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Theory of Abel Grassman's Groupoids

Preface

It is common knowledge that common models with their limited boundaries
of truth and falsehood are not sufficient to detect the reality so there is a
need to discover other systems which are able to address the daily life
problems. In every branch of science problems arise which abound with
uncertainties and impaction. Some of these problems are related to human
life, some others are subjective while others are objective and classical
methods are not sufficient to solve such problems because they can not
handle various ambiguities involved. To overcome this problem, Zadeh [67]
introduced the concept of a fuzzy set which provides a useful mathematical
tool for describing the behavior of systems that are either too complex or are
ill-defined to admit precise mathematical analysis by classical methods. The
literature in fuzzy set and neutrosophic set theories is rapidly expanding
and application of this concept can be seen in a variety of disciplines such as
artificial intelligence, computer science, control engineering, expert systems,
operating research, management science, and robotics.

Zadeh introduced the degree of membership of an element with respect
to a set in 1965, Atanassov introduced the degree of non-membership
in 1986, and Smarandache introduced the degree of indeterminacy (i.e.
neither membership, nor non-membership) as independent component in
1995 and defined the neutrosophic set. In 2003 W. B. Vasantha Kan-
dasamy and Florentin Smarandache introduced for the first time the I-
neutrosophic algebraic structures (such as neutrosophic semigroup, neutro-
sophic ring, neutrosophic vector space, etc.) based on neutrosophic num-
bers of the form a + bI, where 7’is the literal indeterminacy such that
I? = I, while a,b are real (or complex) numbers. In 2013 Smarandache
introduced the refined neutrosophic set, and in 2015 the refined neutro-
sophic algebraic structures built on sets on refined neutrosophic numbers
of the form a + biI; + bolo + . . . + byl,, where Iy, I5, . . ., I, are types of
sub-indeterminacies; in the same year he also introduced the (¢, i, f)-
neutrosophic structures.

In 1971, Rosenfeld [53] first applied fuzzy sets to the study of algebraic
structures, and he initiated a novel notion called fuzzy groups. This pio-
neer work started a burst of studies on various fuzzy algebras. Kuroki [28]
studied fuzzy bi-ideals in semigroups and he examined some fundamental
properties of fuzzy semigroups in [28]. Mordesen [37] has demonstrated a
theoretical exposition of fuzzy semigroups and their application in fuzzy
coding, fuzzy finite state machines and fuzzy languages. It is worth noting
that these fuzzy structures may give rise to more useful models in some
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practical applications. The role of fuzzy theory in automata and formal
languages has extensively been discussed by Mordesen [37].

Pu and Liu [49] initiated the concept of fuzzy points and they also pro-
posed some inspiring ideas such as belongingness to (denoted by €) and
quasi-coincidence (denoted by ¢) of a fuzzy point with a fuzzy set. Murali
[42] proposed the concept of belongingness of a fuzzy point to a fuzzy subset
under a natural equivalence on fuzzy subsets. These ideas played a vital role
to generate various types of fuzzy subsets and fuzzy algebraic structures.
Bhakat and Das [1, 2] applied these notions to introducing («, §8)-fuzzy
subgroups, where o, € {€,q,€Vq, € Aq} and o #€ Aq. Among («, §)-
fuzzy subgroups, it should be noted that the concept of (€, €Vq)-fuzzy
subgroups is of vital importance since it is the most viable generalization
of the conventional fuzzy subgroups in Rosenfeld’s sense. Then it is natural
to investigate similar types of generalizations of the existing fuzzy sub-
systems of other algebraic structures. In fact, many authors have studied
(€, € Vq)-fuzzy algebraic structures in different contexts [19, 22, 55]. Re-
cently, Shabir et al. [55] introduced (€, € Vg )-fuzzy ideals (quasi-ideals
and bi-ideals) of semigroups and gave various characterizations of particu-
lar classes of semigroups in terms of these fuzzy ideals. M. Khan introduced
the concept of (€., €, Vgs)-fuzzy ideals and (€., €, Vgs)-fuzzy soft ideals
in AG-groupoids

An AG-groupoid is an algebraic structure that lies in between a groupoid
and a commutative semigroup. It has many characteristics similar to that
of a commutative semigroup. If we consider x2y? = 3222, which holds for all
z,y in a commutative semigroup, on the other hand one can easily see that
it holds in an AG-groupoid with left identity e and in AG**-groupoids. In
addition to this zy = (yx)e holds for any subset {z, y} of an AG-groupoid.
This simply gives that how an AG-groupoid has closed connections with
commutative algebras.

We extend now for the first time the AG-Groupoid to the Neutrosophic
AG-Groupoid. A neutrosophic AG-groupoid is a neutrosophic algebraic
structure that lies between a neutrosophic groupoid and a neutrosophic
commutative semigroup.

Let M be an AG-groupoid under the law “.” One has (ab)c = (cb)a for
all a, b, ¢cin M. Then MUI = {a+ bI, where a,b are in M, and [ is literal
indeterminacy such that I? = I} is called a neutrosophic AG-groupoid. A
neutrosophic AG-groupoid in general is not an AG-groupoid.

If on MUT one defines the operation “x” as: (a+bl)*(c+dI) = ac+bdl,
then the neutrosophic AG-groupoid (MU, ) is also an AG-groupoid since:

[(CLl —+ blj) * ((IQ + bQI)] * (CLg —+ bg[) = [a1a2 —+ bleI] * (a3 =+ bg[)
= (alag)ag + (b1b2)b3[
= (agag)al + (b3b2>b1[.
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Also

[(CLg + bg[) * ((J,Q + bg[)] * (CLl + blj) = [0,30,2 + bngI] * (a1 + bll)
= (a3a2)a1 + (b3b2)b1].

In chapter one we discuss congruences in an AG-groupoid. In this chapter
we discuss idempotent separating congruence p defined as: aub if and only
if (a=te)a = (b~te)b, in an inverse AG**-groupoid S. We characterize p in
two ways and show (a) that S/u ~ E, (E is the set of all idempotents of S)
if and only if F is contained in the centre of S, also it is shown; (b) that p is
identical congruence on S if and only if FE is self-centralizing. We show that
the relations Ty and Tmax show are smallest and largest congruences on
S. Moreover we show that the relation p defined as: apb if only if a=!(ea) =
b=1(eb), is a maximum idempotent separating congruence.

In chapter two we discuss gamma ideals in I'-AG**-groupoid. Moreover
we show that a locally associative I'-AG**-groupoid S has associative pow-
ers and S/ pp, where appb implies that al'b} = b?“, blaf = a}’“ Va,bes,
is a maximal separative homomorphic image of S. The relation np is the
least left zero semilattice congruence on S, where 7 is define on S as anpb
if and only if there exists some positive integers m, n such that bf* € al'S
and apt € bI'S.

In chapter three we discuss embedding and direct products in AG-groupoids.

In chapter four we introduce the concept of left, right, bi, quasi, prime
(quasi-prime) semiprime (quasi-semiprime) ideals in AG-groupoids. We in-
troduce m system in AG-groupoids. We characterize quasi-prime and quasi-
semiprime ideals and find their links with m systems. We characterize
ideals in intra-regular AG-groupoids. Then we characterize intra-regular
AG-groupoids using the properties of these ideals.

In chapter five we introduce a new class of AG-groupoids namely strongly
regular and characterize it using its ideals.

In chapter six we introduce the fuzzy ideals in AG-groupoids and discuss
their related properties.

In chapter seven we characterize intra-regular AG-groupoids by the prop-
erties of the lower part of (€, € Vq)-fuzzy bi-ideals. Moreover we character-
ize AG-groupoids using (€, € Vqy)-fuzzy.

In chapter eight we discuss interval valued fuzzy ideals of AG-groupoids.

In chapter nine we characterize a Abel-Grassmann’s groupoid in terms
of its (€, €y Vgs)-fuzzy ideals.

In chapter ten we characterize intra-regular AG-groupoids in terms of
(€, €4 Vags)-fuzzy soft ideals.
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1

Congruences on Inverse
AG-groupoids

In this chapter we discuss idempotent separating congruence p defined as:
apb if and only if (a=te)a = (b=te)b, in an inverse AG**-groupoid S. We
characterize p in two ways and show (a) that S/p ~ E, (E is the set of
all idempotents of S) if and only if F is contained in the centre of S, also
it is shown; (b) that u is identical congruence on S if and only if E is
self-centralizing. We show that the relations 7., and T,.x are smallest
and largest congruences on S. Also we show that the relation p defined
as: apb if only if a=(ea) = b=1(eb), is a maximum idempotent separating
congruence.

1.1  AG-groupoids

The idea of generalization of a commutative semigroup was first introduced
by Kazim and Naseeruddin in 1972 (see [24]). They named it as a left almost
semigroup (LA-semigroup). It is also called an Abel-Grassmann’s groupoid
(AG-groupoid) [47].

An AG-groupoid is a non-associative and non-commutative algebraic
structure mid way between a groupoid and a commutative semigroup.
This structure is closely related with a commutative semigroup, because
if an AG-groupoid contains a right identity, then it becomes a commuta-
tive semigroup [43]. The connection of a commutative inverse semigroup
with an AG-groupoid has been given in [39] as: a commutative inverse semi-
group (S, o) becomes an AG-groupoid (S, -) under a -b = boa~*, for all
a,b € S. An AG-groupoid (.5,.) with left identity becomes a semigroup (.5,
o) defined as: for all x, y € S, there exists a € S such that z oy = (za)y
[47].

An AG-groupoid is a groupoid S whose elements satisfy the left invertive
law (ab)c = (cb)a, for all a,b, ¢ € S. In an AG-groupoid, the medial law [24]
(ab)(ed) = (ac)(bd) holds for all a,b,¢,d € S. An AG-groupoid may or may
not contains a left identity. If an AG-groupoid contains a left identity, then
it is unique [43]. In an AG-groupoid S with left identity, the paramedial law
(ab)(cd) = (db)(ca) holds for all a,b,c,d € S. If an AG-groupoid contains
a left identity, then it satisfies the following law

a(be) = b(ac), for all a,b,c € S. (1)

1
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Note that a commutative AG-groupoid S with left identity becomes a
commutative semigroup because if a,b and ¢ € S. Then using left invertive
law and commutative law, we get

(ab)c = (¢b)a = a(cb) = a(be).

In [15] J. M. Howie defined a relation p as (a,b) € p if and only if
a"'ea = b~ 'eb on an inverse semigroup and show it maximum idempotent
separating congruence and characterize it in two ways. Also it is shown
that S/u ~ FE if and only if E is central in S and that p = 1g, the identical
congruence on S, if and only if E is self centralizing in S. Moreover, J. M.
Howie in [14] defined a relations Tpin and Tmax as aTmind if and only if
aa~'7bb~! and Je € E such that eraa™! ea = eb and aTyayb if and only
if a='earb~'eb for all e € E and shown these as the smallest and largest
congruences on an inverse semigroup with trace 7. In this chapter, we
defined these congruences for inverse AG**-groupoid and also characterize
it. An AG-groupoid S is called an inverse AG-groupoid if for every a € S
there exists a’ € S such that (aa’)a = a, (a’a)a’ = a’ where @’ is an inverse
for a. We will write a~! instead of a’. If S is an inverse AG-groupoid, then
(ab) ' =a"' ' and (a7')"t =afor all a,b € S.

Example 1 Let S = {1,2,3} and the binary operation “” defined on S as
follows:

Clearly S is non-associative and non-commutative because 2 = (1-1) -3 #
1-(1-3) =3 and 1-3 # 3-1. (S, -) is an AG**-groupoid without left identity.

Lemma 2 Let S be an inverse AG**-groupoid and § defined by a 6 b, if
and only if aa~! = bb™', is a congruence relation.

Proof. Clearly ¢ is reflexive, symmetric and transitive, so J is an equiva-
lence relation. Let a § b which implies that aa~' = bb~!, then we get.

(ac)(ac)™ = (ac)(a te™) = (aa M (cc™) = (b0 (cc™t)
(be)(b™te™h) = (be)(be) ™.
Similarly we can show that (ca)(ca)™! = (cb)(cb)~!. m

Lemma 3 Let S be an inverse AG**-groupoid, then the relation p = {(a,b) €
SxS:ata=0b"1b} is a congruence on S.

Proof. It is available in [47]. m

12
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Lemma 4 The congruence relation § is equivalent to p.
Proof. Let aub, this implies that a 'a = b~'b. Then we have
ac™t = ((aa™Ha)a ' = (a " a)(aa™) = (b7 b)(aa™)
(a ta)(bb~') = (b 'b)(bb~ 1)

= (b~ Hb)p~t =bb L.

Thus adb.
Conversely, If adb, then aa~! = bb~!. Then

ala a*((aa™a) = (aa ') (a " a) = (bb1)(a ta)
= (aa™)(b7'b) = (b0~ 1)(b~'D)
(D)o~ 1o = b 'b.
Hence apb. m

Corollary 5 If p is congruence on an inverse AG**-groupoid, then (a,b) €
w, if and only if (a=1,071) € p.

Proof. It is same as in [15]. =

Example 6 Let S = {1,2,3,4} and the binary operation “” defined on S

as follows:
-1 2 3 4
114 1 2 3
213 4 1 2
312 3 4 1
411 2 3 4

Clearly (S, -) is non-associative, non-commutative and it is an AG**-groupoid
with left identity 4. FEvery element is an inverse of itself and so a~'a =

aa™t, for all a in S.
The following lemma is available in [47].

Lemma 7 The set E of all idempotents in an AG**-groupoid forms a semi-
lattice structure.

1.2 Inverse AG*-groupoids

In the rest, by S we shall mean an inverse AG**-groupoid in which aa™' =
a"'a, holds for every a € S.

Let p be a congruence on S. The restriction of p to FE, is congruence on
E, which we call trace of p and is denoted by T = trp. The set kerp = {a €
S/(3e € E)ape} is the kernel of p.
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Theorem 8 Let E be the set of all idempotents of S and let T be a congru-
ence on E, then the relation Tmin= {(a,b) € S x S : aa~trbb~! and there
exist e € E,e 7 aa™! and ea = eb} is the smallest congruence on S with
trace 7.

Proof. Clearly 7 is reflexive. Now let aTmind, this implies that aa~t7bb~*
and there exist e € E such that eraa™! and ea = eb. As e 7 aa™! and
aa~'7bb~! which implies that erbb~! also eb = ea which implies that
OT min@, which shows that 7, is symmetric. Again let a7pinb and b7 p,c
which implies that aa='7bb~'7cc™! this implies that aa™'7 cc™'. Also
eraa~! and frbb~! fore, f € E. Since 7 is compatible so, ef7(aa"1)(aa"1) =
aa~'which implies that efraa=!. Now ea = eb implies thatf(ea) = f(eb)
so we have

flea) = (ff)(ea) = (ae)(ff) = (ae)f = (fe)a, and
fleb) = (ff)(eb) = (be)(ff) = (be)f = (fe)b

Also fb = fec implies that e(fb) = e(fc). Now
e(fb) = (ee)(fb) = (bf)(ee) = (bf)e = (ef)b = (fe)b
e(fe) = (ee)(fe) = (cf)(ee) = (cfle = (ef)c = (fe)c

Hence (fe)a = (fe)c which shows that 7., is transitive.
Now let aTpinb, then

(ca)(ca)™ = (ca)(cta™) = (c¢cH)(aa )T (cc ) (bb7T)
(eb)(c71b1) = (¢b)(chb) 7, and

(ccHer(ce ™) (aa™) = (ca)(cta™)

= (ca)(ca)™t, where (cc e € E, and

((cc™De)(ca) = ((ec™ )e)(ea)
= ((ec7He)(eb) = ((cc™H)e)(ch).

Therefore catpinca.
Again let aTyminb then by definition aa='7bb~', eraa™" and ea = eb

Now
(ac)(ac)™ = (ac)(a'c™h)
= (aa Y (cc™)T (0N (cc™) = (be)(be) ! and
e(ccHr(aa ™) (cc™) = (ac)(a™'c ™)
(ac)(ac)™!, where e(cc™') € E
Also

(e(cc™))(ac) = (ea)((cc™")e) = (eb)((cc™")e) = (e(ce™))(be).
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Thus acTminbe. Therefore 7,;, is a congruence relation.
The remaining proof is same as in [14]. m

Theorem 9 Let E be the set of all idempotents of S and let T be a con-
gruence on E, then the relation Tmax = {(a,b) € S xS : (Ve € E)
a~Y(ea)Tb=t(eb)} is the largest congruence on S with trace T.

Proof. Clearly 7.« is an equivalence relation as 7 is an equivalence rela-
tion on E.
Let us suppose that a7maxb, then a=1 (ea) 7671 (eb) so

(ac) Melac)) = (a'e™) ((ee)(ac)) = (a~ e ((ca)(ec))
yr(b~ (eb)) (e (ec))
= (e ((eb)(ee)) = (be) " (elbe)).

Thus acTmaxbe. Similarly catmaxch. Therefore 7,5 is congruence on S.

Remaining proof is same as in [14]. =

The relation 1, = {(z,z) : * € S} is a congruence relation which we
call the identical congruence. A congruence whose trace is the identical
congruence 1 is called idempotent separating.

S

Theorem 10 Let E be the set of all idempotents of S and let the relation
w defined as aub if and only if (a"'e)a = (b=te)b, for any e in E, is an
idempotent separating congruence on S.

Proof. It is easy to prove that p is an equivalence relation. Now let aub,
then (a=te)a = (b~1e)b, for every idempotent e in E, now we get

((ac)"te)(ac) = ((a™'c7")(ee))(ac) = ((a™e)(c e))(ac)
— (@ 'e)a)((ce)e) = (b)) Te)e
(b7 e) (e e)) (be) = ((be) " e)(be).

Thus acpbe. Similarly capch. Hence p is a congruence relation on S.

Now let euf for e, f in E. Then for every g in E, (e lg)e = (f~tg)f
so by (1), we have eg = fg. The equality holds in particular when g = e.
Hence e = fg. Similarly for ¢ = f, we obtain ef = f. Since ef = fe, so
e = f. Thus p is idempotent separating. m

If E is the semilattice of an inverse semigroup S, we define E(, the
centralizer of F in S, by

E(={z¢€ S5 :ez=zefor every e in E}.
Clearly F C EC If E¢ = S, then the idempotents are central. If E¢ = F,
we shall say that E is self-centralizing.

Theorem 11 Let E be the set of all idempotents of S and let p be the
idempotent separating congruence on S. Then Kery = EC where EC be the
centralizer of E in S.

15
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Proof. Let S be an inverse AG**-groupoid and let p be the idempotent
separating congruence on S. Let a € Kerpu, so auf for some f € E. also
atuf~t = f, soa tapf, implies that auaa=". So for all e in E (a~te)a =
((a=ta)"te)(a"ta), then we get

((a™a)"'e)(a™"a)

I
—~
—

N
g|
—_
~—
('b
~

Also we have,

ea = €

Thus a € EC.
Conversely, assume that a € E(. Then for all e in E, ae = ea, so
(ate)a = (ae)a™ = (ea)a™ = (ea)((a " a)a™")
= (a7 'a)((ea)a™) = (a"a)((a" a)e)
= (e(a'a))(aa™") = ((aa~")"'e)(aa™).

Thus apaa™! and so a € Kerp. Hence B¢ = Kery. m

Theorem 12 Let E be the set of all idempotents of S and let p be the
idempotent separating congruence on S. Then (a,b) € u if and only if
a~ta=0b"1'b, and ab~! € EC. Dually (a,b) € u if and only if aa=' = bb~1
and a=1b € EC.

Proof. Let (a,b) € u, then (a~!e)a = (b~'e)b which implies that (ae)a™! =
(be)b~1! for all e in E.
Now ((a=te)a)((ae)a™t) = ((b=te)b)((be)b~t) which implies that

((a™a)e)(aa™) = ((b~"b)e)(bb™"). (6)
Therefore we get

ala =

—

((a"'a)a™")((aa™")a) = ((a”"a)(aa™"))(a " a)
((a~'a)(aa™"))(aa™") = ((b~"'b)(aa™"))(bb ")

= ((aa™ ") (b 0))(Bb~ 1) = (b~ 1) (b~ 'b))(aa™ ")
(D)7 b)) (aa™t) = (b7 'b)(aa™") = (e a) (b~ D).

) =
) =

Similarly we can show that b=b = (a~'a)(b~'b). Therefore a=ta = b~1b.
Now let (a,b) € u, then (a='e)a = (b~'e)b which implies that (ae)a™! =
(be)b~1, which implies that (a((ae)a=1))b~! = (a((be)b=1))b~1.
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Now we obtain

(a((ae)a™)Nb™" = ((ae)(aa™")b™" = (b~ (aa™"))(ae)
= (a(b~"a7"))(ae) = (ea)((b~"a"")a)
= (ea)((aa™)b™") = (e(aa™))(ab™"), and
(a((be)p= ™" = ((be)(ab™ "))~ = (67" (ab™"))(be)
= (b7'b)((ab™M)e) = (aa™")((ab™)e)

= (ab™")((aa™")e) = (ab~")(e(aa™)).

Hence ab~! € E(.

Conversely, let a=ta = b='b and ab~! € E(, then e(ab™!) = (ab~1)e for
all e € E, which implies that (a=1(e(ab™1)))b = (a=((ab~1)e))b. Now we
get

(@™ (e(ab™))b = (ble(ab™)))a™" = (e(b(ab™")))a"
= (e =
= (((aa™"a)(ee))a™" = (ae)a™" = (a""e)a,

Now

(™ ((ab™")e))b

( )b = (
= ((ae)(a (b7 "e)))b= (b e)a™")(ea))b
= ((b7e)e)(a™ta))b = ((eb)(a""a))b
= ((eb™H) (b7 'b))b = (b(b~"b))(eb™)
= (07le)((bb)b) = (b~ e)((bb~1)b)
(b te)b

Therefore (a=te)a = (b~ 'e)b. Hence apub.

Let aub then by definition (a_le) a = (b_le) b. Now as a~'a = b~'b so
aa"t =bb~L.

Now as (a™'e)a = (b~'e)b which implies that (a~* ((a™'e)a))b =
(a=t((b"te) b))b.

So we get
(a”e) (a'a))b=((a""e) (b7'0)) b
b(b~'b !

(67'0)) (a7"e) = (ea™) ((007") b)

Now we get
(a_l((b_le) b)b = (b((b_le) b)a~t = ((b_le) (bb))a™*

= ((b 1b) (eb))a™t = (e ((bb_l) b))a*
= (eb)a! = (a 'b)e.

17
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Hence a~'bc E(. m

Theorem 13 Let E be the set of all idempotents of S and let p be the
idempotent separating congruence on S. Then S/u ~ E if and only if E is
central in S.

Proof. Since  is idempotent separating congruence so S/ is a semilattice
if each -class contains atmost one idempotent. Thus if S/p is semilattice
then S/u = E. Let us suppose that each p class contains an idempotent
that is for every z € S, there exist an f € E such that fux which implies
that ff~! =22~ ! and f~'2 € E(, thus

z=(za Nz = (ff "z =f""we B,

but this holds for any z in S, so E¢ = S.
Conversely, suppose that E¢ = 9, then zf~! € S = E¢ and

za! = (fmil)(xxil) = (sz1)(xw71)71 =ff

Then by theorem 5, zuf, that is, zuzxz !, which shows that every p class
contains an idempotent. m

Theorem 14 Let E be the set of all idempotents of S and let p be the
idempotent separating congruence on S. Then p = lg, the identical con-
gruence on S, if and only if F is self centralizing in S.

Proof. Let p = 1g, Then for z € E( implies that ze = ez, for all e € F' if
we write f for zz7! then 2z~ ' = f = ff = ff ! also we get

(szl)e: (effl)z: (ef)z = z(ef) :z(effl) = e(szl).

Therefore zf~' € EC. Then by theorem 5, zuzz~!, but u = 1g, so z =
227' € E. Thus E¢ = E.

Conversely, assume that E¢ = FE. Let xuy then 7'z = y~ly and
ry~! € B¢ = E, since xy~! is idempotent so (zy~!)~! = zy~!, implies
that =1y = 2y~ !, also (71,97 1) € p so

27l = (@ Yz = (g e)e !
= ((wy Ny~ = (" y)y)a™!
= (@'Y =y

Also we get
z = (zz Ne=(y Nz=(zy )y

Hence p=15. m

18
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Theorem 15 Let E be the set of all idempotents of S then the relation
defined by apb if only if a='(ea) = b=1(eb) is a mazimum idempotent sep-
arating congruence on S.

Proof. Clearly p is an equivalence relation. Let apb, which implies that
a~Y(ea) = b=1(eb). Now

(ac)"(e(ac)) = (a™'c7")(e(ac)) = (™ c™")((ee)(ac))

(@™ e™N)((ea)(ec)) = (a™" (ea))(c™* (ec))
= (0 1(65))(6 Hec) = (b~ eT)((ed) (ec))
= (be) " (e(be)).

Therefore acpbe. Similarly capch. Hence p is a congruence relation. Now
suppose that epf, where e, f € E, then for every idempotent g we have
e 1(ge) = f~1(gf), which implies that ge = gf. In particular when g = e,
then ee = ef, implies that e = ef and for g = f, fe = ff implies that
fe = f, but since ef = fe implies that ¢ = f. Thus p is idempotent
separating congruence. Now let n be any other idempotent separating con-
gruence. We shall show that n C p. Let (z,y) € n then (x71,y~1) € n,
since 1 is congruence, it follows that xny which implies that exney, also
r~ Y (ex)ny~(ey), but both z71(ex) and y~!(ey) are idempotents, and so
it follows that z=1(ex) = y~!(ey). Thus xpy. Hence p is maximum. m

Theorem 16 Let E be the set of all idempotents of S then the relation
defined on S with o = {(a,b) € SxS (Ve € E) : ((a™1)%e)a? = ((b=1)%e)b?}
s a congruence relation on S.

Proof. It is clear that o is an equivalence relation. Now suppose that acb
and c is an arbitrary element of S, then

(((a)™")%e) (ae)* =

Thus (ac,be) € o. Similarly (ca, cb) € o. Hence o is congruence relation.
[

Lemma 17 Let E be the set of all idempotents of S then the centralizer
EC of E in S, is an inverse subgroupoid of S.

19
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Proof. Let a,b € E(, then ae = ea and be = eb, for all e € E, so
(ab) e = (ab) (ee) = (ae) (be) = (ea) (eb) = (ee) (ab) = e (ab) .

Therefore E( is a subgroupoid of S.
Now let a € EC then ae = ea implies that (ae)”' = (ea)™" or a=te =

ea™', s0 a~! € E¢. Hence E( is an inverse subgroupoid. m

Theorem 18 Let S be an inverse AG**-groupoid with semilattice E and
let p be the mazimum idempotent separating congruence on S then S/p is
Sfundamental.

Proof. Every idempotent in S/p has the form ep. Let us suppose that
(ap,bp) € s, then for every e in E (ap) ™" ((ep) (ap)) = (bp) " ((ep) (bp))
which implies that (™! (ea)) p = (b~ (eb)) p, consequentlya™" (ea) pb~* (eb)
but p is idempotent separating so a~! (ea) = b~! (eb) that is apb implies
that ap = bp so pg/, is identical. Thus S/p is fundamental. m
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2

Structural Properties of
['-AG*™-groupoids

In this chapter we discuss gamma ideals in [-AG**-groupoids. We show
that a locally associative I'-AG**-groupoid S has associative powers and
S/pr, where appb implies that aI'bft = b{i“, blalt = a?“ VabelS, isa
maximal separative homomorphic image of S. The relation np is the least
left zero semilattice congruence on S, where 7 is define on S as anpb if
and only if there exists some positive integers m, n such that by € al'S
and aft € OI'S.

2.1 Gamma Ideals in I'-AG-groupoids

Let S and I be any non-empty sets. If there exists a mapping S xI'x .S — §
written as (x,«,y) by zay, then S is called a T-AG-groupoid if zay € S
such that the following I'-left invertive law holds for all z,y,z € S and
a,fel
(zay)Bz = (zay)fx. (1)
A T-AG-groupoid also satisfies the I'-medial law for all w,z,y,z € S and
a,B,vel
(wax)B(yyz) = (way)B(z7z). (2)
Note that if a I-AG-groupoid contains a left identity, then it becomes
an AG-groupoid with left identity.
A T-AG-groupoid is called a I'-AG**-groupoid if it satisfies the following
law for all z,y,z € S and o, 5 € T

za(ypz) = ya(zfz). 3)

A T-AG**-groupoid also satisfies the I'-paramedial law for all w, z,y, z €
Sand a,8,vyeT
(waz)B(yvz) = (zay)B(zyw). (4)

Definition 19 Let S be a I'-AG-groupoid, a non-empty subset A of S is
called T'-AG-subgroupoid if ayb € A for all a, b € A and v € T’ or A is
called T'-AG-subgroupoid if ATA C A.

Definition 20 A subset A of a T'-AG-groupoid S is called T'-left (right)
ideal of S if STA C A(AT'S C A) and A is called T'-two-sided ideal of S if
it is both I'-left and I'-right ideal.
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Definition 21 A I'-AG-subgroupoid A of a T'-AG-groupoid S is called a
I-bi-ideal of S if (ATS)TA C A.

Definition 22 A I'-AG-subgroupoid A of a T'-AG-groupoid S is called a
T-interior ideal of S if (STA)T'S C A.

Definition 23 A I'-AG-groupoid A of a I'-AG-groupoid S is called a T'-
quasi-ideal of S if STAN AT'S C A.

Definition 24 A I'-AG-subgroupoid A of a I'-AG-groupoid S is called a
I'-(1,2)-ideal of S if (AT'S)T'(AT'A) C A.

Definition 25 A I'-two-sided ideal P of a I'-AG-groupoid S is called T'-
prime (T-semiprime) if for any T-two-sided ideals A and B of S, ATB C
P (AT'A C P) implies either AC P or BC P(ACP).

Definition 26 An element a of an I'-AG-groupoid S is called an intra-
reqular if there exist x,y € S and B,7,0 € T such that a = (zB(ada))vy
and S is called an intra-regular T'-AG-groupoid S, if every element of S is
an intra-regular.

Example 27 Let S = {1,2,3,4,5,6,7,8,9}. The following multiplication
table shows that S is an AG-groupoid and also an AG-band.

1 2 3 4 5 6 7 8 9
111 4 7 3 6 8 2 9 5
219 2 5 7 1 4 8 6 3
316 8 3 5 9 2 4 1 7
415 9 2 4 7 1 6 3 8
513 6 8 2 5 9 1 7 4
6|7 1 4 8 3 6 9 5 2
7|8 3 6 9 2 5 7 4 1
812 5 9 1 4 7 3 8 6
914 7 1 6 8 3 5 2 9

It is easy to observe that S is a simple AG-groupoid that is there is no
left or right ideal of S. Now let T' = {«, 3, 7} defined as follows.

CECECECSE SRS SR SRS
PO RO RO DD NN N BN ROf o
CECE SRR SR SRS SR I N
PO RO RO N N N N BN RO| Ot
O NN NNN NN
CECECE SRS S S SIS
PO M NN NN N N |
PO RO RO NN NN RN RO|©
© 00O U W N D
0O GO GO 0O 00 0O 0O 00 00|
0O 0O 0O 0O 0O 0O 00 00 00| KD
0O 0O 0O 0O 00 0O 0O 00 00| o
0O 0O 0O 0O 0O 0O 00 00 00| W~
0O 0O 0O 0O 0O 0O 00 00 00| O

© 00O WD
NN NN NN RN NN

Co0 CO OO0 OO0 CO CO 0O OO Co| O

GO CO OO0 00 CO GO OO 0O OO =

o 0O 00 00 00 CO CO GO Co| Co

GO CO OO0 OO0 CO GO OO 0O OO W
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© 00 ~1 O UL W N D
0O 0O 0O 0O 00 00 00 00 00|
O GO 0O 00 00 0O 00 00 00| D

0O 0O 0O 0O 0O 00 00 00| Lo

O 0O 00 0O 0O 00 00 OO W~
0O 0O 0O 0O 0O 0O 00 00 00| QL
0O 0O 0O 0O 00 0O 00 00 00| O

0O 0O 0O 0O 0O 00 00 00| =3
© 00 0O 0O 00 0O 00 00 00| 0O
© 0O 0O 00 00 0O 0O 00 00| W

oo
oo
oo

It is easy to prove that S is a I'-AG-groupoid because (awb) ¢ = (cmb) 1pa for
all a, b, c € S and 7w, ¥ € T'. Clearly S is non-commutative and non-
associative because 879 # 9v8 and (1a2) 53 # 1a (253).

Example 28 Let S = {1,2,3,}. The following Cayley’s table shows that
S is an AG-groupoid.

Let us define I' = {a, 3, v} as follows.

a1l 2 3 Bl1 2 3 v|1 2 3
T[T 1 1 12 2 2 11 1 1
2|1 1 1 22 2 2 201 1 1
3|1 1 1 312 2 3 3/1 1 3

Clearly S is an intra-regular I-AG-groupoid because 1 = (28(1al))~3,
2 = (10(262))63, 3 = (35(373))53.

Theorem 29 A T'-AG**-groupoid S is an intra-reqular I'-AG**-groupoid
if STa =S or al'S =S holds for alla € S.

Proof. Let S be a '~ AG**-groupoid such that ST'a = S holds for all @ € S,
then S = ST'S. Let a € S and therefore, by using (2), we have
a € S=(STS)I'S = ((STa)l'(STa))'S = ((STS)I'(al'a))T'S
= (ST(al'a))T'S.
Which shows that S is an intra-regular - AG**-groupoid.

Let a € S and assume that aI'S = S holds for all a € S, then by using
(1), we have

a €S =SS = (al'S)T'S = (ST'S)la = STa.
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Thus STa = S holds for all a € S and therefore it follows from above that
S is an intra-regular. m

Corollary 30 If S is a I'-AG**-groupoid such that al'S = S holds for all
a €8, then STa =S holds for all a € S.

Theorem 31 If S is an intra-regular T'-AG**-groupoid, then (BT'S)['B =
BN S, where B is a I'-bi-(I'-generalized bi-) ideal of S.

Proof. Let S be an intra-regular I'-AG**-groupoid, then clearly (BI'S)I'B C
BNS. Now let b € BN .S which implies that b € B and b € S, then since
S is an intra-regular I'-AG**-groupoid so there exist z,y € S and «, 8,7 €
I such that b = (za(bBb))yy. Now we have

b = (za(bBb))vy = (ba(zBb))vy = (yeu(zBb))vb
= (ya(zB((za(bBb))vy)))vb = (ya((za(bBb))B(zvy)))7b
= ((za(bBd))a(yp(zyy)))vb = ((zyy)ay)a((bBd)Sz))vb
= ((0Bb)a(((zyy)ay)Bz))vb = ((bBb)e((zay)B(zvy)))7d
= ((8b)a((zax)B(yyy)))vb = (((yyy)B(zax))a(bBb))vb
= (ba(((yyy)B(wax))Bb))yb € (BLS)T'B.

Which shows that (BI'S)TB=BNS. m

Corollary 32 If S is an intra-regular T'-AG**-groupoid, then (BT'S)I'B =
B, where B is a T'-bi-(T'-generalized bi-) ideal of S.

Theorem 33 If S is an intra-regular T'-AG**-groupoid, then (STI)I'S =
S NI, where I is a I'-interior ideal of S.

Proof. Let S be an intra-regular I'-AG**-groupoid, then clearly (STT)I'S C
SNI. Now let ¢ € SN I which implies that i € S and i € I, then since S
is an intra- regular I'~AG**-groupoid so there exist x,y € S and «,,d €
I" such that ¢ = (xa(idi))yy. Now we have

i = (wa(idi)yy = (ia(adi)yy = (yal(wdi)yi
—  (yal@di)y((zalidi))vy) = ((zalidi))vy)elasi))yy
= ((iv2)a(yd(zalisi))))yy = ((yd(xa(isi)))ya)ai)yy € (STDTS.

Which shows that (STI)I'S=SNI. =

—~

Corollary 34 If S is an intra-reqular T-AG**-groupoid, then (STI)['S =
1, where I is a I'-interior ideal of S.

Lemma 35 If S is an intra-reqular reqular T'-AG**-groupoid, then S =
STS.

Proof. It is simple. =
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Lemma 36 A subset A of an intra-reqular T'-AG**-groupoid S is a T'-left
ideal if and only if it is a T'-right ideal of S.

Proof. Let S be an intra-regular I'-AG**-groupoid and let A be a I'-right
ideal of S, then AI'S C A. Let a € A and since S is an intra-regular I'-AG**-
groupoid so there exist z,y € S and ,v,d € I" such that a = (z5(ada))vyy.
Let p € STA and ¢ € T, then by we have

p = sya=sp((xf(ada))yy) = (zf(ada))P(syy) = (ab(zda))y(syy)
((s7y)B(zda))a = ((ayz)B(yds))pa = (((yds)yz)Ba)pa

Which shows that A is a I'-left ideal of S.

Let A be a I'-left ideal of S, then STA C A. Let a € A and since S is an
intra-regular I'-AG**-groupoid so there exist x,y € S and 3,7, € T such
that @ = (xf(ada))yy. Let p € AT'S and ¢ € T', then we have

p = aps=((zf(ada)yy)ys = (syy)y(zb(ada)) = ((ada)yz)(yPs)

= ((yBs)yz)y(ada) = (aya)p(x6(yBs)) = ((xd(yBs))ya)pa € STAC A.

Which shows that A is a I'-right ideal of S. =

Theorem 37 In an intra-reqular T'-AG**-groupoid S, the following condi-
tions are equivalent.

(1) A is a I-bi-(I'-generalized bi-) ideal of S.

(i) (ATS)TA = A and ATA = A.
Proof. (i) = (ii) : Let A be a I'-bi-ideal of an intra-regular I'-AG**-
groupoid S, then (AT'S)T’'A C A. Let a € A, then since S is an intra-regular
so there exist =, y € S and 8,7, € I" such that a = (z8(ada))yy. Now we
have

a = (zB(ada))yy = (ap(xda))yy = (yB(xda))ya
= (yB(xd((zf(ada))vy)))va = (yB((xf(ada))d(zyy)))va
= ((zB(ada))B(yd(zvy)))va = ((af(wda))B(yd(zvy)))va

= ((aBy)B((zda)d(zyy)))va = ((zda)B((aBy)d(zvy)))va
= ((@da)B((aBz)d(yvy)))va = (((yyy)d(aBz))B(adz))va
= (ap(((yyy)d(afz))dz))ya € (ATS)T'A.

(aBa)ip((yds)yz) = (xB(yds))¥(ava) = ay((zB(yds))ya) € AT'S C A.
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Thus (AT'S)I'A = A holds. Now we have

a = (zB(ada))yvy = (af(zda))yy = (yB(xda))ya

= (yB(zd((zB(ada))yy)))va = (yB((zB(ada))d(zyy)))va

= ((zB(ada))B(yd(zyy)))va = ((aB(xda))B(yd(zvy)))va

= (((yo(zvy))B(zda))Ba)ya = (((adz)B((zvy)dy))Ba)ya

= (((ad2)B((yyy)dz))Ba)ya = (((ad(yyy))B(xdx))Ba)ya

= ((((zdz)d(yvy))Ba)Ba)ya

= (((x0x)d(yvy))B((xB(ada))vy))Ba)ya

= ((((xd2)d(yvy))B((aB(xda))vy))Ba)ya

= ((x0x)d(aB(xda)))B((yyy)vY))Ba)ya

= (((ad((xdx)B(xda)))B((yyy)vy))Ba)ya

= (((ad((adz)B(xd)))B((yvy)vYy))Ba)ya

= ((((adz)d(aB(zdz)))B((yry)YY))Ba)ya

= ((((ada)é(zB(zdx)))B((yry)1Yy))Ba)ya
((((yry)vy)d(zB(zéx)))B(ada))Ba)ya

= ((aB((((yyy)yy)o(zB(zéz)))da))Ba)ya

C ((ATS)TA)TA C AT A.

Hence A = AT'A holds.
(i4) = (7) is obvious. m

Theorem 38 In an intra-reqular I'-AG**-groupoid S, the following condi-
tions are equivalent.

(1) Ais aI'-(1,2)-ideal of S.

(i7) (ATS)I'(AT'A) = A and AT'A = A.
Proof. (i) = (ii) : Let A be a I'-(1, 2)-ideal of an intra-regular I'-AG**-
groupoid S, then (AT'S)(AT'A) C A and ATA C A. Let a € A, then since
S is an intra- regular so there exist =, y € S and (,7,9 € I' such that
a = (zf(ada)yy. Now

zfB(ada))yy = (aB(zda))yy = (yB(zda))ya
yB(zé((zB(ada))vy)))va = (yB((zB(ada))d(xyy)))va
(yy

a =

)
(zB(ada))B(yd(zyy)))va = (((zvy)By)B((ada)dr))va
((yvy)Bz)B((ada)dz))ya = ((ada)B(((yyy)Br)dx))va
(ada)B((xBx)d(yvy)))va = (aB((xfx)d(yvy)))v(ada) € (ATS)T'(ATA).

Thus (AT'S)I'(AT'A) = A. Now we have

a = (zB(ada))yy = (af(zda))vy = (yB(zda))ya
= (yB(zda))y((xB(ada))yy)

(
=
=

(

(
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= (zB(ada))v((yB(zda))vy)

= (af(zda))v((yB(zda))vy)

= (((yB(xda))yy)B(zda))ya

= ((ayz)B(yd(yB(xda))))va

= ((((zB(ada))vy)yx)B(yd(yB(zda))))va
= ((zyy)v(zB(ada)))B(yd(yB(zda))))va
= (((zvy)ry)B((zB(ada))i(yB(zda))))va
= (((yyy)yx)B((xB(ada))d(yB(xda))))va
= (((yry)r2)B((xBy)d((ada)B(zda))))va
= (((yvy)yx)B((ada)d((zBy)B(zda))))va
= ((ada)B(((yyy)vz)d((zBy)B(xda))))va
= ((ada)B(((yyy)yz)d((zBz)B(yda))))va
= ((((zBz)B(yda))d((yyy)vz))B(ada))ya
= ((((aBy)B(zd2))d((yvy)vz))B(ada))ya
= (((((zdz)By)Ba)d((yyy)yz))B(ada))ya
= (((zB(yvy))d(avy((xdx)By)))B(ada))ya
= ((a6((zB(yyy))v((zdz)By)))B(ada))va
= ((ad((zB(zd2))v((yvy)By)))B(ada))va
€ ((ATS)T(ATA))TA C AT A.

Hence AT'A = A.
(#1) = (i) is obvious. m

Theorem 39 In an intra-regular I'-AG**-groupoid S, the following condi-
tions are equivalent.

(i) A is a I'-interior ideal of S.

(i3) (STA)T'S = A.
Proof. (i) = (i) : Let A be a I'-interior ideal of an intra-regular I'-AG**-
groupoid S, then (STA)T'S C A. Let a € A, then since S is an intra- regular
so there exist =, y € S and 8,7, € I" such that a = (z8(ada))yy. Now we
have

(
(

x

Y

QE

ada))vy = (af(zéa))yy = (yB(xda))ya
zéa))v((zB(ada))vy)
((zB(ada))vy)B(zéa))vy
(ayz)B(yd(zB(ada))))vy
((yd(zB(ada)))yx)Ba)dy € (STA)TS.
Thus (STA)T'S = A.

(14) = (i) is obvious. m

(
(
= (
(
(
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Theorem 40 In an intra-reqular T'-AG**-groupoid S, the following condi-
tions are equivalent.

(1) A is a I'-quasi ideal of S.

(13) STQN QTS = Q.
Proof. (i) = (ii) : Let Q be a I'-quasi ideal of an intra-regular I'-AG**-
groupoid S, then STQ N QLS C Q. Let ¢ € @, then since S is an intra-
regular so there exist z, y € S and «, 8,7 € I" such that ¢ = (za(gvq))By.
Let pdq € STQ, for some § € T', then

pég = pé((zalqyq))By) = (zalqyq))d(pBy) = (qa(xvq))d(pBy)
(qap)d((zvq)By) = (zvq)d((qap)By) = (yy(qap))d(qBz)
70 ((yv(qap))Bz) € QTS.

Now let gdy € QI'S, then we have

q0p = ((zalgyq))By)dp = (pBy)d(za(qyq))
z3((pBy)e(qvq)) = z6((aBq)a(yp))
(aBg)d(za(yyp)) = ((zalyyp))Be)ig € STQ.

Hence QI'S = ST'Q. Then we have

q = (va(qvq))By = (qa(2vq)) By = (ya(ryq))Bq € STQ.

Thus ¢ € STQ N QTS implies that STQ N QTS = Q.
(#9) = (i) is obvious. m

Theorem 41 In an intra-reqular T'-AG**-groupoid S, the following condi-
tions are equivalent.

(1) Ais aI'-(1,2)-ideal of S.

(73) A is a I'-two-sided two-sided ideal of S.
Proof. (i) = (i7) : Let S be an intra-regular I'-~AG**-groupoid and let
A be a I'-(1,2)-ideal of S, then (AT'S)I'(AT'A) C A. Let a € A, then since
S is an intra-regular so there exist =, y € S and 3,7, € T', such that
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a = (zf(ada))yy. Now let ¢ € T', then

sYa =

(zB(ada))yy) = (zB(ada))y(svy)
(z6a))y(svy) = ((s7y)B(zda))pa
(s7y)B(zda))y((zB(ada))y
(ada))(((svy)B(zda))yvy
((s7y)B(zda)))y((ada)yz
((wB((s7y)B )

s(
af

(

(

(z6

(yB((

(ada)y (
(26(yB((svy)B(zda)
(z6(yB((avyz)B(yds)

= (20((avx)B(yB(yds)
( )
(
(
(
(
(
(

a xda)))yx

y)
)
)
)
)
)
)
)

ayx)d(zB(yB(yds
(zB(ada))vy)yz
YY)y (xﬂ(a&z))

~— ~— ~— ~—
(=]
—~ o~~~

=
=
= (@d(((aB))o(((uB(y03))1a) a)) i (ara) € (ATS)T (ATA) € A

Hence A is a I'-left ideal of S and so A is a I'-two-sided ideal of S.
(#i) = (i) : Let A be a I'-two-sided ideal of S. Let y € (AT'S)T" (ATA),
then y = (afs)v(bdb) for some a,b € A, s € S and 8,7,6 € I'. Now we have

y = (afBs)y(bdb) = by((apBs)db) € AT'S C A.
Hence (AT'S)I' (AT'A) C A and therefore A is a I'-(1,2)-ideal of S. m

Theorem 42 In an intra-regular T'-AG**-groupoid S, the following condi-
tions are equivalent.

(1) Ais aI'-(1,2)-ideal of S.

