds2
=dt 2

−dx2
−dy2

−dz2

i.e., Minkowski space.

Computation of the negative energy in the Pfenning zone, its comparison with the Casimir 

effect (plane-parallel condenser) and quantum inequalities.

The energy is: (1) E=∫∫∫(−g )
1/2 T tt dx3  where the triple integral extends over all the volume 

and the energy density is T tt
=k G tt (determinant of the spacial metric)  and 

k=
c4

8πG
. In our case we get, in xyz-coordinates:     

G t t = - 
1

4
 

1

a x, y, z - k t( )( )4
 (v

2
 (f x, y, z - k t( )( )2 D2 a( ) x, y, z - k t( )( )2

 + f x, y, z - k t( )( )2 D1 a( ) x, y, z - k t( )( )2
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 + D1 f( ) x, y, z - k t( )( )2 a x, y, z - k t( )( )2 + D2 f( ) x, y, z - k t( )( )2 a x, y, z - k t( )( )2

 - 2 D1 f( ) x, y, z - k t( )( ) a x, y, z - k t( )( ) f x, y, z - k t( )( ) D1 a( ) x, y, z - k t( )( )

 - 2 D2 f( ) x, y, z - k t( )( ) a x, y, z - k t( )( ) f x, y, z - k t( )( ) D2 a( ) x, y, z - k t( )( )))

which, written in Alcubierre form becomes:

(2) Gtt
=−

1
4

v2 x2
+ y2

r2 g (r )

where g (r ) is given by: 

(3) g (r )=[
1

a (r )2 (
df (r )

dr
)

2

+(
f (r )2

a (r )4 )(
da (r )

dr
)

2

−2
df (r )

dr
f (r )
a (r )3

da (r )
dr

]  

--------------------------------------------------------------------------------------------------------

f = f (r) assumes the values:

f = f (r)=0 for every r such that r>R+Δ
2

f =−

(r−R−Δ
2

)

Δ        in the Pfenning zone (i.e., in the spacial interval 

R−Δ
2

<r<R+Δ
2

 ) , see [4],

f = f (r )=1 for every r such that 0<r<R−Δ
2

-----------------------------------------------------------------------------------------------

In the simplified case:
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a=a(r )=a ( x , y , z−k (t))   is chosen under the following conditions

a=a(r )=a ( x , y , z−k (t ))=1  for every r such that r>R+Δ
2

a (r )=a (x , y , z−k (t ))=A=cost≫1 for every r such that R−Δ
2

<r<R+Δ
2

a (r )=a (x , y , z−k (t ))=1  for every r such that 0<r<R−Δ
2

------------------------------------------------------------------------------------------------------

The energy E in the Pfenning zone in our case (see [4] for an example)

The energy given by (1), taking into account the conditions set therein, becomes:

E=−
8π k
12

v2
(

R2

Δ
+Δ

12
)

A2 se R≫Δ  (very likely), R being the radius of the Warp bubble.

If Δ  is about 1.6 •10−35 m (Planck lenght) as an absurd, setting A=1050 and

R = 100 m, the energy E gets reduced significantly. Using the chosen data the energy is

E=−3 •10−17 v2 joule  quite smaller than the U(d) due the the Casimir effect.

In the case in which Δ is about 10 nm very similar results can be obtained with a smaller A, so 

these results are not shown here.

.

The energy U(d) between the two plates in a plane-parallel condenser in empty space, due to 

the Casimir effect, is:

U (d )=−π2[( h
2π

)
c

720d3 ]L2  where d is the distance between the plates and L is the side of the 

square conducting plate. As can be seen, the energy is negative and this implies that the force (equal
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to the opposite of the derivative with respect to d) is attractive, as has been experimentally found 

(”Lamoreaux” [12]). In the case d =1μm  and L = 1 m (L is chosen to be quite large, but not as 

large as the Pfenning zone) it is found that U (d )=−410−10 joule  also  L  should be L=200 m 

given that the radius of the bubble which contains the spaceship is R=100 m, but is chosen to be  

1 m here.

Knowing that E=mc2 the negative mass is: m=−4 •10−27 kg=−4 •10−24 g=−4 •10−15 pg  

In the case L=200 m and d=10 nm a favourable increase in negative energy is obtained, and the 

calculations are omitted here because they are very similar. 

Quantum inequalities. Calculation for our solution:

The quantum inequalities (4) are
t0
π ∫

−∞

+∞
T ik ui uk

t 2+t 0
2 dt≥−

3
32π

2 t 0
4 [13] This is the general solution

using natural units (h , c , G=1) and u i is the quadrivelocity in a Eulerian or moving  reference 

system. In our case using the International System of Units we get: (5) Δ≤
1

α
2

v2 LPlanck where  

Pfenning in his paper [4] chooses  α=
1

10
and therefore Δ≤102 v2 LPlanck . I believe that the 

concentration of energy in a very small volume is due to the bad choice of the f = f (r ) function,

(but Δ can be about 1 m ), or of the parameter α by Pfenning [4], since the quantum 
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inequalities are valid for all values of t 0 [13] and this leads to 0<α≪1 therefore α  to an 

arbitrary value. We can conclude that α can assume an arbitrarily small value, and the results 

presented in [13] provide indirect evidence of this. 

                                                                              

Appendix:

The components of the Einstein tensor proportional to the energy-impulse tensor have been

calculated with reference to an observer whose gravitational field is very weak and whose speeds

are far lower than the speed of light, observing the spaceship and the warp bubble moving at speed

v, i.e., an inertial reference frame in which the spaceship is moving at speed v). If we want to

calculate in the Eulerian reference frame, that is moving with the spaceship, we get for each

component of the energy-impulse tensor in implicit form the following:

  (energy density)=k G tt

(impulse density x )=−k G tx

(impulse density y)=−k G ty

  (impulse density z )=k[G tt v (
f
a

)−Gtz]

   (stress xx)=k G xx

    (stress yy )=k G yy

    (stress zz )=k [Gtt v 2
(

f
a

)
2

−2v (
f
a

)G tz
+G zz]

  (stress xy)=k G xy
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  (stress xz)=k [−v (
f
a

)G xt+G xz]
  

  (stress yz )=k [−v (
f
a

)G yt+G yz]
The various stress xx, stress yy, stress zz, stress xy, stress xz, stress yz and their symmetric

counterparts are the components of the stress tensor [15], and   k=
c4

8πG
c is the speed of

light and G is Newton’s gravitational constant and  a=a( x , y , z−k (t))≫1 in Pfenning zone 

where the energy-impulse tensor is not zero.

Conclusion: The calculations seem to suggest that the modified Alcubierre propulsion system  

allows to reach superluminal speeds without  problems in the energy density and components of the 

energy-impulse tensor, and that the negative energy can be arbitrarily reduced. This energy is 

compared with that of the Casimir effect in a parallel plane condenser, to investigate the 

experimental feasibility. Quantum inequalities are then calculated in orded to investigate the spacial 

distribution of the negative energy in the Pfenning zone. In the Alcubierre solution a event horizon 

is  present at v>1  while in our solution it is present at v≥1  . In our next paper this problem 

will be investigated [16].
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