A Partial Proof of Carmichael Conjecture Neelabh Deka

Abstract- In this note, we shall briefly survey The Carmichael Conjecture and give a partial proof.

1.Introduction

This note is divided into three sections, this section is a brief introduction of Euler phi function (or Euler totient function).

Definition -Euler 's function $\emptyset(n)$ is defined for natural 'n' as the number of positive integers less than or equal to 'n' and coprime to 'n'. It holds that

$$\emptyset(n) = n(1 - \frac{1}{P_1}) \dots (1 - \frac{1}{P_k})$$

where $n = P_1^{a_1} \dots P_k^{a_k}$ is the factorization into primes.

In 1907 Robert Carmichael stated that, For every n there is at least one other integer $m \neq n$ such that $\emptyset(m) = \emptyset(n)$.

2.PROOF

Suppose n is an odd integer then $n = P_1^{a_1} \dots P_k^{a_k}$, here all P_1 , , , P_k are odd primes.

So
$$\emptyset(n) = P_1^{a_1} \dots P_k^{a_k} (1 - \frac{1}{P_1}) \dots (1 - \frac{1}{P_k})$$

$$= 2 \cdot \frac{1}{2} \cdot P_1^{a_1} \dots P_k^{a_k} (1 - \frac{1}{P_1}) \dots (1 - \frac{1}{P_k})$$

$$= 2 \cdot P_1^{a_1} \dots P_k^{a_k} (1 - \frac{1}{2}) (1 - \frac{1}{P_1}) \dots (1 - \frac{1}{P_k})$$

$$= \emptyset(2n)$$

Hence if n is odd then $\emptyset(n) = \emptyset(2n)$

Now we prove for even n.

The only known Fermat primes are ,S=3,5,17,257,65537

Now let $n=2^p. P_1^{a_1}...P_k^{a_k}$, where none of $P_1,...P_k$ belongs to S. So, $\emptyset(n)=2^{p-1}.P_1^{a_1}...P_k^{a_k}(1-\frac{1}{P_1})...(1-\frac{1}{P_k})$ ------(A)

If p = 1 then its same as previous, so $p \ge 2$.

Now from (A) we have,

$$2^{p-2} \cdot 2 \cdot 3 \cdot \frac{1}{3} P_1^{a_1} \dots P_k^{a_k} \left(1 - \frac{1}{P_1} \right) \dots \left(1 - \frac{1}{P_k} \right)$$

$$= 3 \cdot 2^{p-2} \cdot \frac{2}{3} \cdot P_1^{a_1} \dots P_k^{a_k} \left(1 - \frac{1}{P_1} \right) \dots \left(1 - \frac{1}{P_k} \right)$$

$$= 3 \cdot 2^{p-2} \cdot P_1^{a_1} \dots P_k^{a_k} \left(1 - \frac{1}{P_1} \right) \dots \left(1 - \frac{1}{P_k} \right) \left(1 - \frac{1}{3} \right)$$

$$= \emptyset \left(3 \cdot 2^{p-1} \cdot P_1^{a_1} \dots P_k^{a_k} \right)$$

If
$$\emptyset(n) = 2^p 3^q P_1^{a_1} \dots P_k^{a_k} \left(1 - \frac{1}{P1}\right) \dots \left(1 - \frac{1}{Pk}\right)$$
 and none of P_1, \dots, P_k is equal to 7 then $n = 2^p 3^{q+1} P_1^{a_1} \dots P_k^{a_k}$ or $n = 7 \cdot 2^{p-1} \cdot 3^q \cdot P_1^{a_1} \dots P_k^{a_k}$.

But if one of P_1 , , , , P_k is equal to 7 (and all a_1 , ..., a_k greater than 1) then one of $P_1 - 1$, ... $P_k - 1$ is equal to 6. But 2.3.6 = 36; 36 + 1 = 37 a prime. So we can set 37 as a factor of n.

But if we give similar argument that 37 already exists in P_1 , , , , P_k then we cant take 37 as a factor of n.

In this way we cant get a complete solution when $3^2 = 9$ divides n.

3.So our conjecture becomes, If n = 9.4. k = 36k then there is at least one distinct integer m such that $\emptyset(m) = \emptyset(n)$.

References- Wikipedia_Carmichael conjecture