(79) A is a I'-interior ideal of S.
Proof. (i) = (ii) : Let A be a I'-(1, 2)-ideal of an intra-regular I'-AG**-
groupoid S, then (AT'S)[(AT'A) C A. Let p € (STA)T'S, then p = (spa)ps’
for some a € A, 5,5 € S and w, Y € T'. Since S is intra-regular so there
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exist z, y € S and 8,7,0 € I' such that a = (z8(ada))yy. Now we have

p = = (su((zB(ada))yy))vs

m

Thus (STA)T'S C A. Which shows that A is a I'-interior ideal of S.
(#14) = (i) : Let A be a I'-interior ideal of S, then (STA)I'S C A. Let
€ (AT'S)T'(AT'A), then p = (aus)y(babd), for some a,b € A, s € S and
w, Y, a € T'. Since S is intra-regular so there exist z, y € S and 3,v,§ € I’
such that a = (z8(ada))yy. Now we have

p = (aps)p(bab) = ((bab)us)pa

= ((bab)us)y((zB(ava))vy)

= (2B(ava))(((bab)ps)vy)

= ((((bab)ps)yy)B(aya)) iz

= ((aya)B(yd((bab)us)))pz

= (((yo((bab)us))ya)Ba)pz € (STATS C A.

Thus (AT'S)T'(ATA) C A
Now by using (3) and (4) we have

ATA C AT'S = AT(STS) = ST(AT'S) = (ST'S)['(ATS)
= (STA)T(STS) = (STA)LS C A.

Which shows that A is a I'-(1, 2)-ideal of S. ®
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Theorem 43 In an intra-reqular T'-AG**-groupoid S, the following condi-
tions are equivalent.

(1) A is a I-bi-ideal of S.

(79) A is a I'-interior ideal of S.
Proof. (i) = (ii) : Let A be a I'-bi-ideal of an intra-regular I'-AG**-
groupoid S, then (AT'S)TA C A. Let p € (STA)T'S, then p = (s,ua)ws/ for
some a € A, s,s, € S and p,v € I'. Since S is an intra-regular so there
exist z, y € S and (3,7, € I such that a = (zf(ada))yy. Now we have

p = (spa)ps = (sp((zB(ada))yy))vs
B (ada))u(syy))ws = (s u(syy))w(zB(ada))
(s7y)

( T
(ada)p )1/1( /
( s

s7Y)Bs)

(s7y)B )uw)w(a&l) (xfs )u(svy))w(wa)
apa)yp((syy)d(zBs ) = (((s7y)d(xBs ) pa)pa

(s79)3(xBs ) u((zB(ada))yy))va
(57y)0(xB(ada)))u((zBs ) )
((a5a) 2)3(yBs))u((zBs )y))v
( ))u((ada)yz))
(yBs))vz))
)
)

S

w
S

(285 )7y)d(yBs))u((ada)yz))y
ada)p((((xBs )1y)d(yBs))ya))w
28(((x8s )yy)d(yBs)))u(ava))p

ap((z8(((zBs )yy)d(yBs)))va))va
ATS)TA C A.

5
S

8
IS

(
(
(
(
(
(

IS

(
(
(
(
(
( )

= )

= )
( )
( )
( )
( )
(

Thus (STA)I'S C A. Which shows that A is a I'-interior ideal of S.

(#14) = (i) : Let A be a I'-interior ideal of S, then (STA)I'S C A. Let
p € (AT'S)T'A, then p = (aps)yb for some a,b € A, s € S and p, ¢ € T.
Since S is an intra-regular so there exist x, y € S and 3,7, € I' such that
b = (xB(bdb))vy. Now

p = (aus)pb= (aus)y((zB(bdb))yy) = (xB(bdb))((aps)yy)
= (((aus)yy)B(bdb))x = ((byb)B(yd(aps)))vx
(((yd(aps))yb)Bb)ypx € (STA)I'S C A.

Thus (AT'S)TA C A.
Now

ATA C AT'S = AT(STS) = ST(AT'S) = (ST'S)['(AT'S)
= (STA)I(STS) = (STA)TS C A.

Which shows that A is a I'-bi-ideal of S. m
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Theorem 44 In an intra-reqular T'-AG**-groupoid S, the following condi-
tions are equivalent.

(i) Ais a I'-(1,2)-ideal of S.

(73) A is a T'-quasi ideal of S.
Proof. (i) = (ii) : Let A be a I'-(1,2)-ideal of intra-regular I'-AG**-
groupoid S, then (AT'S)I'(AT'A) C A. Now we have

STA = ST(ATA) = ST((ATA)TA)
(ATA)T(STA) = (ATS)['(ATA) C A.

and by using (1) and (3), we have

ATS = (ATA)TS = ((ATA)TA)TS = (STA)T(ATA) = (ST(ATA))T(AT A)
= ((STS)T(ATA))T(ATA) = ((ATA)T(STS))['(ATA)
= (ATS)[(ATA) C A.

Hence (AT'S) N (ST'A) C A. Which shows that A is a I'-quasi ideal of S.

(16) = (i) : Let A be a I'-quasi ideal of S, then (AT'S) N (STA) C A.
Now AT'A C AT'S and ATA C ST'A. Thus ATA C (AT'S) N (STA) C A.
Then

(ATS)I'(AT'A) = (ATA)I'(STA) C AT (ST A) = ST(AT'A) C ST A.
and

(ATS)[(ATA) = (ATA)T(STA)C AT(STA) = ST(ATA)
= (STS)T(ATA) = (AT A)I(ST'S) C AT'S.

Thus (AT'S)I'(ATA) C (AT'S) N (STA) € A. Which shows that A is a
I'-(1,2)-ideal of S. m

Lemma 45 Let A be a subset of an intra-regular T'-AG**-groupoid S, then
A is a T'-two-sided ideal of S if and only if AT'S = A and STA = A.

Proof. It is simple. =

Theorem 46 For an intra-reqular I'-AG**-groupoid S the following state-
ments are equivalent.

(i) A is a I-left two-sided ideal of S.
(73) A is a T-right two-sided ideal of S.
(7i1) A is a I-two-sided ideal of S.

(tv) AT'S = A and STA = A.

(v) A is a I'-quasi ideal of S.

(vi) Ais a I'-(1,2)-ideal of S.

(vii) A is a I'-generalized bi-ideal of S.
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(vigi) A is a I'-bi-ideal of S.

(iz) A is a [-interior ideal of S.

Proof. (i) = (i1) and (i3) = (éi7) are easy.

(#i1) = (iv) is followed by above Lemma and (iv) = (v) is obvious.

(v) = (vi) It is easy.

(vi) = (vii) : Let A be a I'-(1,2)-ideal of an intra-regular I'-AG**-
groupoid S, then (AT'S)['(AT'A) C A. Let p € (AT'S)T'A, then p = (aus)b
for some a,b € A, s € S and pu,v € I'. Now since S is an intra-regular so
there exist z, y € S and 3,7, € T such that such that b = (z3(bdb))~y
then we have

p = (aps)yb= (aps)P((xB(bdd))yy)
= (xB(b6b))Y((aps)yy) = (yB(aps))((bdb)yw)
= (bdb)((yBlaps))yz) = (xd(yB(aus)))y(byd)
= (zd(aB(yps)))y(bod)
= (ad(zB(yps)))(bdd) € (ATS)I(ATA) C A.

Which shows that A is a I'-generalized bi-ideal of S.
(vii) = (viig) is simple.

(viii) = (iz) is followed easily.

(iz) = (4) is followed by previous results . m

Theorem 47 In a I'-AG**-groupoid S, the following conditions are equiv-
alent.

(7) S is intra-regular.
(i4) Every I'-bi-ideal of S is T-idempotent.
Proof. (i) = (i7) is obvious.
(#i) = (i) : Since STa is a I'-bi-ideal of S, and by assumption STa is
I'-idempotent, so we have
(STa)T (STa) = ((STa) T (STa)) T (STa)
= ((STS)T (al'a)) T (STa) C (ST (al'a)) T (STS)
— (ST (al'a))TS.

a

m

Hence S is intra-regular. m

Lemma 48 If I and J are I'-two-sided ideals of an intra-regular I'-AG**-
groupoid S , then I N J is a I'-two-sided ideal of S.

Proof. It is simple. m

Lemma 49 In an intra-reqular T'-AG**-groupoid IT'J = I N J, for every
I'-two-sided ideals I and J in S.

Proof. Let I and J be any I'-two-sided ideals of .S, then obviously IT'J C
INJ.Since INJCTand INJ C J, then (INJ)([INJ)C ITJ, also,
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INJ is a I'-two-sided ideal of S, so we have INJ = (INJ)(INJ)CITJ.
Hence ITJ=1INJ. m

Lemma 50 Let S be a I'-AG**-groupoid, then S is an intra-reqular if and
only if every I'-left ideal of S is I'-idempotent.

Proof. Let S be an intra-regular I'~AG**-groupoid, then every I'-two-sided
ideal of S is I'-idempotent.

Conversely, assume that every I'-left ideal of S is I'-idempotent. Since
STa is a I'-left ideal of S, so we have

m

a STa = (STa)T (STa) = ((STa) T (STa)) T (STa)
= ((STS)T (al'a))T (STa) C (ST (al'a))I'(STS)

(ST (al'a))T'S.
Hence S is intra-regular. m

Lemma 51 In an AG**-groupoid S, the following conditions are equiva-
lent.

(i) S is intra-regular.

(15) A= (STA)(STA), where A is any I'-left ideal of S.
Proof. (i) = (ii) : Let A be a I'-left ideal of an intra-regular I'-AG**-
groupoid S, then STA C A and then, (STA)(STA) = STA C A. Now
A=ATAC STA=(STA)(STA), which implies that A = (ST A)(STA).

(i1) = (4) : Let A be a I'-left ideal of S, then A = (ST A)(STA) C AT' A,
which implies that A is I'-idempotent and so S is an intra-regular. m

Theorem 52 A T'-AG**-groupoid S is called T'-totally ordered under in-
clusion if P and Q are any I'-two-sided ideals of S such that either P C Q
or Q C P.

A T-two-sided ideal P of a '~ AG**-groupoid S is called I'-strongly irre-
ducible if AN B C P implies either A C P or B C P, for all I'-two-sided
ideals A, B and P of S.

Lemma 53 FEvery I'-two-sided ideal of an intra-reqular I'-AG**-groupoid
S is T'-prime if and only if it is I'-strongly irreducible.

Proof. It is an easy. m

Theorem 54 FEvery I'-two-sided ideal of an intra-regular I'-AG** -groupoid
S is [-prime if and only if S is I'-totally ordered under inclusion.

Proof. Assume that every I'-two-sided ideal of S is I'-prime. Let P and
@ be any I'-two-sided ideals of S, so , PI'QQ = PN, and PNQ is a
I-two-sided ideal of S, so is prime, therefore PT'QQ C P N Q, which implies
that P C PNQ or Q@ C PN, which implies that P C @ or Q C P. Hence
S is I'-totally ordered under inclusion.
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Conversely, assume that S is I-totally ordered under inclusion. Let I, J
and P be any I'-two-sided ideals of S such that IT'J C P. Now without
loss of generality assume that I C J then

I=ITICITJCP.
Therefore either I C P or J C P, which implies that P is [-prime. m

Theorem 55 The set of all I'-two-sided ideals of an intra-reqular I'-AG**-
groupoid S, forms a I'-semilattice structure.

Proof. Assume that I'z be the set of all I'-two-sided ideals of an intra-
regular I'-AG**-groupoid S and let A, B € I'z, since A and B are I'-two-
sided ideals of S, then by using (2), we have

(ATB)L'S = (ATB)T (STS) = (ALS)T (BI'S) C AIB.
Also ST(ATB) = (ST'S)T(AT'B) = (STA)T(STB) C ATB.

Thus AI'B is a I'-two-sided ideal of S. Hence I'z is closed. Also we have,
AT'B = AN B = BNA=BI'A, which implies that I'7 is commutative, so
is associative. Now AT'A = A, for all A € I'z. Hence I'z is I'-semilattice. m

Theorem 56 For an intra-reqular I'-AG**-groupoid S, the following state-
ments holds.

(¢) Every I'-right ideal of S is T'-semiprime.

(73) Every I'-left ideal of S is I-semiprime.

(791) Every I'-two-sided ideal of S is I'-semiprime
Proof. (i) : Let R be a I'-right ideal of an intra-regular I'-AG**-groupoid
S. Let ada € R for some 6 € T' and let a € S. Now since S is an intra-
regular so there exist z, y € S and 8,7, € T such that a = (z8(ada))yy.
Now we have

= (zB(ada))vy = (aB(zda))vy = (yB(xda))ya

= (yB(xda))y((zB(ada))vy) = (zB(ada))y((yB(zda))vy)
(z6( )
( )

a

Qd

zB(yp(xéa)))y((ada)yy
ada)y((zB(yB(xda)))vy) € RT'(STS) = R['S C R.

Which shows that R is I'-semiprime.

(79) : Let L be a I'-left ideal of S. Let ada € L for some ¢ € T" and let
a € S now since S is an intra-regular so there exist =, y € S and 3,7, € T’
such that a = (z8(ada))vyy, then we have

zfB(ada))vy = (af (xéa) vy = (yB(xda))ya
yB(xda)) (zB(ada))y((yB(zda))yy)
(

)
(ada))vy) =
Yy yﬁ(fcéa)))"y((a5a) fv) (ada)y((yB(yB(xda)))yz)
z6(yB(yB(xda))))y(avya) € STL C L.

a

(
(
(
(
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Which shows that L is I'-semiprime.
(44i) is obvious. m

Theorem 57 A T'-two-sided ideal of an intra-regular I'-AG**-groupoid S
is manimal if and only if it is the intersection of two minimal T'-two-sided
ideals.
Proof. Let S be an intra-regular T'-AG**-groupoid and @ be a minimal
I-two-sided ideal of S, let a € Q. As ST(STa) C STa and ST(al'S) C
al’(ST'S) = al'S, which shows that STa and al'S are T-left ideals of S so
STa and al'S are I'-two-sided ideals of S.

Now

ST(STanal'S) N (STanNal'S)T'S
ST'(STa) N ST (aI'S) N (STa)I'S N (aI'S)T'S
(STanal'S)N (STa)I'SN STa C STanal'sS.

N

Which implies that ST'a N al'S is a I'-quasi ideal so STa N al'S is a
I'-two-sided ideal.
Also since a € Q, we have

STanal'S C STQNQTS CQNQ C Q.

Now since QQ is minimal so ST'a N al'S = Q, where ST'a and al’'S are
minimal I'-two-sided ideals of S, because let I be a I'-two-sided ideal of S
such that I C STa, then

INnallS C STanal’'S C Q,

which implies that
INnalS=@Q. Thus Q C I.

So we have

STa STQ C STI C I, gives
STa = 1.

N

Thus STa is a minimal T'-two-sided ideal of S. Similarly al'S is a mini-
mal T'-two-sided ideal of S.

Conversely, let Q = I N J be a I'-two-sided ideal of S, where I and J
are minimal I'-two-sided ideals of S, then @ is a I'-quasi ideal of S, that is
STQNQETS C Q.

Let Ql be a D-two-sided ideal of S such that Q" C Q, then

STQ NQ'TS
and Q/FS

STQNQLS C Q, also STQ C STIC I
JrS C J.
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Now

ST (SFQ’) (STS)T (SFQ’) - (Q’rs) T (STS)

(Q’rs) 'S = (STS)TQ = SrQ’

implies that STQ' is a T-left ideal and hence a T'-two-sided ideal. Similarly
Q I'S is a I'-two-sided ideal of S.
But since I and J are minimal I'-two-sided ideals of S, so

STQ =1 and QTS = J.
But Q@ = I N J, which implies that,

Q=5rQ'NnQTSCQq.
Which give us @ = Q'. Hence ) is minimal. |

2.2 Locally Associative I'-AG**-groupoids

In this section we introduce a new non-associative algebraic structure namely
locally associative I'-AG**-groupoids and decompose it using I'-congruences.
An AG-groupoid S is called a locally associative I'-AG-groupoid if (aca)Ba =
aa(aBa), holds for all ¢ in S and «,8 € T. If S is a locally associa-
tive AG-groupoid then it is easy to see that (STa)I'S = ST'(al'S) or
(STS)I'S = ST(STS). For particular o € T, let us denote aaa = a?
for some @ € T and aca = a2, ¥V a € T ie. al'a = a} and generally
al'aTa...al'a = a(n times.)

Let S be an I'-AG**-groupoid and a relation pr- be defined on S as follows:
aprb if and only if there exists a positive integer n such that al'bf = bI’EH
and blaf = aft™!, for all a and b in S.

Proposition 58 IfS is a locally associative I'-AG** -groupoid, then aFa?‘”‘1 =

(aft1)Ta, for all a in S and positive integer n.

Proof.

aFa{i‘H = al'(afTa) = afT'(al'a) = (a{i_lFa)F(aFa) = (aFa)F(aFa{i_l)
= (ala)la} = (afTa)Ta = (a}")Ta.

n

Proposition 59 In a locally associative I'-AG**-groupoid S, af*af = a?*”

YV a € S and positive integers m, n.
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Proof.

aptlal = (af'Ta)Ta} = (apTa)Taf = (ala})Ta}"

= (af'Ta})la = af'™"Ta = Tt

Proposition 60 If S is a locally associative I'-AG** -groupoid, then for all
a, bin S, (al'b)} = affI'bL and positive integer n > 1 and (al'b)}t = biiTaf,
forn > 2.

Proof.
(aT'b)2 = (aI'b)T'(al'b) = (al'a)T(bI'b) = a*ThH?.

(al'b)Et! = (al'b)ET(al'b) = (aXTHE)T (al'b) = (afTa)T(bETD) = afM THET.

Let n > 2. Then by (3) and (1), we get

(alD)E = aPTbE = (alal  HLOTHE ) = T ((alalk HTHE )
= bI((b} 'Tap "Ta) = bI((bTa)} 'Ta) = (bla)f 'T'(bla)
= (bla)it = bETal.

]

Proposition 61 In a locally associative I'-AG**-groupoid S, (")} = apP™
for all a € S and positive integers m, n.

Proof.

(ap* ) = (af'Ta)f = (af )£ Taf: = ap"Tap = ™" = ap ™.

Theorem 62 Let S be a locally associative I'-AG**-groupoid. If al'bf* =
b}"“ and bl'af = a?“ for a,b €S and positive integers m, n, then appb.

Proof. If n > m, then

LT (al'b) = bR mIppt!

al' (b ™TbE) = bp-mtmtl
al—wb'lr_z‘—m-',-m — b¥+1
alb} = bpth

Theorem 63 The relation pr on a locally associative I'-AG**-groupoid is
a congruence relation.
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Proof. Evidently pp is reflexive and symmetric. For transitivity we may
proceed as follows.
Let appb and bppc so that there exist positive integers n, m such that

al'bp = b, blaf = aft™, and
WL = it b = bt
Let k= (n+1)(m+ 1) — 1, that is, k = n(m + 1) + m. Thus we get,
alef = al"c?(mHHm = a]."(c;(mH)I‘c}”) = al'{ (¢ D
= al{(bBTEP)pTe} = al {(BpT ™) Te™} = al (")

= IP(albp) = o TITRRT = (ETh)pt = pptirer Y

= (bLem)ptt = cirl

Similarly, cl'a® = a’13+1. Thus pp is an equivalence relation. To show that

pr is compatible, assume that appb such that for some positive integer n,
aTb?t = b and blaf = af .

Let ¢ € S, then, we get

(aT'e)T(bLe)f = (aTe)D(bETcl) = (aTbP)T(clef) = bt Teptt = (bTe)i .

Similarly, (blc)T'(aT'¢)} = (aT'¢)™. Hence pr is a congruence relation on

S. m
Lemma 64 Let S be a locally associative I'-AG**-groupoid, then al'bppbla, for
all a,b in S.
Proof.
(aTH)D(bTa)t T = (alD)T(af ' THETY) = (aTal™)T(BTbET)

a2 TR t? = (bla)p 2.

Similarly, (bl'a)T'(aT'b)2™ = (al'b)2*2. Hence al'bpbla, for all a,b in S.
]

A relation p on an AG-groupoid S is called separative if al'bpa? and
al'bppbi implies that appb.

Theorem 65 The relation pr is separative.

Proof. Let a, b € S, al'bppa?, and al'bppb?. Then by definition of p there
exist positive integers m and n such that,
(@b)L(ap)f = ()™, afT(alb)f = (alb)P+! and
(@THTER)E = (BR)EF, BAD(alb)f = (aTb).
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Then

(alb)La?™ = (alb)T (af'Taf") = (alaf") T (bLa) = (af )T (bLa}t)
= bF(a;”J"lFa{—\n) — bra%m-‘rl’ but (an)Fa%m — (a%);ﬂJﬂ — (112_‘m+27

which implies that bla7" ™! = a2™ 2. Also (aI'b)T'(b2)% = (b2)1:", implies
that b2" "' Ta = b2"+2. Also, we get

b H2TbE = (b Ta)Tht,
this implies that
b2t = B0 (aTbE" ) = aT (BETH ) = a2 3,
Hence, aprb. m

Theorem 66 Let S be a locally associative I'-AG**-groupoid. Then S/ pp
is a mazimal separative commutative image of S.

Proof. pr is separative, and hence S/ pr is separative. We now show that
pr is contained in every separative congruence relation or on S. Let appb
so that there exists a positive integer n such that,

al'bt = bt and blaf = ap ™.

We need to show that aorb, where or is a separative congruence on S. Let
k be any positive integer such that,

alb* Tobi™ and blafoaft!. (5)
Suppose k > 3.

(albE N2 = (albE DT (aTbE™!) = a2T% 72 = (aTa)T(bE2TbE)
= (albF )T (al'bE) = (aTbE~2)pFH!
(al'br. r r

Therefore
(albE= )0 (albk)op (al'bE2)THETL
Thus we get
(aTBE"2)THERY = (BETTHE ) Ta = b2 'Ta = (BETHE )Ta = (al'bE 1 )THE.
Also (b HTHE = (bEDBE"N)Ta = b2 Ta = (b 'THE)Ta

= (al'bp)IbE,

implies that
(albE" M 2op (albE)THE!.

40



Theory of Abel Grassman's Groupoids

Since al'bforbi™ and (albf)TbE L orbi I THE™! hence (aTbE™ )20 (bE)3.
It further implies that,

(albE" M Eop (albE M) bEor (bE)3.
Thus
anllf_ Lop b{i.

Similarly,

k—1_ k&
bl'a;” “oraf.

Thus if (13) holds for k, it holds for k£ — 1.
Now obviously (13) yields

albiopbt and blaorar.
Also, we get

(aTb3)Tadolbgad and (bTa)TbiopabTh3
(a2Tb3)Tac' ThiTa} and (bATal)TbotarTha
(3Tad)Tachail'bl and (a2Tb3)TbobETat
adTbioaTbt and biladopbilat

a3 Thiora?Thh and a3 Thopbilar,

which 1mphes that (bila)iorailbdor(a?l'b)3, and as of is separative

and (bATa)T(ail'b) = (bATa? )T (al'b) = (a2Tb2)T(al'b) = adTb}, so a2Tbo'Th2la.

Now we get

(a2Tb)Tac'T'(b3la)la
(aTb)Tai ot a2 b
a?T(bla)opaf b
blalora2lb2 but bladofat,

Thus (bla)iorblaiol(a?)%, now since o} is separative and aZI'(bl'a) =
blad, so we get blaoha?.

Similarly we can obtain al'bofb..

Also it is easy to show that (13) holds for k = 2.

Thus if (5) holds for k, it holds for k = 1. By induction down from &,
it follows that (5) holds for k = 1, al'borb3 and blacra?. Now it is easy
to see that al'borbd, we get (bla)iorbila, and again from al'borb? we
get bilaorbt. So (bla)2orbilacbt implies that blaorb? which further
implies that al'borbl'a. Thus we obtain aorb. Hence pr C or and so S/ pp
is the maximal separative commutative image of S. m

Lemma 67 If 2Ta = z (a = a?) for some x in a locally associative T-
AG**-groupoid then x{l'a = zt for some positive integer n.
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Proof. Let n = 2, then using (2), we get
rila = (2Tx)T(ala) = (2Ta)T(2Ta) = 2Tz = 3.

Let the result be true for k, that is, xT'a = 2. Then by (2) and Proposition
1, we get

2f e = (2Taf)T(ala) = (2Ta)l(2fTa) = aTzk = 251,
Hence z:I'a = 2} for all positive integers n. m

Lemma 68 If S is a '-AG-groupoid, then Q = {z |z € S, 2T'a = = and
a= a%} is a commutative subsemigroup.

Proof. As al'a = a, we have a € Q. Now if x, y € Q, then by identity (2),
al'y = (2Ta)T'(yT'a) = (2T'y)T'(al'a) = (2Ty)Ta.

To prove that @ is commutative and associative, assume that z, y and z
belong to Q. Then by using (1), we get

al'y = (zTa)Ty = (yT'a)Tx = yT'z. Also

(2Ty)T'z = (2Ty)Tz = 2T (yT'2).
Hence @ is a commutative subsemigroup of S. m

Theorem 69 Let pr and or be separative congruences on locally asso-
ciative T-AG**-groupoid S and z%a = zi(a = d?) for all z in S. If
pr N (Qr x Qr) C or N (Qr x Qr), then pp C or.

Proof. If xpry then,

(@ (2Ty))tpor (21T (aTy) T (@ETyf) pr (@1 Y )P
It follows that (2ZT(zT'y))3, (z2y2)3 € Qr. Now by (2), (1), (3), respec-
tively, we get,
(2 (2Ty))D(2fTyf) = (2fT2f)T((@Ty)Tyi) = (eflaf )T (yl )
apl(ypl'z) = ypl(2fT'z) = yplap  and
(yeTap)T(ala) = (ypla)l (apla) = yplap.

)
So 2 (aTy)l'(27Iy?) € Q. Hence (22T (aly))Por (¢ (aTy)T (2Eyp)or (2Ry )7
implies that

(y2Ta?)la

220 (2Ty)oxiTyd.

Since x2lyZprat and (z2Ty3), 23 € Q. Thus 22lyiorat and we get
(z2)3orzd(2Ty)or(2Ty)% which implies that z2orzly. Finally, z2pry2
and 22, y2 € Q, implying that z2ory3, 22oralyory?. Thus zory because
or is separative.
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Lemma 70 FEvery left zero congruence is commutative.

Proof. Let acra and borb which implies that al'boral'b, (aT'b)T' (al'b)o(al'b)3 =
(bra)% and so we obtain al'borbla. m

The relation np define on S by anpb if and only if there exists some
positive integers m, n such that bf" € aI'S and ap € bI'S.

Theorem 71 Let S be a locally associative I'-AG**-groupoid. Then the
relation np is the least semilattice congruence on S.

Proof. The relation 7 is obviously reflexive and symmetric. To show tran-
sitivity, let anpb and bnpc, where a,b,c € S. Then al'z = b for some z
and bl'y = cf, for some = and y € S. Then we get

o = (ep)r = (bry)t’ = yr'Tor" = yp'T(alz) = al'(yr'T'z),

implies that cf = al'z, where k = mn and z = (y®"I'z). Similarly, bl'z’ =
af and 'y’ = by implies that af = ¢z’

Let a,b,c € S and anpb < (Im,n € Z1)(F z, y € S) b = al'z,a} =
bI'y. If m =1, n > 1, that is b = al'z, aft = bI'y for some z,y € S, then

b3 = (bI'b)T(al'z) = al'(b2Tz) € al'S.

Similarly we can consider the case m = n = 1. Suppose that m, n > 1.
Then we obtain

(Lot = T = (al'z)Def = (al'z)T (et h)
(aT'c)T(zTc™ 1) = (aTc)Ty, where y = aT'c[ .

Thus al'enbl'c and clancl'b.

Now to show that 7 is a semilattice congruence on S, first we need to
show that anpb implies al'bnra.

Let anpb, then b = al'z and apt = bI'y for some = and y € S. So

(aT'D)* = af' T = af'T'(al'z) = al'(af'Tx).

Also a} = bT'y implies that a:*? = a2Taf = (al'a)T(bT'y) = (al'b)T(al'y).
Hence al'bnra which implies that afnpa, (ai)r = (ay)r and so S,y is
idempotent.

Next we show that np is commutative. By Proposition 4, (al'b)3 =
(bl“a)%, which shows that al'bnbl'a that is a,I'b, = b,I'a,, that is S, np is
a commutative AG-groupoid and so is left zero commutative semigroup of
idempotents. Therefore 7 is a semilattice congruence on S. Next we will
show that np is contained in any other left zero semilattice congruence pr
on S. Let anpb, then b = al'z and a} = bI'y. Now since aprad and bppbd,
it implies that al'zppail'z, appral and bppbf which further implies that
appbl'y and bpral'z. It is easy fact that al'bpbl'a, for some I' € I'. Also
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since bppb3 and pr is compatable, so we get bl'yppbil'y. We can easily see
that blappalbprappblyppbil'y which implies that blappbil'y. Similarly
we can show that al'bpra?l'z. So appblyprbilyblapralbprailxpralzppb
implies that aprb. Thus np is a least semilattice congruence on S. m

Theorem 72 np is separative.

Proof. Let ainpral'b and al'bnpb?, then there exist positive integers m, m
and m, n such that:

(a2 = (al'b)iTz, (al"b)’l’ﬂ”' = (a2)2Tx and
(alb)p = (b)iTy, (BP)F = (alb)ETy.
Now we get,
aZ"? = af"Ta} = (a})FTaf = ((arTh)ETz)Taf
= (a’Tz)T(alb)% = (a’T2)[(ail'b?) = (a’Tx)I(biTad)
= biI((aiT'z)Tad) = bil'ts, where tg = ((aiTz)Ta?).
Similarly,
brtt? = BETHE = ((alb)ELy)ThE = (bpIy)T(apThE) = apT((bEIy)TE)

a’T't7, where t; = ((bATy)Tb3).
Hence 7. is separative. ®

Theorem 73 Let S be a locally associative I'-AG**-groupoid. Then S,/ np
18 a mazximal semilattice separative image of S.

Proof. By Theorem 6, np is the least semilattice congruence on S and
S /mp is a semilattice. Hence S mp is a maximal semilattice separative
image of S. m

2.3 Decomposition to Archimedean Locally
Associative AG-subgroupoids

Theorem 74 FEvery locally associative I'-AG**-groupoid S is uniquely ex-
pressible as a semilattice Y of Archimedean locally associative I'-AG**-
groupoids (Sz)r (m € Y). The semilattice Y is isomorphic with the maz-
imal semilattics separative image S,/ np of S and (Sy)r (w € Y) are the
equivalence classes of S modny.

Proof. np is least semilattice congruence on S. Next we will prove that
equivalence classes modnp are Archimedean locally associative I'-AG**-
groupoids and the semilattice Y is isomorphic to S, np. Let a,b € (Si)r,
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where 7 € Y, then anpb implies that af* € bI'S, bt € al'S, so ap* = bl'x
and b} = al'y, where z,y € S. If z € Sp, 0 # m then m = 76, then
we get al'™! = aTa = al'(bl'z) = b['(al'x) € bL(Sye)r = bI(Sy)r.
Similarly one can show that b € aT'(S,)r. This shows that (S, )r is right
Archimedean and so is locally associative Archimedean I'-AG**-groupoid
S. Next we show the uniqueness. Let S be a semilattice Y of Archimedean
AG**-groupoid (Sz)r, » € Y. We need to show that (S;)r are equivalence
classes of S mod 7. Let a,b € S.Then we show that anpb if and only if a
and b belong to the same (S;)r. If @ and b both belong to the same (S;)r,
then each divides the power of the other. Since (Syr)r is Archimedean,
anpb by definition. Conversely, if anpb then al'z = b and bI'y = af for
some z,y € S and some m,n € ZT. If z € (Sp)r, then al'z € (Sro)r
and b € (Sg)r, so that 70 = 6. Hence 6 < =, in the semilattice Y. By
symmetry, it follows that 7 < 6 that is 7 =6. m
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3

Embedding and Direct Product
of AG-groupoids

3.1 Embedding in AG-groupoids

In this chapter we prove that under certain conditions a right cancellative
AG**-groupoid can be embedded in a cancellative commutative monoid
whose special type of elements form an abelian group and the identity of
this group coincides with the identity of the commutative monoid.

An element a in an AG-groupoid S is called left cancellative, if ab = ac
implies that b = ¢. Similarly, c is right cancellative, if ac = be implies that
a=b.

In this chapter we shall consider that S is a right cancellative AG**-
groupoid with left identity and T is a subgroupoid of .S such that elements
of S commute with elements of T2. A relation p has been introduced on
the subset N of S x T2, so that we obtain an AG-groupoid with right
identity. We have proved that N/p is a cancellative commutative monoid.
A mapping from S to N/p has been defined to show that it is in fact an
epimorphism from S to a commutative sub-monoid A, of N/p. At the end
it has been shown that special type of elements of N/p form an Abelian

group.

Lemma 75 If S is an AG**-groupoid, then (ab)2 = a’b? = b%a?, for all
a,bin S.

Proof. By (2) and (4), we get (ab)? = (ab)(ab) = (aa) (bb) = a®b?, also
(ab)? = (ab)(ab) = (ba)(ba) = b*a®. m

Example 76 Let S = {a,b,c}, and the binary operation (-) be defined on
S as follows:

Then (S,-) is an AG**-groupoid with left identity c. Clearly it is cancella-
tive.

Example 77 Let S = {1,2,3,4}, the binary operation (-) be defined on S

47



Theory of Abel Grassman's Groupoids 48

as follows:

[N JURE NG
N QO o ==
W W NN
W W W w
W W |

3 3 3

It is non-commutative and non-associative because 4 = 1-4 # 4 -1 = 2,
2=(2-1)-1#2-(1-1) =4.(S,-) is an AG**-groupoid. The subset
A ={2,4}, of S, is a commutative sub-semigroup of S.

3.2 Main Results

Theorem 78 If T is a subgroupoid of a right cancellative AG™*-groupoid
S with left identity and elements of S commute with elements of T?, then
S becomes a commutative monoid.

Proof. Let N = {(s;t3,t3) : s; € S and t;,t, € T}, clearly N is closed be-
cause by (2) and lemma 75, we get (s;t7, 7)) (sitr,, t7) = ((si81) (tjtm)?, (trtn)?),
for all s;,5; € S and tj,tm,tk,tn € T. Define a relation p on N as (sit?,
t2)p(sit2,, t2) if and only if (sit?)t% = (s;t2,)t2. Tt is easy to prove that p is
reflexive and symmetric. To prove that p is transitive, we proceed as follows.
Let (sit?, t3)p(sit2,, t) and (s;t2,, t2)p (spt2, t2). Then (sit?)t2 = (sit2,)t7
and (s;t2,)t2 = (spt2)tn. Multiply the first equation from left by ¢2, then
by lemma 75, we obtain &} ((s;t7)t7) = ta((spta)ty) which implies that
(sit3)t2 = (spt2)t3, thus (sit3, )p (spt2, t2), proving that p is transitive.

If (sit3, t2)p(sits,, ), then (sit?)t7 = (sity,)t;, now we get (t7t3)s; =
(tpt2,)si. Multiplying this equation by s, from left side and we get (t57)(sps:) =
(t2t2)(sps1), now multiply this equation by tgt% from right side and using

lemma 75, we get ((sit3)(spt2))(tat?) = (sitn,)(spt2)(tht?). Thus

(512 (5p2), B2 p((s182,) (s,£2), E282)

that is,
(sit?, 12) (spto t2)p(sits, 1) (spti, t7).

Q) r myn q “r

This shows that p is right compatible. Similarly we can show that p is
left compatible. Hence p is a congruence relation on N.

Let M = N/p = {[(sit3,t})] : si € S and t;,t, € T} where [(s;t3,1})]
represents any class in N/p. Then it is easy to see that M is an AG**-
groupoid. Clearly [(2,¢2)] is the right identity in M, where tq is an ar-
bitrary element of T', because if [(sztf,t%)] is an arbitrary element in M,
then ((sit3)t5)t; = (sit)(tit2). Therefore ((sit3)t2,t7t7)p(sit3, ;) which
implies that (s;t3,t3)(t2,t2)p(sit3, ;) or [(sitF, t)][(t2,2)] = [(sit5,13)].
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Hence [(¢2,t2)] is the right identity in M. Since M is an AG**-groupoid
with right identity so it will become a commutative monoid.

Let t, be any fixed element of T. We define a mapping ® : S — M
by (s;)® = [(sit2,t2)], for all s; € S and ¢, € T. Suppose s;,s; € S
such that s; = s;. Then clearly [(s;t2,t2)] = [(s;t2,t2)] for t, € T. Thus
(s;)® = (s;)®. This shows that & is well defined. Next we show that
(5i57) @ = (5;)®(s;)®. Since (5;)®(s;)P = [((s;5;)(t2t2), t2¢2)]. Also using
lemima. 75, we get ((s:5,)(22)E2 = (£2(8222))(s157))  ((1212)02)(si5,)) =
((sis;)t2)(t2t2), this implies that ((s;s;)(t2t2),t2t2)p((s;s;)t2,t2) and so
[((515,)(B283), B2)] = [((s057)12,£2)] = (5:5;) . Hence (5,)B(5) = (s;s;)
This shows that ® is a homomorphism.

It is one-to-one, because (s;)® = (s;)® implies that [(s;t2,12)] = [(s;t2, 12
that is, (s;t2,¢2)p(s;t2,2). Thus (s;t2)t2 = (s;t2) t2, which implies that
S = Sj5.

If A ={[(sit?,¢2)] : s; € S and ¢, € T}. Then A C M and monomor-
phism ® : § — A is onto. As for every [(s;t2,t2)] in A there exists s; such

that (s;)® = [(s;t2,t2)]. Clearly [(2,¢2)] belongs to A. m

Lemma 79 A right cancellative AG-groupoid with left identity is left can-
cellative.

Proof. It is easy. m
Since S contains the left identity so it is easy to see that [(t3,13)] € M.
Now we prove the following theorem.

Theorem 80 M is cancellative and elements of the form [(t7,3)] in M,
form an Abelian group.

Proof. Let us suppose that (s;t3,t})(spte, t2)p(sity,, 1) (spte, t7), that is,

[(sit3, o)) (spts, £2)] = [(satm, )] [(spt5, £7)]

which implies that

[(s3t5) (sptg) tit})]

[(Sltgn)(sptz)’ tit?)}’

Then we get,

[(sisp) (£585), Rt7)] = [(s13p) (1,15) £17)]

which implies that

((sisp) (£5¢)) (E087)

Now lemma 75, we get

((s38p) (015)) (£723) = ((s15p) (trty) ) (E73),

((s15p) (tmt)) (£287).

o.

)
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now since S is right cancellative so we get (sis,)(tat) = (sisp)(tht2,)
which by lemma 75 implies that s,((t5t7)s:) = s,((t3t2,)s1), therefore by
lemma 79, we get (t5t3)s; = (t7t5,)s1, using we get,(sit?)tn = (sitp, )3
Thus (sit?,ti)p(slt%”t%). Hence M is right cancellative. Similarly we can
show that M is left cancellative. Now using lemma 75, we can easily
see that (t7¢5)t2 = (t5t7)t2 which implies that (£7¢3,2)p(t3t7,12), that is,

jr7o 1770

2 2\I[(42 12)] — [(42 42 2 4247 s : 2 42
(&7, t)][(E5, )] = [(£5, t5)]. Thus [(¢7,¢7)] is the inverse of [(¢5,¢7)]. Hence
all the cancellative elements [(t7,¢3)] of M form an Abelian group G in M.

We note that the product of two cancellative elements of G, is in G. We
have proved in theorem 1, that [(t2,¢2)] is the identity element of M, since
G contains elements of the form [(¢2,¢2)], therefore [(¢2,¢2)] is in G which

x Yy 0’70
is unique since G is a group. m

3.3 Direct Products in AG-groupoids

In this section we show that the direct product of regular AG-groupoids
is the most generalized class of the direct product of an AG-groupoids.
It has proved that the direct product of weakly regular, intra-regular,
right regular, left regular, left quasi regular, completely regular and (2, 2)-
regular AG-groupoids with left identity coincide. Also we have proved that
the direct product of intra-regular AG-groupoids with left identity (AG**-
groupoids) is regular but the converse is not true in general. Further we
have shown that non-associative direct product of regular, weakly regu-
lar, intra-regular, right regular, left regular, left quasi regular, completely
regular, (2,2)-regular and strongly regular AG*-groupoids do not exist.

If S; and Sy are AG-groupoids, then S; xSy = {(s1,82) : 51 € S1 and
s2 € S} is an AG-groupoid under the point-wise multiplication of ordered
pairs.

An element (a,b) of an AG-groupoid S; xSy is called a regular element
of §1 X8y if there exist z € S; and m € Sz such that (a,b) = ((ax)a, (bm)b)
and §;xSs is called regular if all elements of S are regular.

An element (a,b) of an AG-groupoid 81 xS» is called a weakly regular
element of S; xSy if there exist z,y € S and I,m € Sy such that (a,b) =
((azx)(ay), (bl)(bm)) and S; XS5 is called weakly regular if all elements of
S1 x84 are weakly regular.

An element (a,b) of an AG-groupoid S;xS3 is called an intra-regular
element of S; xSy if there exist z,y € S and I,m € Sy such that (a,b) =
((wa?)y, (1b*)m) and S; xSy is called intra-regular if all elements of S1 xS
are intra-regular.

An element (a,b) of an AG-groupoid S; xSy is called a right regular
element of S;xSs if there exists z € &1 and m € Sy such that (a,b) =
(a®x,b*m) = ((aa)z, (bb)m) and Sy xSs is called right regular if all elements
of §1 x84 are right regular.
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An element (a,b) of an AG-groupoid S;xSs is called a left regular
element of S; xSy if there exists z € S; and m € S such that (a,b) =
(xa?,mb?) = (x(aa), m(bb)) and S; xSy is called left regular if all elements
of §; X85 are left regular.

An element (a,b) of an AG-groupoid S; xSs is called a left quasi reg-
ular element of S; xSy if there exist z,y € S; and [,m € Sy such that
(a,b) = ((za)(ya), (Ib)(mb)) and S;xSs is called left quasi regular if all
elements of §1 xS, are left quasi regular.

An element (a,b) of an AG-groupoid S;xSs is called a completely
regular element of S if (a,b) is regular, left regular and right regular.
S1x8s is called completely regular if it is regular, left and right regular.

An element (a,b) of an AG-groupoid S;xSs is called a (2,2)-regular
element of S;xS8s if there exists x € S; and m € S such that (a,b) =
((a®z)a?, (b*m)b?) and S; xSy is called (2,2)-regular AG-groupoid if all
elements of Sy xSy are (2,2)-regular.

An element (a, b) of an AG-groupoid S; xSs is called a strongly regular
element of §;xSy if there exists z € & and m € Sy such that (a,b) =
((az)a, (bm)b) and ax = xa, bm = mb. §;XS3 is called strongly regular
AG-groupoid if all elements of S; xS are strongly regular.

Example 81 Let us consider an AG-groupoid S = {a, b, c} in the following
multiplication table.

Clearly S is non-commutative and non-associative, because bec # ¢b and
(cc)a # c(ca). Note that S has no left identity.

Example 82 Let us consider an AG-groupoid S; = {a,b,c,d, e, f} with
left identity e and So = {g, h, 1,7, k,1} with left identity j in the following
Cayley’s tables.

(Sl RS IS S s RS
ST
~ e~ S~ Q| .
~ S —w Q.

Q@ Q2 2 Q g
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SO 0 QT
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Clearly S;xS3 is non-commutative and non-associative, because (ed, ik) #
(de, ki) and ((de)e, (ik)k) # (d(ee),i(kk)).

Lemma 83 If §1xSs2 is a regular, weakly regular, intra-regular, right reg-
ular, left reqular, left quasi regular, completely regular, (2,2)-regular or
strongly regular AG-groupoid, then S; xSy = (81 xS2)2.

Proof. Let S; xS3 be a regular AG-groupoid, then (S;x82)? C S;xSs is
obvious. Let (a,b) € §;xS2 where a € §; and b € S, then since S; xSo
is regular so there exists (x,y) € S; xSz such that (a,b) = ((az)a, (by)b).
Now by using (2), we have

(a,b) = ((az)a, (by)b) = ((az)(by), (ab)) € (S1x82)(S1xS2) = (S1xS2)*.

Similarly if S;xSs is weakly regular, intra-regular, right regular, left
regular, left quasi regular, completely regular, (2,2)-regular or strongly
regular, then we can show that S;xSs = (S;xS2)?. =

The converse is not true in general, because S; xSy = (S1xS2)? holds
but &1 x8s2 is not regular, weakly regular, intra-regular, right regular, left
regular, left quasi regular, completely regular, (2,2)-regular and strongly
regular, because (d,k) € S1xSs is not regular, weakly regular, intra-
regular, right regular, left regular, left quasi regular, completely regular,
(2,2)-regular and strongly regular.

Theorem 84 IfS;xSs is an AG-groupoid with left identity (AG™* -groupoid),
then 81 XSs is intra-regular if and only if for all (a,b) € S1x8Sa, (a,b) =
((za)(az), (1b)(bm)) holds for some x,z € S; and I,m € Ss.

Proof. Let §; XS3 be an intra-regular AG-groupoid with left identity (AG**-
groupoid), then for any (a,b) € Sy xSs, there exist 2,y € S; and I,k € S,
such that (a,b) = ((za?)y, (Ib*)k). Now y = uv and k = pq for some
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u,v € 81 and p,q € So. Thus we have
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where 2222 =t and [?>m? = s for some t € 51, s € Ss.
Now we have

(a,b)

Where ¢(ta) = u, aa = v, s(sb) = p and bb = ¢ for some u,v € Sy,
p,q € So. Thus 81 xSy is intra-regular. =

Theorem 85 [fS; %8s is an AG-groupoid with left identity (AG™* -groupoid),
then the following are equivalent.

(1) S1xS3 is weakly regular.

(79) S1x 82 is intra-regular.
Proof. (i) = (i7) Let S1xS3 be a weakly regular AG-groupoid with left
identity (AG**-groupoid), then for any (a,b) € S; XS5 there exist z,y € S;
and I, m € Sy such that (a,b) = ((ax)(ay), (bl)(bm)) and x = wv, | = pq for
some u,v € 81, p,q € So. Let vu =t € §; and gp =n € S3. Now we have

(a,b)

Thus &1 X839 is intra-regular.
(79) = (i) It is easy. m

Theorem 86 If S;xSs is an AG-groupoid (AG* -groupoid), then the fol-
lowing are equivalent.

(1) S1x 82 is weakly regular.

(79) S1xS3 is right regular.
Proof. (i) = (i) Let S;xS> be a weakly regular AG-groupoid (AG**-
groupoid), then for any (a,b) € §; XS5 there exist z,y € S; and m,n € Sy
such that (a,b) = ((ax)(ay), (bm)(bn)). Now let zy = t and mn = s for
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some t € S. Now

(a,0) = ((az)(ay), (bm)(bn))
= ((aa)(zy), (bb)(mn)) = (a’t,b%s).

Thus 81 XS5 is right regular.
(19) = (i) It is easy. m

Theorem 87 IfS;xSs is an AG-groupoid with left identity (AG™* -groupoid),
then the following are equivalent.

(1) S1x 82 is weakly regular.

(73) S1xS2 is left regular.
Proof. (i) = (ii) Let S; xSz be a weakly regular AG-groupoid with left
identity (AG**-groupoid), then for any (a,b) € S; XS5 there exist z,y € Sy
and m,n € Sy such that (a,b) = ((az)(ay), (bm)(bn)). Now by using (2)
and (3), we have

(a,0) = ((az)(ay), (bm)(bn)) = ((aa)(zy), (bb)(mn))
= ((yz)(aa), (nm)(bb)) = ((yx)a?, (nm)b?)
((ta?), (sb*)) where yx = t, nm = s for some t € S; and s € Sy.

Thus S; xSy is left regular.
(11) = () It follows easily. m

Theorem 88 IfS;xSs is an AG-groupoid with left identity (AG™* -groupoid),
then the following are equivalent.

(1) §1xS2 is weakly regular.
(79) S1xS2 is left quasi regular.
Proof. The proof of this Lemma is straight forward, so is omitted. m

Theorem 89 If §1 %S5 is an AG-groupoid with left identity, then the fol-
lowing are equivalent.

(1) S1x 82 is (2, 2)-regular.

(79) S1xS2 is completely regular.
Proof. (i) = (ii) Let S; xSz be a (2,2)-regular AG-groupoid with left
identity, then for (a,b) € S; xS» there exist € S; and m € S such that
(a,b) = ((a®x)a?, (b*m)b?). Now

(a,b) = ((a*x)a?, (B*m)b*) = (ya*,nb?), where a’z =y € S; and b*m =n € Sy,

a’z)(aa), (b*m)(bb))
aa)(za?), (bb)(mb?))

2

(a’ b) =

a®z,b%l), where za®> = 2 € S; and mb*> =1 € Ss.
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This shows that S; xS3 is (2, 2)-regular. m

Lemma 90 FEvery weakly reqular AG-groupoid S1xSo with left identity
(AG™* -groupoid) is regular.
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Proof. Assume that S;xSs is a weakly regular AG-groupoid with left
identity (AG**-groupoid), then for any (a,b) € S; XS5 there exist z,y € 1
and m,n € Sy such that (a,b) = ((azx)(ay), (bm)(bn)). Let xy =t € Sy,
t((yx)a) =u € S and mn = s € Sy, s((nm)b) =1 € So. Now by using (1),
(2), (3) and (4), we have

(a,b)

Thus &1 XS5 is regular. =
The converse of above Lemma is not true in general, as can be seen from
the following example.

Example 91 [51] Let us consider an AG-groupoid S = {1,2,3,4} with
left identity 3 and Sy = {5,6,7,8} with left identity 6 in the following
Cayley’s tables.

1 2 3 4 |5 6 7 8
12 2 4 4 5/6 6 6 6
202 2 2 2 6(5 6 7 8
311 2 3 4 7|5 6 5 6
411 2 1 2 8|6 6 8 8

Clearly S;xS83 is regular, because (1,5) = ((1.3).1,(5.6).5), (2,6) =
((2.1).2,(6.8).6), (3,7) = ((3.3).3,(7.6).7) and (4,8) = ((4.1).4,(8.6).8),
but S; xSy is not weakly regular, because (1,5) € S;xSs is not a weakly
regular element of S;xXSs.

Theorem 92 [fS; x8s is an AG-groupoid with left identity (AG™* -groupoid),
then the following are equivalent.

(1) S1xS3 is weakly regular.

(i) 81 x84 is completely regular.
Proof. (i) = (4i) It follows easily

(19) = (i) It is easy. m
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Lemma 93 FEvery strongly regular AG-groupoid S1xSo with left identity
(AG™* -groupoid) is completely regular.

Proof. Assume that S;xSs is a strongly regular AG-groupoid with left
identity (AG**-groupoid), then for any (a,b) € S xSy there exist z € Sy,
y € Sy such that (a,b) = ((ax)a, (by)b), ax = za and by = yb. Now by
using (1), we have

(a,0) = ((az)a, (by)b) = ((za)a, (yb)b)
= ((aa)z, (bb)y) = (a*z,by).

This shows that S XS5 is right regular and so S; XS5 is completely regular.
]

Note that a completely regular AG-groupoid S; xSy need not to be a
strongly regular AG-groupoid, as can be seen from the following example.

Example 94 Let S = {a,b,c,d, e, f,g} be an AG-groupoid with the follow-
ing multiplication table.

QO T O Qo
0OQ Qe d =0
D TR O Q QX
S 0 Q Qe 0=
QL O 0 Q|

Q 0 Q0o o
0oL Qe o o
Q QU Ol

Clearly S1xS5 is completely regular. Indeed, S1xS5 is regular, as a =
(a.€).a, b = (b.a).b, ¢ = (c.d).c, d = (d.g).d, e = (e.c).e, f = (f.f).-f, g =
(g9.b).g, also 81 xS> is right regular, as a = (a.a).f, b = (b.b).f, c = (c.c).f,
d=(dd).f,e=(ee).f, f=(f.f).-f, 9= (g.9).f, and S; XSy is left regular,
as a = g.(a.a), b=d.(b.b), c = a.(c.c), d =e.(d.d), e =b.(e.e), f = f.(f.]),
g = c.(g.9), but §;xSs is not strongly regular, because ax # za for all
a € §1x8s.

Theorem 95 In an AG-groupoid Sy xSo with left identity (AG™* -groupoid),
the following are equivalent.

(1) S1x 82 is weakly regular.
(73) S1xS3 is intra-regular.
(791) S1 xSz is right regular.
(iv) 81 X84 is left regular.

(v) 81%XS83 is left quasi regular.
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(vi) 81 XS3 is completely regular.

(vii) For all (a,b) € S;xSa, there exist z,y € S; and I, m € S; such that
(a,5) = ((wa)(az), (1b) (bm)).
Proof. (i) = (i1) It follows from above Theorem.

(ii) = (7i7) It follows from above Theorems.

(#i1) = (iv) It follows from above Theorem.

(iv) = (v) Tt follows from above Theorem.

(v) = (vi) It follows from above Theorems.

(vi) = (i) It follows from above Theorem.
(i) < (vii) It follows from above Theorem. m

Remark 96 Fvery intra-regular, right regular, left reqular, left quasi reg-
ular and completely reqular AG-groupoids Sy xSo with left identity (AG™" -
groupoids) are regular.

The converse of above is not true in general. Indeed, from above Example
regular AG-groupoid with left identity is not necessarily intra-regular.

Theorem 97 In an AG-groupoid Sy xSo with left identity, the following
are equivalent.

(1) S1x 82 is weakly regular.
(#i) 81 XSy is intra-regular.
(791) S1 xSz is right regular.
(1v) S1%S83 is left regular.
(v) 81 X832 is left quasi regular.
(vi) 81 XS5 is completely regular.
(vit) For all (a,b) € 81 XS3, there exist z,y € S and I, m € Sy such that
(a,5) = ((za)(az), (1b)(bm)).
(vm) S1xS83 is (2, 2)-regular.
Proof. It is easy. m

Remark 98 (2,2)-reqular and strongly regular AG-groupoids Sy xSo with
left identity are regular.

The converse of above is not true in general, as can be seen from above
Example.

Theorem 99 Direct product of regular, weakly regular, intra-reqular, right
reqular, left reqular, left quasi regular, completely regular, (2,2)-regular and
strongly reqular AG™-groupoids S; xSa becomes semigroups.
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4

Ideals in Abel-Grassmann’s
Groupoids

In this chapter we introduce the concept of left, right, bi, quasi, prime
(quasi-prime) semiprime (quasi-semiprime) ideals in AG-groupoids. We in-
troduce m-system in AG-groupoids. We characterize quasi-prime and quasi-
semiprime ideals and find their links with m systems. We characterize
ideals in intra-regular AG-groupoids. Then we characterize intra-regular
AG-groupoids using the properties of these ideals.

4.1 Preliminaries

Let S be an AG-groupoid. By an AG-subgroupoid of S, we means a
non-empty subset A of S such that A% C A.

A non-empty subset A of an AG-groupoid S is called a left (right) ideal
of Sif SAC A (AS C A) and it is called a two-sided ideal if it is both
left and a right ideal of S.

A non-empty subset A of an AG-groupoid S is called a generalized
bi-ideal of S if (AS)A C A and an AG-subgroupoid A of S is called a
bi-ideal of S if (AS)A C A.

A non-empty subset A of an AG-groupoid S is called a quasi-ideal of
Sif SANAS C A.

Note that every one sided ideal of an AG-groupoid S is a quasi-ideal and
right ideal of S' is bi-ideal of S.

A non-empty subset A of an AG-groupoid S is called semiprime if
a®? € A implies a € A.

An AG-subgroupoid A of an AG-groupoid S is called a interior ideal of
S if (SA)S C A.

An ideal P of an AG-groupoid S is said to be prime if AB C P implies
that either A C P or B C P, where A and B are ideals of S. A left ideal P
of an AG-groupoid S is said to be a quasi-prime if for left ideals A and
B of S such that AB C P, we have either A C P or B C P.

An ideal P of an AG-groupoid S is called strongly irreducible if AN
B C P implies either A C P or B C P, for all ideals A, B and P of S.

If S is an AG-groupoid with left identity e then the principal left ideal
generated by a fixed element “a” is defined as (a) = Sa = {sa : s € S}.
Clearly, (a) is a left ideal of S contains a. Note that if A is an ideal of
S, then A? is an ideal of S. Also it is easy to verify that A = (A) and
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A% = (A?).

If an AG-groupoid S contains left identity e then S = eS C S2. Therefore
S = 52. Also Sa becomes bi-ideal and quasi-ideal of S. Using paramedial,
medial and left invertive law we get

((Sa)S)Sa C (SS)(Sa) = (aS)(SS) = (aS)S = (55)a = Sa,
Tt is easy to show that (Sa)(Sa) C S(Sa). Hence Sa is a bi-ideal of S. Also
S(Sa) N (Sa)S C S(Sa) C Sa.

Therefore Sa is a quasi-ideal of S. Also using medial and paramedial laws
and (1), we get

(Sa)?> = (Sa)(Sa) = (SS)a® = (aa)(SS) = S((aa)S)
= (89)((aa)S) = (Sa*)SS = (Sa?)S.
Therefore Sa? = a?S = (Sa?)S.

Example 100 Let S = {1,2,3,4,5,6}, and the binary operation “” be
defined on S as follows:

U W N~ o
88 8 8 8 8|k
8 8 8 8 8w
88 8 8 8|o

3
x
x
T
x
x
x

6
Where z € {1,3,4,5}. Then (5,
of S.
A subset M of an AG-groupoid S is called an m-system if for all a,b € M,
there exists a1 € (a), there exists by € (b) such that a;by € M [50].

Example 101 Let S = {1,2,3,4,5,6,7,8}, the binary operation “” be
defined on S as follows:

8

2
T
T
T
T
T
2 T
)

1
x
T
T
T
x
T
(

is an AG-groupoid and {2, z} is an ideal

1 2 3 4 5 6 7 8
111 2 4 4 4 4 4 8
218 4 4 4 4 4 4 4
314 4 4 4 4 4 4 4
414 4 4 4 4 4 4 4
514 4 4 4 4 4 4 4
614 4 4 4 4 4 4 4
714 4 4 4 4 4 4 4
812 4 4 4 4 4 4 4

Then (S,-) is an AG-groupoid. The set {1,2,4,8} is an m-system in S,
because if 1,2 € M, then4e€<1>,8€<2>and4-8=4¢€ M.
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Lemma 102 Product of two right ideals of an AG-groupoid with left iden-
tity is an ideal.

Proof. Let S be an AG-groupoid with left identity, therefore S = S2. Now
using medial law, we get

(AB)S = (AB)(SS) = (AS)(BS) C AB.
| ]

Lemma 103 Product of two left ideals of an AG-groupoid with left identity
s a left ideal.

Proof. Let S be an AG-groupoid with left identity, therefore S = S2. Now
using medial law, we get

S(AB) = (SS)(AB) = (SA)(SB) C AB.
|

Lemma 104 Let P be a left ideal of an AG-groupoid S with left identity
e, then the following are equivalent,

(i) P is quasi-prime ideal.

(i3) For all left ideals A and B of S: AB = (AB) C P = ACP or
BCP.

(ii1) For all left ideals A and B of S: A¢ P and B¢ P= AB ¢ P.

(tv) For all a,b e S: (a)(b) CP=a€ P orbec P.

Proof. (i) & (i) < (i19) is trivial.

(i) = (iv)

Let {(a)(b) C P, then by (i) either (a) C P or (b) C P, which implies
that either a € P or b € P.

(1v) = (i%)

Let ABC P. Let a € A and b € B, then (a)(b) C P, now by (iv) either
a € P or b € P, which implies that either AC Por BC P. m

Theorem 105 A left ideal P of an AG-groupoid S with left identity is
quasi-prime if and only if S\P is an m-system.

Proof. Let P is quasi-prime ideal of an AG-groupoid S with left identity
and let a,b € S\ P which implies that a,b ¢ P. Now by lemma 104(iv), we
have (a)(b) ¢ P and so (a)(b) C S\P. Now let a; € (a) and by € (b) which
implies that a;b; € S\P. Hence S\P is an m-system.

Conversely, assume that S\ P be an m-system. Let a ¢ P and b ¢ P, then
a,b € S\P. Now there exists a; in (a) and by in (b) such that a;b; € S\P.
This implies that a1b; ¢ P, which further implies that (a)(b) ¢ P. Hence
by lemma 104(iv), P is a quasi-prime ideal. m

Let P be a left ideal of an AG-groupoid S, P is called quasi-semiprime
if for any left ideal A of S such that A2 C P, we have A C P.

63



Theory of Abel Grassman's Groupoids

Lemma 106 Let A be a left ideal of an AG-groupoid S with left identity
e, then the following are equivalent,

(1) A is quasi-semiprime.

(ii) For any left ideals I of S: I = (I*) C A= 1C A.

(iii) For any left ideals I of S: 1 ¢ A= I*> ¢ A.

(iv) For alla€ S: [{(a))? CA=ac A.

Proof. (i) & (i) < (idi) are trivial.

(i) = (iv)

Let [(a)]> C A, then by (i) (a) C A, which implies that a € A.

(iv) = (i)

Let I? C A, if a € I, then [(a)]? C A, now by (iv) a € A, which implies
that I C A. =

A subset P of an AG-groupoid S with left identity is called an sp-system
if for all a € P, there exists ay, by € (a) such that a1b; € P [50].

Lemma 107 Every right ideal of an AG-groupoid S with left identity e is
an sp-system.

Proof. Let I be a right ideal of an AG-groupoid S with left identity e. Now
let i € T and s € S. Then by left invertive law, we get si = (es)i = (is)e €
(IS)S C I. Therefore I becomes an ideal of S. Also (i) = Si C ST C I.
Now let iy, ip € (i), which implies that i1io € I. Hence I is an sp-system.
(]

Note that every right ideal of an AG-groupoid S with left identity be-
comes an ideal of S.

Theorem 108 (a) Each m-system is an sp-system.
(b) A left ideal I of an AG-groupoid S is quasi-semiprime if and only if
S\I is an sp-system.

Proof. (a) Let a € M, then there exists a1, by € (a), such that a1b; € M
implying that M is an sp-system.

(b) A left ideal A of an AG-groupoid S with left identity and let a € S\ A
which implies that a ¢ A. Now let a1,b; € (a) which by lemma 106(iv),
implies that ai;b; € [(a)]* but [(a)]* € A. Therefore a;b; ¢ A. Hence
a1by € S\ A, which shows that S\ A is an sp-system.

Conversely, assume that S\ A is an sp-system. Let a ¢ A, then a € S\ A.
Now there exists a; and by in (a), such that a;b; € S\ A which implies that
aiby ¢ A, which further implies that [(a)]?> ¢ A. Hence by lemma 106(iv),
A is a quasi-semiprime ideal. m

4.2 Quasi-ideals of Intra-regular Abel-Grassmann’s
Groupoids

Here we begin with examples of intra-regular AG-groupoids.
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Example 109 Let S ={1,2,3,4,5,6}, then (5,-) is an AG-groupoid with
left identity 5 as given in the following multiplication table:

-1 2 3 4 5 6
114 5 6 1 2 3
213 4 5 6 1 2
312 3 4 5 6 1
411 2 3 4 5 6
516 1 2 3 4 5
65 6 1 2 3 4

Clearly (S,-) is intra-reqular because, 1 = (3 . 12) 22,2 = (1 . 22) -5,3 =
(2-3%)-5,4=(4-4%)-4,5=(3-5%)-6,6 = (2-6?) - 2.

Example 110 Let S = {a,b,c,d, e}, and the binary operation " " be de-
fined on S as follows:

* 1 2 3 4 5 6
171 1 1 1 1 1
211 2 1 1 1 1
3|1 1 3 4 5 6
411 1 6 3 4 5
511 1 5 6 3 4
61 1 4 5 6 1

Then clearly (S, *) is an AG-groupoid. Also 1 = (1x1%)x1, 2 = (2%22)x2,
3=(3%3%)%3,4 = (3x4%) x4 and 5 = (4%5%) x4, 6 = (3x62) x6. Therefore
(S,) is an intra-regular AG-groupoid. It is easy to see that {1} and {1,2}
are quasi-ideals of S.

In the rest by S we shall mean AG**-groupoid such that S = S2.

Theorem 111 For S the following conditions are equivalent.

(1) S is intra-regular.

(i4) RN L = RL, for every semiprime right ideal R and every left ideal
L.

(7i1) A = (AS)A, for every quasi-ideal A.
Proof. (i) = (iii) : Let A be a quasi ideal of S then, A is an ideal of S,
thus (AS)A C A.

Now let a € A, and since S is intra-reqular so there exist elements x, y
in S such that a = (xa®)y. Now by using medial law with left identity, left
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vertive law, medial law and paramedial law, we have

a (wa®)y = (z(aa))y = (a(za))y = (y(va))a
= (y(a((za®)y)))a = (y((za*)(zy)))a
= ((wa®)(y(zy)))a = ((z(aq))(y(zy)))a
= ((a(za))(y(zy)))a = ((ay)((za)(zy)))a
= ((wa)((ay)(zy)))a = ((wa)((az)y®))a
= ((¥*(a2))(az))a = (a((y*(az))z))a € (AS)A

Hence A = (AS)A
(#91) = (ii) : Clearly RL C RN L holds. Now

SRNSLNRSNLS =RSNSLNSRNLS
RNLN(SRNLS)C RNL. And
(RNL)S)(RNL) = (RSNLS)(RNL)
(RNLS)(RNL) C RL.

S(RNL)N(RNL)S

N

RNL

N

Hence RNL = RL.

(i) = (i) : Assume that RN L = RL for every right ideal R and every
left ideal L of S. Since a® € a®S, which is a right ideal of S and as by given
assumption a®S is semiprime which implies that a € a®S. Now clearly Sa
is a left ideal of S and a € Sa, Therefore by using left invertive law, medial
law, paramedial law and medial law with left identity, we have

a

Sana®S = (Sa)(a®S) = (Sa)((aa)$) = (Sa)((Sa)(ea))

(Sa)((Sa)(Sa)) = (Sa)((S5)(aa)) € (Sa)((SS)(Sa))
(5a)((a5)(59)) = (Sa)((aS)5) = (aS5)((Sa)5)

= (a(8a))(858) = (a(Sa))S = (S(aa))S = (Sa)s.

Hence S is intra-reqular. m

N m

Theorem 112 For S the following conditions are equivalent.
(1) S is intra-regular.
(i) For an ideal I and quasi-ideal Q, I N Q = IQ and I is semiprime.
(#i1) For quasi-ideals Q1 and Q2 ,Q1 N Q2 = Q1Q2 and Q1 and Q2 are
semiprime.

Proof. (i) = (éi¢) : Let @1 and Q2 be a quasi-ideal of S. Now @) and
Q2 become ideals of S. Therefore Q1Q2 C Q1 N Q2. Now let a € Q1 N Q2
which implies that @ € Q1 and a € Q. For a € S there exists x,y in S
such that a = (za?)y. Now using (1) and left invertive law, we get

a=(za®)y = (x(aa))y = (a(za))y = (y(za))a € (5(SQ1))Q2 C (5Q1) Q2 C Q1Q2.
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This implies that @1 N Q2 C Q1Q2. Hence Q1 N Q2 = Q1Q2. Next we
will show that Q1 and Qs are semiprime. For this let a? € Q. Therefore
a= (za®)y € (SQ1)S C Q. Similarly Q- is semiprime.

(#91) = (47) is obvious.

(ii) = (i) : Obviously Sa is a quasi-ideal contains a and Sa? is an ideal
contains a®. By (i) Sa? is semiprime so a € Sa®. Therefore by (ii) we get

a € Sa®>NSa= (Sa*)(Sa) C (Sa?)S.
Hence S is intra-regular. m

Theorem 113 For S the following conditions are equivalent.
(1) S is intra-regular.

(ii) For quasi-ideals Q1 and Q2, @1 N Q2 = (Q1Q2)Q1.

Proof. (i) = (i7) : Let Q1 and Q3 be quasi-ideals of S. Now (), and Q)3 be-

come ideals of S. Therefore (Q1Q2)@1 C (Q15)Q1 C Q1 and (Q1Q2)Q:1 C
(5Q2)S C Q2. This implies that (Q1Q2)Q1 C Q1 N Q2. We can easily see
that @1 N @2 becomes an ideal. Now, we get,

QiNQs = (Q1NQ2)°=(@1NQ2)*(Q1NQ2)
(Q1NQ2) (R1NQ2)) (Q1NQ2) C (Q1Q2)Q1.

Thus Q1 N Q2 C (Q1Q2)Q1. Hence Q1 N Q2 = (Q1Q2)Q1.

(i1) = (4) : Let @ be a quasi-ideal of S, then by (i7), we get Q@ = QNQ =
(QQ)Q C Q%Q C QQ = Q?. This implies that Q@ C Q? therefore Q? = Q.
Now since Sa is a quasi-ideal, therefore a € Sa = (Sa)? = Sa? = (SaQ) S.
Hence S is intra-regular. m

Theorem 114 For S the following conditions are equivalent.
(1) S is intra-regular.
(i1) For quasi-ideal Q and ideal J, QN J C JQ, and J is semiprime.

Proof. (i) = (i7) : Assume that Q is a quasi-ideal and J is an ideal of S.
Let a € QN J, then a € Q and a € J. For each a € S there exists x, y in S
such that a = (za?)y. Then using (1) and left invertive law we get,

a = (za®)y = (v (aa))y = (a(za))y = (y(za))a € (S(ST)Q C JQ.
Therefore @ N J C JQ. Next let > € J. Thus a = (za?)y € (SJ)S C J.

Hence J is semiprime.

(i) = (i) : Since Sa is a quasi and a2 is a an ideal of S containing a
and a? respectively. Thus by (i) J is semiprime so a € a?S. Therefore by
hypothesis, paramedial and medial laws, we get

a € Sana®S C (Sa)(a*S) = (Sa*)(aS) C (Sa*)s.

Hence S is intra-regular. m
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Theorem 115 If A is an interior ideal of S, then A? is also interior ideal.
Proof. Using medial law we immediately obtained the following
(54%) 8 = ((99)(A4))(55) = ((54) (S4)) (S9)
= ((SA)S)((SA)S) C AA = A%
(]

Theorem 116 For S the following conditions are equivalent.

(1) S is intra-regular.

(ii) For quasi-ideal Q, right ideal R and two sided ideal I, (QNR)NI C
(QR)I and R, I are semiprime.

(#3i) For quasi-ideal Q, right ideal R and right ideal I, (QNR)NI C (QR)I
and R, I are semiprime.

(iv) For quasi-ideal Q, right ideal R and interior ideal I, (Q NR)NI C
(QR)I and R, I are semiprime.

Proof. (i) = (iv) : Let a € (@ N R) N I. This implies that a € Q, a € R,
a € I. Since S is intra-regular therefore for each a € S there exists z,y € S
such that a = (za?) y. Now using left invertive law, medial law, paramedial
law and (1) we get,

va®)y = (v (aa))y = (a(za))y = (a (x((za®) y)))) y
a((za®) (zy))) y = (y ((va®) (29))) a = (y((x(aa)) (zy)) a
y ((a(za)) (zy))) a = ((a (za)) (y (zy))) a

((y (zy)) (za))a)a € (((S(59)) (SQ))R)I  (QR)I.

)
Therefore (Q N R)N T C (QR)I. Next let a® € R. Then using left invertive
law, we get

a = (za*)y = (z(aa))y = (a(za))y = (y (za)) a € RT.

This implies that a € R. Similarly we can show that I is semiprime.

(tv) = (14i) = (it) : are obvious.

(i1) = (i) : We know that Sa is a quasi and Sa? is right as well as two
sided ideal of S containing a and a? respectively, and by (ii) Sa? is semi-
prime so a € Sa?. Then by hypothesis and left invertive law, paramedial
and medial laws, we get

a € (SanSa*) N Sa* = ((Sa)(Sa*))Sa® = ((Sa*)(Sa?))Sa
C ((8a*)5)S = (S9)(Sa*) = (a®9)(SS) = (Sa*)$.

Hence S is intra-regular. m

a =

(wa
=
(
(

y=
)a
Ja

Theorem 117 For S the following conditions are equivalent.
(1) S is intra-regular.
(i1) For every bi-ideal B and quasi-ideal Q, BN Q C BQ.
(tii) For every generalized bi-ideal B and quasi-ideal Q, BN Q C BQ.
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Proof. (i) = (4it) : Let B is a bi-ideal and @ is a quasi-ideal of S. Let
a € BN @ which implies that a € B and a € Q. Since S is intra-regular so
for a € S there exists z,y € S such that a = (za?)y. Now B and @ become
ideals of S. Then using (1) and left invertive law, we get

a = (za®)y = (¢(aa))y = (a(za))y = (y(za))a € (S(SB)Q C BQ.
Hence BN Q C BQ.
(791) = (41) is obvious.
(#9) = (i) : Using (i) we get
a€ SanSaC Sa® = (Saz) S.

Hence S is intra-regular. m

Theorem 118 For S the following conditions are equivalent.

(1) S is intra-regular.

(ii) For quasi-ideal Q1, two sided ideal I and quasi-ideal Q2, (Q1 NI)N
Q2 C(Q11)Q2, and I is semiprime.

(#4i) For quasi-ideal Q1, right ideal I and quasi ideal Q2,(Q1 NI)NQ C
(Q11) Q2, and I is semiprime.

(iv) For quasi-ideal Q1, interior ideal I and quasi-ideal Q2 (Q1 NI) N
Q2 C (Q11)Q2, and I is semiprime.

Proof. (i) = (v) : Let @ and Q2 be quasi-ideals and I be an interior ideal
of S respectively. Let a € (@1 NI) N Q2. This implies that a € Q1,a € T
and a € Q2. For a € S there exists z,y € S such that a = (za?)y. Now
@Q1,Q2 and I become ideals of S. Therefore by left invertive law, medial
law and paramedial law we get,

a = (va’)y = (z(aa))y = (a(za))y = (y(za))a = (y(za))((y(za))a)
[afy(za)}[(za)y] € [Q1{S(SD}[(SQ2)S] € (Q1]) Q-

Hence (Q1 N 1) N Q2 C (Q11) Q2. Next let a? € I. Then a = (za?)y =
I? C I. This implies that a € I. Hence that I is semiprime.

(v) = (iv) = (4i9) = (44) are obvious.

(ii) = (i) : Since Sa is a quasi and Sa? is an ideal of S containing a
and a? respectively. Also by (ii) Sa? is semiprime so a € Sa®. Thus by
using paramedial and medial laws, we get

a € (SanSa*) N SacC ((Sa)(Sa*)Sa = ((a*S)(aS))Sa
= ((a®9)(59))(5S) = ((a*9)8)S = ((85)a*)$ = (Sa*)s.

Hence S is intra-regular. m

Theorem 119 For S the following conditions are equivalent.
(1) S is intra-regular.
(i1) Fvery quasi-ideal is idempotent.
(#31) For quasi-ideals A, B, AN B = ABN BA.
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Proof. (i) = (4i¢) : Let A and B be quasi-ideals of S. Thus
ABNBAC ABC SBC Band ABNBACBACSACA.

Hence ABNBA C AN B. Now let a € AN B. This implies that a € A and
a € B. Since S is intra-regular AG-groupoid so for a in S there exists
z,y € S such that a = (za?) y and y = wv for some u,v in S. Then by (1)
and medial law, we get

a = (va®)y = (z(aa))y = (a(za))(uwv) = (au)((za)v) € (AS) ((SB)S) C AB.

Similarly we can show that a € BA. Thus AN B C AB N BA. Therefore
ANB=ABnNBA.

(131) = (i9) : Let @ be a quasi-ideal of S. Thus by (#i), Q N Q =
QQ N QQ. Hence @ = QQ.

(#9) = (¢) : Since Sa is a quasi-ideal of S contains a and by (i) it is
idempotent therefore by medial law, we have

a € Sa = (Sa)? = (Sa)(Sa) = (SS)a* = Sa? = (Sa?)8S.
Hence S is intra-regular. m

Theorem 120 For S the following conditions are equivalent.

(7) S is intra-regular.

(i7) For bi-ideal B, two sided ideal I and quasi-ideal Q,(BNI)NQ C
(BI)Q and I is semiprime.

(#3i) For bi-ideal B, right ideal I and quasi-ideal Q,(BNI)NQ C (BI)Q
and I is semiprime.

(iv) For generalized bi-ideal B, interior ideal I and quasi-ideal Q,(B N
INQ C(BI)Q and I is semiprime.

Proof. (i) = (iv) : Let B be a generalized bi-ideal, I be an interior ideal
and @ be a quasi-ideal of S respectively. Let a € (BN I)N Q. This implies
that @ € B,a € I and a € Q. Since S is intra-regular so for a € S there
exists x,y € S such that a = (za?)y. Now B, I and @ become ideals of S.
Therefore using left invertive law, medial law, paramedial law and (1) we
get,

a = (za*)y = (z(aa))y = (a(za))y = (y(va))a = (y(za))((y(za))a)
= [afy(za)}][(za)y] € [B{S(SD}(SQ)S] C (BI) Q-

Therefore (BNI)NQ C (BI)Q. Next let a® € I. Then a = (za?)y = I? C I.
This implies that a € I.

(tv) = (131) = (41) are obvious.

(ii) => (i) : Clearly Sa is both quasi and bi-ideal containing a and Sa?
is two sided ideal contains a? respectively. Now by (ii) Sa? is semiprime so
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a € Sa?. Therefore using paramedial, medial laws and left invertive law we
get,

(San Sa*) N Sa C ((Sa)(Sa®))(Sa) C ((a*S)(aS))(SS)
((aQS)(SS))(SS) = ((a®*S)S)S = ((89)a*)S = (Sa?)S.

IS
N m

Hence S is intra-regular. m

Theorem 121 For S the following conditions are equivalent.
(1) S is intra-regular.
(ii) For quasi-ideals Q and bi-ideal B, @ N B C QB.
(#i1) For quasi-ideal @ and generalized bi-ideal B, @ N B C QB.

Proof. (i) = (4i7) : Let  and B be quasi and generalized bi-ideal of S.
Let a € @ N B. This implies that a € Q and a € B. Since S is intra-regular
so for a € S there exists z,y € S such that a = (za?)y. Now, Q and B
becomes ideals of S. Therefore using and left invertive law, we get,

a= (za®)y = (z(aa))y = (a(za))y = (y (za)) a € (S(SQ)B C QB.
Thus a € QB. Hence QN B C @QB.
(#i1) = (i1) is obvious.
(1) = (i3) : Clearly Sa is both quasi and bi-ideal of S containing a.
Therefore using (i¢), paramedial law, medial law we get

a € San Sa C (Sa)(Sa) = (Sa?) = (Sa?)S.
Hence S is intra-regular. m

Theorem 122 For S the following conditions are equivalent.
(i) S is intra-regular.

(ii) For every quasi-ideal Q of S,Q = (5Q)* N (QS)?.

Proof. (i) = (i¢) : Let Q be any quasi-ideal of S. Now it becomes an
ideal of S. Now using medial law and paramedial law we get

(SQ)* N(QS)* = (SQ)(SQ) N (Q9)(QS) =RENQQ C Q.

Now let @ € @ and since S is intra-regular so there exists xz,y € S such
that a = (za?)y. Then using left invertive law, medial law and paramedial
law, we get

a = (za®)y = (a(za))y = (y(za))a = (y(va))((za®)y) = (za*)((y(za))y)
= (y(y(za)))((aa)z) = (aa)((y(y(za)))z) = (z(y(y(za))))(aa)
S(QQ) = ($9)(QQ) = (SQ)(SQ) = (SQ)*.

Thus a € (SQ)% It is easy to see that (SQ)* = (QS)?. Therefore a €
(SQ)?>N(QS)2. Thus Q C (5Q)? N (QS)%. Hence (SQ)>N(QS)? = Q.

m
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(i7) = (i) : Clearly Sa is a quasi-ideal containing a. Thus by (i) and
paramedial law, medial law and left invertive law we get,

a € Sa=(S(5a)) = ((S9)(Sa))* = ((aS)(595))* = (($5)a)*
= (Sa)* = (Sa®) = (Sa?)S.

Hence S is intra-regular. m

Theorem 123 For S the following conditions are equivalent.
(1) S is intra-regular.

(ii) For every quasi-ideal of S, Q = (SQ)*Q N (QS9)*Q.

Proof. (i) = (it) : Let @ be a quasi-ideal of an intra-regular AG-groupoid
S with left identity. Now it becomes an ideal of S. Then obviously

(SQ)*QN(QS9)*Q < Q.

Now let @ € @ and since S is intra-regular so there exists x,y € S such
that a = (za?)y. Then using left invertive law, paramedial law and medial
law, we have,

a = (wa?)y = (a(za))y =
= (yl(za®)(@y)))a = (@a®)(y(ey)))a = ((ey)(@(@y)))a
2((ay)

= (a

Therefore a € ((Q (55))° Q = (QS)* Q. This implies that a € (QS)* Q.
Hence @ C (QS)2 Q@. Now since (QS)2 = (SQ)Q, thus Q C (SQ)?Q. There-
fore Q C (5Q)?Q N (QS)?Q. Hence Q = (5Q)?Q N (QS)*Q.

(#7) = (4) : Clearly Sa is a quasi-ideal containing a. Therefore by (ii) we
get,

a € Sa = (S(Sa))*(Sa) C (Sa)*(Sa) = (Sa*)(Sa) C (Sa*)S.
Hence S is intra-regular. m

Theorem 124 For S the following conditions are equivalent.

(i) S is intra-regular.

(#3) For any quasi-ideals Q1 and Q2 of S, Q1Q2 C Q201 and Q1, Q2
are semiprime.

Proof. (i) = (ii) : Let Q1 and Q2 be any quasi-ideals of an intra-regular
AG-groupoid S with left identity. Now @1 and @2 become ideals of S. Let
a € Q1Q3. Then a = wv where u € Q1 and v € (2. Now since S in intra-
regular therefore for u and v in S there exists 1,22, y1,y2 € S such that
a = (((z1u?) y1)((220?) y2)). Using medial law, paramedial law, medial law
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and left invertive law, we have

a = (((210*) y1)((220°) 12)) = ((210?) (220°)) (y211)
((z1(uw)) (22 (v0))) (y2y1) = ((u(z1u)) (v(220))) (Y2y1)

(((z2v)(z1w)) (vu))(y2y1) = (((z2w1)(vw)) (vu))(y291)

(((vu) (vu))(@221))(Y291) = ((yzyl)(wle)) ((vu) (vu))

((y2y1)(z21)) (v*u?) = ((y2y1)0*) ((m21)u?).

€ ((89)Q3) ((59)Q3) C (SQ2) (SQ1) € Q2Q1.

Thus @ € Q2Q:1. Hence Q1Q> C Q2Q;. Let a® € Q. Then since S is
intra-regular so for a € S there exists z,y € S such that, a = (za?)y. Then
using left invertive law, we get

a = (za®)y = (v (aa))y = (a(za))y = (y (za)) a € ((SS)Q1)Q1 € Q1.

Similarly we can show that Q2 semiprime.
(i) = (i) : Let Sa be a quasi-ideal of S containing a then by (i) and
using medial law we get,

a € San Sa = (Sa)(Sa) = (Sa*) = (Sa?)S.
Hence S is intra-regular. =

Theorem 125 For S the following conditions are equivalent.

(1) S is intra-regular.

(i4) For any quasi-ideal A and two sided ideal B of S, AN B = (AB)A
and B is semiprime.

(#i1) For any quasi-ideal A and right ideal B of S, AN B = (AB)A and
B is semiprime.

(tv) For any quasi-ideal A and interior ideal B of S, A, B, ANB = (AB)A
and B is semiprime.

Proof. (i) = (iv) : Let A and B be a quasi-ideal and an interior ideal of S
respectively. Now A and B are ideals of S. Then (AB)A C (AS)A C A and
AB)A C (SB)S C B. Thus (AB)A C AN B. Next let a € AN B, which
implies that @ € A and a € B. Since S is intra-regular so for a there exists
x,y € S, such that a = (xa?)y. Then using left invertive law, we get,

a = (za®)y = (a(za))y = (y(za))a = (y(zva))a
= (y(a((za®)y)))a = (y((za*)(zy)))a
= ((@a®)(y(zy))a = ((a(za))(y(zy)))a
= (((y(zy))(za))a)a = (aa) ((y(zy))(za))
C (AB)(S(54)) € (AB)A.

Thus AN B = (AB)A. Next to show that B is semiprime let a*> € B.
Therefore for each a € S there exists x,y € S such that a = (za?)y €
BB C B. Thus a? € B. This implies that a € B. Hence B is semiprime.
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(iv) = (i4i) = (i4) are obvious.

(ii) = (i) : Since Sa is quasi-ideal and Sa? be two sided ideal containing
a and a? respectively. And by (ii) Sa? is semiprime so a € Sa?. Therefore
using (i), left invertive law, medial law,and paramedial law, we get

SanSa® = ((Sa)(Sa®))(Sa) C ((S8)(Sa*)) (SS) = ((a*$) (585))S
= ((a®S) 9)S = ((SS)a*)S = (Sa*)S.
Hence S is intra-regular. m

Theorem 126 For S the following conditions are equivalent.

(1) S is intra-regular.

(i1) For every left ideal A and B of S, ANB = (AB)N (BA).

(#3i) For every quasi ideal A and every left ideal B of S, ANB = (AB)N
(BA).

(tv) For every quasi ideals A and B of S, AN B = (AB) N (BA).

Proof. (i) = (i) : Let A and B be any generalized bi-ideal of S, then
A and B are ideals of S. Clearly AB C AN B, now AN B is an ideal and
ANB=(AnB)%2. Now ANB = (ANB)? C AB. Thus AN B = AB and
then ANB=BNA=BA. Hence AN B = (AB) N (BA).

(iv) = (i4i) = (it) are obvious.

(#3) = (7) : Since Sa is a left ideal of an AG-groupoid S with left identity
containing a. Therefore by (i7) and medial law we get

Sa N Sa = (Sa)(Sa) = Sa? = (Sa?)S.
Hence S is intra-regular. m

Theorem 127 For S the following conditions are equivalent.

(1) S is intra-regular.

(i1) For any quasi-ideals Q and two sided ideal I of S, QNI = (QI)Q
and I is semiprime.

(#i1) For any quasi-ideals @ and right ideal I of S,Q NI =(QI)Q and I
18 semiprime.

(iv) For any quasi ideals Q and interior ideal I of S,Q NI = (QI)Q
and I is semiprime.

Proof. (i) = (v) : Let @ and I be a quasi-ideal and an interior ideal of
S respectively. Now @ and I are ideals of S. Then (QI)Q C (QS)Q C @
and (QI)Q C (ST)S C I. Thus (QI)Q C @ N I. Next let a € Q N I, which
implies that ¢ € @ and a € I. Since S is intra-regular so for a there exists
x,y € S, such that a = (xa?)y. Then left invertive law, we get,

a = (va®)y=(v(aa))y = (a(za))y = (a (z((xa®) y))) y
= (a((we®) @y))) y = (v ((za°) (29))) @ = (y ((@(aq)) (29))) @
(y (a(za)) (zy))) a = ((a (za)) (y (zy))) a = (((¢y (zy)) (za)) a)a
= (aa) ((y(zy)) (za)) € (QI) (5 (55) (5Q) € (QN)Q-
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Thus Q NI = (QI)Q. Next to show that I is semiprime let a? € I.
Therefore for each a € S there exists x,y € S such that a = (za?)y €
(SI)S C I. Thus a? € I. This implies that a € I. Hence I is semiprime.

(v) = (iv) = (4i1) = (i1) are obvious.

(i) = (i) : Since Sa is a quasi-ideal and Sa? be a two sided ideal
containing a and a? respectively. And by (i7) Sa? is semiprime so a € Sa?.
Therefore using (i7), left invertive law, medial law and paramedial we get,

SansSa®> = ((Sa)(Sa?))(Sa) = ((SS)(Sa*)) (SS) = ((a*5) (59))S
= ((a28) 9)S = ((SS) a?)S = (Sa2)S.

Hence S is intra-regular. m

4.3 Characterizations of Ideals in Intra-regular
AG-groupoids
An element a of an AG-groupoid S is called intra-regular if there exist

z,y € S such that a = (za?)y and S is called intra-regular, if every
element of S is intra-regular.

Example 128 Let us consider an AG-groupoid S = {a,b,c,d,e, f} with
left identity e in the following Clayey’s table.

.la b ¢ d e f
ala a a a a a
bla b b b b b
cla b f f d f
dla b f f ¢ f
ela b ¢ d e f
fla b f F f f

Example 129 Let us consider the set (R, +) of all real numbers under the
binary operation of addition. If we define axb =b—a—r, where a,b,r € R,
then (R, x) becomes an AG-groupoid as,

(axb)xc=c—(axb)—r=c—(b—a—r)—r=c—b+a+r—r=c—b+a
and
(cxb)xa=a—(cxb)—r=a—(b—c—r)—r=a—-b+c+r—r=a—-b+c

Since (R,4) is commutative so (a * b) x ¢ = (¢ x b) *x a and therefore
(R, *) satisfies a left invertive law. It is easy to observe that (R, *) is non-
commutative and non-associative. The same is hold for set of integers and
rationals. Thus (R, *) is an AG-groupoid which is the generalization of an
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AG-groupoid given in 1988 (see [39]). Similarly if we define axb = ba~'r=1,
then (R\{0}, ) becomes an AG-groupoid and the same holds for the set of
integers and rationals. This AG-groupoid is also the generalization of an
AG-groupoid given in 1988 (see [39]).

An element a of an AG-groupoid S is called an intra-regular if there exist
x,y € S such that a = (za?)y and S is called intra-regular, if every element
of S is intra-regular.

Example 130 Let S = {a,b,c,d,e} be an AG-groupoid with left identity
b in the following multiplication table.

o QU el
QO T O Q|0
o S0 Qe
S0 Qe

Q2 2 2 g

O QU O Q)

Clearly S is intra-regular because, a = (aa?)a, b = (cb?)e, ¢ = (dc?)e,
d = (cd*)c, e = (be?)e.

An element a of an AG-groupoid S with left identity e is called a left
(right) invertible if there exits z € S such that za = e (ax = €) and a is
called invertible if it is both a left and a right invertible. An AG-groupoid
S is called a left (right) invertible if every element of S is a left (right)
invertible and S is called invertible if it is both a left and a right invertible.

Note that in an AG-groupoid S with left identity, S = S2.

Theorem 131 Fvery AG-groupoid S with left identity is an intra-regular
if S is left (right) invertible.

Proof. Let S be a left invertible AG-groupoid with left identity, then for
a € S there exists € S such that a'a = e. Now by using left invertive
law, medial law with left identity and medial law, we have

a = ea=ce(ea)=(aa)(ea) € (Sa)(Sa) = (Sa)((55)a)
(Sa)((a5)S) = (a5)((Sa)S) = (a(5a))(SS)
= (a(Sa))S = (S(aa))S = (Sa?)s.

Which shows that S is intra-regular. Similarly in the case of right invert-
ible. =

Theorem 132 An AG-groupoid S is intra-reqular if Sa = S or aS = S
holds for all a € S.

Proof. Let S be an AG-groupoid such that Sa = S holds for all a € 5,
then S = S2. Let a € S, therefore by using medial law, we have

a €8 =(SS)S = ((Sa)(Sa))S = (($5)(aa))S C (Sa?)S.
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Which shows that S is intra-regular.
Let a € S and assume that aS' = S holds for all a € S, then by using left
invertive law, we have

aeS=285=(aS)S = (59)a = Sa.

Thus Sa = S holds for all a € S, therefore it follows from above that S is
intra-regular. m
The converse is not true in general from Example above.

Corollary 133 If S is an AG-groupoid such that aS = S holds for all a
€ S, then Sa = S holds for all a € S.

Theorem 134 If S is intra-regular AG-groupoid with left identity, then
(BS)B = BN S, where B is a bi-(generalized bi-) ideal of S.

Proof. Let S be an intra-regular AG-groupoid with left identity, then
clearly (BS)B C BN S. Now let b € BN S, which implies that b € B and
b€ S. Since S is intra-regular so there exist z,y € S such that b = (zb?)y.
Now by using medial law with left identity, left invertive law, paramedial
law and medial law, we have

z(bb))y = (b(xb))y = (y(xb))b = (y(z((xb?)y)
((xb?)(zy)))b = ((9652)
b)(((zy)y)z))b =
2a%)(bb))b = (b

b =

(b
(y ((y

This shows that (BS)B=BNS. m

The converse is not true in general. For this, let us consider an AG-
groupoid S with left identity e in Example 128. It is easy to see that
{a,b, f} is a bi-(generalized bi-) ideal of S such that (BS)B = BN S but
S is not an intra-regular because d € S is not an intra-regular.

(
(y
(
(

Corollary 135 If S is intra-reqular AG-groupoid with left identity, then
(BS)B = B, where B is a bi-(generalized bi-) ideal of S.

Theorem 136 If S is intra-reqular AG-groupoid with left identity, then
(SB)S = SN B, where B is an interior ideal of S.

Proof. Let S be an intra-regular AG-groupoid with left identity, then
clearly (SB)S C SN B. Now let b € SN B, which implies that b € S
and b € B. Since S is an intra-regular so there exist x,y € S such that
b = (zb?)y. Now by using paramedial law and left invertive law, we have

b= ((ex)(bb))y = ((bb)(we))y = (((ze)b)b)y € (SB)S.
Which shows that (SB)S =SNB. =
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The converse is not true in general. It is easy to see that form Example
128 that {a, b, f} is an interior ideal of an AG-groupoid S with left identity
e such that (SB)S = BN S but S is not an intra-regular because d € S is
not an intra-regular.

Corollary 137 If S is intra-regular AG-groupoid with left identity, then
(SB)S = B, where B is an interior ideal of S.

Let S be an AG-groupoid, then () # A C S is called semiprime if a? €
A implies a € A.

Theorem 138 An AG-groupoid S with left identity is intra-reqular if L U
R = LR, where L and R are the left and right ideals of S respectively such
that R is semiprime.

Proof. Let S be an AG-groupoid with left identity, then clearly Sa and
a’S are the left and right ideals of S such that a € Sa and a® € @29,
because by using paramedial law, we have

a’S = (aa)(SS) = (S5)(aa) = Sa*.

Therefore by given assumption, a € a2S. Now by using left invertive law,
medial law, paramedial law and medial law with left identity, we have

a € SaUa’$ = (Sa)(a®S) = (Sa)((aa)S) = (Sa)((Sa)(ea)
C  (Sa)((Sa)(Sa)) = (Sa)((SS

c )(aa)) € (Sa)((S5)(Sa))
= (5a)((a5)(59)) = (Sa)((a5)S) = (aS)((Sa)S)
= (a(80a))(85) = (a(Sa))S = (S(aa))S = (Sa”)5.

Which shows that S is intra-regular. m

The converse is not true in general. In Example 128, the only left and
right ideal of S is {a, b}, where {a, b} is semiprime such that {a,b}U{a,b} =
{a,b}{a,b} but S is not an intra-regular because d € S is not an intra-
regular.

Lemma 139 [38] If S is intra-regular reqular AG-groupoid, then S = S2.

Theorem 140 For a left invertible AG-groupoid S with left identity, the
following conditions are equivalent.

(i) S is intra-regular.

(1) RN L = RL, where R and L are any left and right ideals of S
respectively.
Proof. (i) = (it) : Assume that S is intra-regular AG-groupoid with left
identity and let a € S, then there exist z,y € S such that a = (za?)y.
Let R and L be any left and right ideals of S respectively, then obviously
RL C RN L. Now let a € RN L implies that a € R and a € L. Now by
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using medial law with left identity, medial law and left invertive law, we
have

a = (za®)y € (Sa”)S = (S(aa))S = (a(Sa))S = (a(Sa))(S5)
= (a9)((5a)5) = (Sa)((a5)5) = (Sa)((55)a) = (SG)(Sa)
C (SR)(SL) = ((SS)R)(SL) = ((RS)S)(SL) <

This shows that RN L = RL.

(1) = (4) : Let S be a left invertible AG-groupoid with left identity,
then for a € S there exists a' € S such that a'a = e. Since a2S is a right
ideal and also a left ideal of S such that a? € a2, therefore by using given
assumption, medial law with left identity and left invertive law, we have

a® € a’Sna®S = (a?9)(a%S) = a*((a®S)S) = a*((SS)a?)
= (aa)(Sa?) = ((Sa*)a)a.

Thus we get, a? = ((za?)a)a for some = € S.
Now by using left invertive law, we have

(aa)a’ = (((za®)a)a)a

(@a)a = (aa)(((za®)a)

a = (za?)a.
This shows that S is intra-regular. m

Lemma 141 [38] Every two-sided ideal of an intra-regular AG-groupoid S
with left identity is idempotent.

Theorem 142 In an AG-groupoid S with left identity, the following con-
ditions are equivalent.

(7) S is intra-regular.

(ii) A= (SA)?, where A is any left ideal of S.
Proof. (i) = (ii) : Let A be a left ideal of an intra-regular AG-groupoid
S with left identity, then SA C A and (SA)2 = SAC A. Now A = AA C
SA = (SA)?, which implies that A = (SA)%.

(ii) = (i) : Let A be a left ideal of S, then A = (SA)? C A2, which
implies that A is idempotent and by using Lemma 149, S is intra-regular.
[

Theorem 143 In an intra-regular AG-groupoid S with left identity, the
following conditions are equivalent.

(1) A is a bi-(generalized bi-) ideal of S.

(ii) (AS)A = A and A? = A.
Proof. (i) = (i) : Let A be a bi-ideal of an intra-regular AG-groupoid S
with left identity, then (AS)A C A. Let a € A, then since S is intra-regular
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so there exist x, y € S such that a = (za?)y. Now by using medial law with
left identity, left invertive law, medial law and paramedial law, we have

a = (za®)y = (x(aa))y = (a(za))y = (y(za))a
= (y(((xa®)y)))a = (y((za®)(zy)))a
= ((za®)(y(zy)))a = ((z(aa))(y(zy)))a
= ((a(za))(y(zy)))a = ((ay)((za)(zy)))a
= ((za)((ay)(zy)))a = ((za)((az)y®))a
= ((¥*(am))(az))a = (a((y*(az))z))a € (AS)A

Thus (AS)A = A holds. Now by using medial law with left identity, left
invertive law, paramedial law and medial law, we have

a =

(
(
(
(
=
(
(
(
(
(

Hence A = A2 holds.
(#4) = (7) is obvious. m

Theorem 144 In an intra-regular AG-groupoid S with left identity, the
following conditions are equivalent.

(i) A is a quasi ideal of S.

(1) SQNQS = Q.
Proof. (i) = (i7) : Let @ be a quasi ideal of an intra-regular AG-groupoid
S with left identity, then SQ N QS C Q. Let ¢ € Q, then since S is intra-
regular so there exist x, y € S such that ¢ = (z¢?)y. Let pg € SQ, then
by using medial law with left identity, medial law and paramedial law, we
have

pa = p((z*)y) = (z¢*)(py) = (x(q9))(py) = (a(zq))(py)

Il
[~}
S
=
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Now let qy € @S, then by using left invertive law, medial law with left
identity and paramedial law, we have

ap = ((=¢)y)p = (py)(zq¢*) = (py)(z(qq9)) = =((py)(qq))
= 2((qq)(yp)) = (q9)(z(yp)) = ((z(yp))a)q € SQ.

Hence QS = SQ. As by using medial law with left identity and left
invertive law, we have

q = (2¢*)y = (z(q9))y = (¢(zq))y = (y(xq))q € SQ.

Thus g € SQ N QS implies that SQ N QS = Q.
(#4) = (7) is obvious. m

Theorem 145 In an intra-reqular AG-groupoid S with left identity, the
following conditions are equivalent.

(i) A is an interior ideal of S.

(i) (SA)S = A.
Proof. (i) = (ii) : Let A be an interior ideal of an intra-regular AG-
groupoid S with left identity, then (SA)S C A. Let a € A, then since S is
intra-regular so there exist @, y € S such that a = (za?)y. Now by using
medial law with left identity, left invertive law and paramedial law, we have

a = (za®)y = (z(aa))y = (a(za))y =(( a))a = (y(za))((za*)y)
= (((wa®)y)(za))y = ((az)(y(za®))y = (((y(za))z)a)y € (SA)S.

Thus (SA)S = A.
(#9) = (i) is obvious. m

—~

Theorem 146 In an intra-regular AG-groupoid S with left identity, the
following conditions are equivalent.

(1) Ais a (1,2)-ideal of S.

(ii) (AS)A? = A and A% = A .
Proof. (i) = (ii) : Let A be a (1, 2)-ideal of an intra-regular AG-groupoid
S with left identity, then (4S)A% C A and A? C A. Let a € A, then since
S is intra-regular so there exist x, y € S such that a = (za?)y. Now by
using medial law with left identity, left invertive law and paramedial law,
we have
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Thus (AS)A? = A. Now by using medial law with left identity, left
invertive law, paramedial law and medial law, we have

a = (za®)y=(x(aa))y = (a(za))y = (y(za))a

= (y(za))((za®)y) = (za®)((y(za))y) = (x(aa))((y(za))y)
= (a(za))((y(za))y) = (((y(za))y)(za))a = ((ax)(y(y(za))))a
= ((((za®)y)z)(y(y(za))))a = (((zy)(za®))(y(y(za))))a
= (((=y)y)((za®)(y(za))))a = ((y°z)((x(aa))(y(za))))a
= ((v2)((zy)((aa)(za))))a = ((y°z)((aa)((zy)(za))))a
= ((aa)((v*2)((zy)(za))))a = ((aa)((y*z)((xz)(ya))))a
= ((((z2)(ya))(y*z))(aa))a = ((((ay)(zz))(y*z))(aa))a
= ((((z*y)a)(y’z))(aa))a = (((zy*)(a(z’y)))(aa))a
= ((a((zy?)(=*y)))(aa))a = ((a(z’y*))(aa))a
€ ((AS)A?)AC AA = A?

Hence A? = A.

(i4) = (i) is obvious. m

Lemma 147 [38]Every non empty subset A of an intra-reqular AG-groupoid
S with left identity is a left ideal of S if and only if it is a right ideal of S.

Theorem 148 In an intra-regular AG-groupoid S with left identity, the
following conditions are equivalent.

(i) Ais a (1,2)-ideal of S.

(#3) A is a two-sided ideal of S.
Proof. (i) = (i7) : Assume that S is intra-regular AG-groupoid with left
identity and let A be a (1,2)-ideal of S then, (AS)A% C A. Let a € A, then
since S is intra-regular so there exist z, y € S such that a = (xa?)y. Now
by using medial law with left identity, left invertive law and paramedial
law, we have

sa =
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Hence A is a left ideal of S and A is a two-sided ideal of S.

(i) = (i) : Let A be a two-sided ideal of S. Let y € (AS)A?, then
y = (as)b? for some a,b € A and s € S. Now by using medial law with left
identity, we have

y = (as)b® = (as)(bb) = b((as)b) € AS C A.
Hence (AS)A? C A, therefore A is a (1,2)-ideal of S. m

Lemma 149 [38] Let S be an AG-groupoid, then S is intra-regular if and
only if every left ideal of S is idempotent.

Lemma 150 [38/Every non empty subset A of an intra-reqular AG-groupoid
S with left identity is a two-sided ideal of S if and only if it is a quasi ideal
of S.

Theorem 151 A two-sided ideal of an intra-regular AG-groupoid S with
left identity is minimal if and only if it is the intersection of two minimal
two-sided ideals of S.

Proof. Let S be intra-regular AG-groupoid and @ be a minimal two-sided
ideal of S, let a € Q. As S(Sa) C Sa and S(aS) C a(SS) = aS, which
shows that Sa and aS are left ideals of S, so Sa and aS are two-sided ideals
of S.

Now

S(SanaS)N(SanaS)S = S(Sa)NS(aS)N(Sa)SN (aS)S
(SanaS)N(Sa)SNSaC Sanas.

N

This implies that Sa N aS is a quasi ideal of S, so, Sa N aS is a two-sided
ideal of S. Also since a € @, we have

SanNaSCSRNERSCRNQ CQ.

Now since ) is minimal, so Sa NaS = @, where Sa and aS are minimal
two-sided ideals of S, because let I be an two-sided ideal of S such that
I C Sa, then INaS C SanaS C @, which implies that I NaS = Q. Thus
@ C I. Therefore, we have

Sa CSQ CSICI, gives Sa=1.

Thus Sa is a minimal two-sided ideal of S. Similarly aS is a minimal two-
sided ideal of S.

Conversely, let @ = I N J be a two-sided ideal of S, where I and J
are minimal two-sided ideals of S, then, () is a quasi ideal of S, that is
SQNQS C Q. Let Q be a two-sided ideal of S such that Q" C Q, then

SQ NQ'SCSQNQSCQ, also SQ CSICTand Q'S C.JSC J.

83



Theory of Abel Grassman's Groupoids

Now
S(SQ") = (59)(SQ) = (Q'S) ($5) = (Q'S)S = (88)Q = SQ',

which implies that S Q/ is a left ideal and hence a two-sided ideal. Similarly
Q/S is a two-sided ideal of S. Since I and J are minimal two-sided ideals
of S, therefore SQ/ =1 and Q,S = J. But Q = I N J, which implies that,
Q=5Q NQ'SCQ'. This give us @ = Q' and hence Q is minimal. m

4.4 Characterizations of Intra-regular
AG-groupoids

Example 152 Let S = {a,b,c,d,e} be an AG-groupoid with left identity
b in the following multiplication table.

O Q0O Q|
QO 0 Q|0
SIS SIS A SH ESH
SO Q0 Q|®

DO QO SR
Q@ Q2 2 g

Clearly S is intra-regular because, a = (aa?)a, b = (cb?)e, ¢ = (dc?)e,
d = (cd*)c, e = (be?)e.

Example 153 Let S = {a,b,c,d, e}, and the binary operation " " be de-
fined on S as follows:

Q@ Q Q@ og|s
QL O O Q |

D Q0o e
Q2 2 2 9|
O QUL O Q Q|0
0O 8 Q|0

Then clearly (S,-) is an AG-groupoid. Also a = (aa?)a, b = (bb?)b,
c = (ec®)e, d = (ed?*)d and e = (ee?)e. Therefore (S, ) is an intra-regular
AG-groupoid. It is easy to see that {a} and {a,b} are ideals of S.

Theorem 154 An AG-groupoid S is intra-reqular if Sa = S or aS = S
holds for all a € S.

Proof. Let S be an AG-groupoid such that Sa = S holds for all a € S,
then S = S2. Let a € S, therefore by using medial law, we have

S = (SS)S = ((Sa)(Sa))S = (($9)(aa))S C (Sa?)S.
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Which shows that S is intra-regular.
Let a € S and assume that aS' = S holds for all a € S, then by using left
invertive law, we have

S =SS = (aS)S = (SS)a = Sa.

Thus Sa = S holds for all a € S, therefore it follows from above that S is
intra-regular. m

Lemma 155 Intersection of two ideals of an AG-groupoid with left identity
1s either empty or an ideal.

Proof.
(ANB)S=ASNBSCANB.

Lemma 156 Product of two bi-ideals of an AG-groupoid with left identity
s a bi-ideal.

Lemma 157 If I is an ideal of an intra-reqular AG-groupoid S with left
identity, then I = I°.

Proof. Clearly I? C I. Now let i € I, then since S is intra-regular therefore
there exists x and y in S such that i = (2i?)y. Then i = (zi?)y € (SI?)S C
I’ m

Theorem 158 The intersection of two quasi ideals of an AG-groupoid S
is either empty or a quasi ideal of S.

Proof. Let 1 and Q5 be quasi-ideals of S. Suppose that ()1 N Q)2 is non-
empty, then

S(@Q@1NQ2)N(Q1NQ2)S (SQ1NSQ2) N (1SN Q2S)

-
C (SQ1NQ1S)N(SQ2NQ295)
Q1N Q:.

Hence Q1 N Q3 is a quasi-ideal of S. m

Theorem 159 [38]/For an intra-reqular AG-groupoid S with left identity
the following statements are equivalent.

(1) A is a left ideal of S.

(i) A is a right ideal of S.

(7i1) A is an ideal of S.

(iv) A is a bi-ideal of S.

(v) A is a generalized bi-ideal of S.

(vi) A is an interior ideal of S.

(vit) A is a quasi-ideal of S.

(viii) AS = A and SA = A.
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Theorem 160 Let S be an AG-groupoid with left identity e then the fol-
lowing conditions are equivalent.

(1) S is intra-regular.

(#3) Fvery left ideal is idempotent.

Proof. (i) = (i1)

Let L be a left ideal of an intra-regular AG-groupoid S with left identity.
Obviously L? C L. Now let [ € L. Since S is intra-regular therefore for [
there exists z and y in S such that [ = (21?)y. Then using left invertive
law, we get

I=(al*)y = (I(al))y = (y(=D)l € (S(SL))L € L*.

Therefore L C L?. Hence L = L2.

(i) — (id)

Since Sa is a left ideal contains a. Therefore using (ii) we get, a € Sa =
(Sa)? = Sa? = (Sa*)S. m

Theorem 161 For an AG-groupoid S with left identity, the following are
equivalent.

(1) S is intra-regular.

(#i) Every quasi-ideal of S is idempotent.
Proof. (i) = (1)

Let @ be a quasi-ideal of S. Let a € @ which implies that a®> € @ then
since S is intra-regular so there exist x,y € S such that a = (xa?)y. Now
by theorem 159, @ is an ideal and Q? becomes an ideal. Therefore

a = (za)y € (SQ?*)S C Q.

Hence Q = Q2.

(i1) — (i)

Clearly Sa is a quasi-ideal. Now by (ii) Sa is idempotent. Therefore
a € Sa = (Sa)? but (Sa)? = (Sa?)S. Hence a € Sa = (Sa®)S. m

Theorem 162 For an AG-groupoid S with left identity, the following are
equivalent.

(7) S is intra-regular.

(i1) Q = (SQ)? N (QS)?, for every left ideal Q of S.

(iii) Q = (SQ)? N (QS)?, for every quasi-ideal @ of S.
Proof. (i) = (vi)

Let Q be a quasi-ideal of an intra-regular AG-groupoid S with left iden-
tity so by theorem 159, @ is an ideal and by theorem 161, @) is idempotent,
then medial law we get

(SQ)’N(RS)* = (SQ)(SQ)N(QS)(QS) = (S5)(QQ) N (QQ)(SS)
= (SQ)N(QS) CQ.
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Now let a € @ and since S is intra-regular so there exists x,y € S such
that a = (za?)y. Then using, left invertive law, paramedial law and medial
law, we have

a = (za®)y = (a(za))y = (y(za))a = (y(za))((za®)y) = (za®)((y(za))y)
= (y((za)))((aa)r) = (aa)((y(y(za)))z) = (x(y(y(za))))(aa)
€ S(QQ)= .

Thus a € (SQ)%. It is easy to see that (SQ)? = (QS)?. Therefore a €
(SQ)?>N(QS)2. Thus Q C (5Q)? N (QS)%. Hence (SQ)2N(QS)? = Q.

(#41) = (i1) is obvious.

(i1) = (i)

Let @ be a left ideal of an AG-groupoid S with left identity then by (i),
Q= (5Q)* N (QS)* C (SQ)? C Q% Thus Q = Q. Hence by theorem 160,
S is intra-regular. m

Theorem 163 Let S be an AG-groupoid with left identity e then the fol-
lowing conditions are equivalent.

(1) S is intra-regular.

(ii) A C (AS)A, for every quasi-ideal A and A = A2.

Proof. (i) = (it)

Let a € A, and since S is intra-regular so there exists elements z, y in S
such that a = (za?)y. Now using (1), left invertive law and medial law, we
have

a = (za®)y = (z(aa))y = (a(za))y = (y(za))a = (y(z((za®)y)))a
= (y((za®)(zy)))a = ((za®)(y(zy)))a = ((x(aa))(y(zy)))a
= ((a(za))(y(zy)))a = ((ay)((za)(zy)))a = ((za)((ay)(zy)))a
((za)((az)y?))a = ((y*(az))(az))a = (a((y*(ax))x))a € (AS)A

Hence A C (AS)A. By theorem 159, A becomes an ideal and let e A.
Now since S in intra-regular so for c¢ there exists u and v in S such that
(uc?)v. Then

c = (uc*)v € (SA)S C A.

Hence A is semiprime.
(i2) = (i)

It is same as the converse of theorem 161. m

Theorem 164 Let S be an AG-groupoid with left identity e then the fol-
lowing conditions are equivalent.

(7) S is intra-regular.

(i4) RN L = RL, for every right ideal R and every left ideal L and R is
semiprime.
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Proof. (i) = (i)

Let R, L be right and left ideals of an intra-regular AG-groupoid S
with left identity then by theorem 159, R and L become ideals of S and
so RL C RN L. Now RN L is an ideal and by RN L = (RN L)?. Thus
RNL = (RNL)? C RL. Therefore RNL = RL. Next let 72 € R. Then since
S is intra-regular therefore for r there exists = and y such that r = (zr?)y.
Thus

r = (zr?)y € (SR)S C R.
Hence R is semiprime.

(1) = (i)

Clearly Sa? is a right ideal contains a?. Therefore by (ii) a € Sa?. Since
Sa is left ideal and so we get

a € Sa* N Sa = (Sa*)(Sa) C (Sa?)S.
n

Theorem 165 Let S be an AG-groupoid with left identity e, then the fol-
lowing conditions are equivalent.

(1) S is intra-regular.

(it) B = (BS)B, for every bi-ideal B and B = B2.
Proof. (i) = (1)

Let B is bi-ideal of S then B is an ideal and B = B2. Let b € B, now since
S is intra-regular therefore for b there exists x,y in S such that b = (xb?)y.
Also since S = 52, therefore for y in S there exists w,v in S such that
y = uv. Now using medial law and left invertive law, we get

b= (ab)y = (ab?)(w) = (zu)(b*v) = b*((zu)v)
(zu)v)b)b = [(zu)v][(2b*)y])b = (xb%)[[(zu)v]y])b

{[z(00)][(zu)v]yl}b = {[b(zb)][(zu)v]y]}b
= {lylu)o]][(xb)b]}b = {(2b)[y[(zu)v]]b]}b
= {blyl(zu)o])(b2) }b = {b[bly[(zu)v]lz]}b C (BS)B
Therefore B = (BS)B.

(i) = (i)

Since Sa is a bi-ideal contains a. Therefore using (i) we get

a € Sa = (Sa)? = Sa® = (Sa*)S.
[

Theorem 166 Let S be an AG-groupoid with left identity e, then the fol-
lowing conditions are equivalent.

(1) S is intra-regular.

(i4) Fvery bi-ideal is idempotent.
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Proof. It is the part of theorem 165. m

Theorem 167 Let S be an AG-groupoid with left identity e, then the fol-
lowing conditions are equivalent.

(i) S is intra-regular.

(#14) LN R = LR, for every right ideal R and every left ideal L and R is
semiprime.

Proof. (i) = (i1)

Let R is a right and L is a left ideal of an intra-regular AG-groupoid
S with left identity. Then by theorem 159, R and L become ideals of S.
Then clearly LR C L N R. Now let a € L N R which implies that a € L
and a € R. Then since S is intra-regular so for a there exists z,y in .S such
that (xa?)y. Then using and left invertive law we get

a = (za®)y = (¢(aa))y = (a(za))y = (y(za))a € LR.

Therefore LN R C LR. Hence LN R = LR.
Let 72 € R. Now since S in intra-regular therefore for 7 there exists u
and v in S such that r = (ur?)v. Thus

r= (ur*)v € (SR)S C R.

Hence R is semiprime.

(ii) = (i)

Clearly Sa? is a right ideal contains a?, therefore by (i) it is semiprime.
Thus a € Sa?. Also we know that Sa is a left ideal of S. Therefore using
paramedial and medial law we get

a € San Sa® = (Sa)(Sa*) = (a*S)(aS) = (Sa?)(aS) C (Sa?)S.
n

Theorem 168 For an AG-groupoid S with left identity, the following are
equivalent.

(7) S is intra-regular.

(15) AN B = (AB)A, for every bi-ideal A and every quasi-ideal B of S.

(#9i) AN B = (AB)A, for every generalized bi-ideal A and every quasi-
ideal B of S.

Proof. (i) = (i)

Let A and B be a generalized bi-ideal and quasi-ideal of an intra-regular
AG-groupoid with left identity. Now by theorem 159, A and B are ideals of
S. Then (AB)A C (AS)A C A and (AB)A C (SB)S C B, which implies
that (AB)A C AN B. Next let a € AN B, which implies that a € A and
a € B. Since S is intra-regular so for a there exist x,y € S, such that
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a = (xa?)y, then using (1) and left invertive law, we get

a = (za®)y = (a(za))y = (y(za))a = (y(x ))a:(y(x(( 2)y)))a
(y((wa®)(zy)))a = ((za®)(y(zy)))a == ((a(za)
(((y(zy))(za))a)a € (((S(SA)B)A C (AB)A.

Thus AN B = (AB)A.

(#41) = (i7) is obvious.

(i) = (2)

Since Sa is both bi and quasi-ideal. Therefore by medial law, we get

a € SanSa=((Sa)(Sa))(Sa)=((SS)(aa))(Sa)
= (Sa*)(Sa) C (Sa?)S.

Theorem 169 For an AG-groupoid S with left identity, the following are
equivalent.

(1) S is intra-regular.

(i) (AN B)NC = (AB)C, for every left ideal A, every two-sided ideal
B and every left ideal C' of S and B is semiprime.

(#5i) (AN B)NC = (AB)C, for every left ideal A, every right ideal B
and every left ideal C of S and B is semiprime.

(iv) (ANB)NC = (AB)C, for every left ideal A, every interior ideal B
and every left ideal C of S and B is semiprime.

Proof. (i) = (iv)

Let S be a intra-regular AG-groupoid with left identity. Let A, B and C
be left, interior and left ideal of S respectively. Now by theorem 159, A, B
and C' become ideals of S. Then

(AB)C C (AS)S C A, (AB)C C (SB)S C B and(AB)C C (SS)C C C.

Thus (AB)C C (AN B)NC. Now let a € (AN B)N C, which implies
that a € A, a € B and a € C. Now for a there exists z,y € S, such that
a = (xa?)y, then by using (1) and left invertive law, we get

a = (za®)y = (a(za))y = (y(zva))a = (y(za))a = (y(z((za*)y)))a
= (y((za®)(zy)))a = ((va®)(y(zy)))a = ((a(za))(y(zy)))a
= (((y(zy))(za))a)a € (S(SA)B)C C (AB)C.

Therefore (AN B)NC C (AB)C. Hence (ANB)NC = (AB)C.
Next let b? € B. Now for b there exists u and v in S such that b = (ub?)v.
Thus
b= (ub*)v € (SB)S C B.

Hence B is semiprime
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(iv) = (i4i) = (i4) are obvious.

(i) = (1)

Sa is left ideal and Sa?(contains a?) is an ideal. By (ii), Sa? is semiprime,
therefore a € Sa®. Now using paramedial, medial and left invertive law, we
get

a € SanSa®nSa=((Sa)(Sa*))(Sa) C ((S9)(Sa?))S
= (((a®9)(89))8 = (((a*5)5)S = (($8)a*)S = (Sa*)S.

Theorem 170 For an AG-groupoid S with left identity, the following are
equivalent.

(7) S is intra-regular.

(i1) AN B = (AB) N (BA), for every bi-ideal A and B of S.

(t51) AN B = (AB) N (BA), for every bi-ideal A and every generalized
bi-ideal B of S.

(iv) ANB = (AB)N(BA), for every generalized bi-ideals A and B of S.

Proof. (i) = (iv)

Let A and B be any generalized bi-ideal of an intra-regular AG-groupoid
S with left identity, then by theorem 159, A and B are ideals of S. Clearly
AB C AN B, now AN B is an ideal and AN B = (AN B)?. Now ANB =
(ANB)2 C AB. Thus AN B = AB and then ANB = BN A = BA. Hence
ANB=(AB)N(BA).

(tv) = (1ii) = (i1) are obvious.

(id) = (i)

Let B be a ideal of an AG-groupoid S with left identity. Then by (%)
BN B = (BB)N(BB) = B?, so by theorem 166, S is intra-regular. m

Theorem 171 For an AG-groupoid S with left identity, the following are
equivalent.

(1) S is intra-regular.

(i4) BN G = (BG)B, for every bi-ideal B and every quasi-ideal G.

Proof. (i) = (i7)

Let a € BN G. Now by theorem 159, B and G become ideals of S. Then
using (1) and left invertive law, we get

a =

a = (za’)y (x(aa))y (a(wa))y = (y(wa))a = (y(z((za)y)))a
= (y(wa’(ay))) )
= (y(zy)(za))

/—\
—~
<
—
=
ST

Ja C ((S(SB))G)B = ((SB)G)B C (BG)B

Therefore BN G C (BG)B.
Next (BG)B C (BS)B C B and (BG)B C (SG)S C @G. Therefore
(BG)B C BNG. Hence BNG = (BG)B
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(i) = (1)
Sa is both bi and quasi-ideal of an AG-groupoid S with left identity.
Therefore by medial law we get

a € SanSa=((Sa)(Sa))(Sa)=((SS)(aa))(Sa)
= (Sa*)(Sa) C (Sa*)S.

Theorem 172 For an AG-groupoid S with left identity, the following are
equivalent.

(1) S is intra-regular.

(15) BNI =BI(BNIC BI), for every bi-ideal B and every quasi-ideal
I.

Proof. (i) = (i1)

Let B and I be bi and quasi ideals of an AG-groupoid S with left identity.
Then by theorem 159, B and I become ideals of S. Now clearly BI C BNI.
Next let a € BN I. Now since S is intra-regular so for a there exists x,y in
S such that a = (za?)y. Now using left invertive law we get

a = (za®)y = (z(aa))y = (a(za))y = (y(za))a
(S(SB))I C (SB)I C BI.

m

Therefore BNI C BI. Hence BNI = BI.
(1) = (i)
Sa is both bi and quasi-ideal. Therefore by medial law we get

a € San Sa = (Sa)(Sa) = (SS)a® = Sa* = (Sa?)S.
]

Theorem 173 For an AG-groupoid S with left identity the following con-
ditions are equivalent.

(1) S is intra-regular.

(ii) Every left ideal of S is idempotent.

(ii1) AN B = AB, for every ideals A, B of S and A, B are semiprime.

(iv) AN B = AB, for every ideal A, every bi-ideal B of S and A, B are
semiprime.

(v) AN B = AB, for every bi-ideals A, B of S and A, B are semiprime.

(vi) The set of left ideals forms a semilattice structure.

Proof. (i) < (i)

It is same as theorem 160.

(i) — (v)

Let A, B are bi-ideals of an intra-regular AG-groupoid S with left iden-
tity. Then by theorem 159, A and B are ideals of S. Now clearly AB C
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AN B. Since AN B is an ideal and (AN B)> = AN B. Thus ANB =
(AN B)? C AB. Therefore (AN B) = AB. Next let a> € A. Now for a
there exists x,y in S such that a = (za?)y. Thus a = (za?)y € (SA)S C A.
Hence A is semiprime. Similarly we can show that B is semiprime.

(v) — (i)

Assume that A is a bi-ideal of an AG-groupoid S with left identity then
by (v) ANA = AA, that is, A = A? and by theorem 166, S is intra-regular.

Let £g denote the set of all left ideas of an intra-regular AG-groupoid
S with left identity and let I and J € £g. Now by theorem 159, I and
J become ideals of S. Thus IJ C INJ. Now I N.J is an ideal and so
INJ = (InJ)2 Therefore I NJ C IJ. Thus I NJ = I.J which clearly
implies that I N J = JI. Now clearly all elements (ideals) of £g satisfy
left invertive law. Therefore £g form an AG-groupoid. Also IJ = JI and
I =12 forallland Jin £5. But we know that a commutative AG-groupoid
becomes a commutative semigroup. Hence the set of all left ideals that is
£s form a semilattice structure.

(vi) = (i)

If I is a left ideal of an AG-groupoid S with left identity, then by (vi),
I = I?. The rest is same as (ii) = (i).

(v) = (iv) = (i13) are obvious.

Since Sa? is an ideal of an AG-groupoid S with left identity. Then by
(#it) it becomes semiprime and since S itself is an ideal, therefore by (ii4)
we get

a € Sa®=Sa*N S = (Sa?)8S.

4.5 Characterizations of Intra-regular
AG**-groupoids

It is easy to see that every AG-groupoid with left identity becomes an
AG**-groupoid but the converse is not true (see the example below)

Example 174 Let S = {1,2,3,4,5}, the binary operation “-” be defined
on S as follows:

= R R NN
[ N N OV
[ N
= R e O ot

U= W N —
N B B Ot = =
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(S,.) is neither commutative nor associative because 5 = 1.5 # 5.1 = 2
and 2 = (2.1).1 # 2.(2.1) = 5. Also by AG-test in [48], it is easy to check
that S is an AG**-groupoid.

Here we begin with examples of intra-regular AG-groupoids.

Example 175 Let S = {1,2,3,4,5,6}, then by AG-test in [48], (S,-) is
an AG-groupoid with left identity 5 as given in the following multiplication

table:

1 2 3 4 5 6
1({5 6 1 2 3 4
214 5 6 1 2 3
313 4 5 6 1 2
412 3 4 5 6 1
5|11 2 3 4 5 6
6|6 1 2 3 4 5

Clearly (S,-) is intra-regular because, 1 = (4 . 12) $2,2 = (3 : 22) -4,3 =
(2-3%)-6,4=(1-4%)-2,5=(5-5%)-5,6 = (3-62) - 2.

Example 176 Let S = {a,b,c,d, e}, and the binary operation " " be de-
fined on S as follows:

Q2 @ oe|s
QUL O O |

o QL0 o

Q@ Q2 g g
QO QUL 2 2|0
O Le a0

Then clearly (S,-) is an AG-groupoid. Also a = (aa®)a, b = (bb?)b,
c = (ec®)c, d = (ed?®)d and e = (ee?)e. Therefore (S,-) is an intra-regular
AG-groupoid. It is easy to see that {a} and {a,b} are ideals of S.

It is easy to note that if S is intra-regular AG-groupoid then S = S2.

Lemma 177 Intersection of two ideals of an AG-groupoid is an ideal.
Lemma 178 Product of two bi-ideals of an AG**-groupoid is a bi-ideal.

Lemma 179 Let S be an AG**-groupoid such that S = S?, then every
right ideal is a left ideal.

Proof. Let R be a right ideal of S, then using left invertive law, we get
SR=(SS)R=(RS)SCRSCR.
]

Lemma 180 If I is an ideal of an intra-regular AG**-groupoid S, then
I=1I2
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Proof. It is same as in [38]. =

Lemma 181 Let S be an AG**-groupoid S such that S = S?, then a subset
I of S is a right ideal of S if and only if it is an interior ideal of S.

Proof. It is same as in [38]. m
Corollary 182 FEwvery interior ideal of S becomes a left ideal of S.

Theorem 183 Let S be an intra-reqular AG**-groupoid, then the following
statements are equivalent.

(1) A is a left ideal of S.

(i7) A is a right ideal of S.

(#3i) A is an ideal of S.

(iv) A is a bi-ideal of S.

(v) A is a generalized bi-ideal of S.

(vi) A is an interior ideal of S.

(vii) A is a quasi-ideal of S.

(viii) AS = A and SA = A.
Proof. (i) = (viii)

Let A be a left ideal of S. Then clearly SA C A. Now let a € A and since

S is intra-regular for a there exists x,y in S such that a = (za?)y. Using
left invertive law we get

a = (va®)y = [{(aa)}ly = [{a(za)}ly = [{y(za)}]a € SA.

Thus A C SA. Therefore SA = A.
Now let a € A and s € S, since S is an intra-regular, so there exist x,
y € S such that a = (maz) y, therefore by left invertive law, we have

as = ((za®)y) s = ((z(aa))y)s € ((S(44))S) S C ((S(SA))$) S C ((54) ) S
(SS) (SA) = S(SA) = A.

Thus AS C A. Next let a € A, then since S = 52 so for y in S there exists
y1,y2 in S such that y = y1y2. Then using medial law, paramedial law we
get

a = (za®)y = (wa®)(y1y2) = (y2y1)(a’x) = a*[(y2p1)2] € AS.
Therefore AS = S.
(viii) = (vii) = (vi) = (v) are same as in [38].

(v) = (iv)
Let A be a generalized bi-ideal of S. Let a,b € A, and since S is intra-
regular so there exist z, y in S such that a = (xaz) y, then we have

((za®) y) b = [a*{(y2y1)2}b = [{(y21)2}a?]b
[a({(y2y1)z}a)]b € (AS) A C A.

ab
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Hence A is a bi-ideal of S.
(iv) = (i4i) is same as in [3§]
(#i1) = (it) and (i¢) = (i) are obvious. m

Lemma 184 In an intra-regular AG**-groupoid S, IJ = I N J, for all
ideals I and J in S.

Proof. Let I and J be ideals of .S, then obviously IJ C INJ. Since INJ C I
and IN.J CJ, then (INJ)> C IJ, also I N.J is an ideal of S, so we have
INJ=UNJ)?CIJ. Hence IJ=1INJ. m

An AG-groupoid S is called totally ordered under inclusion if P and Q
are any ideals of S such that either P C @ or Q C P.

Anideal P of an AG-groupoid S is called strongly irreducible if ANB C P
implies either A C P or B C P, for all ideals A, B and P of S.

Lemma 185 Ewvery ideal of an intra-reqular S is prime if and only if it is
strongly irreducible.

Proof. It is an easy. ®

Theorem 186 FEwvery ideal of an intra-regular AG-groupoid S is prime if
and only if S is totally ordered under inclusion.

Proof. Assume that every ideal of S is prime. Let P and @) be any ideals
of S, so, PQ = PNQ, where PN (@ is ideal of S, so is prime, therefore
PQ C PN Q, which implies that P C PN Q or Q@ C PN, which implies
that P C @ or @ C P. Hence S is totally ordered under inclusion.

Conversely, assume that S is totally ordered under inclusion. Let I, J
and P be any ideals of S such that IJ C P. Now without loss of generality
assume that I C J then

I=I*=1ICIJCP.
Therefore either I C P or J C P, which implies that P is prime. ®

Theorem 187 Let S be an intra-reqular AG**-groupoid such that S = S?,
then the set of all ideals Ig of S, forms a semilattice structure.

Proof. Let A, B € Ig, since A and B are ideals of .S, therefore using medial
law, we have

(AB)S = (AB)(SS)=(AS)(BS)C AB.
Also S(AB) = (S85)(AB)=(SA)(SB)C AB.
Thus AB is an ideal of S. Hence I is closed. Also we have, AB=ANB =

BN A= BA, which implies that Ig is commutative, so is associative. Now
A% = A, for all A € Ig. Hence Ig is semilattice. m
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Theorem 188 Let S be an AG**-groupoid such that S = S?, then the
following conditions are equivalent.

(1) S is intra-regular.

(i1) For every generalized bi-ideal B, B = B2.

Proof. Assume that S is an intra-regular AG**-groupoid and B is a gen-
eralized bi-ideal of S. Let b € B, and since S is intra-regular so there exist
¢, d in S such that b = (cb2) d, then we have

b

(cb?) d = {c(bb)}d = {b(cb)}d = {d(cb)}b
d{c((cb?) d)}]b = [d{(cb®) (ed)}]b = [(cb?) {d(cd)}]b

{(cd)d} (b%c)]b = [b* ({(cd)d}e)]b = [(c{(cd)d}) b]b
b

[
= [
[b((c{(cd)d}) b)]b € ((BS) B)B C BB.

Thus B C B?. Let a,b € B, then ab = [a({(y2y1)z}a)]b € (BS)B C B,
therefore B?> C B. Hence B? = B.

Conversely, consider the subset Sa of S, then using paramedial law, me-
dial law and left invertive law, we get

((Sa)S)(Sa) C S(Sa) = (S9)(Sa) = (aS)S = (55)a = Sa.

Therefore Sa is a generalized bi-ideal. Now by assumption Sa is idempotent,
so by using medial law, we have

€ (Sa) (Sa) = ((Sa) (Sa)) (Sa) = ((S9) (aa)) (Sa) C (Sa®) (SS) = (Sa’) S.

Hence S is intra-regular. m

Corollary 189 Let S be an AG**-groupoid such that S = S?, then the
following conditions are equivalent.

(1) S is intra-regular.

(i1) For every bi-ideal B, B = B2.

Theorem 190 For an AG**-groupoid S, then S is intra-regular if and only
if every ideal I is semiprime.

Proof. (i) = (i1)

Let S be an intra-regular AG**-groupoid. Now let a € S such that a® € I.
For a € S there exists x,y in S such that a = (xa?)y. Therefore a =
(xa®)y € (SI)S C I. Hence [ is semiprime.

(i1) — (i)

Obviously Sa? is an ideal contains a?. And by (ii) it is semiprime so
a € Sa?. Therefore a € Sa? = (Sa?)S. Hence S is intra-regular. m

Corollary 191 For an AG**-groupoid S, then S is intra-reqular if and
only if every right ideal is semiprime.
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Theorem 192 For an AG**-groupoid S, the following are equivalent.
(1) S is intra-regular.
(13) For generalized bi-ideals By and Bz, By N By = (B1B2)By.

Proof. (i) = (i)

Let By and Bs be generalized bi-ideals of an intra-regular AG**-groupoid
S. Now Bj and Bs become ideals of S. Therefore (B1B2)B; C (B1S)B; C
B1 and (BlBQ)Bl g (SBQ)S g BQ. This 1mphes that (BlBg)Bl Q B1 ﬂBQ.

Now B; N By becomes an ideal and we get,

BinNBy = (Bl N 32)2 = (Bl n B2)2 (B1 N Bg)
- ((Bl n B2) (Bl N BQ)) (Bl n BQ) g (BlBQ)Bl.

Thus B]_ N BQ g (B]_BQ)Bl. Hence B]_ N BQ = (B]_BQ)B:[.

Let B be a bi-ideal of an AG**-groupoid S, then using (i7), we get

B=BNB=(BB)BC B?BC BB = B2 Hence by theorem 188, S is
intra-regular. m

Corollary 193 For an AG**-groupoid S, the following are equivalent.
(7) S is intra-regular.
(Z'L) For bi-ideals Bl and BQ, B1 n BQ = (BlBQ)Bl.

Theorem 194 If A is an interior ideal of an intra-reqular AG**-groupoid
S such that S = S?, then A2 is also interior ideal.

Proof. Using medial law we obtained,

(SA%)S = ((S9)(AA))(SS)=((SA)(SA))(SS)
= ((SA)S)((SA)S) C AA = A%

Theorem 195 For an AG**-groupoid S, the following are equivalent.
(1) S is intra-regular.
(i1) Fvery two sided ideal is semiprime.
(i3i1) Every right ideal is semiprime.
(iv) Ewvery interior ideal is semiprime.
(v) Every generalized interior ideal is semiprime.

Proof. (i) = (v)

Let I be a generalized interior ideal of an intra-regular AG**-groupoid S.
Let a? € I. Then since S is intra-regular so for a € S there exists z,y € S
such that, a = (xa?)y. Then a = (za®)y € (S1)S C I.

(v) = (iv) = (4i4) = (i) are obvious.

(if) — (i)

It is same as the converse of theorem 190. m
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Theorem 196 For an AG**-groupoid S, the following are equivalent.
(1) S is intra-regular.
(13) Fvery two sided ideal is semiprime.
(#i1) Every bi-ideal is semiprime.
(iv) Every generalized bi-ideal is semiprime.

Proof. (i) = (iv)

Let B be any generalized bi-ideal of an intra-regular AG**-groupoid S.
Let a® € B, since S is intra-regular so for a € S there exists =,y € S such
that, a = (za?)y. No B becomes an ideal of S. Therefore a = (xa?)y €
(SB)S C B.

(tv) = (13i) = (it) are obvious.

(ii) — (i)

It is same as (ii) = (i) of theorem 195. m
Theorem 197 For an AG**-groupoid S such that S = S2, the following
are equivalent.

(1) S is intra-regular.

(#i) Every left ideal is idempotent.

(iii) For every left ideal L of S, L = (SL)*N (LS)%.

Proof. (i) = (i1)

Let L be any left ideal of an intra-regular AG**-groupoid S so using
medial law and paramedial law we get

(SLY>N(LS)*> = (SL)(SL)N(LS)(LS) = (SS)(LL) N (LL)(SS)
= (SOLL)N(SS)LL) = (SS)(LL) = (SL)(SL)C LLC L.
Now let @ € L and since S is intra-regular so there exists =,y € S such

that a = (za?)y. Then using left invertive law, medial law and paramedial
law, we get

a = (za®)y = (a(za))y = (y(za))a = (y(va))((za®)y) = (za*)((y(za))y)
= ( )

= (aa)((y(y(za)))z) = (x(y(y(za))))(aa)
€ S(LL) = (SS)(LL) = (SL)(SL) = (SL)*.

Thus a € (SL)2 It is easy to see that (SL)? = (LS)?. Therefore a €
(SL)? N (LS)*.
Thus L C (SL)? N (LS)2. Hence (SL)? N (LS)? =

(#i1) = (i7) is obvious.

(#) = (i)

Clearly Sa is a left ideal contains a, therefore by (i) it is idempotent.
Therefore using medial law, we get

a € Sa = (Sa)(Sa) = (Sa?) = (Sa*)S.

Hence S is intra-regular. m
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Theorem 198 For an AG**-groupoid S such that S = S2, the following
are equivalent.

(1) S is intra-regular.

(i1) For every bi-ideal of S, B = (SB)?B N (BS)*B
Proof. (i) = (1)

Let B be a bi-ideal of an intra-regular AG**-groupoid S so by using
medial law and paramedial law we get,

(SB*BN(BS)*’B = ((SB)(SB))BN((BS)(BS))B
((BB)(55))B N ((BB)(55))B
= (B*S*)BnN(B*S*)B = (B*S*)B
(BS)B C B.

N

Now let a € B and since S is intra-regular so there exists x,y € S such
that a = (za?)y. Then using left invertive law, paramedial law and medial
law, we have,

a = (za’)y = (a(za))y = (y(za))a = (y(za))a = (y(z((za*)y)))a
= (Y((za®)(zy)))a = ((va®)(y(zy)))a = ((zy)(a®(zy)))a
= (a*((zy) (zy)))a = (a(zy))’a
Therefore a € (( (55))? B = (BS)? B. This implies that a € (BS)’ B
Hence B C (BS)? B. Now since (BS’)2 (SB)?, thus B C (SB)2B. There—
fore B C (SB)?2B N (BS)?B. Hence B = (SB)?B N (BS)’B
(ii) = (i)

Let B be a bi-ideal of an AG-groupoid S, then by (i¢), medial law, para
medial law, left invertive law and (1), we get
B = (SB)’Bn(BS)*B=(SB)*B = (S’B*)B = (B*S)B
= (BS)(BB) = B[(BS)B] C B>

Thus B C B? but B? C B. Therefore B = B? and hence by corollary
189, S is intra-regular. m

Theorem 199 Let S be an AG**-groupoid such that S = S?, then the
following are equivalent

(1) S is intra-regular,

(ii) Every ideal of S is semiprime.

(ii) Every quasi-ideal of S is semiprime.

Proof. Let @ be a quasi-ideal of an intra-regular AG**-groupoid S and let
a®? € . Then using paramedial and medial laws we get

a=a*((y2y1)z) = (z(y2y1))a® € QSN SQ C Q.

Therefore a € ). Hence @ is semiprime.
Converse is same as (ii) = (i) of theorem 195. m
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5]

Some Characterizations of
Strongly Regular AG-groupoids

In this chapter, we introduce a new class of AG-groupoids namely strongly
regular and characterize it using its ideals.

5.1 Regularities in AG-groupoids

An AG-groupoid S is said to be regular if for every a in S there exists some
x in S such that a = (az)a.

An AG-groupoid S is said to be intra-regular if for every a in S there
exists some z,y in S such that a = (za?)y.

An AG-groupoid S is said to be strongly regular if for every a in S there
exists some z in S such that a = (ax)a and az = za.

Here we begin with examples of AG-groupoids.

Example 200 Let S = {1,2,3}, the binary operation “” be defined on S
as follows:

Clearly (S,-) is an AG-groupoid without left identity.

Example 201 Let S = {1,2,3,4}, the binary operation “” be defined on
S as follows:

|1 2 3 4
1[1 2 3 4
214 3 3 3
313 3 3 3
412 3 3 3

Clearly (S,-) is an AG-groupoid with left identity 1.

Example 202 Let S = {1,2,3}, the binary operation “” be defined on S
as follows:
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Clearly (S,-) is a strongly regular AG-groupoid with left identity 1.
Note that every strongly regular AG-groupoid is regular, but converse is
not true, for converse consider the following example.

Example 203 Let S = {1,2,3}, the binary operation “” be defined on S
as follows:

Clearly (S, -) is reqular AG-groupoid, but not strongly regular.

Theorem 204 FEvery strongly reqular AG-groupoid is intra-regular.
Proof. Let S be strongly regular AG-groupoid,then for every a € S there
exists some x € S such that a = (ax)a and ax = za, then using left
imvertive law we get

a = (az)a= (az)[(az)a] = (az)[(za)a] = (az)(a’x)

[(a*z)a]z = [(ax)a®]z = (ua®)z, where u = ax.
Hence S is intra-regular.

Converse of above theorem is not true, for converse consider the following
example. |

Example 205 Let S = {1,2,3,4,5,6,7}, the binary operation “” be de-
fined on S as follows:

1 2 3 4 5 6 7
111 3 5 7 2 4 6
214 6 1 3 5 7 2
317 2 4 6 1 3 5
413 5 7 2 4 6 1
516 1 3 5 7 2 4
6(2 4 6 1 3 5 7
T|5 7 2 4 6 1 3

Clearly (S, -) is intra-reqular AG-groupoid, but not strongly regular.

5.2 Some Characterizations of Strongly Regular
AG-groupoids

Theorem 206 For an AG-groupoid S with left identity the following are
equivalent,

(1) S is strongly regular,

(i) LN A C LA and L is strongly regular AG-subgroupoid, where L is
any left ideal and A is any subset of S.



Theory of Abel Grassman's Groupoids 103

Proof. (i) = (i)

Let S be a strongly regular AG-groupoid with left identity. Let a € LNA,
now since S is strongly regular so there exists some xz € S such that a =
(ax)a and ax = xa. Then

a = (ax)a = (za)a € (SL)A C LA.

Thus LN A C LA. Let a € L, thus a € S and since S is strongly regular
so there exists an z in S such that a = (az)a and ax = za. Let y = (za)z,
then using left invertive law, we get

y = (va)r = (ax)r = z*a € SL C L.
Now using left invertive law and (1), we get
ya = [(za)x]a = (ax)(za) = (za)(azx) = a[(za)x] = ay.

Now using left invertive law we get

a = (ax)a = (ax)[(ax)a] = (ax)[(za)a] = (ax)(a’x)

= a’[(ax)a] = (aa)[(wa)z] = (aa)y = (ya)a = (ay)a.

Therefore L is strongly regular.

(ii) = (i)

Since S itself is a left ideal, therefore by assumption S is strongly regular.
]

Theorem 207 For an AG-groupoid S with left identity the following are
equivalent,

(1) S is strongly regular,

(15) BN A C BA and B is strongly regular AG-subgroupoid, where B is
any bi ideal and A is any subset of S.

Proof. (i) = (i7)

Let S be a strongly regular AG-groupoid with left identity. Let a € BN A,
now since S is strongly regular so there exists some x € S such that a =
(az)a and az = xa. Then using left invertive law, we get

a az)a = [{(azx)a}z]a = [(za)(az)]a

=

= [(az)(za)la = [{(za)z}a]a = [{(z{(az)a})z}ala
{{(az)(za)}z}ala = [{{z(za)}(az)}a]a = [(a{{z(za)}z})a]a
[(at)a]a € [(BS)B]A C BA, where t = z(za).

Thus BN A C BA. Let a € B, thus a € § and since S is strongly regular
so there exists an z in S such that a = (az)a and az = za. Let y = (za)z,
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then using left invertive law, paramedial and medial law, we get

y = (za)r = (az)z = 2%a = 2*[(ax)a] = 2*[(za)a] = 2*(a’x)

= d’(z’z) = a’t = (aa)t = (ta)a = [t{(az)a})a = [t{(za)a}]a
= [t(a®»)]a = [o*(t2)]a = [(aa)(t2)]a = [(zt)(aa)]a = [a{(zt)a}]a
(av)a € (BS)B C B,where t = (z%z) and v = (2t)a.

Now using left invertive law, we get
ya = [(za)z]a = (ax)(za) = (za)(ax) = al[(za)z] = ay.

Now using left invertive law we get

a = (ax)a = (ax)[(ax)a] = (azx)|[(za)a] = (ax)(a’x)

= d’[(az)a] = (aa)[(va)z] = (aa)y = (ya)a = (ay)a.

Therefore B is strongly regular.

(i) = (i)

Since S itself is a bi ideal, therefore by assumption S is strongly regular.
]

Theorem 208 For an AG-groupoid S with left identity the following are
equivalent,

(1) S is strongly regular,

(1) QNAC QA and Q is strongly reqular AG-subgroupoid, where @ is
any quasi ideal and A is any subset of S.

Proof. (i) = (i1)

Let S be a strongly regular AG-groupoid with left identity. Let a € QN A,
now since S is strongly regular so there exists some xz € S such that a =
(ax)a and ax = za. Now using left invertive law, we get

ax = [(az)alx
= a(z%a) € QS.

ar = [(az)alz

Thus az € QSN SQ C Q.
Also a = (azx)a € QA. Let a € Q, thus a € S and since S is strongly

regular so there exists an = in S such that a = (ax)a and ax = za. Let
y = (za)x, then using left invertive law, paramedial, medial law, we get

y = (za)z = (az)r = z°a € SQ,

and

y = (za)z = (za)(ex) = (ze)(azx) = al(ze)x] € QS.
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Thus y € QSN SQ C Q. Now using left invertive law and (1), we get
ya = [(za)z]a = (az)(za) = (za)(azx) = a[(za)x] = ay.

Now using left invertive law, we get

a = (ax)a = (ax)[(ax)a] = (ax)[(za)a] = (ax)(a’z)

= a’[(ax)a] = (aa)[(wa)z] = (aa)y = (ya)a = (ay)a.
Therefore @ is strongly regular.
(i) = (1)
Since S itself is a quasi ideal, therefore by assumption S is strongly
regular. m

Theorem 209 Let S be a strongly reqular AG-groupoid with left identity.
Then, for every a € S, there exists y € S such that a = (ay)a, y = (ya)y
and ay = ya.

Proof. Let a € 5, since S is strongly regular, there exists z € S such that
a = (ax)a and ax = za. Now using paramedial law and medial law,
we get

a = (ar)a = (za)a = [z{(az)a}]a = [z{(az)(ea)}la
[z{(ae)(za)}]a = [(ae){z(za)}a = [(ae){(ex)(az)}]a
ae){(za)(ze)}a = [(za){(ae)(ze) Ha = [(za){(ex)(ea)}a

za)(za)la = [(ax)( z)la = [a{(azx)z}]a = [a{(za)r}]a

|
=
(

®

y = (za)z=[z{(az)a}]

[
= [e{(a)ally =
[

Now using left invertive law, we get
ay = a[(za)z] = (xa)(ax) = (ax)(za) = [(za)x]a = ya.
[

Theorem 210 For an AG-groupoid S with left identity the following are
equivalent,

(1) S is strongly regular,

(1) S is left regular, right regular and (Sa)S is a strongly reqular AG-
subgroupoid, of S for every a € S.

(#ii) For every a € S, we have a € aS and (Sa)S is a strongly regular
AG-subgroupoid, of S.

105
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Proof. (i) = (i)
Let a € S, and S is strongly regular so there exists some x € S such that
a = (az)a and ax = xa. Now left invertive law ,we get

a = (ax)a = (za)a = a’x.

This implies that S is right regular. Now using medial law and paramedial
law, we get

a = (ar)a = (az)|(az)d] = [a(az)](za)
= )l(za) = [z(aa)](wa) = (va”)(za)
)(za) = [(ex)(aa)l(za) = [(aa)(ze)](za)
]

a*(ze)|(za) = [(za)(ze)a® = ua®, where u = [(za)(ze)].

alra

[a(
= [z(aa
= [ 2
Let b € (Sa)S C S, thus b € S, and since S is strongly regular, so there
exist 1 € S, such that b = (bx1)b and 1 = (x1b)z1 and bx; = x1b, since

b € (Sa)S = b = (za)t, for some z,t € S. Using paramedial, medial law,
left invertive law, we get

x1 = (z1b)xy = (x1b)(ex1) = (z1€)(bx1) = b[(T1€)21] = DU
= [(za)t]u = (ut)(za) = (az)(tu) = [(tu)z]a = va = v(a’z)
= a*(vr) = (aa)(vz) € (Sa)S, where u = (z1e)x; and v = (tu)z.

This shows that (Sa)S is strongly regular.

(i3) => (iii)

Let a € S, and S is left regular so there exists some y € S such that
a = ya?.

Now using (1), we get

a = ya® = y(aa) = a(ya) € a(SS) = aS.

Let a € aS so there exists some ¢t € S such that a = at, also a € Sa so
there exists some z € S such that a = za.
Now

a=at = (za)t € (Sa)8,

and as (Sa)S strongly regular so there exists some z in S such that
a = (az)a and ax = za. So S is strongly regular. m

Theorem 211 For an AG-groupoid S with left identity the following are
equivalent,

(i) S is strongly regular,

(13) (Sa)S is strongly reqular and S is left duo.
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Proof. (i) = (i)

Let a € (Sa)S, so a € S and since S is strongly regular so there exists
some z € S such that a = (az)a and ax = za. Let y = (za)z for any y € S.
Now using (1) and left invertive law ,we get

y = (@o)r = [¢{(ax)alle = [(az)(za)]x
= [{(za)z}a]lz = (ya)z € (Sa)S.

Now using paramedial law,medial law, we get

(ax)a = (zva)a = [z{(az)a}]a = [z{(az)(ea)}]a
[7{(ae)(za)}a = [(ae){z(za)}]a = [(ae){(ez)(az)}]a
[(ae){(za)(ze)}]a = [(za){(ae)(ze)}]a = [(za){(ez)(ea)}]a
[(za)(za)la = [(ax)(az)la = [a{(az)r}]a = [a{(za)r}]a
(ay)a,

a

and using (1) and left invertive law, we get
ay = a[(za)z] = (za)(az) = (azx)(za) = [(xa)z]a = ya.

This shows that (Sa)S is strongly regular.

Let L be any left ideal in S = SL C L. Let a € L,s € S. Since S is
strongly regular, so there exists some z € S, such that, a = (az)a and
ax = za. Now as € LS

as = [(ax)a)s = [(za)a]s = (a®z)s = (sx)a* = (sz)(aa) € S(SL) C SL C L.

This shows that L is also right ideal and S is left duo.

(i) = (1)

Using medial and paramedial laws we get (Sa)(SS) = (59)(aS) =
(Sa)S. Now since S is left duo, so aS C Sa. Also we can show that Sa C aS.
Thus Sa = aS. Now let a € S, also a € Sa = a5 = a = ta and a = av for
some t,v € S. Now

a=av = (ta)v € (Sa)S.

As (Sa)S is strongly regular, so there exists some u € (Sa)S, such that
a = (au)a and au = ua. Hence S is regular. m

Theorem 212 For an AG-groupoid S with left identity the following are
equivalent,

(1) S is strongly regular,

(ii) Sa is strongly regular for all a in S.
Proof. (i) = (i1)

Let a € Sa,soa € S and S is strongly regular so there exists some x € §

such that ¢ = (ax)a and ax = za. Let y = (za)z for some y € S. Now
using left invertive law we get

y = (va)r = (ax)z = z%a € Sa.
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Now using paramedial law,medial law, we get

a = (az)a= (za)a = [r{(ar)a}]a = [z{(az)(ea)}|a
= [z{(ae)(za)}]a = [(ae){z(za)}a = [(ae){(ez)(az)}]a
(ae){(za)(ze)}]a = [(za){(ae)(ze)}]a = [(za){(ex)(ea)}]a
(za)(za)la = [(az)(az)]a = [a{(az)z}]a = [a{(va)z}]a
= (ay)a,

('b

[
= |
[

ay = al(za)z] = (za)(az) = (az)(za)

= [(za)z]a = ya.

Which implies that Sa is strongly regular.
Let a € S, so a € Sa and Sa is strongly regular which implies S is
strongly regular. m
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6

Fuzzy Ideals in
Abel-Grassmann’s Groupoids

In this chapter we introduce the fuzzy ideals in AG-groupoids and discuss
their related properties.

A fuzzy subset f of an AG-groupoid S is called a fuzzy AG-subgroupoid
of S if f(zy) > f(z) A f(y) for all z, y € S. A fuzzy subset f of an
AG-groupoid S is called a fuzzy left (right) ideal of S if f(zy) > f(y)
(f(zy) > f(z)) for all z, y € S. A fuzzy subset f of an AG-groupoid S
is called a fuzzy two-sided ideal of S if it is both a fuzzy left and a fuzzy
right ideal of S. A fuzzy subset f of an AG-groupoid S is called a fuzzy
quasi-ideal of S'if foSNSo f C f. A fuzzy subset f of an AG-groupoid S
is called a fuzzy generalized bi-ideal of S if f((xza)y) > f(x) A f(y), for all
z,aand y € S. A fuzzy AG-subgroupoid f of an AG-groupoid § is called a
fuzzy bi-ideal of S if f((za)y) > f(x)A f(y), for all z, a and y € S. A fuzzy
AG-subgroupoid f of an AG-groupoid S is called a fuzzy interior ideal of
S if f((za)y) > f(a), for all z, a and y € S.

Let f and g be any two fuzzy subsets of an AG-groupoid S, then the
product f o g is defined by,

\/ {f(d) Ag(c)}, if there exist b,c € S, such that a = be.
(f o g) (a) = a=bc

0, otherwise.

The symbols fNg and f U g will means the following fuzzy subsets of S

(f Ng)(x) = min{f(z), g(x)} = f(x) Ag(z), for all z in S

and

(fUg)(x) =max{f(x), g(z)} = f(z) Vg(z), for all z in S.

The proof of the following three lemma’s are same as in [37].

Lemma 213 Let f be a fuzzy subset of an AG-groupoid S. Then the
following properties hold.

(1) f is a fuzzy AG-subgroupoid of S if and only if fo f C
(i1) f is a fuzzy left(right) ideal of S if and only if S o f
(#41) f is a fuzzy two-sided ideal of S if and only if So f C

f.
Cf(foSCH).
fand foS C f.



Theory of Abel Grassman's Groupoids 10

Lemma 214 Let f be a fuzzy AG-subgroupoid of an AG-groupoid S. Then
f is a fuzzy bi-ideal of S if and only if (f o S)o f C f.

Lemma 215 Let f be a fuzzy AG-subgroupoid of an AG-groupoid S. Then
[ is a fuzzy interior ideal of S if and only if (So f)o S C f.

The principal left, right and two-sided ideals of an AG-groupoid S is
denoted by L[a?], R[a?] and J[a?]. Note that the principal left, right and
two-sided ideals generated by a? are equals, that is,

L[a?] = R[a?] = J[a*] = a®S = Sa®S = Sa* = {sa® : s € S}.

The characteristic function C'4 for a subset A of an AG-groupoid S is
defined by

1,if x € A,
CA(“””){ 0,if z ¢ A

The proof of the following three lemma’s are same as in [29].

Lemma 216 Let A be a non-empty subset of an AG-groupoid S. Then the
following properties hold.

(i) A is an AG-subgroupoid if and only if C4 is a fuzzy AG-subgroupoid
of S.

(i1) A is a left(right, two-sided) ideal of S if and only if C4 is a fuzzy
left(right, two-sided) of S.

(7i1) A is a bi-ideal of S if and only if Cy4 is a fuzzy bi-ideal of S.

Lemma 217 Let A be a non-empty subset of an AG-groupoid S. Then A
1s a bi-ideal of S if and only if C4 is a fuzzy bi-ideal of S.

Lemma 218 Let A be a non-empty subset of an AG-groupoid S. Then A
18 an interior ideal of S if and only if C4 is a fuzzy interior ideal of S.

Example 219 Let S = {1,2,3,4}, the binary operation " " be defined on
S as follows:

IS SURN NGRS
e N N
N N N
=N e N W
e AN V1 TSN

Then (S,-) is an AG-groupoid.

Let us denote the set of all fuzzy subsets of an AG-groupoid S by F(S5).
Note that S(z) =1, for all x € S.
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Lemma 220 If S is an AG-groupoid with left identity e, then F(S) is an
AG-groupoid with left identity S.

Proof. Let f be any subset of F(S), and for any a € S, since e is left
identity of S. So, a = ea, then we have

(Sof)a)=\ {Se)nf@} =\ {11 f(a)} = f(a).

a=ea a=e€ea

Now for uniqueness, suppose S and S’ be the two left identities of F'(.5),
then S0 S’ =5’ and S’ oS = S. Now by using (1), we have S = S’ 0 S =
(S’085)0S=(S08)08 =508=5.nm

Lemma 221 In an AG-groupoid F(S), every right identity S is a unique
left identity.

Proof. Let f be any subset of F(S), since S is a right identity of F(S5),
then foS = f. Now we have

Sof=(SoS)of=(foS)oS=foS=F.
| ]

Lemma 222 An AG-groupoid F(S) with right identity is a commutative
semigroup.

Proof. Since F(S) is an AG-groupoid with right identity S. So by lemma
221, S is left identity of F(S). Let f, g and h € F(S), then, we have

fog=(Sof)og=(gof)oS=gof, and

(fogloh=(hog)of=(goh)of=Ffo(goh).

6.1 Inverses in AG-groupoids

Let f be any fuzzy subset of an AG-groupoid S with left identity. A fuzzy
subset f’ of S is called left(right) inverse of f,if f'o f =S(fo f' =5). f’
is said to be inverse of f if it is both left inverse and right inverse.

Lemma 223 Every right inverse in an AG-groupoid F(S), is left inverse.

Proof. Let f’ and f be any fuzzy subsets of S and f’ is the right inverse
of f. Then by using (1), we have

flof=(Sof)of=(fof)oS=505=5,
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which implies that f is left inverse of f. Now for uniqueness, let f’ and
f" be the two left inverses of f. So f'o f = S and f” o f = S. Now by
using (1), we have

fr=8of"=(f'of)of =(f"of)of =Sof =

]

Let f, g and h be any fuzzy subsets of an AG-groupoid S, then F(S) is
called left (right) cancellative AG-groupoid if fog= foh (go f=ho f)
implies that g = h, and F(S) is called a cancellative AG-groupoid if it is
both right and left cancellative.

Lemma 224 A left cancellative AG-groupoid F(S) is a cancellative AG-
groupoid.

Proof. Let F(S) be left cancellative and f, g and h be any fuzzy subsets
of an AG-groupoid S. Now let go f = ho f, which implies that (go f)ok =
(ho f)ok, where k € F(S), now we have (ko f)og = (ko f) o h, which
implies that g = h. =

Lemma 225 A right cancellative AG-groupoid F(S) with left identity S
is a cancellative AG-groupoid.

Proof. Let f, g , h and k be any fuzzy subsets of an AG-groupoid S.
Let F'(S) is right cancellative then g o f = h o f implies that g = f. Let
f og = foh which implies that g o f = ho f in [29] which implies that
g=f. n

Lemma 226 An AG-groupoid F(S) is a semigroup if and only if f o (go
h) = (hog)o f. where f, g, h and k are fuzzy subsets of S.

Proof. Let fo(goh)=(hog)o f, holds for all fuzzy subsets f, g, h and

k of S. Then by using (1), we have fo(goh)=(hog)o f=(fog)oh.
Conversely, suppose that F'(S) is a semigroup, then it is easy to see that

folgoh)=(fog)oh. m

Lemma 227 If f and g be any fuzzy bi-ideals of an AG-groupoid S with

left identity, then fog and go f are fuzzy bi-ideals of S.

Proof. Let f and g be any fuzzy bi-ideals of an AG-groupoid S with left
identity e, then

(foglo(fog) =

(fof)o(gog) C fog, and
((fog)oS)o(fog) = (
(

(fog)o(SoS))o(fog)
(foS)o(goS))o(foyg)
= ((foS)of)o((geS)og)C fog.

Hence f o g is a fuzzy bi-ideal of S. Similarly g o f is a fuzzy bi-ideal of S.
]

112
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Lemma 228 FEvery fuzzy ideal of an AG-groupoid S, is a fuzzy bi-ideal
and a fuzzy interior ideal of S.

Proof. Let S be an AG-groupoid and f be any fuzzy ideal of S, then for a,
b € S, wehave f(ab) > f(a) and f(ab) > f(b), therefore f(ab) > f(a)Af(b),
which implies that f is a fuzzy AG-subgroupoid. Now for any z, y, z € S,
we have f((zy)z) > f(xy) > f(x), and f((zy)z) > f(z), which implies that
f((zy)z) > f(z) A f(2). Hence f is a fuzzy bi-ideal. Similarly it is easy to
see that f((za)y) > f(a). ®

Lemma 229 Let f be a fuzzy subset of a completely reqular AG-groupoid
S with left identity, then the following are equivalent.

(¢) f is a fuzzy ideal of S.

(#3) f is a fuzzy interior ideal of S.
Proof. (i) = (i7), it is obvious.

(i1) = (1)

Since S is a completely regular AG-groupoid so for all a, b € S there
exist z, y € S such that a = (ax)a and ax = za, b = (by)b and by = yb,
now by using we have

flab) = f(((ax)a)b) = f((ba)(ax)) = f(a).

Now we get

f(ab) = f(a((by)b)) = f(a((yb)b)) = f((yb)(ab)) = f(b)-
u

Theorem 230 FEvery fuzzy generalized bi-ideal of a completely regular AG-
groupoid S with left identity, is a fuzzy bi-ideal of S.

Proof. Let f be any fuzzy generalized bi-ideal of an AG-groupoid S. Then,
since S is completely regular, so for each a € S there exist € S such that
a = (ax)a and az = za. Thus

flab) = f(((ax)a)b) = f(((az)(ea))b) = f(((za)(ea))d)

Theorem 231 Let f, g and h be any fuzzy subset of an AG-groupoid S,
then the following are equivalent.

(i) folgUh)=(fog)U(foh); (gUh)of=(gof)U(hof)
(it) folgnh)=(feg)N(foh) (gnh)of=I(gof)n(holf)

Proof. It is same as in [37]. m

Lemma 232 Let f, g and h be any fuzzy subsets of an AG-groupoid S, if
fCg,then fohCgohandho f Chog.

13
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Proof. Tt is same as in [37]. m

A subset P of an AG-groupoid S is called semiprime, if for all a € S,
a?® € P implies a € P.

A fuzzy subset f of an AG-groupoid S is called fuzzy semiprime, if f(a) >
f(a?), foralla € S.

6.2 Fuzzy Semiprime Ideals

Lemma 233 In an intra-reqular AG-groupoid S, every fuzzy interior ideal
s fuzzy semiprime.

Proof. Since S intra-regular so for a € S there exist z, y € S such that
a = (za?)y, so we have

fla) = f((za*)y) = f(a®).
]

Theorem 234 A non-empty subset A of an AG-groupoid S, is semiprime
if and only if the characteristic function Ca of A is fuzzy semiprime.

Proof. Let a? € A, since A is semiprime so a € A, hence Cx(a) = 1 =
Ca(a?). Also if a2 ¢ A, then C4(a) > 0 = Ca(a?). In both cases, we have
Ca(a) > Ca(a?) for all a € S, which implies that C4 is fuzzy semiprime.
Conversely, assume that a? € A, since Cy is a fuzzy semiprime, so we
have Ca(a) > C4(a?) =1, and so C4(a) = 1, which implies that a € A. m

Theorem 235 For any fuzzy AG-subgroupoid f of an AG-groupoid S, the
following are equivalent.

() f is a fuzzy semiprime.
(ii) f(a) = f(a?), for all a € S.
Proof. (i) = (it)
Let a € S, then since f is a fuzzy AG-subgroupoid of S, so we have

f(a) = f(a®) = f(aa) > f(a) A f(a) = f(a).

(#9) = (7), it is obvious. m

An element a of an AG-groupoid S is called intra-regular if there exists
elements =, y € S such that a = (za?)y. An AG-groupoid S is called
intra-regular if every element of S is intra-regular.

Theorem 236 For an AG-groupoid S with left identity, the following are
equivalent.

(i) S is intra-regular.
(ii) f(a) = f(a?), for all fuzzy two sided ideal f of S, for all a € S.
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(iii) f(a) = f(a?), for all fuzzy interior ideal f of S, for all a € S.
Proof. (i) = (i)

Let f be any fuzzy interior ideal of an intra-regular AG-groupoid S. Now
for any a € S, there exist x, y € S, such that a = (za?)y. Then we have

fla) = f((za®)y) = f(a®) = f(aa) = f(a((za®)y)) = f(a((ya®)2))
= [fla((y(aa))z)) :f(a((a(ya))x)) = f(a((z(ya))a))
= [f((z(ya))(aa)) = f((za)((ya)a)) = f(a).

Clearly (i) = (i4).

(id) = (i)

Let J [az] be the principal two sided ideal generated by a?. Then, C 7[a?]
is a fuzzy two sided ideal of S. Since a® € J [ag], so by (ii) we have
Ciaz) (@) = Cpa2) (a2) =1, hence a € J [ag] = (Sa?)S, which implies
that there exist =, y € S such that a = (za?)y. =

Theorem 237 Let f be a fuzzy interior ideal of an intra-reqular AG-
groupoid S with left identity, then f(ab) = f(ba), for all a, b in S.

Proof. Let S be an intra-regular AG-groupoid and a, b € S, then

Flab) = f((@)?) = f ((ab) (ab) = f ((ba) (ba)

]
The following three propositions are well-known.

Proposition 238 FEvery locally associative AG-groupoid has associative
powers.

Proposition 239 In a locally associative AG-groupoid S, a™a™ = a™*™,

YV a € S and positive integers m, n.

mn

Proposition 240 In a locally associative AG-groupoid S, (a™)™ = a™",
for all a € S and positive integers m, n.

Theorem 241 Let f be a fuzzy semiprime interior ideal of a locally as-
sociative AG-groupoid S with left identity, then f(a™) = f(a™*1), for all
positive integer n.

15
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Proof. Let n be any positive integer and f be any fuzzy interior ideal of
S, then we have

f(a)

v

7 (@) = (@) = f(@™) = fla"+2a*2)

f((aa"™)a® %) = f(a™*).

]
An AG-groupoid S is called archimedean if for all a, b € S, there exist a
positive integer n such that a™ € (Sb)S.

Theorem 242 Let S be an archimedean locally associative AG-groupoid
with left identity, then every fuzzy semiprime fuzzy interior ideal of S is a
constant function.

Proof. Let f be any fuzzy semiprime fuzzy interior ideal of S and a, b € S.
Thus we have f(a) > f(a?) > f(a*) > ... > f(a®") = f(a™), where 2n = m.
Now since S is archimedean, so there exist a positive integer m and z, y € S
such that a™ = (xb)y. Therefore f(a) > f((xb)y) > f(b). Similarly we can
prove that f(b) > f(a). Hence f is a constant function. m

An AG-groupoid S is called left (right) simple, if it contains no proper
left (right) ideal and is called simple if it contain no proper two sided ideal.

An AG-groupoid S is called fuzzy simple, if every fuzzy subset of S is a
constant function.

Theorem 243 An AG-groupoid S is simple if and only if S = a?S =
Sa? = (Sa?)S, for all a in S.
Proof. It is easy. m

An AG-groupoid S is called semisimple if every two-sided ideal of S is
idempotent. It is easy to prove that S is semisimple if and only if a €

((Sa)S)((Sa)S), that is, for every a € S, there exist z, y, u, v € S such
that a = ((za)y)((ua)v).

Theorem 244 FEvery fuzzy two-sided ideal of a semisimple AG-groupoid
S is an idempotent.
Proof. Let f be fuzzy two-sided ideal of S. Obviously
(fof)la) = V {f ((a)y) A f ((ua)v)} = f(a). =
a=((za)y)((ua)v)
Theorem 245 Let f and g be any fuzzy ideal of a semisimple AG-groupoid
S, then fog is a fuzzy ideal in S.
Proof. Clearly fog C fNg. Now
(fog)(a) = Vo U (@a)y) Ag((ua)v)}
a=((za)y)((ua)v)
f((za)y) Ag((ua)v) > f(za) Ag(ua) = f(a) Ag(a)
= (fng)(a).

Y
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Hence f o g is a fuzzy ideal of S. m

Theorem 246 Fuvery fuzzy interior ideal of a semisimple AG-groupoid S
with left identity, is a fuzzy two-sided ideal of S.

Proof. Let f be a fuzzy interior ideal of S, and a, b € S, then since S
is semisimple, so there exist =, y, u, v € S and p, ¢, 7, s € S such that
a = ((za)y)((ua)v) and b = ((pb)q)((rb)s). Thus we have

flab) = f(((za)y)((ua)v)b) = f((((za)(ua))(yv))b)
= f((((zu)(aa))(yv))b) = f((((aa)(uz))(yv))b)
= f((((yv)(uz))(aa))b) = f(((aa)((uz)(yv)))b)
= f((b((uz)(yv)))(aa)) = f((ba)(((uz)(yv))a))
= f((((uz)(yv))a)a)b) = f(a).
Now we have
flab) = f(a(((pb)q)((rb)s))) = f(a(((p)(rb))(qs)))
= fla(((pr)(bb))(gs))) = f(al(((b0)(rp))(gs)))
= fla((((rp)b)b)(gs)))
f((((rp)b)b)(algs))) = f(b)

Theorem 247 The set of fuzzy ideals of a semisimple AG-groupoid S
forms a semilattice structure.

Proof. Let O be the set of fuzzy ideals of a semisimple AG-groupoid S
and f, g and h € Oy, then clearly O; is closed and we have f = f2 and
fog= fNg, where f and g are ideals of S. Clearly fog = go f, and then,
we get (fog)oh=(hog)of=fo(goh) m

A fuzzy ideal f of an AG-groupoid S is said to be strongly irreducible if
and only if for fuzzy ideals g and h of S, gN h C f implies that g C f or
hCf.

The set of fuzzy ideals of an AG-groupoid S is called totally ordered
under inclusion if for any fuzzy ideals f and g of S either f C g or g C f.

A fuzzy ideal h of an AG-groupoid S is called fuzzy prime ideal of S, if
for any fuzzy ideals f and g of S, f o g C h, implies that f C h or g C h.

Theorem 248 In a semisimple AG-groupoid S, a fuzzy ideal is strongly
wrreducible if and only if it is fuzzy prime.

Proof. It follows from theorem 245. m

Theorem 249 Fuvery fuzzy ideal of a semisimple AG-groupoid S is fuzzy
prime if and only if the set of fuzzy ideals of S is totally ordered under
inclusion.

Proof. It is easy. m

uy






Theory of Abel Grassman's Groupoids 19

7

(€,€ Vq) and (€, € Vq)-fuzzy
Bi-ideals of AG-groupoids

In this chapter we characterize intra-regular AG-groupoids by the proper-
ties of the lower part of (€, € Vq)-fuzzy bi-ideals. Moreover we characterize
AG-groupoids using (€, € Vg )-fuzzy.

Let f be a fuzzy subset of an AG-groupoid S and ¢ € (0,1]. Then z; € f
means f(z) > t, x;qf means f(z)+¢ > 1, xz;a V Sf means zaf or z,8f,
where «, 8 denotes any one of €, ¢, € Vq, € Aq. zza A Bf means z:;af and
z:Bf, xsaf means x.af does not holds.

Let f and g be any two fuzzy subsets of an AG-groupoid S, then for
k € ]0,1), the product f op 5 g is defined by,

\/ {f(d) Ag(c) AN0.5}, if there exist b,c € S, such that a = be.
(f 0.5 g) (CL) = a=bc
0, otherwise.

The following definitions for AG-groupoids are same as for semigroups
in [56].

Definition 250 A fuzzy subset § of an AG-groupoid S is called an (€
, € Vq)-fuzzy AG-subgroupoid of S if for all x,y € S and t,r € (0,1], it
satisfies,

¢ €0, yr €0 implies that (xy)min{t’r} € Vqd.

Definition 251 A fuzzy subset § of S is called an (€,€ Vq)-fuzzy left
(right) ideal of S if for all x,y € S and t,r € (0,1], it satisfies,
xy € & implies (yx), € Vo (x, € § implies (xy), € V¢o).

Definition 252 A fuzzy AG-subgroupoid f of an AG-groupoid S is called
an (€, € Vq)-fuzzy interior ideal of S if for all x,y,z € S and t,r € (0,1]
the following condition holds.
yr € f implies ((xy)z), € Vqf.

Definition 253 A fuzzy subset f of an AG-groupoid S is called an (€
, € Vq)-fuzzy quasi-ideal of S if it satisfies, f(x) > min(f o Cg(z),Cs o
f(x),0.5), where Cg is the fuzzy subset of S mapping every element of S
on 1.

Definition 254 A fuzzy subset f of an AG-groupoid S is called an (€, €
Vq)-fuzzy generalized bi-ideal of S if x¢ € f and z, € f implies ((zy) z)min{t’r} €
Vqf, for all z,y,z € S and t,r € (0,1].
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Definition 255 A fuzzy subset f of an AG-groupoid S is called an (€, €
Vq)-fuzzy bi-ideal of S if for all x,y,z € S and t,r € (0,1] the following
conditions hold

(i) If x¢ € f and y, € S implies (xy)min{t7r} € vqf,

(i) If z € f and 2z € f implies ((xy) 2)pinge,ry € VQS-

The proofs of the following four theorems are same as in [56].

Theorem 256 Let § be a fuzzy subset of S. Then § is an (€, € Vq)-fuzzy
AG-subgroupoid of S if and only if 6(xy) > min{d (x),d(y),0.5}.

Theorem 257 A fuzzy subset § of an AG-groupoid S is called an (€, €
Vq)-fuzzy left (right) ideal of S if and only if
d(zy) > min{o(y), 0.5} (§(xy) > min{d(z),0.5}).

Theorem 258 A fuzzy subset f of an AG-groupoid S is an (€, € Vq)-fuzzy
interior ideal of S if and only if it satisfies the following conditions.

(i) f(zy) > min{f (z), f(y),0.5} for all z,y € S and k € [0,1).

(i) f((zy)z) > min{f (y),0.5} for all z,y,z € S and k € [0,1).

Theorem 259 Let f be a fuzzy subset of S. Then f is an (€, € Vq)-fuzzy
bi-ideal of S if and only if

() f(zy) > min{f (z), f(y),0.5} for allz,y € S and k € [0,1),

(1) f((xy)z) > min{f(z), f (2),0.5} for all z,y,z € S and k € [0,1).

Example 260 Let S = {a,b,c} be an AG-groupoid with the following Cay-
ley table:

One can easily check that {a},{b},{c},{a,c} and {a,b,c} are all bi-ideals
of S. Let f be fuzzy subsets of S such that f(a) = 0.9, f(b) = 0.2 and
f(c) =0.6. Then f is an (€, € Vq)-fuzzy ideal of S.

Definition 261 An element a of an AG-groupoid S is called intra-regular
if there exist x,y in S such that a = (za®)y. An AG-groupoid S is called
intra-reqular if every element of S is intra-reqular.

Theorem 262 Let S be an AG-groupoid with left identity. Then S is intra-
reqular if and only if RN L = RL and R is semiprime, for every left ideal
L and every right ideal R of S.

Proof. Let R, L be right and left ideals of an intra-regular AG-groupoid
S with left identity. Then R and L become ideals of S and so RL C RN L.
Now we have RN L is an ideal of S. We can also deduce that RN L =
(RN L)? C RL. Hence we obtain RN L = RL.
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Next, we show that R is semiprime. So let 72 € R. Since S is intra-regular,
there exist ,y € S such that r = (2r?)y. Thus we have

r= (2r?)y € (SR)S C R.

Therefore, R is semiprime.

Conversely, assume that R N L = RL and R is semiprime, for any left
ideal L and right ideal R of S. We need to show that S is intra-regular. To
see this, note that for any a € S, Sa? is a right ideal and Sa is a left ideal
of S. Clearly, a € Sa. Since Sa? is semiprime and a? € Sa?, we also have
a € Sa?. Hence it follows that

a € Sa* N Sa = (Sa*)(Sa) C (Sa?)s,

which shows that a is intra-regular. Therefore, S is intra-regular as required.
]

Example 263 Let S = {1,2,3,4,5} be an AG-groupoid with the following
Cayley table:

T W N | %
T DN W k|~
=N W o O N
N W s Ot =W
W = UL = N
= O =N W Ot

It is clear that S is intra-regular since 1 = (3% 12) %2, 2 = (1 % 2%) % 5,
3=(5*3%)%2,4=(2x4%)x1,5 = (3%5%) x 1. Let us define a fuzzy
subset f on S such that f (1) = 0.8, f(2) = 0.7, f(3) = 0.5, f(4) = 0.9
and f (5) = 0.6. Then f is an (€, € Vq)-fuzzy bi-ideal of S.

Theorem 264 For an AG-groupoid S with left identity, the following con-
ditions are equivalent:

(7) S is intra-regular.

(ii) B = B? for every bi-ideal B of S.

Proof. Let B be a bi-ideal of an intra-regular AG-groupoid S with left
identity. Thus B is an ideal of S. Then it follows that B = B2,

Conversely, assume that B = B2 for every bi-ideal B of S. For any a € S,
Sa is a bi-ideal contains a. Thus we have

a € Sa = (Sa)? = Sa* = (Sa?)9,

which shows that a is intra-regular. Therefore, S is intra-regular as required.
]
The following results can be proved by similar techniques as used in [56].
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Lemma 265 Let L be a non-empty subset of an AG-groupoid S and Cp,
be the characteristic function of L. Then L is a left ideal of S if and only
if the lower part C; is an (€, € Vq)-fuzzy left ideal of S.

Lemma 266 Let R be a non-empty subset of an AG-groupoid S and Cgr
be the characteristic function of R. Then R is a right ideal of S if and only
if the lower part Cy; is an (€, € Vq)-fuzzy right ideal of S.

Lemma 267 Let A and B be non-empty subsets of an AG-groupoid S.
Then we have the following:

(1) (CA/\C’B)*:C(_AQB).
(2) (CavCp)~ =Claup)-
(3) (CAOCB)7:CC43)-

Theorem 268 A fuzzy subset f of an AG-groupoid S is (€, € Vq)-fuzzy
semiprime if and only if f(z) > f(x%) A0.5 for all z € S.

Proof. Let f be a fuzzy subset of an AG-groupoid S which is (€, € Vq)-
fuzzy semiprime. If there exists some zy € S such that f(xg) < to =
f(23) A0.5. Then (23), € f, but (z0)i, Ef. In addition, we have (z¢)¢, €
Vqf since f is (€, € Vg)-fuzzy semiprime. On the other hand, we have
f(zo) +to < to+to < 1. Thus (z0)s,qf, and so (z¢), € Vgf. This is a
contradiction. Hence f(x) > f(22) A 0.5 for all x € S.

Conversely, assume that f is a fuzzy subset of an AG-groupoid S such
that f(z) > f(z?) A0.5 for all z € S. Let 7 € f. Then f (2%) > ¢, and so
f@)>f (mz) A 0.5 >t A0.5. Now, we consider the following two cases:

(1) If t <0.5, then f (x) > t. That is, z; € f. Thus we have z; € Vqf.

(i) If t > 0.5, then f (z) > 0.5. It follows that f(x)+¢ > 0.5+t > L.
That is, z:qf, and so xz; € Vqf also holds. Therefore, we conclude that f
is (€, € Vq)-fuzzy semiprime as required. m

Theorem 269 Let A be a non-empty subset of an AG-groupoid S with left
identity. Then A is semiprime if and only if C, is fuzzy semiprime.

Proof. Suppose that A is a non-empty subset of an AG-groupoid S with
left identity and A is semiprime. For any a € S, if a> € A, then we have
a € A since A is semiprime. It follows that C(a) = C;(a?) = 0.5. If
a’€A, then we have C(a) > 0 = C;(a?). This shows that C is fuzzy
semiprime.

Conversely, assume that C; is fuzzy semiprime. Thus we have C (z) >
Cy (%) for all z in S. If 22 € A, then C(2%) = 0.5. Hence C; (z) >
C (z%) > 0.5, which implies « € A. Therefore, A is semiprime as required.
]
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Definition 270 An (€, € Vq)-fuzzy AG-subgroupoid of an AG-groupoid S
is called an (€, € Vq)-fuzzy interior ideal of S if

ar € f= ((za)y): € Vaf,
for all z,a,y € S and t € (0,1].

Theorem 271 Let f be a fuzzy subset of an AG-groupoid S. Then f is an
(€, € Vq)-fuzzy interior ideal of S if and only if it satisfies:

(i) f(xy) > min{f(z), f(y),0.5}, for all 2,y € S.

(i7) f((za)y) > min{f(a),0.5}, for all x,a,y € S.

Proof. It is easy. m

7.1 Characterizations of Intra-regular
AG-groupoids

In this section, we give some characterizations of intra-regular AG-groupoids
based on the properties of their (€, € Vq)-fuzzy ideals.

Theorem 272 For an AG-groupoid S with left identity e, the following
conditions are equivalent:

(1) S is intra-regular.

(1) (fAg)” = (fog)™ and f is fuzzy semiprime, where f is an (€, € Vq)-
fuzzy right ideal and g is an (€, € Vq)-fuzzy left ideal of S.

Proof. Assume that S is an intra-regular AG-groupoid with left identity
e. Let f be an (€, € Vq)-fuzzy right ideal of S and g be (€, € Vq)-left ideal
of S. For a € S, we have

(fog) (a) = (fAg)a)A05=(\/ {f(y) Ag(z)}) A 0.5

a=yz

=(V (/) Ag(2)} A0.5)

a=yz

= (\V/ ({f(y) A0.5} A{g(z) A 0.5} A 0.5)

a=yz

< \/ {f(w2) Aglyz) A 0.5}

a=yz

= f(a) Agla) NO5 = (f Ag)~(a).

123
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Thus (fog)” < (f Ag)~. Since S is intra-regular, for a € S, there exist
x,y € S such that a = (za?)y. Now we get
a = (za®)y = (z(a.a)y = (a(za))y = (y(za))a
= ((ey)(za))a = ((az) (ye)) = ((ay)(ze))a
= ((az)(ye))a = ((az)(ye))((za®)y) = ((az)(ye))((z(aa))y)
= ((az)(ye))((a(za))y) = ((az)(ye))((y(za))a).

Hence we deduce that

(fog) (a)=(fog)(a) AO5

= \/{fp q)} A 0.5
= \/{f MA0.5

= \V {f(p) Ng(a)} NO.5
=((az)(ye))((y(za))a)

)
>f((aw)( e)) A g((y(za))a) A 0.5
> f(az) A g(a) NO.5 > fla 2 gla) N 0.5

= (fAg)(a) N05=(fAg)a)

This shows that (fog)” > (f A g)”. Thus we obtain (fog)” =(fAg)~.
Next we shall show that f is fuzzy semiprime. Since S = S2, thus for
x € S there exist u,v in S such that z = uv. Then we get

fla) = f((wa®)y) > f (va®) = f ((w) (aa)) = f ((aa) (vu)) > f (a®).

Therefore, f is fuzzy semiprime as required.

Conversely, suppose that S is an AG-groupoid with left identity e, such
that (fAg)” = (fog)™ and f is fuzzy semiprime for every (€, € Vq)-fuzzy
right ideal f and every (€, € Vq)-fuzzy left ideal g of S. Let R and L be
right and left ideals of S respectively. Then, C and C}; are (€, € Vq)-fuzzy
left ideal and (€, € Vq)-fuzzy right ideal of S, respectively. By assumption,
Cy, is also fuzzy semiprime. Then we deduce that R is semiprime. Then we
have

C(_RL) =(CroCL)” =(CrACL)” = C(_ROL)

Thus RL = RN L. Hence S is intra-regular as required. m
Note that RL C RN L for every right ideal R and left ideal L of an
AG-groupoid S. We immediately obtain the following.

Theorem 273 For an AG-groupoid S with left identity e, the following
conditions are equivalent:

(1) S is intra-regular.

(i1) (fAg)” < (fog)™ and f is fuzzy semiprime, where f is an (€, € Vq)-
fuzzy right ideal and g is an (€, € Vq)-fuzzy left ideal of S.
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Theorem 274 For an AG-groupoid S with left identity e, the following
conditions are equivalent:

(1) S is intra-regular.

(@) (hAfYNG)” < ((ho f)og)™ and h is fuzzy semiprime, for every
(€, € Vq)-fuzzy right ideal h, (€, € Vq)-fuzzy bi-ideal f and (€, € Vq)-fuzzy
left ideal g of S.

(#51) (A fYNg)” < ((ho f)og) and h is fuzzy semiprime, for every
(€,€ Vq)-fuzzy right ideal h, (€,€ Vq)-fuzzy generalized bi-ideal f and
(€,€ Vq)-fuzzy left ideal g of S.

Proof. (i) = (iii): Let S be an intra-reqular AG-groupoid with left identity
e. For any a € S, there exist x and y in S such that a = (za®)y. Now we

get
a = (za®)y = (z(aa))y = (a(za))y = (y(za))a
= ((ey)(za))a = ((ye)(za))a = ((ye) (x ((za®)y))) a
= ((ye)(z((za®)(ey)))a = ((ye)(z((ye)(a*x))a
= ((ye)(a(a*((ye)z))a = (((ye) (a*(z((ye)z))))a
= ((ye)(@*((ye)z?)))a = (a*((ye)((ye)z?)))a
= ((ba)a)a, where b = (ye) ((ye)x?).

Ja = (((yt

((hofyog)a) =T\ ((ho f)(®)Agla) 70.5]

\/ (ko f)() Ag(@)] A0S

pg=((ba)a)a

\/  [(hof)((ba)a) A g(a)] A 0.5

pq=((ba)a)a
> (ho f)((ba)a) A g(a) NO.5

{h((a*u)a) A f(a) NO.5} A g(a) AO.5
(ba)a=((a?u)a)a

> h(a®) A f(a) A gla) AO.5
> h(a) A f(a) A gla) NO.5 = ((h A f) A g)(a).
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This shows that (WA f) Ag) < ((ho f)og). In addition, for any a € S,
there exist x,y € S such that a = (xa2) y since S is intra-reqular. Thus we
get

h (za®) y = h(za®) = h(z(aa)) = h(a(za)) = h((ea) (za))
= h(az) (ae) = h(aa)(ze) = h (a® (ze)) > h (a®).

Therefore, h is fuzzy semiprime as required.

(#91) = (it): Straightforward.

(13) = (3): Let h be an (€, € Vq)-fuzzy semiprime right ideal and let g be
an (€, € Vq)-fuzzy left ideal of S. Then

(hoCo)(a) = \/ h(b)ACu(c) = \/ h(b) A1
a=bc a=bc

< \/ h(be) = h(a).

a=bc

Since Cy is an (€, € Vq)-fuzzy bi-ideal of S, for any a € S we have

(h A g)(a) = (hACs) Ag)(a) < ((hoCs) o g)(a) < (hog)(a).

Therefore, (h A g) < (hog). Then by Theorem 273, we deduce that S is
intra-regular as required. m

Lemma 275 A non-empty subset B of an AG-groupoid S is a bi-ideal if
and only if Cy is an (€, € Vq)-fuzzy bi-ideal of S.

Proof. It is similar to the proof of Lemma 9 in [55]. m

Theorem 276 For an AG-groupoid S with left identity e, the following
conditions are equivalent:

(1) S is intra-regular.

(i) f= =((foCs)o f)~ for every (€, € Vq)-fuzzy generalized bi-ideal f
of S and fof=f.

(t51) f~ = ((foCs)o f)~ for every (€, € Vq)-fuzzy bi-ideal f of S and
fof=f.

Proof. (i) = (ii): Let S be an intra-regular AG-groupoid with left identity
e. For any a € S, there exist x and y in S such that a = (za?)y. We already
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obtained a = (((a?u)a)a)a. Moreover, we have

((fOCS) of)i(a) = ((fOCS) of)(a) AO0.5
=V A(foCs)p) A f(g)} A0

a=pq

= V {(foCs)(p) A f(@)} NO5

pg=(((a?u)a)a)a
(f o Cs)(((a*w)a)a) A f(a) AO.5
\/  {f((a®w)a) A Cs(a)} A f(a) A 05

be=((a2u)a)a
> f((a*u)a) A1 A f(a) AO.5
> f(a®) A f(a) ANO.5A f(a) AO.5
> f(a) A f(a) NO5 > f(a) NO.5 = f~(a),
which shows that ((foCg)o f)~ > f~.

On the other hand, since f is an (€, € Vq)-fuzzy generalized bi-ideal of
S, we can deduce that

((foCs)o f) (a)=((foCs)o f)(a)AN0.5
= VA(FoCs)) A f(©)} A0S

v

= a\/:c{ }éq{f )ACs(q)} A f(e)} A0S
:\{:{b\éq{f AT}A f(&)} AO.5

= \/J{X)q{f )} A F(e)} A0S

< :_zg)c{f((p@ ) A 0.5} < f(a) A0S = f(a).

Thus ((f o Cg) o f) < f7, and so ((fOCS) o f)~ = f~ as required.
Now (Cgof)(a \/ {Cs(e) = f(a). Therefore, fof < Csof =

a=ea
f- Since S is intra-regular, thus we get

a = (va®)y = (x(aa))y = (a(za))y = (y(za))a.

In addition, we also have

y(za) = y(z(za®)y)) = y((va®)(zy)) = (za*)(y(zy))
= (va®)(wy?) = (a(wa))(zy®) = ((zy*)(za))a.
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Let us denote zy? = t. Then we deduce that

(zy*)(za) = t(za) = t(x((za®)y)) = t((za®)(xy))
= (va®)(t(xy)) = ((zy)t)(a*x) = a*(((zy)t)2)
= (z(zy)t))(aa) = a((z((zy)t))a)

Thus we obtain a = (y(za))a = (a((z((zy)t))a)a)a. Now, it follows that

fofl@= "\ {fyxa) A fla)}

a=(y(za))a

{f(a((z((zy)t))a)) A f(a)}
y(za)=a((z((zy)D)a)a

> fla) A f(a) = f(a),

which shows that f o f > f. Therefore, f o f = f.

(#7) = (4i1): Straightforward.

(#4i) = (7): Let B be any bi-ideal of an AG-groupoid S with left identity
e. Then Cp is an (€, € Vq)-fuzzy bi-ideal of S. Thus we have CpoCp = Cp.
Also it is clear that Cg o Cg = Cp2. Hence Cg = Cp2 and so B = B2.
Hence deduce that S is intra-regular as required. m

Theorem 277 For an AG-groupoid S with left identity e, the following
conditions are equivalent:

(i) S is intra-regular.

(5) (fAg)” = ((fog)o f)~ for every (€,€ Vq)-fuzzy bi-ideal f and
(€, € Vq)-fuzzy interior ideal g of S.
Proof. (i) = (ii): Let S be an intra-regular AG-groupoid with left identity
e. Let f be an (€, € Vq)-fuzzy bi-ideal and g be an (€, € Vq)-fuzzy interior
ideal of S. Since Cy itself is an (€, € Vq)-fuzzy ideal of S, for any a € S,
we have

((fog)of) (a) < ((foCy)of)a) A0S
= VAo CO®) A f(a)} A 05

a=pq

VAV PO AC(IA F(@)} 705

a=pq p=bc

= VAV O AL AF@) 705

a=pq p=bc

=V {V rfoAf@}nos

a=pq p=bc

< \/ {f((be)g} 05 = f(a) A0S = f(a).

a=(bc)gq
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Note also that

((fog)of) (a) < ((Csog)oCy)(a) A0S
= \/ {(Cs09)(b) A Ci(c)} A 05

a=bc

= VAV G rg@In1yros
a=bc b=pq

=V {1rg@nos=\/ {glg)}n05
a=(pq)c) a=(pq)c)

<V {9((pa)o)} A 0.5 = g(a) NO.5 = g (a).
a=(pq)c)

Hence ((fog)of) <(f~ANg™)=(fANg)". Now, since S is intra-regular,

for a € S there exist elements x,y € S such that a = (za?)y. We already

obtained a = (((a*u)a)a)a. Thus we have

((fog)o f) (a) = Vo {(feg)y(za) A fla)} A0.5

a=(((a?u)a)a)a
> (f o g)(((a®u)a)a) A f(a) AO.5
= \/ {f(((a*uw)a) A g(a) N0.5} A f(a) AO.5

((a2u)a)a=bc
V  f(((@w)a) Agla) A f(a) AO.5
(a2u)a)a=bc
a®) A f(a) AN0.5 A g(a) A f(a) A0S
(a) ANg(a) A f(a) NO.5
(a) A f(a) NO.5
(@) N0.5 = (f Ag) (a),

which gives ((f o g)o )~ > (f Ag)™. Therefore, (fog)o ) = (f Ag)™
as required.

(i) = (i): Assume that S is an AG-groupoid with left identity such that
(fANg)” =((fog)of) forevery (€, € Vq)-fuzzy bi-ideal f and (€, € Vq)-
fuzzy interior ideal g of S. Let f be any (€, € Vq)-fuzzy bi-ideal of S. Since
Cyg itself is an (€, € Vq)-fuzzy interior ideal of S, we have

f(a) = f(a)n0.5 = (fACs)(a)A0.5 = (fACs)(a) = ((foCs)e f)™(a),

foralla € S. That is, ((f oCs)o f)~ = f~. Hence S is intra-regular as
required. m

—~

IV IV IV IV
= ===
e s s
> > >
Q@ QO -

Theorem 278 For AG-groupoid S with left identity e, the following con-
ditions are equivalent:
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(1) S is intra-regular.

(i14) AN B C AB, for every bi-ideal B and left ideal A of S.

(751) (fAg)” < (fog)™ for every (€, € Vq)-fuzzy bi-ideal f and (€, € Vg
)-fuzzy left ideal g of S.

() (fAg)” < (fog)™ for every (€, € Vq)-fuzzy generalized bi-ideal f
and every (€, € Vq)-fuzzy left ideal g of S.

Proof. (i) = (iv): Let S be an intra-regular AG-groupoid with left identity
e. Let f and g be any (€, € Vq)-fuzzy generalized bi-ideal and any (€,
€ Vq)-fuzzy left ideal of S, respectively. For any a € S, there exist x and y
in S such that a = (za?)y. Thus

a = (za®)y = (z(aa))y = (a(za))y = (y(za))a = ((ey)(za))a
= ((az)(ye))a = (((ye)x)a)a = (ta)a, where t = (ye)z.
Thus
= (ta)a = (t(za®)y)a = ((za®)(ty))a = ((x(aa))(ty))a = ((a(za))(ty))a.
Furthermore, we have
(fog) (a)=(f og)(a) AN0O.5
= \/ {f®) Ag(@)}n05

a=pq

/' {f@)Agl@}nros
a=((a(za)) (t9))a
fla(za)) A g((ty)a) A 0.5
f(a) A f(a) Ag(a) AO.5
= f(a) A g(a) NO.5

=(fAg)NOE=(fNg) (a)

That is, (f A g)~ < (fog)™.

(tv) = (#4i): Straightforward.

(#4i) = (it): Assume that S is an AG-groupoid with left identity such that
(fAg)” < (fog) for every (€, € Vq)-fuzzy bi-ideal f and (€, € Vq )-fuzzy
left ideal g of S. Let A and B be bi-ideal and left ideal of S, respectively.
Then C, and Cj are (€, € Vq)-fuzzy bi-ideal and (€, € Vq)-fuzzy left ideal
of S. Thus by hypothesis we get

2
>

Canp = (CanCB)” <(CaoCp)” = Chup-

It follows that AN B C AB.
(#7) = (4): Since Sa is both a bi-ideal and left ideal of an AG-groupoid
S with left identity. Using the medial law, the left invertive law and the
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paramedial law, we have

a € SanSa = (Sa)(Sa) = (S5)(aa) = (a*>S)S
= ((aa)($9))S = (($5)(aa))$ = (Sa*)S,

for all a € S. Hence S is intra-regular as required. m

Theorem 279 For an AG-groupoid S with left identity e, the following
conditions are equivalent:

(1) S is intra-regular.

(i) (fo f)~ > f~ for every (€, € Vq)-fuzzy bi-ideal f of S.

(#i1) (fog)™ > f~ Ag for every (€, € Vq)-fuzzy bi-ideals f and g of S.

Proof. (i) = (iii): Let S be an intra-regular AG-groupoid with left identity
e. Let f and g be (€, € Vq)-fuzzy bi-ideals of S. For any a € S, there exist
x,y in S such that a = (xa2) y. Thus we get

a= (za®)y = (v (aa))y = (a(za)) y = (y(za))a,

and

a=(a(z((zy)(zy?)))a)a

= ( \/ f(a(z((zy) (zy?)))a) A g (a)) N0.5

= ( \/ f (a (z((zy) (myz)))a) Ag (a)) N0.5
a=(a(

a(z((zy)(zy?)))a)a

(a (2((zy) (24°)))a) A g (a)) AO5

(a)/\f()A05) (9(a) A0O.5)
[f(a) Ng(a)] ANO.5 = (fAg)(a)ANO.5=(fAg) (a).

This shows that (fog)” > f~ Ag~ as required.
(#91) = (41): Straightforward.
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(#7) = (i): Assume that S is an AG-groupoid with left identity e such
that (fo f)~ > f~ for every (€, € Vq)-fuzzy bi-ideal f of S. Let B be a bi-
ideal of S. Then Cj is an (€, € Vq)-fuzzy bi-ideal of S. By hypothesis, we
have (Cp o Cp)~ = Cp, > Cp, and so B C B2, Clearly, we have B> C B
since B is a bi-ideal of S. Therefore, B?> = B. Hence S is intra-regular. m

7.2 (€, € Vqy)-fuzzy Ideals of Abel-Grassmann’s

7.3 Main results

We begin with the following definition.

Definition 280 An element a of an AG-groupoid S is called intra-regular
if there ewists x,y € S such that a = (xa®)y and S is called intra-regular,
if every element of S is intra-regular.

Let S be an intra-regular AG-groupoid with left identity. Then, for x
in S there exist v and v in S such that x = uv. Now, using paramedial,
medial, left invertive law, we get

a = (za®)y = [(w)(aa)ly = [(aa)(vu)ly = [y(vu)la® = a[{y(vu)}d](2)
= [y(vw)a® = (ya)[(vu)a] = [a(vu)](ay) = [(ay)(vu)]a.

Note. It is obvious from (2) that the results for intra-regular AG-groupoid
with left identity is significantly different from those of semigroups and
monoids.

The characteristic function C4 for a subset A of an AG-groupoid S is
defined by

1, if x € A,
CA(”“")_{ 0,if o ¢ A.

A fuzzy subset f of S is called an (€, € Vqyi)-fuzzy subgroupoid of S if
for all z,y € S and ¢, r € (0,1] the following condition holds.

ry € f and y, € f implies that (2y)minge,r} € Var f-

A fuzzy subset f of S is called an (€, € Vqyi)-fuzzy left(right) ideal of S
if for all z,y € S and ¢,7 € (0, 1] the following condition holds.

y: € f implies that (zy): € Var.f (y: € f implies that (yx); € Varf) .

A fuzzy subset f of S is called an (€, € Vg )-fuzzy two sided ideal of S
if it is both (€, € Vq)-fuzzy left and (€, € Vqy)-fuzzy right ideal of S.

A fuzzy subset f of S is called an (€, € Vg )-fuzzy bi-ideal of S if for all
x,y,z € S and t,r € (0,1] the following condition holds.

z; € f and 2, € f implies that ((2y) 2)mingt,r} € Varf-
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A fuzzy subset f of S is called an (€, € Vqi)-fuzzy generalized bi-ideal
of S'if for all z,y,z € S and ¢,7 € (0,1] the following condition holds.

z; € f and 2z, € f implies that ((2y) 2)mingt,ry € Varf-

A fuzzy subset f of S is called an (€, € Vg )-fuzzy interior of S if for all
x,y,z € S and ¢, € (0, 1] the following condition holds.

(a) z¢ € f and y, € f implies that (2y)min{s,r}y € VQrf.

(b) a; € f implies that ((za) y): € Vai f.

A fuzzy subset f of S is called an (€, € Vg )-fuzzy generalized interior
of S if for all z,y,z € S and ¢ € (0,1] the following condition holds.

a; € f implies that ((za)y): € Var f.

A fuzzy subset f of an AG-groupoid S is called (€, € Vgy)-fuzzy semi-
prime if f(a) > f(a®) A 35, for all a in S.

Definition 281 Let A be any subset of S. Then, the characteristic function
(Ca),, tis defined as,

>%, if v e A,

(Ca)y (@) = { 0, ifz ¢ A

The proof of the following two lemma’s are same as in [55].

Lemma 282 For an AG-groupoid S, the following holds.

(1) A non empty subset J of AG-groupoid S is an ideal if and only if
(C1)y is an (€, € Vai)-fuzzy ideal.

(i) A non empty subset L of AG-groupoid S is left ideal if and only if
(CL), is an (€, € Vaqy)-fuzzy left ideal.

(7i1) A non empty subset R of AG-groupoid S is right ideal if and only
if (CRr), is an (€, € Vqi)-fuzzy right ideal.

(iv) A non empty subset B of AG-groupoid S is an bi-ideal if and only
if (Cp),, is an (€, € Vqi)-fuzzy bi-ideal.

(v) A non empty subset I of AG-groupoid S is an interior ideal if and
only if (Cr),, is an (€, € Vqi)-fuzzy interior ideal.

(vi) A non empty subset I of AG-groupoid S is semiprime if and only if
(Cr)y is an (€, € Vai)-fuzzy semiprime.

(vit) A right ideal R of an AG-groupoid S is semiprime if and only if
(CRr)y is (€, € Vax)-fuzzy semiprime.

Let f and g be any two fuzzy subsets of an AG-groupoid S. Then, for
k € ]0,1), the product f oy g is defined by,

1—
(f o g) (a) = \/ {f(b) Agle) A 2/@} , if there exist b, c € 9, such that a = be.

a=bc
0, otherwise.

Definition 283 Let f and g be fuzzy subsets of an AG-groupoid S. We
define the fuzzy subsets fi, f Ak g, f Vi g and for g of S as follows,
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(@) fu(a) = f(a) N 155
(i0) (f Ak g) (a) = (F A g)(a) N5
(ii) (f Vi g) (@) = (fVg)(a) A+
(i) (for g) (a) = (fog)(a) AFE, foralla € S.
Lemma 284 Let A, B be non empty subsets of an AG-groupoid S. Then,
the following holds.

(i) (Cang)y, = (Ca N, Cp).

(i) (Caup)y, = (Ca Vi Cp).

(ZZZ) (CAB>k == (CA Ok CB) .

Example 285 Let S = {1,2,3,4,5,6}, and the binary operation "" be
defined on S as follows.

e i R
el il  C
AWk Ol =W
LW T O =
= Ot Oy W = = Ot
TGO Wk =~

O O W N

Clearly 1 = (1-1%)-1,2 = (2-2%)-2,=3(3-3%) - 5,4 = (6-42) - 3,5 =
(5-52)-5,6 = (4-62)-3. Clearly {1},{1,2},{1,2,3},{1,2,3,4},{1,2,3,4,5,
and {1,2,3,4,5,6} are ideal of S. Define a fuzzy subset f: S — [0,1] as

follows:
0.9 forx =1
0.8 forxz =2
0.5 forxz =3
@)= 0.5 for x =4
0.5 forx =5
0.5 forx =6

Then, clearly f is an (€, € Vqi)-fuzzy ideal of S.

Theorem 286 For an AG-groupoid S with left identity, the following are
equivalent.

(1) S is intra-regular. (ii) For bi-ideals Biand By of S, B1 N By
(B1B2)B;. (iii) For (€,€ Vqi)-fuzzy bi-ideals f and g of S, f Nk g
(f ok g) o f. (iv) For (€,€ Vqi)-fuzzy generalized bi-ideals f and g
S, fAkg<(forg)ok f.

SIA I

Proof. (i) = (i) : Let f and g be (€, € Vqi)-fuzzy generalized bi-ideals
of an intra-regular AG-groupoid S. Since S is intra-regular therefore for
a € S there exists x,y € S such that a = (maQ) y. Now, by using left



Theory of Abel Grassman's Groupoids

invertive law, medial law and paramedial law we get,

)
IS
[N
<
|
®

a =

s
N
N~
8
<

e e o o Row T e
—~
<
8
no
N ~—

Thus,

((F ox 9) ok (@)
=\ For®) A fl) A=t

2
a=pq

SEY, ({ V f(u)Ag(v)Alg’“}Af<q>A1;’“>

a=pq p=uv

=V (v@rsonasontSE)
a=(uv)q

- V (G rgw s a5
a=(((a((z(y22?))y))a)a)a=(uv)q

> {flal(sPa?a) A g (@)} A fa) A1

> {(r@n 55 s as@n 5t

= (@ g} A fa) A 5T
= Ja) Agla) A fla) n T

= Ur) @A SE =) @),
So, f Ak g < (forg)ok f.

(iv) = (i4i) : is obvious.

(#91) = (i1) : Assume that By and By are bi-ideals of S. Then (Cp, )k
and (Cp,), are (€,€ Vqi)-fuzzy bi-ideals. Thus we have, (Cp,np,)r =
(C, N Cy) < (Cp, ok Cp,) ok Cp, = (C(B,B,)B, Jk- Hence, BiN By C
(B1B2)Bs.
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(#1) = (4) : Since Sa is a bi-ideal of S contains a. Thus, using (i¢), and
medial law we have,

a € San Sa C ((Sa)(Sa))Sa = ((SS)(aa))(SS) = (Sa?)s.
Hence, S is intra-regular. m

Theorem 287 For an AG-groupoid S with left identity, the following are
equivalent.

(i) S is intra-regular. (ii) For left ideals, L1, Ly of S, L1 N Ly C L1 Lo N
LoLy. (ii3) For (€, € Vqi)-fuzzy left ideals, f,g of S, fArg < forgAgoxf.

Proof. (i) = (it3) : Let f and g be (€, € Vqy)-fuzzy left ideals of an intra-
regular AG-groupoid S respectively. Since S is intra-regular therefore for
a € S there exists xz,y € S such that a = (ma2) y. Now, using left invertive
law we get,

a=(za?)y = (z(aa))y = (a(za))y = (y (za)) a. Therefore,

1-k

(Forg)a) = '\ f()Agla)h—;

= \V Fo)ng@n =t

2
a=(y(za))a=pq

Fly@a) ng(@) Aot

(r@r 55) ns@n gt
k

= S@Ag(@) A5t = (f o) (a)

%

v

Thus, f Ax g < f o g. Similarly, we can show that f Ay g < g og f. Thus,
we have f AL g < forgNgo f.

(#91) = (i) : Assume that L; and Ly be any left ideals of S. Then,
(Cr,)r and (CL, )k are (€, € Vqi)-fuzzy left ideals of S therefore, we have,

(CLN']Lz)k = (CL1 Nk CL2) < (CLI Ok CLz) = (CL1L2)’€'

This implies that L1 N Ly C Ly Lo. Similarly, we can show that L, N Ly C
LoLy. Thus, L1 N Lo C LiLo N Loy,

(14) = (i) : Since Sa is a left ideal of S contains a. Thus, using (i),
paramedial law, medial law, we get,

a € SanSaC (Sa)(Sa)N (Sa)(Sa) C (Sa)(Sa) = (aa)(SS)
— 5((a0)$) = (55)((aa)$) = (Sa®

Hence, S is intra-regular. m
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Theorem 288 For an AG-groupoid S with left identity, the following are
equivalent.

(1) S is intra-regular. (ii) For bi-ideal B, right ideal R ,and left ideal
L of S, BNRNL C (BR)L and R is semiprime. (iii) For (€, € Vqi)-fuzzy
bi-ideal f, (€, € Vqy)-fuzzy right ideal g, and (€, € Vqi)-fuzzy left ideal h of
S, (f Ak g) Ak h < (forg)okh and g is (€, € Vai)-fuzzy semiprime. (iv)
For (€, € Vqy)-fuzzy bi-ideal f, (€, € Vqi)-fuzzy interior ideal g, and (€, €
Vaqr)-fuzzy left ideal h of S, (f Ak g) Akh < (forg)orh and g is (€, € Vg)-
fuzzy semiprime. (v) For (€, € Vqi)-fuzzy generalized bi-ideal f, (€, € Vqy)-
fuzzy generalized interior ideal g, and (€,€ Vqi)-fuzzy left ideal h of S,
(fAkg) A h < (forg)orh and g is (€, € Vqi)-fuzzy semiprime.

Proof. (i) = (v) : Let f,g,h are (€, € Vqi)-fuzzy generalized bi, fuzzy
generalized interior and fuzzy left ideals of an intra-regular AG-groupoid S
respectively. Now, as S is an intra-regular AG-groupoid so for a € S there
exists z,y € S such that using left invertive law we get,

@ = (@0?)y= (@ (a)y = (a(za))y = (a (2((za’) 1)) ¥
= (0 ((0) (20)) v = (v ((20?) (29))) @ = (o ((2(00)) (z))) 0
= (y((afw)) (z9)) 0 = (0 (20) (y (z3))) 2 = (((y (7)) (z0) )
= (aa) ((y(zy)) (za))
Therefore,
((f ok g) ok 1) (a)
=V Fag @ Ab@AS
- azq{(pyuv<f<u>Ag<v>>A1;’f>Ah(q)Alg’“}
=V U@rge) @A
a=(uv)q
1-k
= \/ (f(u)/\g(v))/\h(Q)/\T

a=(uv)g=(aa)((y(zy))(za))
k

> (F (@) A g (a) A h((y(ey)) (za)) A T "

1—k 1—k
= (f(a)Ag(a))A <h(a)/\ 2) -
> (f(a) Ag(a)) Ah(a) A %
= ((fAkg) Ak h)(a).

Thus, (f Ak g) Ak b < (f ok g) ok h. As given that S is intra-regular so
for a € S there exists z,y € S such that a = (xa2) y. This implies that
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9(a) =g ((za®) y) > g (a?).

(v) = (iv) = (4i%) : are obvious.

(#i1) = (i1) : Assume that B be any bi, R be right and L be left ideal of
S respectively. Now (Cp)g, (Cr)x and (Cp)y are (€, € Vgg)-fuzzy bi, right
and left ideals of S respectively. Now, by (iii) (Cr)x is fuzzy semiprime.
Therefore R is semiprime. Thus we have

(CBrrynL)k = (CB Ak Cr) Ak CrL < (C o Cr) ok Cr = (C(BR)L)k-

Hence, (BN R)NL C (BR)L.

(ii) => (i) : We know that Sa is both bi and left ideal and Sa? right
ideal of S containing a and a?, respectively. And by (ii) Sa? is semiprime.
So,, a € Sa?. Thus, using (i) , medial law we have,

(San Sa®) N Sa C ((Sa)(Sa ))Sa = ((S )S)((Sa )S)
((59)8)((5a?)8) = (58)((9a)S) =
= (Sa*®)(SS) = (Sa*)S.

Hence, S is intra-regular. m

m

a

7.4 Regular AG-groupoids
In this section we have characterized regular Abel-Grassmann’s groupoid
in terms of its (€, € Vgy)-fuzzy ideals.

Definition 289 An element a of an AG-groupoid S is called regular if
there exist x in S such that a = (azx)a and S is called regular, if every
element of S is regqular.

Lemma 290 Let S be an AG-groupoid. If a = a(azx), for some x in S.
Then a = a®y, for somey in S.

Proof. Using medial law, we get
a = a(ar) = [a(ax)](az) = (aa)((ax)z) = a®y, where y = (ax)z.
[

Lemma 291 Let S be an AG-groupoid with left identity. If a = a’x, for
some x in S. Then a = (ay)a, for somey in S.

Proof. Using medial law, left invertive law, paramedial law and medial
law, we get

a=a’r = (aa)z = ((a*z)(a’x))z = ((a’a®)(z2))z = (z2%)(a’a?)
= a’((wa?)a®)) = ((z2*)a*)a)a = ((a 2)(mz) a = ((z°z)(a’a))a
= [0*{(z*x)a}]a = [{a(z*z)}(aa)]a

= (ay)a, where y = {a(z?z)}a.

~
——
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Lemma 292 In AG-groupoid S, with left identity, the following holds.

(i) (aS)a? = (a9) a

(7) (aS) ((aS)a) = (aS)a
(i5i) S ((aS)a) = (aS)a.
(iv) (Sa)(aS)=a(al).

(v) (aS) (Sa) = (a5) a.

(vi) [a(aS)]S = (aS)a

(vi) [(Sa)S](Sa) = (a5)(Sa)
(vii) (Sa)S = (al)

(viit) S(Sa) = Sa

(iz) Sa? =a%S

Proof. It is easy. m

Example 293 Let us consider an AG-groupoid S = {1,2,3} in the follow-
1ng multiplication table.

It is easy to check that {1,2} is the quasi-ideal of S. Clearly S is regular
because 1 =101,2=(203)02 and 3 = (302)03. Let us define a fuzzy
subset f on S as follows:
0.9 forx =1
fl@)=4 0.8 forxz=2
0.6 forx =3
Then clearly f is an (€, € Vqi)-fuzzy ideal of S.

Theorem 294 For an AG-groupoid S, with left identity, the following are
equivalent.
(1) S is regular.
(#7) For bi-ideal B, ideal I and left ideal L of S, BNINL C (BI) L.
(t3i) Bla]NIa]NL[a] C (Bla]llla])Llal, for some a in S.

Proof. (i) = (i)

Assume that B, I and L are bi-ideal, ideal and left ideal of a regular AG-
groupoid S respectively. Let a € BN I N L. This implies that a € I, a € B
and a € L. Since S is regular so for a € S there exist x € S such that
using left invertive law and (1), we have, a = (az)a = (((ax)a)x)a =
((wa) (az)) a = (a ((za) 2)) a = (B((ST) S)) L = (BI) L.

Thus BNINLC (BI)L.

(#7) = (4i7) is obvious.
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Bla] = aUd®>U (aS)a, Ila] = aUSaUaS and L]a] = a U Sa are
principle bi-ideal, principle ideal and principle left ideal of S generated by
a respectively. Thus by left invertive law and paramedial law we have,

(aUa*U(aS)a)N(aUSaUaS)N (aU Sa)

C ((aua®U(aS)a)(aUSaUas))
(aU Sa)

{S(aUSaUaS)} (aU Sa)

{SaU S (Sa)u S (aS)}(aU Sa)

(SaUaS) (aU Sa)

(Sa)a U (Sa) (Sa) U (aS)aU (aS) (Sa)

= a*SUd’SU(aS)aU(aS)a
a’*SU (aS)a

NN

Hence S is regular. m

Theorem 295 For an AG-groupoid S, with left identity, the following are
equivalent.

(1) S is regular.

(13) For (€,€ Vqy)-fuzzy bi-ideal f, (€,€ Vqi)-fuzzy ideal g, and (€, €
Vay)-fuzzy left ideal h of S, (f Ak g) Ak h < (f ok g) ok h.

(7i1) For (€, € Vqi)-fuzzy generalized bi-ideal f, (€, € Vqi)-fuzzy ideal g,
and (€, € Vqi)-fuzzy left ideal h of S, (f A g) A h < (f ok g) o h.

Proof. (i) = (i)

Assume that f, g and h are (€, € Vgi)-fuzzy generalized bi-ideal, (€, €
Vg )-fuzzy ideal and (€, € Vqy)-fuzzy left ideal of a regular AG-groupoid
S, respectively. Now since S is regular so for a € S there exist z € §
such that using left invertive law we have, a = (ax)a = (((ax)a)x)a =
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((za) (ax))a = (a((xza) z)) a. Thus,

(Forg)on @) =\ (f ox9)(p) Ahlg) A =E

2
a=pq

S, ({ V f(u)Ag(v)Alg’“}AMq)Al;’“)

=V (Uwngnan@at3E)

a=(uv)q

- Vo (s anaa )

a=(a((za)z))a=(uv)q

(/@) A g (za) )} Aha) A+ °

{f(a) A (g(a) A I;k) } A h(a) A %

= F@Ag@A S AR A

2
= ((f Ak g) Ak h)(a).

Therefore (f Ak g) Ak h < (f o g) ok h.

(#i1) = (4t) is obvious.

(i) = (i)

Assume that B, I and L are bi-ideal, ideal and left ideal of S respectively.
Then (Cp)i, (Cr)r and (Cp) are (€,€ Vqi)-fuzzy bi-ideal, (€,€ Vgyi)-
fuzzy ideal and (€, € Vqy)-fuzzy left ideal of S respectively. Therefore we
have, (Cpnrur)r = (Cp Ak Cr) Ak CL < (Cp oy Cr) 0, CL = (CinyL)k =
(CigryL)k- Therefore BNINL C (BI) L. Hence S is regular. m

%

v

Theorem 296 For an AG-groupoid S, with left identity, the following are
equivalent.
(1) S is regular.
(ii) For left ideal L, ideal I and quasi-ideal @ of S, LNINQ C (LI) Q.
(i) Lla]NIfa]NQla] C (L[a]I]a])Q [a], for some a in S.

Proof. (i) = (it)

Assume that L, I and @ are left ideal, ideal and quasi-ideal of regular
AG-groupoid S. Let a € LNINQ. This implies that a € L, a € I and a € Q.
Now since S is regular so for a € S there exist x € S such that using left
invertive law and (1) , we have, a = (ax) a = (((az) a) ) a = ((za) (ax)) a =
(a((za)x))ae (L((SI)S)Q C (LI Q. Thus LNINQ C (LI)Q.

(#9) = (7it) is obvious.

Lla] =aUSa, I'la] =aUSaUaS and Q[a] = aU (Sanas) are left
ideal, ideal and quasi-ideal of S generated a respectively. Thus by medial
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law we have,

(aUSa)N(aUSaUaS)N (aU (Sanasl))
((aU Sa) (aU SaUal))
(aU (Sanal))

{(aU Sa) S} (aUaS)

{aS U (Sa) S} (aUal)

(aS) (a U al)

= (aS)aU (aS) (aS)

= (aS)aUd®S.

N

N

Hence S is regular. m

Theorem 297 For an AG-groupoid S, with left identity, the following are
equivalent.

(7) S is regular.

(i1) For (€, € Vqi)-fuzzy left ideal f, (€,€ Vai)-fuzzy ideal g, and (€, €
Vqi)-fuzzy quasi-ideal h of S, (f Ak g) Ak b < (f ok g) o h.

Proof. (i) = (it)

Assume that f, g and h are (€, € Vg )-fuzzy left ideal, (€, € Vgy)-fuzzy
ideal and (€, € Vi )-fuzzy quasi-ideal of a regular AG-groupoid S, respec-
tively. Now since S is regular so for a € S there exist x € S such that using
left invertive law, we have, @ = (az)a = (((az)a)z)a = ((za) (az))a =
(a((xza)z)) a. Thus,

(f o 9) ok 1)(@)
=\ (Forg)p) Ahlg) AT

2
a=pq

S, ({ V f(u>/\g(v)/\1;k}/\h(q)A1;k>

= V(U ngeranen )

a=(uv)q

- Vo (7 rg nn@ 155

a=(a((za)z))a=(uv

(@) A g (wa)2)} A h(a) A 75 E

{f(a) A (g(a) A 1;’“)} A h(a) A %

= U@rg@A T AR At

2
= ((fAkg) Aeh)(a).

%

%
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Therefore (f Ak g) Ak h < (f o g) ok h.

(11) = (9)

Assume that L, I and @ are left ideal, ideal and quasi-ideal of S re-
spectively. Thus (CL)k, (Cr)x and (Cq)i are (€, € Vgy)-fuzzy left ideal,
(€, € Vgi)-fuzzy ideal and (€, € Vqi)-fuzzy quasi-ideal of S respectively.
Therefore we have, (CLQ[UQ)]{; = (CL AYA C[) Nk CQ < (CL Ok C[) Ok CQ =
(Cieng)k = (Cro)k- Therefore LNINQ C (LI) Q. Hence S is regular.
[ ]

Theorem 298 For an AG-groupoid S, with left identity, the following are
equivalent.
(1) S is regular.
(#i) For bi-ideal B, ideal I and quasi-ideal Q of S, BNINQ C (BI)Q.
(#5i) Bla]NIa]NQJa] C (Bla]Ila])Q]la], for some a in S.

Proof. (i) = (i)

Assume that B, I and @ are bi-ideal, ideal and quasi-ideal of regular AG-
groupoid S. Let a € BN 1IN Q. This implies that a € B, a € I and a € Q.
Now since S is regular so for a € S there exist € S such that using left
invertive law and (1) , we have, a = (ax) a = (((az) a) ) a = ((za) (ax)) a =
(a((za)xz))a € (B((SI1)S))Q C (BI)Q. Thus BNINQ C (BI)Q.

(#4) = (#it) is obvious.

Since Bla] = aUa? U (aS)a, Ia] = aU SaUaS and Qla] = a U
(Sa N aS) are principle bi-ideal, principle ideal and principle quasi-ideal of
S generated by a respectively. Thus by (i4) and medial law and left invertive
law we have,

(aUa*U(aS)a)N(aUSaUaS)N (aU(Sanas))

C ((aua®u(aS)a)(aU Sa
Ua$S)) (aU (Sanas))
C (S(aUSaual))(aUal)

(
(SaU S (Sa)U S (aS)) (aUal)
= (SaUS(Sa)US(al)) (aUal)
(aS U Sa) (aUal)
(aS)a U (aS) (aS)U (Sa)aU (Sa) (aS)
(aS)aUa*SUa(al).

Hence S is regular. m

Theorem 299 For an AG-groupoid S, with left identity, the following are
equivalent.

(7) S is regular.

(i1) For (€,€ Vqi)-fuzzy bi-ideal f, (€, € Vqi)-fuzzy ideal g, and (€, €
Vqi)-fuzzy quasi ideal h of S, (f Ak g) Ak b < (f ok g) o h.
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(i4i) For (€, € Vqi)-fuzzy generalized bi-ideal f, (€, € Vqi)-fuzzy ideal g,
and (€, € Vqg)-fuzzy quasi ideal b of S, (f Ak g) A b < (f ok g) of h.
Proof. (i) = (4ii)

Assume that f, g and h are (€, € Vqy)-fuzzy generalized bi-ideal, (€, €
Vi )-fuzzy ideal and (€, € Vi )-fuzzy quasi ideal of a regular AG-groupoid
S, respectively. Now since S is regular so for a € S there exist z € §

such that using left invertive law, we have, a = (az)a = (((azx)a)z)a =
((za) (ax))a = (a((xza) z)) a. Thus,

((f ox g) o h)(a)
\/ (f ox 9)(p) A hlg) A 22

2
a=pq

SEN. ({ V f(u)Ag(v)Alg’“}Ah<q>A1;’“>

a=pq pP=uv

=V (U ngeran@n )

a=(uv)q

: Vo (s anantSt)

a=(a((za)z))a=(uv)q

{(7(a) A g ((wa) 2)} A hfa) A 1

{f(a) A (g(a) A 1;k)} A h(a) A %

= F@rg@A T AR A

2
= ((f Ak g) Ak h)(a).

Therefore (f Ak g) Ak h < (f ok g) ok h.

(#9i) = (it) is obvious.

(1) = (i)

Assume that B, I and @ be bi-ideal, ideal and quasi-ideal of S re-
spectively. Then (Cg)r, (Cr)r and (Cq)i are (€,€ Vqy)-fuzzy bi-ideal,
(€, € Vqi)-fuzzy ideal and (€, € Vqi)-fuzzy quasi-ideal of S respectively.
Therefore we have, (Cenrug)r = (Cp ANk Cr) Ak Cg < (Cp ok Cr) o, Co =
(CBne)k = (CBn@)k- Therefore BNINQ C (BI)Q. Hence S is regular.
|

v

Y

Theorem 300 For an AG-groupoid S, with left identity, the following are
equivalent.

(7) S is regular.

(i1) For an ideals I, Iy and Is of S, [ N Is N 13 C (I115) I5.

(t3i) Ia)NIfa]NIa] C (I[a)I[a])I]a], for some a in S.
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Proof. (i) = (i)

Assume that Iy, Is, and I3 are ideals of a regular AG-groupoid S. Let
a € Iy N I;N1I3. This implies that a € Iy, a € Is and a € I3. Now since S is
regular so for a € S there exist x € S such that using left invertive law and
(1), we have, a = (az)a = (((az)a) z) a = ((za) (azx)) a = (a ((za)x))a €
(Il ((SIQ) S)) I3 Q (11]2) I5 Thus Il n I2 n Id Q (.[1[2) Id

(#4) = (#it) is obvious.

Since I [a] = aU Sa U aS is a principle ideal of S generated by a. Thus
by (i), left invertive law, medial law and paramedial law we have,

(aUSaUaS)N(aUSaUaS)N (aUSaUal)

((aUSaUaS)(aUSaUaS)) (aUSaUas)

{(aUSaUaSl) S} (aUSaUaS)

= {aSU(Sa)SU(aS)S} (aUSaUaSl)

{aSUSa} (aUSaUaS)

= (aS)aU(aS)(Sa)U (aS) (aS)U (Sa)a
U(Sa) (Sa) U (Sa) (aS)

= (aS)aUd®S.

N 1N

Hence S is regular. m

Theorem 301 For an AG-groupoid S, with left identity, the following are
equivalent.
(7) S is regular.
(i3) For quasi-ideals Q1,Q2 and ideal I of S, Q1 NINQ2 C (Q11) Q2.
(75i) Qla]NIfa]NQla] C (Qa]Ia]) Q[a], for some a in S.

Proof. (i) = (it)

Assume that @)1 and ) are quasi-ideal and I is an ideal of a regular AG-
groupoid S. Let a € Q1NINQ5. This implies that a € Q1,a € [ and a € Q.
Now since S is regular so for a € S there exist x € S such that using left
invertive law and (1) , we have, a = (ax) a = (((az) a) z) a = ((za) (ax)) a =
(a((za)z))a € (Q1((S)5)) Q2 € (Q11) Q2. Thus Q1NINQ2 C (Q11) Q.

(#9) = (7it) is obvious.

Qla] = aU(SanaS) and I [a] = aUSaUaS are principle quasi-ideal and
principle ideal of S generated by a respectively. Thus by (4i7), left invertive
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law, medial law, we have,

(aU(SanaS))N(aUSaUaS)N (aU(Sanas))
((aU (Sanal)) (aUSaUas))

(aU (Sanal))

{(aUaS) S} (anaS)

{aS U (aS) S} (anal)

= (aSUSa)(anaS)

{(aS)a U (aS) (aS)U (Sa)aU (Sa)aSa

= (aS)aUd’SUal(al).

N

N

Hence S is regular. m

Theorem 302 For an AG-groupoid S, with left identity, the following are
equivalent.

(1) S is regular.

(i1) For (€, € Vqr)-fuzzy quasi-ideals f, h, and (€, € Vaqi)-fuzzy ideal g,
of S, (f Nk g) A h < (f ok g) ok h.

Proof. (i) = (i)

Assume that f, h are (€, € Vqg)-fuzzy quasi-ideal and g is (€, € Vgg)-
fuzzy ideal of a regular AG-groupoid S, respectively. Now since S is regular
so for @ € S there exist x € S such that using left invertive law, we

have, a = (azx) a = (((ax) a) x) a = ((za) (ax)) a = (a ((za) x)) a. Thus,
((f ok 9) or h)(a)
=\ (o)) ARl A 15t

2
a=pq

S, ({ V f(u>/\g(v)/\1;k}/\h(q)A1;k>

= V(U ngeranen )

a=(uv)q

- Vo (7 rg nn@ 155

a=(a((za)z))a=(uv

(@) A g (wa)2)} A h(a) A 75 E

{f(a) A (g(a) A 1;’“)} A h(a) A %

= U@rg@A T AR At

2
= ((fAkg) Aeh)(a).

%

%
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Therefore (f Ak g) Ak h < (f ok g) ok h.

(11) = (i)

Assume that ()1 and Q> are quasi-ideals and I is an ideal of S respec-
tively. Thus (Cg,)k, (Cr)r and (Cq,)r are (€, € Vgi)-fuzzy quasi-ideal,
(€, € Vgi)-fuzzy ideal and (€, € Vqi)-fuzzy quasi-ideal of S respectively.
Therefore we have,

(Cainru@a)k = (Co, Ak Cr) Ak Co, < (Cg, ok CL) ok Ca,
= (C@ine.)k = (Cine: )k
Therefore @1 NI N Q2 C (Q11) Q2. Hence S is regular. m
Theorem 303 For an AG-groupoid S with left identity, the following are
equivalent.

(1) S is regular.

(#3) For bi-ideal B, B = (BS) B.

(#9t) For generalized bi-ideal B, B = (BS) B.

Proof. (i) = (i)

Assume that B is generalized bi-ideal of a regular AG-groupoid S. Clearly
(BS)B C B. Let b € B. Since S is regular so for b € S there exist z € S
such that b = (bx)b € (BS) B. Thus B = (BS) B.

(#491) = (47) is obvious.

(ii) = (i)

Since I[a] = aUa? U (aS)a is a principle bi-ideal of S generated by a
respectively. Thus by (ii), we have,

aUa®*U (aS)a
= ((aud®U(aS)a)S) (aUa®U (aS)a)
= {(aSUd®’SU((aS)a)S) (aUa®U (aS)a)
= (aSuda®SuUa(al)) (aUa®U(aS)a)
= (aS)aU (aS)a?® U (aS) ((aS)a)
U (a*S) aU (a*S) a* U (a®S) ((aS) a)
U(a(aS))aU (a(aS))a® U (a(aS)) ((aS)a)
= (aS)aUd*SU (aS)aUa*SUa*S Ua’S
U(aS)aU (aS)aU (aS)a
= a’SuU(aS)a.

Hence S is regular. =

Theorem 304 For an AG-groupoid S, with left identity, the following are
equivalent.

(7) S is regular.

(i1) For (€, € Vqy)-fuzzy bi-ideal f, of S, fr = (f ox S) o f.

(#3i) For (€, € Vqy)-fuzzy generalized bi-ideal f, of S, fr = (for S)ox f.
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Proof. (i) = (4ii)

Assume that f is (€, € Vqg)-fuzzy generalized bi-ideal of a regular AG-
groupoid S. Since S is regular so for b € S there exist x € S such that
b = (bx) b. Therefore we have,

((f or S) ox f)(b)
=\ For ) A fla) A = E

2
b=pq

S, ({ V f(u)AS(v)Alzk}Af<q>A12’“>

b=pq p=uv

=V (Cwaseiasontst)
b=(uv)q
-V (Cwasenasoatst)
b=(bx)b=(uv)q
O AS @A) A
1-k

f(b)/\l/\f(b)/\?

v

v
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Thus (f of S) ox f > fx. Since f is (€, € Vg )-fuzzy generalized bi-ideal of
a regular AG-groupoid S. So we have,
((f o S) ok [)(b)
1—-k
= Va0 nflon——

b=pq

S ({ V f(u)ASw)Al;’“}Af(q)Al;’“)

b=pq p=uv

-V ({ \/ f(u)/\l}/\f(CI)/\1;k>

b=pq p=uv

S (\/ f<u>Af<q>A1;’“>

b=pq \p=uv

-V {y (f(u) A Fa) A 1;’€) }

1—-k
< V. (7@ n 255
— At o).

2

This implies that (f ox S) o f < fr. Thus (f of S) ok f = fk.

(#491) = (47) is obvious.

(ii) = (1)

Assume that B is a bi-ideal of S. Then (Cp)y, is an (€, € Vg )-fuzzy bi-
ideal of S. Therefore by by (i7) and, we have, (Cp)r = (Cpor Cs)or Cp =
(C(Bs)B)k- Therefore B = (BS) B. Hence S is regular. m
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8

Interval Valued Fuzzy Ideals of
AG-groupoids

In this chapter we discuss interval valued fuzzy ideals of AG-groupoids.

8.1 Basics

Definition 305 An interval value fuzzy subset f on AG-groupoid is called
an interval value (€, €, Vay) fuzzy AG-subgroupiod of S if vy € f and ys € f

this implies that (TY)mingi sy € Varf for all z,y € S and £,5 € D[0,1].

Definition 306 An interval valued fuzzy subset f on an AG-groupiod is
called an interval (€, € Vgy) fuzzy left(respt mght) ideal of an AG -groupiod

of S If y; € f This implies that (zy); € \/qkf(respt T; € f implies that
(zy); € Var [)-

Definition 307 A fuzzy subset f of an AG-groupiod S is called an _interval
valued (€, € Vqg)-fuzzy semi prime zfx € f implies that x; € f for all
xeS.

Theorem 308 An interval value fuzzy subset f of an AG-groupoid S is
an interval valued (€, €,Vqy)-fuzzy AG-sub groupoid if and only if f(xy) >
min{f(z), f(v), 5%}
Proof. Let v,y € S and t,5 € DJ0,1]. We assume that z,y € S such that
f(:z:y) < mln{f( ), f(y)}. we choose T € DI[0, 1]such that flay) < 1 <
min{ f(z), f(y)} this implies that (xy) EVaif and min{f(z), f(y), k) >
t This implies that f( ) >t and f( ) >t further x; € f and y; € fv
I?vut (xy)pr-w}lich is contradiction due to our wrong supposition so
flwy) = min{f(z), f(y), 15"} B
Conversely, suppose that f(zy) > min{f(z), f(y), Tk} zp€ fandys €
7 fort § € D[0,1] then by deﬁmtzon we write it as f(z) > and f(y) >
so f(zy) > {f(@), f(y)} > mln{t 15K}, Here arises two cases:
Case(i): Iff< Lok Then f(a:y) > t it mean that (zy)~ € f.
Case(ii) If t > =5, Then f(zy) +1+ Lk >, 1] that as (zy); € qf
From both cases we get (zy); € Vi f. Therefore fis an(€, €,Vq) fuzzy
AG-groupiod of S. m
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Lemma 309 If L is a left ideal if and only if (C)) is (€, € V) fuzzy left
ideal of S.

Proof. (i) Let x € L and s € S this implies that zs € L now by definition
we have (Cp)r(z) > [1,1] and (Cp)(zs) > [1,1] therefore
. 1-k
(Coilas) > min{(Co)i(e), 5}
(#i)If + ¢ L and s € S This implies that xs ¢ L. Then by definition we
have (Cp)i(z) > [0,0] and (Cp)i(zs) > [0,0]
. 1-k
(Cr)x(zs) 2 min{(Cr)x(z), —5—}-
Conversely let « € L, y € S Now we have to prove that zy € L Then by
definition we get (CL)r(x) > [1,1] and now we get

1-k 1-k 1—-k

(Cr)r(zy) 2 {(Cr)i(z), ——} 2 AL 1, ——} 2 ——

so we have 1—k
(Cri(zy) 2 ——.

This implies that zy € L. m

Theorem 310 An interval valued fuzzy subset f of an AG-groupiod S is
an interval value (€, € Vqi) fuzzy left ideal if and if

- - 1-k

f(zy) > min{ f(y), T}

Proof. Let =,y € S and ¢,5 € D[0,1]. Let fbe an (€, € Vqyi) fuzzy AG-
groupiod of S on contrary we assume that x,y € S Such that f(zy) < f(y)
we choose £ € D[0, 1] such that

. o 1—k

f(zy) <1 <min{f(y), T}

Then we have f(y) > { This implies that y; € f and f(my) < t. This implies
that (zy); € Vg f but this is contradiction due to our wrong supposition

Hence -

f(zy) 2 min{f(y), ——}.
Conversely let z,y € S and #,5 € D[0,1] and y; € f Now by definition we
have

Fley) > minff, -1,

Here we consider two cases:
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Lok Then we have f(zy) > This implies that (zy); € f
1-F . Then we have

flay) +E+k>[1,1].

This implies that (zy); € qi f. From both cases we have to prove (xy); €
v, [ m

Theorem 311 An interval valued fuzzy subset f of an AG-groupiod S is
called an interval valued (€,€ Vqyi) fuzzy left ideal of S If and only if U(
f.1) is left ideal of S for all [0,0] <t < L5E.

Proof. Assume that f is an (G € Vg ) fuzzy left ideal of S. Let us consider
y € U( f,1) then f(y) > . Then we write f(zy) > min{ f(y), 5 k} >
min{, T’“i > ¢ this implies that f(xy) > 1, this implies that zy € U( f, t).
Hence U( f,t) is left ideal of S.

Converbely Let 2,y € L and i € D[0,1]. Assume that f(zy) < i < {
fy), 155} Then flzy) < i. This implies that f(zy)+£+k < [1,1] further
implies that (:vy)G Va,U( f.1) and { ), Lk > f(y) >t this implies
that y € U( f,i) but zy€ Vg, U( f.1). This is contradiction due to our
wrong supposition. Thus f(zy) > min{ f(y), k) m

8.2 Main Results using Interval-valued Generalized
Fuzzy Ideals

Theorem 312 Let S be an AG-groupiod with left identity then the follow-
ing condition are equivalent.

(1) S is intra regular.
(13) For every left ideal L and for any subset I, LNI C LI.

(#i1) For every interval-valued (€, € Vqy) fuzzy left ideal f and for every
interval-valued (€, € Vqi) be any fuzzy subset g then f Ap g < f ok g.

Proof. (i) = (iii) Assume that S is intra regular AG-groupiod and f and
g are interval-valued (€, € Vgqi) fuzzy left and interval-valued (€, € Vqy)
be any fuzzy subset of S. Since S is intra regular therefore for any a in S
Then their exist x,y € S such that

a= (va®)y = (x(aa)y) = (a(za))y = y(ra)a.

For any a in S, their exist v and v in S Such that a = uv then we have
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(For)(@) = Vamuo(F) A5(0) A L)
> {flylaa) ngla) AT A TS
> {flea) Agla) Ay AT
> o) ngla) At
= Frp@att
= (A,

This implies that f/\k g < fok g.

(#91) = (4¢) Now let us assume that L be any left ideal and I be any
subset of S. Now (Cp)x and (C7)y are the interval-valued (€, € Vqy) fuzzy
left and interval-valued (€, € V) be fuzzy subset of S. Therefore

(Crar) =(Co AN Cr) CCLok Cr = (Crn)k € (Cr1)k-

this implies that L NI C LI.

Now (i1) = (i) LNI C LI.

a € San Sa C (Sa)(Sa) = (SS)(aa) = Sa? = (Sa?)S. Hence S is
intra-regular. m

Theorem 313 Let S be an AG-groupiod with left identity then following
condition are equivalent.

(1) S is intra regular.

(ii) For any subset I and for any left ideal L Then INL C IL.

(i4i) For every interval valued (€,€ Vqi) fuzzy subset f and for every
interval valued (€, € Vqy) fuzzy left ideal § then f Ap g < f ok g.

Proof. (i) = (4i7) Let us assume that S is intra regular AG-groupiod
and fare interval valued (€, € Vqyi) fuzzy subset and g are interval valued
(€, € Vqyg) fuzzy left ideal of S. Since S is intra regular then for any a € S
then their exist x,y € S such that

= () (@?) = (2°a®)(y°) = *((2”y*)a).

For any a in S their exist v and v in S Such that ¢ = uv then
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(Ford)@) = Vamun(Fw) Ag)) A 1
> (@) Aglla*)a) A gy A L
> {fla) Agla) A gt A TSt
= Frp@r—5

. = Ji/\kg(a)
fAeg < forg.

(#4t1) = (4#4) Now let us assume that I be any subset of S and L be any
left ideal of S. Now (C7)x and (CL )i are the (€, € Vqi) fuzzy subset and
(€, € Vqi) fuzzy left ideal of S. Therefore

(Crnr) = (Cr A CL) < Cro, Cr = (Crr)k-

This implies that TN L C IL.
(i) = (4)

a € San Sa C (Sa)(Sa) C (aa)(SS) = Sa? = (Sa?)Ss.
Hence S is intra regular . m

Theorem 314 A fuzzy subset f of an AG-groupoid S is an interval valued

(€, € Var)-fuzzy semi prime if and only if f(x) > min{ f(x?), 1%’“},fm" all
x €S

Proof. Assume that fis an interval valued (€, € Vg)-fuzzy semi prime
so let x% € f. This implies that f(22) > { Therefore we have f(z) > {
fla?), 5k} =50 f(z) > This implies that z; € f.

Conversely let us assume that f(z) < min{ f(z?), Lok for all z € S.

Then we choose ¢ € (0,1]. Now let us assume that f(z) < ¢ < min{
f(2), 155} then we have f(z) < t. This implies that f(z) + £+ k < [1,1].
Further implies that z;€ Vgy f and then min{ f(z?), 155} > 1 here we
consider f(mz) > t. This implies that m% € for :zc% € Vqy f But this implies
that z3€ Vg f This contradiction arises due to our wrong supposition thus
we have final result f(z) > min{ f(z2), k) m

Example 315 Let S = {1,2,3}, and the binary operation “”be define on
S as follows:

155
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2 3
1 1
1 1
2 1

1
1
1
1

Then (S,0) is an AG-groupoid. Define a fuzzy subset f : S — [0,1] as

follows.
077 if x =1
flz) =13 0.66 ifx =2
0.55 if x = 3

Then clearly f is (€,€ Vqi)-fuzzy left ideal.

Example 316 Let S = {1,2,3} and binary operation “” be defined on S
as fallows:

Then (S,0) is an AG-groupoid. Define a fuzzy subset f : S — [0,1] as
fallows

Theorem 317 Let S be an AG -groupiod with left identity then the fol-
lowing conditions are equivalent.

(1) S is intra regular.

(ii) For any left ideal L and for any subset A of S so ANL C (AL)A.

(#i1) For every interval valued (€,€ Vqi)-fuzzy subset f and every in-
terval valued (€, € Vqy) -fuzzy left ideal g of S then vak g < ( fok J)ok
I

Proof. (i) = (iii) Let f be the interval valued (€, € Vqy)-fuzzy subset
and g be the interval valued (€, € Vqy)-fuzzy left ideal of an intra regular
AG-groupoid S with left identity then for any a in S their exist z,y € S
such that so we use medial law and paramedial law and (ab)c = b(ac)

a = (za®)y = (x(aa)y) = (a(za)y) = (y(za))a
y(za) = y(z(za®)y) = y((za®)(zy)) = (za®)(y(zy)
= Nay?) = (zx)(a®y®) = (2°)(a®y?) = a*(2y?)
( 2
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For any a in S their exist w and v in S such that a = uwv

(forg)or f(a)
= (Fop@na foyn=Eya 12k

Q= 2 2
> (Fodala?a) A fla)rtg)n st
= (Vawzeyy=pa( FP) A G(@) A Fla) A %) A %
> (Fl@) AGPata) A flay Aty n it
> (Fla)nga)a flayrgyntst

= ( fAr9)(a) so we have

(fAed) < (forg)ow fo

(71) = (ii) Let A be any subset and L be the left ideal of S then we get
(Ca)y are interval valued (€, € Vgy)-fuzzy subset and (Cfr); are interval
valued (€, € Vqy)-fuzzy left ideal of S then we get

(Cianpyna)r = (Canp)kN(Ca)r € (Caor CL) o Ca
= C(AL) Ok C(A) :C(AL)A-

Hence(ANL) C (AL)A.
(i) = (i) Since a is any subset and Sa be the left ideal containing a
so we get the result

a € San Sa C (Sa)(Sa) = Sa* = (Sa?)S.
Hence S is intra regular. m

Theorem 318 Let S be an AG-groupiod with left identity then the follow-
ing condition are equivalent.

(1) S is intra reqular.

(i) AN B C AB, for every two sided A and for every bi-ideal B of S.

(#3i) For every interval valued (€, € Vqi)-fuzzy two sided f and for every
interval value (€, € Vqi) -fuzzy bi-ideal g then f/\k g < fok g.

Proof. (i) = (#i7) Let us assume that S is intra regular AG-groupoid and
f be interval valued (€, € Vg )-fuzzy two sided and g be interval valued (€
, € Vg )-fuzzy bi-ideal of S. Since S is intra regular AG-groupoid therefore
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for any a in S. Then their exist z,y € S such that

a = (za®)y = (z(aa)y) = (a(za))y = (y(za))a
y(xa)a = y(z((za®)y))a = y((za®)(zy) = (va’)(y(zy) = a®(z*y?)
= ((@*y)a)a = (y*2*)(aa) = a((y*2?)a) = a(ta)
= a(t(za®)y)) = a((za’)(ty)) = a((yt)(a*v))
= a(a®((yt)2))) = a((yt)x)a)a) = a((ia)a)
= a((i(za”)y))a = a((za®)(iy))a) = a((yi)(a’z))a)
= a(@®((yi)2))a) = a((xz(yi))(aa))a)
a(a((z(yi)i)a)a) = a((at))a),

so for any a in S their exist v and v in S so a = uv then we get

(Foa) =\ (Fw)ng)ats”
> ( flataf) () AL
> (o) Aga) ALyt

2

(fAe9) ( forg)

(7i1) = (i) Let A be any two sided and B be any bi-ideal of S so we
get (Ca)k is interval valued (€, € Vgy)-fuzzy two sided ideal and (Cp)y is
interval valued (€, € Vg )-fuzzy bi-ideal of S then we get

> (fAed)(a)
<

(CanB)k =Ca0,Cp < Cao0, Cp < (CaB)k-

Hence ANB C AB.
(16) = (i) Sa is bi-ideal of an AG-groupoid S containing a¢ and
{a} U {a?} U (aS)a is an ideal of S then we get

a € (Sa)n(aUa®U(aS)a)C (Sa)(aUa®U (aS)a)
= (Sa)aU(Sa)a® U (Sa)(aS)a C Sa®.

Hence S is intra regular. m

Theorem 319 Let S be an AG-groupoid with left identity then the follow-
ing condition are equivalent

(1) S is intra regular.

(1) (@1 NQ2) NL C (Q1Q2)L,for all quasi ideal Q1 and Q2 and left
ideal L of S. B B _

(#52) (f Ak 9) Ak h < (f ok g) ok h, for all interval valued (€, € Vqy)-fuzzy
quasi ideals f and g and left ideal h of S.
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Proof. (i) = (iii) Let us assume that S is intra regular AG-groupoid
with left identity f and g are the interval valued (€, € Vgi) fuzzy quasi
ideals and h be the interval valued (€, € Vqy) fuzzy left ideal of S. For each

a in S then their exist x,y € S such that

a = (za®)y = (z(aa)y) = (a(za)y) = (y(za))a = (y(z(xa®)y))a

(y((za®)(zy)))a = ((za®)(y(zy)))a = ((za®)(zy*))a
((y?z)(a’z))a = (a*(y*z)z))a = ((aa)(y*z)z))a

~ ((a(y*))(az))a.
Now for any a in S their exist u and v in S such that a = uv then
((f o ) ox h)(a)
=V (Foudn) Ao 2
= VOV ) ) 4 555 A A 2
=V (@ AT@ A 5 AR A
a=(pgq)v
=V WA AR AT
((a(y?z))(az)a
> (Fla) A Fa) AG(a) A1) AT(a) A
> (@) A 59 Ag@) AR A5
= (@) AGla) A 5 ) ATl A T
= (F i) A A TSt
= (F M) ARl A
1—-k

= ((f M 9)(a) A h(a) A —

Hence (f/\k g) Nk h< (j‘vok J) ok h

(#i1) = (it) Let Q1,Q2 and L are the fuzzy quasi ideals and fuzzy left
ideal of S. Then Cg,and Cg, and C}, are interval valued (€, € Vqy) fuzzy
quasi ideals and interval valued fuzzy left ideal of S

(Cl@ia k(@) = (Cq,)k(a) o (Cq,)k(a) o (Cr)k(a)
((Cq, Nk Cq.) Ak Cr)(a)
(O(QmQQ)mL)k( )

(@1Q2)L

Vv

Hence (Q1 NQ2)NL C
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(15) = (i) Let Q and L are the quasi and left ideal of S. Now

a € (SanSa)N Sa C [(Sa)(Sa)](Sa) C Sa* = (Sa?)S.

Hence S is intra regular. m

Theorem 320 Let S be an AG-groupoid with left identity then the follow-
ing condition are equivalent.

(1) S is intra regular.

() (L1NLa) NQ C (L1L2)Q,L are the fuzzy left ideal and Q are the
fuzzy quasi ideal of S. _

(#38) (f Ak @) A h < (f ok g) ok h, for all interval valued (€, € Vqy)-fuzzy
left ideals f and g and quasi ideal h of S.

Proof. (i) = (iii) Let us assume that S is intra regular AG-groupoid
with left identity f and § are the interval valued (€, € Vqy,)-fuzzy left ideals
and & be the interval valued (€, € Vqi)-fuzzy quasi ideal of S For each a
in S then their exist x,y € S such that

=

= (y((@wa®)(@y)a = ((wa®)(y(zy)))a = ((za*)(zy?))a
((y*w)(a’x)) ? ( )
(

Now for any a in S their exist v and v in S such that a = uv then
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((f ok §) ok h)(a)
=V (Fox@)(w) Ah(v) A ——

a=uv

1-k

k 1-k

=V (V 7o) Ada) A 155 ARw) AT

a=uv u=pq

=V G0 Ad@ A0 A A

a=(pq)v

=V

k 1-k

2

~ 1-k 1-k

(f(p) Agla) N ——) h(v) A —

((a(y*z))(az)a

> (Fla) A Fla) Agla) A 5 ) AT(a) A

1-k
2

1-k 1-k

> ((f(a) A —=) AG(a)) Ah(a) A ——

= (Flo) A Jla) A 15 AR A 1T

2 2
1-k
2

1-k 1-k

= (flaAgla) A ——) A ha) A —

= ((f M 9)(a) Ak h(a) A 1-k

k

2
1-k

= ((f Ak 9)(a) Ay h(a) A ——

2
1-k

= ((f Aw 9)(a) Ay, h(a) A ——.

2

Hence (f/\k q) Nk h< (fok J) ok h.

(191) = (i) Let L1, Loand @ are the fuzzy left ideals and fuzzy quasi
ideal of S. Then Cy, and Cf, and Cq are interval valued (€, € V) fuzzy

left ideals and interval valued fuzzy quasi ideal of S

(C(Lle)Q)k(a) =
>

(CLy)k(a) o (Cr,)k(a) o (Cq)r(a)
((CLI Nk CLz) Nk CQ) a) = (C(leLz)ﬂQ)k(a)'

Hence = (L1 N Ly) NQ C (L1L2)Q.
(1) = (i) Let L and @Q are the left and quasi ideal of S. Now

a € (SanSa)N Sa C [(Sa)(Sa)](Sa) = (Sa?)S.

Hence S is intra regular. m
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9

Generalized Fuzzy Ideals of
Abel-Grassmann’s Groupoids

In this chapter we characterize a Abel-Grassmann’s groupoid in terms of
its (€, €y Vqgs)-fuzzy ideals.

9.1 (€4, €, Vgs)-fuzzy Ideals of AG-groupoids

For the following definitions see [65].

Let 7,4 € [0, 1] be such that v < 4. For any B C A, we define XﬁjB be the
fuzzy subset of X by X;;B () > for all x € B and X;SB (z) < v otherwise.
Clearly, XfiB is the characteristic function of B if y =0 and 6 = 1.

For a fuzzy point x, and a fuzzy subset f of X, we say that

(1) . €4 fif f(z) >71> 7.

(2) zrqsf if f(z) +r > 26.

(3) zr €4 Vgsf if x, €4 f or z,qs5f.

Now we introduce a new relation on F(X), denoted as “C Vq(4,5", as
follows.

For any f,g € F(X), by f C Vq(y,5)9 we mean that z, €, f implies
z, €4 Vgsg for all z € X and r € (v, 1]. Moreover f and g are said to be
(7, 6)-equal, denoted by f =(,5) g, if f C Vq(y.5)9 and g C Vg5 f-

Lemma 321 Let f and g are fuzzy subsets of F(X). Then f C Vq(y,59 if
and only if max{f(x),v} > min{g(z),d} for all x € X.

Proof. It is same as in [65]. m

Lemma 322 Let f, g and h € F(X). If f C Vq(y,509 and g C Vq(,.5)h,
then f C Vq(y,s)h.

Proof. Tt is same as in [65]. m

It is shown in [65] that “=(, ;" is equivalence relation on F(X). It
is also notified that f =, s g¢ if and only if max{min{f(z),d},v} =
max{min{g(x),0},~} for all z € X.

Lemma 323 For an AG-groupoid S, the following holds.

(1) A non empty subset I of AG-groupoid S is an ideal if and only if X fi I
is ((€, €y Vags)-fuzzy ideal.

(i) A non empty subset L of AG-groupoid S is left ideal if and only if
XgL is (€, €4 Vgs)-fuzzy left ideal.



Theory of Abel Grassman's Groupoids 164

(7i7) A non empty subset R of AG-groupoid S is right ideal if and only
if X;SR is (€, €4 Vgs)-fuzzy right ideal.

(7v) A non empty subset B of AG-groupoid S is bi-ideal if and only if
XﬁjB is (€4, €4 Vgs)-fuzzy bi-ideal.

(v) A non empty subset @ of AG-groupoid S is quasi-ideal if and only if

ngQ is (€4, €4 Vgs)-fuzzy quasi-ideal.

Lemma 324 Let A, B be any non empty subsets of an AG -groupoid S
with left identity. Then we have
(1) A C B if and only if XfiA C \/q(wg)XfiB, where v € (v,1] and
v,0 € [0, 1].
é [ 1)
2) X54NXIp =(4,8) XJ(anp)-
é 6 1)
3) X240 X905 =(r0) X2 am).
Proof. It is same in [65]. =

Lemma 325 If S is an AG-groupoid with left identity then (ab)? = a?b? =
b%a? for all a and b in S.

Proof. It follows by medial and paramedial laws. =

Definition 326 A fuzzy subset f of an AG-groupoid S is called an (&,
, €4 Vas)-fuzzy AG-subgroupoid of S if for all z,y € S and t,s € (v,1], it
satisfies vy € f, ys € f implies that (TY)min{t,s} € Vqsf-

Theorem 327 Let f be a fuzzy subset of an AG groupoid S with left iden-
tity. Then f is an (€,€ Vgs)-fuzzy AG subgroupoid of S if and only
if

max{f(zy),7} > min{f(z), f(y), 6} where v,6 € [0,1].

Proof. Let f be a fuzzy subset of an AG-groupoid S which is (€., €, Vgs)-
fuzzy subgroupoid of S. Assume that there exists z,y € S and t € (v, 1],
such that

max{f(zy),7} <t < min{f(z), f(y),d}.

Then max{f(zy),v} < t. This implies that f(zy) < ¢, which further im-

plies that (2Y)min €~ Vs f and min{ f(z), f(y),d} > ¢. Therefore min{ f(x), f(y)} >
t which implies that f(z) > ¢ > v, f(y) >t > v, implies that z; €, f,
Ys € f. But (TY)min{t,s} €4 V@s.f a contradiction to the definition. Hence

max{f(zy),v} > min{f(z), f(y),d} for all z,y € S.

Conversely, assume that there exist z,y € S and ¢,s € (v, 1] such that
Tt €y fv Ys € f but (zy)min{t,s}mfa then f(l‘) 2t>7, f(y) >5>7,
f(zy) < min{f(z), f(y),0} and f(zy) + min{t,s} < 26. It follows that
f(zy) < ¢ and so max{f(zy),v} < min{f(x), f(y),d}, this is a contradic-
tion. Hence x; €, f, ys €, f implies that (2y)min(t,s} €4 Vgsf for all z,y
inS. =
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Definition 328 A fuzzy subset f of an AG-groupoid S with left identity
is called (€,€~ Vqs)-fuzzy left (respt-right) ideal of S if for all x,y € S
and t,s (v,1] it satisfies ys € f implies that (xy); €, Vasf (respt x4 €4 f
implies (zy); € Vasf).

Theorem 329 A fuzzy subset f of an AG-groupoid S with left identity is
called (€., € Vqs)-fuzzy left (respt right) ideal of S. if and only if

max{f(zy),v} = min{f(y), 0} (respt max{f(zy),7} > min{f(z),d}).

Proof. Let f be an (€,,€, Vgs)-fuzzy left ideal of S. Let there exists
z,y € S and ¢ € (v, 1] such that

max{f(zy),v} <t < min{f(y),d}.

Then max{f(zy),7} < ¢t < ~ this implies that (zy):€,f which further
implies that (zy).€, Vgsf. As min{f(y),d} > ¢t > ~ which implies that
f(y) >t > =, this implies that y; €, f. But (zy):€, Vgsf a contradiction
to the definition. Thus

max{ f(zy),v} = min{f(y), 6}.

Conversely, assume that there exist z,y € S and ¢,s € (v, 1] such that
Ys €y [ but (zy)i€ Vg5 f, then f(y) = ¢ > v, f(zy) < min{f(y),d}
and f(xy) +t < 24. It follows that f(xy) < § and so max{f(zy),v} <
min{ f(y),0} which is a contradiction. Hence y; €, f this implies that
(TY)mingt,sy €y Vasf (respt z; €, f implies (2Y)minge,sy €4 Vasf) for all
z,yin S. m

Definition 330 A fuzzy subset f of an AG-groupoid S is called (€., €,
V@qs)-fuzzy bi-ideal of S if for all x,y and z € S and t,s € (v,1], the
following conditions hold.

(1) if x¢ €4 f and ys €, f implies that (TY)mings,s} €4 VG5 [

(2) if 2t €4 f and zs € f implies that ((2Y)2)min{t,s} €y Vs f-

Theorem 331 A fuzzy subset f of an AG-groupoid S with left identity is
called (€., € Vqs)-fuzzy bi-ideal of S if and only if

(I) max{f(zy),v} = min{f(z), f(y), 0}.

(L) max{f((zy)z), v} = min{f(z), f(2),0}.

Proof. (1) & (I) is the same as theorem 327.
(2) = (II) Assume that z,y € S and ¢,s € (7, 1] such that

max{f((zy)z),7} <t < min{f(z), f(2),d}.

Then max{f((zy)z),7} < ¢ which implies that f((zy)z) < ¢ this im-
plies that ((xy)z):€,f which further implies that ((zy)z):€, Vgsf. Also
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min{ f(z), f(2),6} >t > =, this implies that f(z) >t > v, f(z) >t >«
implies that z; €, f, 2 €4 f. But ((zy)z)+€, Vgsf, a contradiction. Hence

max{f((zy)z),7} = min{f(z), f(2),0}.

(II) = (2) Assume that z,y in S and t,s € (v, 1], such that z; €,
f’ Zs €y f but ((xy)z)min{t,s}mf7 then f(:C) >t >, f(Z) >8>,
f((zy)z) < min{f(x), f(y),d} and f((zy)z) + min{t,s} < 26. It follows
that f((zy)z) < ¢ and so max{f((zy)z),v} < min{f(z), f(y),d} a contra-
diction. Hence x; €, f, zs €, f implies that ((xy)2)minfs,s} €4 Vgsf for all
z,yin S. m

Example 332 Consider an AG-groupoid S = {1,2,3} in the following
multiplication table.

Define a fuzzy subset f on S as follows:

041 ifx =1,
fl)={ 044 ifx =2,
0.42 if z = 3.

Then, we have

o fisan (€91,€0.1 Vqo.11)-fuzzy left ideal,
e f is not an (€, € Vqo.11)-fuzzy left ideal,
e [ is not a fuzzy left ideal.

Example 333 Let S = {1,2,3} and the binary operation o be defined on
S as follows:

Then clearly (S,0) is an AG-groupoid. Defined a fuzzy subset f on S as

follows:
0.44 if z = 1,
flx)=< 06 ifz=2,
0.7 if z = 3.

Then, we have

o fisan (€04, €0.4 Vqo.45)-fuzzy left ideal of S.

o f isnot an (€04, €0.4 Vqo.45)-fuzzy right ideal of S.
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Theorem 334 For an AG-groupoid S, with left identity, the following are
equivalent.

(1) S is regular.

(#6) Bla]N1I[a]NL[a] C (Bla]l][a]) L[a], for some a in S.

(#t) For bi-ideal B, ideal I and left ideal L of S, BNINL C (BI) L.

(iv) fgNh CVqe,s(fog)oh. for (€, Vas)-fuzzy bi-ideal f, (€,
. €~ V@s)-fuzzy ideal g, and (€, € Vqs)-fuzzy left ideal h of S.

(v) fgnNh CVqus(fog)oh for(ey,&y Vgs)-fuzzy generalized
bi-ideal f, (€, €y Vgs)-fuzzy ideal g, and (€, € Vgs)-fuzzy left ideal h of
S.

(vi) fNgnNh CVqees(fog)oh. for(€y,&y Vgs)-fuzzy generalized
bi-ideal f, (€, €y Vas)-fuzzy right ideal g, and (€, € Vqs)-fuzzy left ideal
h of S.

Proof. (i) = (vi)

Assume that f, g and h are (€4, €4 Vgs)-fuzzy generalized bi-ideal, (€,
, €4 Vgs)-fuzzy right ideal and (€., €, Vgs)-fuzzy left ideal of a regular AG-
groupoid S, respectively. Now since S is regular so for a € S there exist
z € S such that using left invertive law and also using law a(bc) = b(ac),
we have,

a = (az)a=[{(ax)a}ala = (az){(az) a} = [{(az)a}a]{(az)a}
—  {(za)(az)}{(az)a} = [{(az)a}(a)](xa)

Thus,
max {((f o g) o h)(a),7}
= max{ \/ {(fog)(x)/\h(y)},'y}

a=xy

= max{(f o g)[{(azx)a}(az)] A h(za),7}

= max{ \/  (f(u) Ag(v)) Ah(za), 7}
{(az)a}(za)=uv

max { f((ax)a) A g(az) A h(za), v}

min {max f((az)a), 7} , max{g(az), 7}, max{h(za), 1 }}

min {min{ f(a),d}, min{g(a),d}, min{h(a),d}}

min {min{ f(a) A g(a) A h(a),d}

min {[f N g N h](a), 6}

v

Thus fNgNh C Vg5 (fog)oh.
(vi) = (v) is obvious.

(v) = (4v) is obvious.

(iv) = (iii)
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Assume that B, I and L are bi-ideal, ideal and left ideal of S respectively.
Then Xéva Xfﬂ and XiL are (€., €y Vgs)-fuzzy bi-ideal, (€., €y Vgs)-fuzzy
ideal and (€., € Vgs)-fuzzy left ideal of S respectively. Therefore we have,

o = 0Xos N X N XL € Vars(Xs © X5 © X
= (1,9 (XiBI) © XiL =(v,0) Xi(m)n
Therefore BNINLC (BI)L.
(i44) = (1) is obvious.
(1) = (i)
Bla] = aUa?U (aS)a, I'la)] = aU SaUaS and L[a] = a U Sa are
principle bi-ideal, principle ideal and principle left ideal of S generated by

a respectively. Thus by (i), left invertive law, paramedial law and using
law a(bc) = b(ac). we have,

(aUa*U(aS)a)N(aUSaUaS)N (aU Sa)
((aUa*U(aS)a) (aU SaUaS)) (aU Sa)
{S(aU SaUal)} (aU Sa)

{SaU S (Sa)U S (aS)} (aU Sa)

(SaUaS) (aU Sa)

(Sa)a U (Sa) (Sa) U (aS)aU (aS) (Sa)

= a’SUd’SU(aS)aU (aS)a

= a*SU(a9)a.

N 1NN

Hence S is regular. m

Theorem 335 For an AG-groupoid S, with left identity, the following are
equivalent.

(2) S is regular.

(i) Lla]NIfa]NQla] C (L[a]I]a]) @ [a], for some a in S..

(#3i) For left ideal L, ideal I and quasi-ideal Q of S, LNINQ C (LI)Q

(iv) fNgNh CVqe.s(fog)oh. for (€, &y Vas)-fuzzy left ideal f, (€,
, €4 Vgs)-fuzzy ideal g, and (€., €4 Vqs)-fuzzy quasi- ideal h of S.

(v) fOgNh CVqes(fog)oh. for (€, €, Vas)-fuzzy left ideal f, (€,
, € Vas)-fuzzy right ideal g, and (€5, €4 Vqs)-fuzzy quasi- ideal h of S.

Proof. (i) = (i)

Assume that f, g and h are (€., €y Vgs)-fuzzy left ideal, (€., €5 Vgs)-
fuzzy right ideal and (€., €, Vgs)-fuzzy quasi-ideal of a regular AG-groupoid
S, respectively. Now since S is regular so for a € S there exist € S such
that using left invertive law and also using law a(bc) = b(ac), we have,

a = (ax)a = [{(az) a}z]la = {(za)(az)}a.

168
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Thus
max {((f o g) o h)(a),~}
max{ \ {(fog9)(@) Ah(y)} ,v}

a=xy

max{(f o g){(za)(ax)} A h(a),~}

max{ \/  (f(p) Ag(q)) Ah(a),7}
{(za)(az)}=pq

max { f(za) A g(ax) A h(a),v}

min {max{ f(za), v}, max{g(ax), v}, max{h(a),v}}

min {min{ f(a),d}, min{g(a),d}, min{h(a),d}}

= min{min{f(a) A g(a) A h(a),d}

= min{[fNgnNhl(a),d}

Hence fNgNh CVqe,s(fog)oh.

(v) = (iv) is obvious.

(v) = (iii)

Assume that L, I and @ are left ideal, ideal and quasi-ideal of S re-
spectively. Then X‘f{B7 stﬂ and Xf;yL are (€, €, Vgs)-fuzzy left ideal, (€,
, €4 Vgs)-fuzzy ideal and (€4, €, Vgs5)-fuzzy quasi-ideal of S respectively.
Therefore we have,

Y

Xjzam@) = (:)Xaz N X1 NX5e € Ve, (GL © X50) ©X5q
0 0 4
= (’Y,é)(X'yLI) O XyQ =(1,6) Xy(LDQ-

Therefore LNINQ C (L) Q.

(#9i) = (it) is obvious.

(ii) = (i)

Lial =aUSa, I[a) =aUSaUaS and Q[a] = aU (SanaS) are left
ideal, ideal and quasi-ideal of S generated a respectively. Thus by (4i7) and
medial law we have,

(aUSa)N(aUSaUaS)N(aU(SanaS)) C ((aUSa)(aUSaUal))
(aU (Sanas))
C {(aUSa)S}(aUal)
= {aSU(Sa)S} (aUal)
= (aS)(aUal)
= (aS)aU (aS) (aS)
= (aS)aUd®S.

Hence S is regular. m
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Theorem 336 For an AG-groupoid S, with left identity, the following are
equivalent.

(1) S is regular.

(#5) Bla]N1I[a)NQla] C (Bla]Ila]) Q[a], for some a in S.

(#i1) For bi-ideal B, ideal I and quasi-ideal Q of S, BNINQ C (BI) Q.

(iv) fNgNh CVqe,s(fog)oh. for(€,, €y Vgs)-fuzzy bi-ideal f, (€,
. €~ V@s)-fuzzy ideal g, and (€, €, Vgs)-fuzzy quasi-ideal h of S.

(v) fNgnNh CVqus(fog)oh for(ey,€y Vgs)-fuzzy generalized
bi-ideal f, (€5, €y Vgs)-fuzzy ideal g, and (€4, € Vgs)-fuzzy quasi-ideal h
of S.

Proof. (i) = (v)

Assume that f, g and h are (€., €, Vqgs)-fuzzy generalized bi-ideal, (€,
, €4 Vgs)-fuzzy ideal and (€., €, Vgs)-fuzzy quasi-ideal of a regular AG-
groupoid S, respectively. Now since S is regular so for a € S there exist
x € S such that using left invertive law and also using law a(bc) = b(ac),
we have,

a = (az)a = (((ax)a)x)a = ((za) (ax)) a = [a{(za) x}]a.
Thus,

max {((f og)oh)(a),v}
= max{ V A(Fog)) Ah(c)}m}

a=bc

> max{(fog)la{(za)z}] A h(a),7}
= max{ \/  (f(p) A g(@) Ah(a),7}

a{(za)z}=pq
max { f(a) A g{(za)x} A h(a), v}
min {max{f(a), v}, max{g{za)z}, v}, max{h(a),}}
min {min{ f(a),d}, min{g(a),d},min{h(a),0}}
= min{min{f(a) A g(a) A h(a),d}
= min{[fNgnhl(a),d}

Y]

Thus fNgNh C Vg5 (fog)oh.

(v) = (iv) is obvious.

(tv) = (i)

Assume that B, I and @ are bi-ideal, ideal and quasi-ideal of regular
AG-groupioud of S respectively. Then XiB, Xil and Xf,Q are (€, €4 Vgs)-
fuzzy bi-ideal, (€, €, Vgs)-fuzzy ideal and (€., €, Vgs)-fuzzy quasi-ideal
of S respectively. Therefore we have,

1 é ) ) 1 ) )
X5(BrinQ) = (no)XyL NX5r N X5 € Var.e(Xy © X51) © X0
_ 1 5 )
- (%5)(X7B1) OXyQ =(.6) X4(BDQ-
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Therefore BNINQ C (BI)Q.

(#3i) = (it) is obvious.

(i2) = (i)

Since Bla] = aUa? U (aS)a, I[a] = aU SaUaS and Q[a] = a U
(Sa N aS) are principle bi-ideal, principle ideal and principle quasi-ideal of
S generated by a respectively. Thus by (i) and using law a(bc) = b(ac)
medial law and left invertive law we have,

(aUa*U(aS)a)N(aUSaUaS)N (aU(Sanas))
((aUa®U (aS)a) (aUSaUal)) (aU (Sanas))
(S(aU SaUalS)) (aUal)

(SaU S (Sa)U S (aS)) (aUal)

(

(

(

(

N 1N

SaU S (Sa)U S (al)) (aUaS)

aS U Sa) (aUaSl)

aS)aU (aS) (aS)U (Sa)a U (Sa) (aS)
aS)aUa?S Ua(aS).

Hence S is regular. m

Theorem 337 For an AG-groupoid S, with left identity, the following are
equivalent.

(1) S is regular.

(i) Ila)NIfa]NI]a] € (I[a]l]a])I][a], for some a in S.

(#i1) For an ideals Iy, Is and Is of S, 1 N Io N I3 C (I115) Is.

(iv) fNgNh CVqu,s(fog)oh. for any (€, €, Vgs)-fuzzy ideals f,g
and h of S.

Proof. (i) = (iv)

Assume that f, g and h are any (€., €, Vgs)-fuzzy ideals of a regular
AG-groupoid S, respectively. Now since S is regular so for a € S there exist
x € S such that using left invertive law and also using law a(bc) = b(ac),
we have,

a = (az)a = [{(az) a}zla = ((za) (ax)) a.
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Thus,
max {((f o g) o h)(a), 7}
= max{ \/ {(fog)b) /\h(c)},'y}

a=bc

> max{(f o g){(za) (ax)} A h(a),7}
= max{ \/ {f(®) Ag(@)}Ah(a),~}
(wa)(az)=pgq
max { f(za) A g(ax) A h(a),v}
= min{max{f(za), 7}, max{g(az), v}, max{h(a),v}}
min {min{f(a), ¢}, min{g(a),d}, min{h(a),d}}
= min{min{f(a) A g(a) A h(a),d}
— min{[f N9 hl(a), 5}

Y

Y

Thus fNgNh C Vg5 (fog)oh.

(v) = (i4i)

Assume that I, I and I3 are any ideals of regular AG-groupioud of §
respectively. Then sty I Xz 1, and sty 1, are any (€., €, Vqs)-fuzzy ideals of
S respectively. Therefore we have,

) 5 é ) ) ) )
Xy(Linlnl;) = (n6)Xyh N X1y N XyIs < \/q(%‘s)(x’ﬂl © X’ﬂz) © XyIs

) 5 )
= (9 (X“/Ilb) © X~yIz =(7,6) X“/(1112)13'

Therefore Il N 12 N I3 g (11[2) Ig.

(#9) = (4it) is obvious.

(1) = (1)

Since I [a] = aU Sa U aS is a principle ideal of S generated by a. Thus
by (%), left invertive law, medial law and paramedial law we have,

(aUSaUaS)N(aUSaUaS)N (aUSaUas)

((aUSaUaS) (aUSaUas))

(aUSaUaS)

{{(aUSaUaSl) S} (aUSaUaS)

{aS U (Sa)SU(aS) S} (aUSaUal)

{aS U Sa} (aU SaUaS)

= (aS)aU(aS)(Sa)U (aS) (aS)U (Sa)a
U(Sa) (Sa) U (Sa) (aS)

= (aS)aUd®S.

N

N

Hence S is regular. m
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Theorem 338 For an AG-groupoid S, with left identity, the following are
equivalent.

(1) S is regular.

(1) Qla]NI[a]lNQ[a] C (Qla]lI[a]) @ a], for some a in S.

(#i1) For quasi-ideals Q1,Q2 and ideal I of S, Q1 NINQ2 C (Q11) Q2.

(iv) fNgNh C Vg5 (fog)oh. for (€, €, Vas)-fuzzy quasi-ideals f
and h, (€4, € Vqs)-fuzzy ideal g of S.

Proof. (i) = (iv)
Assume that f, h are (€4, €4 Vgs)-fuzzy quasi-ideals and g is (€5, €,
Vgs)-fuzzy ideal of a regular AG-groupoid S, respectively. Now since S is

regular so for a € S there exist € S such that using left invertive law and
law is a(bc) = b(ac), we have,

a = (azx)a = [{(az) a}z]la = ((za) (ax)) a = a{(xa) z}a.

Thus,
ma<(((f ©9) o h)(a),}
. max{ V {(fog)(p)/\h(q)}m}

a=pq

max{(f o g)[a{(za)z}] A h(a), v}
= max{ \/ (f(u) Ag(v)) A h(a),v}

a{(za)e}=uv

max {f(a) A g{(za)z} A h(a),~}

min {masc{ (), 7} , max{g{za)z}, 7}, max{h(a), 7} }
min {min{f(a),d}, min{g(a),}, min{h(a),d}}

= min {min{f(a) A g(a) A h(a),d}

= min{[f ngn)(a), 5}

v

Y

Thus fNgNh C Vg5 (fog)oh.

(iv) = (i)

Assume that Q1 and @2 are quasi-ideals and I is an ideal of a regular
AG-groupoid S. Then Xin and Xin are (€., €, Vgs)-fuzzy quasi-ideal,
Xi] is (€4, €4 Vgs)-fuzzy ideal of S. Therefore we have,

1) _ § ) ) ) § )
Xy @inin@s) = () X5@ N Xa1 N X5, € Var.e (X © X51) © X5,
5 5 5
= .0(X501) © X530 =(1:8) X5(Q1 1)@
Thus Q1 NI NQ2 C (Q11) Q2.
(94) = (1) is obvious.

(id) = (i)
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Qa] = aU(SanaS) and I [a] = aUSaUaS are principle quasi-ideal and
principle ideal of S generated by a respectively. Thus by (4i7), left invertive
law, medial law and we have,

(aU(SanaS))N(aUSaUaS)N (aU(Sanas))
((aU (Sanal)) (aUSaUas))
(aU (Sanas))
{(aUaS) S} (anas)
{aS U (aS) S} (anaS)
= (aSUSa)(anaS)
{(aS)aU(aS) (aS) U (Sa)a U (Sa)aSa
= (aS)aUa’SUa(aS).

N

N

Hence S is regular. m

Theorem 339 For an AG-groupoid S with left identity, the following are
equivalent.

(1) S is regular.

(#) For principle bi-ideal Bla], Bla] = (B[a]S) Bla].

(#4t) For bi-ideal B, B = (BS) B.

(iv) For generalized bi-ideal B, B = (BS) B.

(v) For (€, €y Vags)-fuzzy bi-ideal f, of S f =(y.5) (fo S)o f.

(vi) For (€, €4 Vqs)-fuzzy generalized bi-ideal f, of S, f =(+.5) (foS)of.
Proof. (i) = (vi)

Assume that f is (€4, €, Vgs)-fuzzy generalized bi-ideal of a regular
AG-groupoid S. Since S is regular so for b € S there exist x € S such that
b = (bx) b. Therefore we have,

max {((f 0 5) o f)(b),7}
= max{ \V {(foS)(w)Af(y)}ﬁ}

b=zxy

> max{(fos)(bx)A f(b),v}
= max{ \/ (f(u) NS(v)) A f(b),v}

br=uv

> max {f(b) A S(x) A f(b),7}
= min {max{f(b),7}, 1, max{f(b),7}}
min{min{ f(b),0}, 1, min{ f(b),0}}
= min{min{f(b) A1 A f(b),d}
= min{f(b),d}
Thus f C Vq(y,6)(f 0 S) o f. Since f is (€, €y Vgs)-fuzzy generalized
bi-ideal of a regular AG-groupoid S. So we have (f o S)o f C Vg4 f-

v
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Hence f =, 5 (foS)o f.

(vi) = (v) is obvious.

(v) = (iv)

Assume that B is a bi-ideal of S. Then Xf,B , is an (€., €, Vgs)-fuzzy
bi-ideal of S. Therefore we have,

s = 0085 0Xs) ©X)s
= (79 (XiBs) © XE;yB =(v,6) sty(BS)B‘
Therefore B = (BS) B.
(iv) = (4it) is obvious.
(#9i) = (it) is obvious.
(ii) = (i)
Since Bla] = aUa? U (aS) a is a principle bi-ideal of S generated by a
respectively. Thus by (i¢), we have,
aUa*U(aS)a
= [{aUa®U(aS)a}S] (aUa®U (aS)a)
= [aSUa®SU{(aS)a}S] (aUa®U (aS)a)
= (aSUa*SUa(al)) (aUa®U (aS)a)
= (aS)aU (aS)a®U (aS) ((aS)a)
(a*S)aU (a*S) a® U (a*5) ((aS) a)
(a(a8))aU (a(aS))a* U (a(a$)) ((aS)a)
= (aS)aUd’SU(aS)aUa*SUa*SUa’S
U(aS)aU (aS)aU (aS)a
= a*SU(a9)a.

U
U

Hence S is regular m

Theorem 340 For an AG-groupoid S, with left identity, the following are
equivalent.

() S is regular.

(#) Bla]NQ[a] C (Bla] S)Q[a], for some a in S.

(#i1) For bi-ideal B and quasi-ideal Q of S, BN Q C (BS)Q.

(iv) fNg C Vaus(foS)og. for(ey, €y Vgs)-fuzzy bi-ideal f, and
(€4, €4 Vas)-fuzzy quasi-ideal g of S.

(v) fNg CVqu,5(foS)og. for(€y, €y Vags)-fuzzy generalized bi-ideal
[ and (€, €4 Vgs)-fuzzy quasi-ideal g of S.

Proof. (i) = (v)

Assume that f and g are (€,, €, Vgs)-fuzzy generalized bi-ideal and (&,
, €4 Vgs)-fuzzy quasi-ideal of a regular AG-groupoid S, respectively. Now
since S is regular so for a € S there exist © € S such that using left invertive
law and also using law a(bc) = b(ac), we have, a = (ax) a = [{(az) a}z]a.
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Thus,
max {((f 0 8) o g)(a),~}

= maX{ V {(fos)(b)/\g(C)},’v}

a=bc

> max{(f o S)[{(azx)a}x] A g(a),~}
= max{ \/ (f(p) A S(9)Agla),7}

{(az)a}z=pq
max {f((az)a) A S(x) A g(a), v}
min {max{ f((az)a), v}, 1, max{g(a), v}}
min{min{f(a), 0}, 1,min{g(a),d}}
min {min{f(a) A1 A g(a),d}
min {[f N g](a),d}

([ AV [

Thus fNg CVge,s5(foS)og

(v) = (iv) is obvious.

(v) = (i)

Assume that B and @ are bi-ideal and quasi-ideal of regular AG-groupioud
of S respectively. Then sty g and XiQ are (€5, €y Vgs)-fuzzy bi-ideal and
(€, €4 Vags)-fuzzy quasi-ideal of S respectively. Therefore we have,

Xi;y(BmQ) = (’)’,5)X§yB n styS n Xf;yQ C Vq(4,5) (XiB © XiSyS) © Xf;yQ
5 5 5
= 6:00G8s) O Xaq =(10) X5(Bs)Q-

Therefore BN Q C (BS) Q.

(#i1) = (4t) is obvious.

(i1) = (i)

Since Bla] = aUa? U (aS)a and Q[a] = a U (SaNaS) are principle
bi-ideal and principle quasi-ideal of S generated by a respectively. Thus by
(#i) , law a(bc) = b(ac), medial law and left invertive law we have,

{aUda*U (aS)a}N{aU (SanaS)}
{(aUa®U (aS)a) S} (aU (Sanas))
{aSUa*S U ((aS)a)S} (aU Sa)
= {aSUa*SU(Sa)(aS)} (aU Sa)

{(aS)a U (a*S)a U {(Sa)(aS)}a U (aS)(Sa)
U(a?8)(Sa) U (Sa)(aS)(Sa)}
(aS)a U Sa* U (aS)a U (aS)a U Sa? U (aS)a
= (aS)aUd*S

N 1N

N

Hence S is regular. m
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9.2 (&,,€, \/q(;.)—fuzzy Quasi-ideals of
AG-groupoids
The following is an example of generalized fuzzy quasi-ideal in an AG-

groupoid.

Example 341 Consider an AG-groupoid S = {1,2,3} in the following
multiplication table.

Define a fuzzy subset f on S as follows:

021 ifzr=1
flx)y=< 023 ifx=2
0.24 ifz=3.

Then, we have

o fisan (€g.2,€0.2 Vqo.23)-fuzzy left ideal,
o f is not an (€, € Vqo.23)-fuzzy left ideal.

Definition 342 A fuzzy subset f of an AG-groupoid S is called an (€,

L € Vgs)-fuzzy left (right) ideal of S if it satisfies yr €4 f,(xy)t €4 Vgsf
(x¢ €4 f implies that (zy); €4 Vasf), for allt,s € (0,1], and v, 6 € [0,1].

Theorem 343 A fuzzy subset f of an AG-groupoid S is called (€., €,
Vs )-fuzzy left (respt. right) ideal if and only if max{ f(ab),v} > min{f(d),d},
(respt. max{f(ab),v} > min{f(a),d}) for all a,b € S.

Lemma 344 FEvery intra regular AG-groupoid S is reqular.
Proof. It is easy. m

Lemma 345 In an AG-groupoid with left identity S the following holds
(1) (aS)(Sa) = (aS)a, for all a in S,
(73) {(Sa)(aS)}(Sa) C (aS)a, for all a in S.

Proof. (i) Using left invertive law, paramedial law, medial law and 1 we
get

(aS)(Sa) = {(Sa)S}a = {(Sa)(SS)}a = {(S5)(aS)}ta = {S(aS)}a = (aS)a.

(#4) now using paramedial and medial laws, and using (¢) of this lemma
we get:
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{(Sa)(a9)}(Sa) = (aS){(aS)(Sa)} = (aS)[{(Sa)S}a]
C (aS)(Sa) C (aY)a.

Lemma 346 In an AG-groupoid with left identity S the following holds
(i) a®S = (Sa?)S, for all a in S,
(ii) Sa? = (Sa?)S , for all a in S.

Proof. (i) Using (1) we get
a’S = a*(89) = S(a?S).
(i)

Sa® = (SS)a2 = (a29)S = {(a?)(S9)}S = {(59)(a%)}S = (Sa?)8.

Lemma 347 A subset I of an AG-groupoid is left (bi, quasi, two sided)
ideal if and only if Xg, is (€, €4 Vqs) fuzzy left(bi, quast, two sided) ideal.

Proof. It is easy. m

Theorem 348 If S is an AG-groupoid with left identity then the following
are equivalent

(2) S is regular,

(#9) Bla] N L[a] C (Bla]S)Llal], for all a in S,

(i4) BN L C (BS)L, where B and L are bi and left ideals of S,

(iv) fNg CVgees(fo ng) o g, where f and g are (€, €~ Vgs)-fuzzy
bi and left ideals of S.

Proof. (i) = (iv) Let a € S, then since S is regular so there exists z in
S such that @ = (az)a. Then using paramedial and medial laws, we get

a = (ax)a = (azx)[(ax)a] = [a(az)](za).
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max{(f o XJ5) o g(a),"}

- maX[\/{f X09)(b ()}m]

a=bc
> max [(f o Xig)(a(az)) A g(za), 7]
= max [mln{ OXfys)( (aJC)),g(xa)} 77]

— lmm{ \V {(f(p)Axism)},g(m)}m]
a(az)=pq

> max [min {(f(a), XJg(ax), g(za)} 7]
= max [min{(f(a )7179(3”)}’7]

= max [min{(f(a),g(za)},v]

= min [max{f(a), v}, max{g(za),7}]

> min [min{f(a),d}, min{g(a), J}]

= min{(fNg)(a),s}.

Thus f Mg C Vgey.5(foXig)og
(iv) = (i41) Let B and L are bi and left ideals of S. Then Xf;B and XjfL
are (€., €, Vgs)-fuzzy bi and left ideals of S. Now by (iv)

5 5 5 5 5 5
Xipnr = A NAJL C V(y,6)(Xyp 0 Xjg) o AT

~

5 5
o VA, 5)( vBS) AL =0 vq(%fs)Xv(BS)L'

Thus BN L C (BS)L.
(#4) = (i7) is obvious.
(19) = (i) Using left invertive law, paramedial law, medial law, we get

a

€

c

-

[aUa? U (aS)a]N (aU Sa) C [{aUa? U (aS)a}S](aU Sa)
[aSUa*S U {(aS)a}S](aU Sa)

(aS)a U (aS)(Sa) U (a*S)a U (a*S)(Sa)

U[{(aS)a}S]a U [{(aS)a}S](Sa)

(aS)a U (aS)(Sa) U Sa® U (aS){(aS)a}

U{(Sa)(aS)}(Sa)

(aS)a U (Sa?)S.

Hence S is regular. =

Theorem 349 If S is an AG-groupoid with left identity then the following
are equivalent
(¢) S is regular,
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(#7) Ila) N L[a] C (I[a]S)L]a] for all a in S,

(t3i) INL C (IS)L for ideal I and left ideal L,

(iv) fNg CVqees(fo ijs) o g, where f and g are (€, €, Vgs5)-fuzzy
ideal and left ideals of S.

Proof. (i) = (iv) Let a € S, then since S is regular so there exists x in
S such that @ = (az)a. Then using paramedial and medial laws, we get

a = (ax)a = (az)(ea) = (ae)(za).
Then

max o g(a), 7}

= max[ OX6 )(b)Ag(c)},’Y]
a=bc

fo XJs)(ae) A g(xa)} ,v]

a= bc
> max [{(fo ) Ag(za)}, 7]
= max [ml (ae), g(xa)} "7]

= max [mm{ )/\X5 (9), (xa)} V]

> max [min {(f(a), XJs(e), g(za)} 7]
= max [min {(f(a),1,g(za)},"]

= max [min{(f(a), g(za)},]

= min [max{f(a),v}, max{g(za),~}]
> min [min{f(a),d}, min{g(a),d}]

min{(f N g)(a), 5}.

Thus fNg C Vg5 (fo ng) og.
(iv) = (i41) Let I and L are ideal and left ideal of S respectively. Then
X51 and X‘SL are (€., €, Vgs)-fuzzy ideal and left ideal of S respectively.

Now by (w)
X, = X9 N AL CVq(y,5)(Xg 0 Xig) o X2y

e ¥ Ay, 6)(/\«/715) X& =m0 YV, 5)X (Is)L-

Thus I N L C (IS)L.
(#41) = (i%) is obvious.
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(11) = (4) Using left invertive law, paramedial law, medial law, we get

(aUaSUSa)N(aUSa) C{(aUaSUSa)S}HaU Sa)
{aS U (aS)S U (Sa)S}HaU Sa)

{aSUSaU (Sa)S}(aU Sa)

(aS)aU (Sa)aU{(Sa)S}ta U (aS)(Sa)

U(Sa)(Sa) U {(Sa)S}(Sa)

(aS)a U (Sa?)S.

a

N 1 m

N

Hence S is regular. m

Theorem 350 If S is an AG-groupoid with left identity then the following
are equivalent
(2) S is regular,
(i) Bla] € (Bla]S)(SBal) for all a in S,
(i4i) B C (BS)(SB), where B is bi-ideal,
(iv) f S Vq(y,5)(fo ijS) o (Xf?s o f), where f is fuzzy bi-ideal.
Proof. (i) = (w) Let a € S, then since S is reqular so there exists x in S
such that a = (ax)a. then using medial law we get

a = (az)a = [{(az)a}z]a = [{(az)a}z](ea)
= [(az)a}e](za) = [{(az)a}e][z{(az)a}].
max[{(f o X«‘?s) ° (st o f)}a),~]

max | \/ {(fo X35)(8) A (X050 )(0)} .7

a=bc

max [{(f o &) [{(az)a}e] A (X5 o f)z{(az)a}]} 7]

max [min {(f o Xf?s (az)alte], (ng o f)[x{(a:r)a}]} ,’y]

max [mln {mln{f{ azx)a}, 7S( e}, mln{Xf{SS( }} ]
max [min {min{ f{(ax)a}, 1}, min{1, f{(az)a}}}, 7]

max[min { f((az)a), f((ax)a)},~]

min[max{f((az)a),v}, max{f((azx)a,v)}]

min[min{ f(a),d}, min{f((a),}

min{ f(a),0}.

Thus f C V(.6 {(f o X2g) 0 (X350 f)}.

(tv) = (i4i) Let B be bi-ideal of S. Then X:?B (€4, €y Vas)-fuzzy bi-ideal
of S. Now by (iv)

v

v

v

X5 C VG0 (Xp 0 X) (X5 0 X)) = Va(.00 X 55y (58) -

Thus B C (BS)(SB).
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(14) = (i1) is obvious.

(11) = (i) Using left invertive law, we get

[{aUa? U (aS)a}S][S{aUa®U (aS)a}]

= [aSUda®’SU{(aS)a}S][SaU Sa® U {S((aS)a)}]
= [aSUa*S U (Sa)(aS)][SaU Sa* U (aS)(Sa)]

C (ad)a.

Hence S is regular. m

[aUa*U (aS)a] C

Theorem 351 If S is an AG-groupoid with left identity then the following
are equivalent

() S is regular,

(i) Lla] N Bla] € (Lla]S)Bla] for all a in S,

(#i1) LN B C (LS)B for left ideal L and bi-ideal B,

(iv) fNg C Vqee(fo X ) o g, where f and g are (€, €, Vgs)-fuzzy
left and bi-ideals of S respectively.
Proof. (i) = (iv) Let a € S, then since S is regular so there exists x in
S such that a = (ax)a.

a = (az)a= (az){(az)a}.
max{(f o XJ5) o g(a),"}

= max[ onfS (b)/\g(c)},’y]
a=bc

max{(f OX,YS)OQ( a),v}
max [(f o Xwg az) A g((az)a),]

>

= max [min {(f o XJ5)(az), g((az)a)} ,7]

= max [min{ V {(f<p)AX$s(q)}7g<(aw)a)},v]
(

a(az)=pg
> max [min {min{(f(a), X5(2)}, g((az)a)} ,7]
max [min {min{(f(a), 1}, g9((ax)a)},]
max [min {(f(a), g((az)a)} 7]
min [max{f(a), v}, max{g((az) a),v}]
min [min{ f(a),d}, min{g(a), 6}
min{(f N g)(a),d}.

AV | I T |

Thus f Mg C Vg, (fo Xf;s) o

(iv) = (uz) Let L and B are ideal and left ideal of S respectively. Then
X‘SL and X, B are (€, €y Vqs)-fuzzy left ideal and bi-ideal of S respectively.
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Now by (iv)

& & 1) & & &
X’yLﬂB = X’yLﬂX'yBQVq(’Y,lS)(X'yLOX'yS)OX’yB

5 5 5
= o) V(v (XJps) 0 X = ) Va(v,6)X5(Ls)B-

Thus LN B C (LS)B.
(#91) = (1) is obvious.
(11) = (i) Using left invertive law, paramedial law, medial law, we get

a € (aUSa)n{aUa®uU(aS)a} C {(aU Sa)SHaUa?U (aS)a}
= (aS)aU (aS)a? U (aS){(aS)a} U {(Sa)S}a

U{(Sa)S}a* U {(Sa)S}{(aS)a}

(aS)a U (aS)a® U (aS){(aS)S} U (aS)(Sa)

U{(Sa)(55)}(aa) U [{(aS)a}S](Sa)

(aS)a U (aS)a® U (aS){(aS)S} U (aS)(Sa)

U{(5a)(55)}(aa) U {(Sa)(aS)}(Sa)

a(Sa) U (Sa?)s.

N

N

N

Hence S is reqular. m

Theorem 352 If S is an AG-groupoid with left identity then the following
are equivalent

(1) S is regular,

(#) Lia] N Qa] N I[a) C (L[a]Qla])I[a] for all a in S,

(4i1) LNQ NI C (LQ)I for left ideal L, quasi-ideal Q and ideal I of S,

(iv) fNgNh C Vg5 (fog)oh, where f, g and h are (€, €y Vgs)-fuzzy
left ideal, right ideal and ideal of S.
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Proof. (i) = (iv) Let a € S, then since S is regular so there exists z in
S such that @ = (az)a. Now using left invertive law we get

a

= (az)a = [{(ax)a}z]a = {(va)(ar)}a.
max{_(f 0g)oh(a),v}

= max \/{(fog)(b)Ah(a)}m}

La=bc

= max \/ {(fog)((xa)(aa:))/\h(a)},”y]

La=bc

> max [I_nin{(f o g)((za)(az)), h(a)},~]
max |min { \V f() Ag(q), h(a)} W]
{(za)

(az)}=pq

max [min{min { f(za), g(az)}, h(a)} 7]

max[min{ f(za), g(ax), h(a)},]

min [max { f(za), v}, max{g(az), v}, max{h(a),7}]
min [min {f(a),d}, min{g(a),d}, min{h(a),s}]
min{(f NgNh)(a),d}.

v

v

Thus fNgNh CVqes(fog)oh.

(tv) = (i3i) Let L , J and I are left ideal and right ideal and ideal of
S respectively. Then XA‘EL , XjJ and Xglare (€4, €4 V@s)-fuzzy left ideal ,
right ideal and ideal of S respectively. Now by (iv)

Xopnsmr = XS NS NS C Vg5 (X0 0 X)) 0 XY

= LV q(’Y»‘S)(XWLJ) °© Xw (.9 vq(%fs)Xv(LJ)I'

Thus LN J NI C (LJ)I. Hence LN QNI C (LQ)I, where Q is a

quasi-ideal.

(#91) = (i7) is obvious.
(#9) = (i) Using left invertive law, paramedial law, medial law, we get

a

N m

N

(aUSa)N]aU{(Sa)N (aS)}]N(aU SaUaS)
[(aUSa){aU{(Sa)N (aS)}}|(aU SaUas)

{(aU Sa)(aU Sa)}(aU SaUal)

{a* Ua(Sa) U (Sa)a U (Sa)(Sa)}(aU Sa U aS)

(a*)(a) U (a*)(Sa) U (a*)(aS) U {a(Sa)}a U {a(Sa)}(Sa)
U{a(Sa)}(aS)U{(Sa)ataU{(Sa)a}(Sa)U{Sa)a}(as)
U{(Sa)(Sa)}ta U{(Sa)(Sa)}(Sa) U {(Sa)(Sa)}(as)
(Sa*)S U (Sa)S.
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Hence S is regular. m

Theorem 353 If S is an AG-groupoid with left identity then the following
are equivalent

(2) S is regular,

(#7) I[a) N Bla] C I[a)(I[a]Bla]) for all a in S,

(t4i) IN B C I(IB) for ideal I and bi-ideal B,

(iv) fNg C Va5 fo(fog), where f and g are (€, €, Vgs)-fuzzy ideal
and bi-ideal of S.
Proof. (i) = (iv) Let a € S, then since S is regular so there exists x in
S such that a = (az)a.

a = (ar)a = (ax){(ax)a} = (az)[(az){(ax)a}].

max{f o (fog)(a),7}

i AR

> max [{f(az) A f o g(a)},]
= max[min{f(az), fog(a)},]

= max [min{f(aa?%{ \/ f(p)Ag(Q)}}ﬁ]

max [min {f(az),{f(p) A g(a)}},]

max [min {f(ax), min {f(azx), g((ax)a)}}, 7]

min [max{f(az), v}, max {f(az), 7}, max{g((az)a),7}]
min [min{ f(a),d}, min {f(a),d}, min{g(a), 6}
min{fNg,d}.

VoI

Thus fNg C Vg5 fo(fog).

(tv) = (4it) Let I and B are ideal and bi-ideal of S respectively. Then
X‘sl and X,fB are (€., €y Vgs)-fuzzy ideal and bi-ideal of S respectively.
Now by (iv)

X = A NS5 CVGu.e(X0) o (X9 0 XY )

5
oy V(3,0 (Xy) © XVIB sy V.6 I(IB)

Thus I N B C I(IB).
(#41) = (i7) is obvious.
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(#1) = (i) Using left invertive law, paramedial law, medial law, we get

aUSaUaS
aUSaUaS

N{aUa®U (aS)a}
[(aUSaUaS){aUa®U (aS)a}]
aUSaUaS)[S{aUda®U (aS)a}]
aUSaUaS){SaU Sa* U S((aS)a)}

a(Sa) Ua(Sa?) UalS{(aS)a}] U (Sa)(Sa)
U(Sa)(Sa?) U (Sa)[S{(aS)a}] U (aS)(Sa)
U(aS)(Sa*)(aS)[S{(aS)a}]

(aS)a U (Sa?)S.

N

—~ Y~ —~
—_ — — —

N

Hence S is regular. m

Theorem 354 If S is an AG-groupoid with left identity then the following
are equivalent

(i) S is regular,

(¢4) Lla] € {La|(L[a]S)}L[a] for all a in S,

(t3t) L C{L(LS)}L for left ideal L of S,

(iv) f C q(%(;){fo(fon;S)}of where f is (€4, €y Vas)-fuzzy left ideal
of S.

Proof. (i) = (iv) Let a € S, then since S is regular so there exists = in S
such that a = (ax)a. now using left invertive law, Paramedial law, medial
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law and putting ze = 2/, 2’z = 2”7 we get:

a

(ax)a = [{(az)a}z]a = {(za)(az)}a
{a(az)}(za) = {(ea)(az)}(za)
{(za)(ae)}(za) = [{(ac)a}z](za)
z[{((ae)a)r}a] = (ex)[{((ac)a)z}a]
[a{((ae)a)z}](ze) = [a{((ac)a)z}]a’
{(ae)a}(ax)la’ = {2’(ax)}{(ac)a}
{a(2'z)}{(ae)a} = {a(ae) H{(2'z)a}
(«'z)[{a(ac)ta] = (2"z)[{a(ae)}(ea)]
2'z)[(ae){(ac)a}] = (ae)(z'z){(ac)a}
{(ae)a}(z'z)](ea) = [{(ac)a}a”]a
{(z7a)(ae)}a] = [{(ea)(az)}a]
{a(az”)}al.

max{XJg o (f o f),7}

('
[
[
[

= max [ \/ {fol(fo X«fs)}(b) A f(C),’Y]

v

v

I (A

AV Il

a=bc

max [{f o (f o X75) Ha(az")} A f(a),7]
max [min {{f o (f o X05)Ha(az")}}, f(a) } 7]

max[min [[{ \V  f)A(fo st)(Q)},f(a)]m]
{a(az”)}}=pq

min[min{{f(a), (f o XJs)(az")}, f(a)}],7]

min[min{{f(a), (f o XJs)(az")}, f(a)}],7]

min[min{{ f(a), { \/ {f(s /\ng )1} f(a)}, ]

min[min{f(a), {f(a) /\st( ")} f(a)}] 7]
min[min{f(a), min{f(a), X35(z")}, f(a)}],7]
min[min{ f(a), min{ f(a), 1}, f(a)}], ]

max [min[min{{f(a), f(a), f(a)}], 7]

max[min{ f(a), v}

min[max{f(a),v}]

min[min{f(a), 6}].

—

max

—

max

max

| —

max

max

max

Thus f C Vg5 {fo(foXs)}of.
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(tv) = (41i) Let L be left ideal of S. Then X,‘YSL (€4, €4 Vgs)-fuzzy left
ideal of S. Now by (iv)

X';SL C Vq(y,5) [{XfL ° (Xf,sL ° st)} ° X—?L] = VQ(776)X3[{L(LS)}L]'

Thus L C [{L(LS)}L].
(#4) == (i) is obvious.

a € SaC|[(Sa){(Sa)S}](Sa)
[{5(Sa)}(aS)](Sa)
= a[{5(5a)}S](Sa)
(aS)(Sa)
(aS)a.

N

Hence S is regular. m

Theorem 355 If S is an AG-groupoid with left identity then the following
are equivalent

(1) S is regular,

(i4) I[a] N\ Bla)] € I[a](SBla)) for all a in ,

(#5i) INB C I(SB) for left ideal I and bi-ideal B,

(iv) fNg C Ve fo (XS s 09), where f and g are (€, €, Vqs)-fuzzy
interior ideal and bi-ideal of S.

Proof. (i) = (iv) Let a € S, then since S is regular so using left invertive
law we get
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max{f o (X250 g),7}

max H V fo) A (A 09)((1)} ,W]

a=pq

max [f(az) A (X)g © g)[{(ac)a}], 7]
max [min{f(air), (Xf;s o g){z((ae)a)}}, ’Y]

v

max [min{f(aw)v{ Vo (s A g(t)ﬁ]
z((ae)a)}=st

max [min{ f(az), {(XJs(z) A g((ae)a)}, ]

max [{min{ f (az), min{(X)5(z), g((ae)a)}},7]

= max [{min{f(az), min{1, g((ae)a)}},]

max [{min{f(az), g((ae)a)}, ]

min [max{f(az), v}, max{g((ae)a),v}]

min[min{ f(a),d}, min{g(a),d}

min{f Ng(a),d}.

Thus fNg C Vg5 fo (ng °g).

(iv) = (7i1) Let I and B are ideal and bi-ideal of S respectively. Then
X9 and X2 are (€, €4 Vgs)-fuzzy ideal and bi-ideal of S respectively.
Now by (iv)

v

v

Xoinp = XY NASp CVq0Xe; 0 (Xys 0 XDp)

5
= o VA0 X1(sB)y-
Thus I N B C I(SB).
(#i1) = (i1) is obvious.
(79) = (i)Using {S(Sa)} C (Sa) and we get

(aS'USa
(aS'U Sa

N{aUda*U (aS)a}

[S{aUa®U (aS)a}]

(aS U Sa)[SaU Sa® U S{(aS)a}]

(aS U Sa){SaU Sa* U (aS)(Sa)}

= (aS)(8a) U (aS)(Sa’) U (aS){(aS)(Sa)}
U(Sa)(Sa) U (Sa)(Sa*) U (Sa){(aS)(Sa)}

C (aS)a.

a

I 1N m

~— — — —

Hence S is regular. m
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10

On Fuzzy Soft Intra-regular
Abel-Grassmann’s Groupoids

In this chapter we characterize intra-regular AG-groupoids in terms of (&,
, €4 Vgs)-fuzzy soft ideals.

Definition 356 Let S be an AG-groupoid and U be an initial universe and
let E be a set of parameters. A pair (F, E) is called a soft set over U if and
only if F' is a mapping of E into the set of all subsets of U.

Generally, the soft set, i.e, a pair (F, A) with A C B and F : A — P(S).

Definition 357 Let (F, A) and (G, B) be soft sets over S, then (G, B) is
called a soft subset of (F,A) if B C A and G(b) C F(b) for allb € B.

Generally we write it as (G, B)C(F, A). (F, A) is the soft supperset of
(G, B), if (G, B) is a soft subset of (F, A).

Definition 358 A soft set (F, A) over an AG-groupoid S is called a soft
AG-groupoid over S if (F,A) ® (F,A) C (F, A).

Definition 359 A soft set (F, A) over an AG-groupoid S is called a soft
left (right)ideal over S, ¥(S,E) ® (F,A) C (F,A)((F,A) © X(S,E) C
(F, A)).

A soft set over S is a soft ideal if it is both a soft left and a soft right
ideal over S.

Definition 360 Let V C U. A fuzzy soft set (F, A) over V is said to be
a relative whole (v, 9)- fuzzy soft set (with respect to universe set V and
parameter set A), denoted by S(V, A), if F(e) = «fv for all e € A.

Definition 361 A new ordering relation is defined on F(X) denoted as
7 C Vq(y,5)",as follows.

For any p,v € F(X),by p C Vqey,s5)v, we mean that x, €, pu implies
xr €4 Vgsv for allz € X and r € (v, 1].

Definition 362 Let (F, A) and (G, B) be two fuzzy soft sets over U. We
say that (F, A) is an (7, §)-fuzzy soft subset of (G, B) and write(F, A) C(4 5
(G, B) if

(i) AC B;

(i3) For any e € A, F(e) C Vg, ,G(e).
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Definition 363 For any fuzzy soft set (F, A)over an AG-groupiod S, € € A
andr € (v,1], denote F (¢),, = {x € S|z, €, F ()}, (F(€)), ={z € S|z, €y ¢sF (¢€)},
[F ()], = {z € S|z, €5 VasF (€)}

Definition 364 Suppose f be a fuzzy subset of an AG-groupoid S, A €
[0,1]. Define the map F : A — P (S) as

Fla)={ze€S: f(x) >a}foral ac A

Indeed F' («) is parameterized family of a-level subsets, corresponding
to f. Therefore (F, A) is a soft set over S.

We also define another map, F, : A — P (5) as follows

F,(a) ={z€S: f(z)+a>1} for all @ € A. Then (F,, A) is a soft
set over S.

Define a map F* : A — P (S) as follows

F*(a) ={z € S: f(x)>a} for all & € A. Therefore (F*, A) is a soft
set over S.

Example 365 Let S = {a,b,c,d} and the binary operation” -” defines on
S as follows:

| a b ¢ d
ala a a a
bla d d c
cla d d d
dla d d d

Then (S, ) is an AG-groupoid. Let E = {0.3,0.4} and define a fuzzy soft
set (G, A) over S as follows:

2¢ if x € {a, b}
% otherwise

G(e)ta) = {

Then (G, A) is an (€p.2,€0.2 Vqo.4)- fuzzy soft left ideal of S.
Let E = {0.6,0.7} and define a fuzzy soft set (F, A) over S as follows:

€ if x € {a,b}

% otherwise

P = {
Then (F, A) is an (€0.3,€0.3 Vqo.4)- fuzzy soft bi-ideal of S.

Theorem 366 A fuzzy subset f of an AG-groupoid S is fuzzy interior ideal
if and only if (F,A) is a soft interior ideal of S where A =1[0,1].

Proof. Let f be a fuzzy interior ideal of S then for all z,a,y € S, f ((za) y) >
f(a).Now let @ € F («) this implies that {a € S : f (a) > a} for all & € A.
This implies that f (a) > « implies that f ((za)y) > f (a) > « implies that
((xa)y) € F (o) implies that F' («) is an interior ideal implies that (F, A)
is soft interior ideal.

Conversely, let (F, A) is soft interior ideal of S we show that f is fuzzy
interior ideal of S. Let f ((za)y) < f (a) for some z,y,a € S and choose
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a € A such that f((za)y) < a < f(a) this implies that a € F («) but
(zxa)y ¢ F (a) which is a contradiction. Hence f is fuzzy interior ideal of
S. m

Theorem 367 A fuzzy subset f of a AG-groupoid S is fuzzy bi-ideal if and
only if (F, A) is a soft bi-ideal of S where A =10,1].

Proof. Let f be a fuzzy bi-ideal of S then for all z,y,2z € S, f ((xy)z) >
f(x) A f(z). Now let x,z € F («) this implies that

{r,yeS: f(z)>a, f(2) >a} foral a € A.

This implies that f(z) > «, f(2) > « implies that f(z) A f(2) > «
implies that f ((zy) z) > « implies that ((xy) z) € F («) implies that F («
is an bi-ideal implies that (F, A) is soft bi-ideal over S.

Conversely, let (F, A) is soft bi-ideal of S. we show that f is fuzzy bi-
ideal of S. Let f ((zy)z) < f(z) A f(z) for some z,y,z € S and choose
a € Asuch that f ((zy) z) < a < f(x)A f (2) this implies that =, z € F («)
but (zy) z ¢ F («) which is a contradiction. Hence f is fuzzy bi-ideal of S.
[

Theorem 368 A fuzzy subset f of an AG-groupoid S is fuzzy interior ideal
if and only if (Fy, A) is a soft interior ideal of S where A =[0,1].

Proof. Let f be a fuzzy interior ideal of S then for all z, a,y € S, f ((za) y) >
f(a). Now let a € F («) this implies that {a € S: f (a) + a > 1} for all
a € A. This implies that f (a) + « > 1 implies that f ((za)y) + a > 1 im-
plies that ((za)y) € F, (o) implies that Fj, (a) is an interior ideal implies
that (Fy, A) is soft interior ideal.

Conversely, let (Fy, A) is soft interior ideal of S we show that f is fuzzy
interior ideal of S. Let f ((za)y) < f(a) for some x,a,y € S and choose
a € A such that f((za)y) < a < f(a) this implies that a € F (a) but
(xa)y ¢ F (o) which is a contradiction. Hence f is fuzzy interior ideal of
S. m

Theorem 369 A fuzzy subset f of an AG-groupoid S is fuzzy bi-ideal if
and only if (Fy, A) is a soft bi-ideal of S where A =[0,1].

Proof. Let f be a fuzzy bi-ideal of S then for all z,y,2z € S, f ((xy)z) >
f ()N f(2). Now let z,z € F,; (a) this implies that

{r,zeS:f(x)+a>1, f(z)+a>1} forall a € A.

This implies that f (x)4+a > 1, f (2)+a > 1 implies that f (z)Af (z)+a >
1 implies that f ((zy) z) + « > 1 implies that ((zy) z) € F, (o) implies that
F, (a) is an bi-ideal implies that (Fy, A) is soft bi-ideal over S.
Conversely, let (F,, A) is soft bi-ideal of S we show that f is fuzzy bi-
ideal of S. Let f ((zy) z) < f(z) A f(2) for some z,y,z € S and choose
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a € A such that f((zy)2z) +a <1 < f(x) A f(2) + « this implies that
x,z € F(a) but (zy) z ¢ F () which is a contradiction. Hence f is fuzzy
bi-ideal of S. m

Theorem 370 Let f be a fuzzy subset of an AG-groupoid S, then (F, (0.5, 1])
is a soft interior ideal if and only if max {f ((za)y),0.5} > f(a).

Proof. Let (F,(0.5,1]) be a soft interior ideal over S, then F («) is an
interior ideal of S for each o € (0.5,1] such that max{f ((za)y),0.5} <
f (a). Choose an « € (0.5,1] such that max {f ((za)y),0.5} < a < f(a).
Then a € F(a) but ((za)y) ¢ F («) which is a contradiction,therefore
max {f ((za)y),0.5} > f (a).

Conversely, let max {f ((za)y),0.5} > f(a) and (F,(0.5,1]) be a soft
set over S. Let a € F () ,where o € (0.5,1]. Then max{f ((za)y),0.5} >
f(a) > a>05. S0 ((za)y) € F (). Therefore F' («) is an interior ideal
of S. Hence (F, (0.5,1]) is a soft interior ideal over S. m

Theorem 371 Let f be a fuzzy subset of an AG-groupoid S, then (F, (0.5, 1])
is a soft bi-ideal if and only if max {f ((zy) 2),0.5} > f () A f (2).

Proof. Let (F, (0.5,1]) be a soft bi-ideal over S, then F'(«) is an bi-ideal
of S for each a € (0.5,1] such that max {f ((zy) 2),0.5} < f(z) A f(2).
Choose an « € (0.5,1] such that max {f ((zy) 2),0.5} < a < f(z) A f(2).
Then z,z € F (a) but ((zy)z) ¢ F (o) which is a contradiction,therefore
max (£ ((z9) ), 0.5} > F (2) A £ (2).

Conversely, let max {f ((zy) z),0.5} > f (z) A f (2) and (F, (0.5,1]) be a
soft set over S. Let x, z € F' (o) ,where o € (0.5, 1]. Then max { f ((zy) ) ,0.5} >
f@)Af(z)>a>0.5. 50 ((zy) 2) € F(a). Therefore F () is an bi-ideal
of S. Hence (F, (0.5,1]) is a soft bi-ideal over S. m

Theorem 372 A fuzzy subset f of an AG-groupoid S is (€,€ Vq)-fuzzy
interior ideal of S if and only if (F, (0,0.5]) is a soft interior ideal over S.

Proof. Let f be an (€,€ Vq)-fuzzy interior ideal of S, for z,a,y € S,
f((za)y) > f(a) AN0.5.Now let a € F (), then f(a) > « so a, € f this
implies that ((za)y), € Vqf that is f ((za)y) > aor f((za)y)+a > 1. If
f((za)y) > athen ((za)y) € F (). If f ((xa) y)+a > 1 then f ((za)y) >
1—a > a because a € (0,0.5]. So ((za) y) € F («) . Thus F' () is an interior
ideal of S for all & € (0, 0.5]. Consequently (F, (0, 0.5]) is a soft interior ideal
over S.

Conversely, Suppose that (F, (0,0.5]) is a soft interior ideal over S. Then
F («) is an interior ideal of S for all & € (0,0.5]. We have to show that f
is an (€, € Vq)-fuzzy interior ideal of S. If possible let there exists some
x,a,y € S such that f ((za)y) < f(a) A 0.5. Choose an a € (0,0.5] such
that f ((za)y) < a < f (a)A0.5, this shows that a € F (a) but ((za)y) ¢ F.
Which is a contradiction, Thus f ((za)y) > f (a)A0.5. Thus f is (€, € Vq)-
fuzzy interior ideal of S. m
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Theorem 373 A fuzzy subset f of an AG-groupoid S is (€, € Vq)-fuzzy
bi-ideal of S if and only if (F,(0,0.5]) is a soft bi-ideal over S.

Proof. Let f be an (€, € Vq)-fuzzy bi-ideal of S, for z,y,z € S, f ((zy) z) >
f(x) A f(z) N0.5.Now let z,z € F(a), then f(x) > a and f(z) > «
SO Ta,Zq € f this implies that ((zy)z), € Vqf that is f((zy)z) > « or
f((zy) 2)+a > 1.1f f ((zy) z) > athen (zy) z € F (o). If f ((xy) 2)+a > 1
then f((zy)z) > 1 —a > a because a € (0,0.5]. So (zy) z € F (o). Thus
F (o) is bi-ideal of S for all « € (0,0.5]. Consequently (F, (0,0.5]) is a soft
bi-ideal over S.

Conversely, assume that (F, (0,0.5]) is a soft bi-ideal over S. Then F ()
is an bi-ideal of S for all & € (0,0.5]. We have to show that f is an (€
, € Vq)-fuzzy bi-ideal of S. If possible let there exists some z,y,z € S
such that f((zy)z) < f(z) A f(2) A 0.5. Choose an o € (0,0.5] such
thatf ((zy) z) < a < f(x) A f(z) A 0.5, this shows that =,z € F (a) but
((zy) z) ¢ F. Which is a contradiction, thus f ((zy) z) > f () A f () A0.5.
Thus f is (€, € Vq)-fuzzy bi-ideal of S. m

Theorem 374 Let f be a fuzzy subset of an AG-groupoid S. Then f is a
(¢, q)-fuzzy interior ideal if and only if (Fy, (0.5,1]) is a soft interior ideal
over S.

Proof. Let f be an (g, q)-fuzzy interior ideal of S and suppose that a €
F, () where e € (0.5,1], then f (a) + @ > 1, that is anqf. Then for each
z,y €S, (za)y), qf That is f ((za)y) + a > 1. Hence ((za)y) € Fy (a).
Thus Fj, (o) is an interior ideal of S. Consequently (F,, (0.5,1]) is a soft
interior ideal over S.

Conversely suppose that (Fy, (0.5,1]) is a soft interior ideal over S. As-
sume that there exists some a € S and « € (0.5,1], such that a,qf but
((za)y), q f that is f ((za)y) + o < 1 < f(a) + o for some z,a,y € S.
Then a € Fj, (a) but ((za)y) ¢ F, (a), which is a contradiction therefore
f ((za)y)+ o > 1. Hence ((xza)y),, qf- Which shows that f is a (g, ¢)-fuzzy
interior ideal of S. m

Theorem 375 Let f be a fuzzy subset of an AG-groupoid S. Then f is a
(¢, q)-fuzzy bi-ideal if and only if (Fy, (0.5,1]) is a soft bi-ideal over S.

Proof. Let f be an (g, q)-fuzzy bi-ideal of S and suppose that z,z €
F, () where a € (0.5,1], then f(z) +a > 1 and f(z) + a > 1, that is
zoqf,and.zqqf. Then for each z,z € S, ((xzy) 2),, ¢f Thatis f ((zy) z)+a >
1. Hence ((zy) z) € F, (c). Thus F, () is an bi-ideal of S. Consequently
(Fy,(0.5,1]) is a soft bi-ideal over S.

Conversely suppose (Fy, (0.5,1]) is a soft bi-ideal over S. Assume that
there exists some z,z € S and « € (0.5,1], such that z,qf and.z,qf but
((zy) z),, qf thatis f ((zy) 2)+a <1 < f(x)Af (2)+afor some z,y,z € S.
Then z, z € F, (a) but ((xy) z) ¢ F, («), which is a contradiction therefore
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f ((zy) 2) + o > 1. Hence ((zy) 2),, ¢f. Which shows that f is a (g, ¢)-fuzzy
bi-ideal of S. m

Definition 376 The restricted product (H,C) of two soft sets (F, A) and
(G, B) over a semigroup S is defined as the soft set (H,C) = (F, A)®(G, B)
where C = AN B and H is a set valued function from C to P(S) defined
as H(c) = F(c) o G(c) for all c € C.

Definition 377 Let X be a non empty set. A fuzzy subset f of X is defined
as a mapping from X into [0,1], where [0,1] is the usual interval of real
numbers. The set of all fuzzy subsets of X is denoted by F(X).

Definition 378 A fuzzy subset f of X of the form
0 if y =x,
o= 0=

0 otherwise

is said to be a fuzzy point with support z and value r and is denoted by
x,, where r € (0, 1].

Let 7,9 € [0,1] be such that v < §. For any Y C X,we define XiY be the
fuzzy subset of X by styy(x) > ¢ forallz €Y and Xiy(:ﬁ) < v otherwise.
Clearly,xgy is the characteristic function of Y if y =0 and § = 1.

For a fuzzy point z, and a fuzzy subset f of X, we say that

(i) 2, € f i f2) > 7> 7,

(1) xrqsf if f(z)+r > 26.

(14d) xr €4 Vs f if 2, €01 2,g5f.

(114d) xr €4 Ngs f if . €jand z,qsf.

Definition 379 Let S be an AG-groupoid and p,v € F(S) .Define the
product of i and v, denoted by pov, by
Sup,_,, min ,v(z if there exist y,z € S such that x = yz,
(o) () = { Py—y: min{p(y),v(2)} if y y

0, otherwise.
forallx € S.

The following definitions are basics are available in [16].

Definition 380 A pair (F, A) is called fuzzy soft set over U, where A C E
and F is a mapping given by F : A — F(U).

In general, for every ¢ € A, F(e) is a fuzzy set of U and it is called
fuzzy value set of parameter €. The set of all fuzzy soft sets over U with
parameters from E is called a fuzzy soft class, and it is denoted by Fp(U, E).

Definition 381 Let (F, A) and (G, B) be two soft sets over U. We say
that (F, A) is a fuzzy soft subset of (G, B) and write (F, A) € (G, B) if

(i) AC B;
(#7) For any € € A, F(e) C G(e).
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(F,A) and (G, B) are said to be fuzzy soft equal and write (F, 4) =
(G, B) if (F, A) € (G, B) and (G, B) € (F, A).

Definition 382 The extended intersection of two fuzzy soft sets (F, A) and
(G, B) over U is called fuzzy soft set denoted by (H,C'), where C = AU B
and

F(c) ife€ A— B,
H(e) = G(e) ifee€ B— A,
F(e)NG(e) ife e ANB,

for all € € C. This is denoted by (H,C) = (F, A) N (G, B).

Definition 383 The extended union of two fuzzy soft sets (F, A) and (G, B)
over U is a fuzzy soft set denoted by (H,C), where C = AU B and

F(e) fec A-B,
H(€){ G(e) ifee B— A,
F(

e)UG(e) ife e AN B,

for all ¢ € C. This is denoted by (H,C) = (F, A) U (G, B).

Definition 384 Let (F, A) and (G, B) be two fuzzy soft sets over U such
that AN B # ¢. The restricted intersection of (F, A) and (G, B) is defined
to be fuzzy soft set (H,C), where C = AN B and H(e) = F(e) N G(e) for
all € € C.This is denoted by (H,C) = (F, A) N (G, B).

Definition 385 Let (F, A) and (G, B) be two fuzzy soft sets over U such
that AN B # ¢. The restricted union of (F, A) and (G, B) is defined to be
fuzzy soft set (H,C), where C = AN B and H(e) = F(e) UG(e) for all
¢ € C. This is denoted by (H,C) = (F, A) U (G, B).

Definition 386 The product of two fuzzy soft sets (F, A) and (G, B) over
an semigroup S is a fuzzy soft set over S, denoted by (F o G,C), where
C=AUB and

F(e) ifee A— B,
(FoG)(e) = G(e) ifee B— A,
F(e)oG(e) ifee ANB,
for all € € C. This is denoted by (F o G,C) = (F, A) ® (G, B).

Definition 387 A fuzzy soft set (F, A) over an AG-groupoid is called an
(€4, €4 Vq 5)-fuzzy soft left (resp., right) ideal over S if it satisfies

N(S,A) ©(F, A) €(y,5) (F, A) (resp., (F, A) © B(S, A) €(,,5) (F, A))

A fuzzy soft set over S is called (€, €, Vg 5)-fuzzy soft ideal over S if
it is both an (€., €y Vq s)-fuzzy soft left ideal and an (€., €, Vq 5)-fuzzy
soft, right ideal over S.
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Definition 388 A fuzzy soft set (F,A) over an AG-groupoid S is called
an (€4, €y Vq 5)-fuzzy soft bi-ideal over S if it satisfies

(7’) <F’ A> © <F7 A> €(~,5) <F7 A>§
(ZZ) <F, A> O] E(S, A) O] <F, A> € (v,5) <Z’7‘7 A>

Definition 389 A fuzzy soft set (F,A) over an AG-groupoid S is called
(€4, €4 Vg s)—fuzzy soft quasi-ideal over S if it satisfies

(F,A) ® X(S, A) N S(S, A) © (F, A) €(.4) (F, A)

Theorem 390 A fuzzy set f over an AG-groupoid S is called (€., €,
Vq 5)—fuzzy left (resp. right) ideal over S if it satisfies
(for all z, y € S)(max {f(zy),v} > min {f(y),d} (resp. min {f(x),d})).

Proof. It is same as in .

Definition 391 A fuzzy set f over an AG-groupoid S is called (€., €,
Vq s)—fuzzy left ideal over S if

(fO’I" all T,y € S)(fOT‘ all ta(s € (771))(yt EV f - (my>min{t,s} E'y
Vasf).

Definition 392 A fuzzy set f over an AG-groupoid S is called (€.,€,
Vq s)—fuzzy right ideal over S if

(fO’I" all T,y € S)(fOT all t75 € (7a 1))('7:75 6’)’ f - (xy)min{t,s} e’y
Vs f).

Definition 393 A fuzzy set f over an AG-groupoid S is called (€., €,
Vq §)—fuzzy ideal over S if it is both (€4,€, Vq s)—fuzzy left ideal and
(€4, €4 Vq 5)—fuzzy right ideal.

Theorem 394 A fuzzy set f over an AG-groupoid S is called (€,,€,
Vq s)—fuzzy bi-ideal over S if it satisfies

(1) (for all z, y € S)(max{f(zy),7} = min{f(z), f(y),0});

(i) (for all z, y, z € S)(max{f(zyz),7v} = min{f(z), f(2),0}).

Proof. It is easy. m

Theorem 395 A fuzzy set f over an AG-groupoid S is called (€,,€,
Vq s)—fuzzy interior ideal over S if it satisfies

(1) (for all z, y € S)(max{f(zy),~} = min{f(z), f(y),6});
(7)) (for all z, a, z € S)(max {f(zaz),v} > min{f(a),d}).

Proof. It is easy. m

Theorem 396 Let S be an AG-groupoid and (F, A) a fuzzy soft set over
S. Then
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(i) (F,A) is an (€4, €, Vqs)—fuzzy soft left ideal (resp., right, bi-ideal,
quasi-ideal) over S if and only if non-empty subset F(g), is a left ideal
(resp. right, bi-ideal, quasi-ideal) of S for all € € A and r € (v, d].

(it) If 26 = 1+, then (F, A) is an (€., €, Vgs)—fuzzy soft left ideal
(resp., right, bi-ideal, quasi-ideal) over S if and only if non-empty subset
(F'(g))r is a left ideal (resp. right, bi-ideal, quasi-ideal) of S for all e € A
and r € (4, 1].

(i13) (F, A) is an (€, €4 Vgs)—fuzzy soft left ideal (resp., right, bi-ideal,
quasi-ideal) over S if and only if non-empty subset [F(g)], is a left ideal
(resp. right, bi-ideal, quasi-ideal) of S for all € € A and r € (v, min{2J —
7, 1}].

Proof. It is straightforward. m

Corollary 397 Let S be an AG-groupoid and P C S. Then P is a left
ideal (resp. right ideal, bi-ideal, quasi-ideal) of S if and only if X(P,A) is
an (€, € Vgs)-fuzzy soft left ideal (resp., right ideal, bi-ideal, quasi-ideal)
over S for any A C E.

10.1 Some Characterizations Using Generalized
Fuzzy Soft Bi-ideals

Theorem 398 For an AG-groupoid with left identity e, the following are
equivalent.

(1) S is intra-regular.

(ii) B = B2, for any bi-ideal B.

Proof. It is easy. m

Theorem 399 Let S be an AG-groupoid with left identity e. Then S is
intra-reqular if and only if (F, A) N (G, B) €5 (F,A) ©®(G,B) for any
(€4, €4 Vas)-fuzzy soft bi- ideal (F, A) and (G, B) over S.

Proof. Let S be an intra-regular and (F, A) and (G, B) are any two (€
, €+ Vgs)-fuzzy soft bi-ideal of S . Now let  be an element of S, e € AUB
and (F, A) N (G, B) = (H, AU B). We consider the following cases.

Case 1: e € A— B. Then H(e) = F(e) = (F o G)(¢).

Case 2: ¢ € B— A. Then H(e) = G(g) = (F o G)(¢).

Case 3: e € ANB.Then H(e) = F(e)NG(e) and (FoG)(e) = F(e)oG(e).
Now we show that F'(€)NG(g) € Vq(y,5)F (€)oG(g). Since S is intra-regular,
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therefore for any a in S there exist z and y in S such that a = (za?)y.

a =

Then we have

v v

max {(F'(¢) o G(¢))(a), 7}
max { sup min {F(£)(p), G(e)(a)) ,7}

a=pq

max {min {F'(¢)((av)a), G(¢)(a)} ,~}

min {max{F(¢)((av)a),v}, max{G(e)(a), v}}
min {min {F(¢)(a), F(¢)(a),d}, min{G(e)(a),d}}
min {min {F(¢)(a),d},min {G(e)(a),d}}

min {(F(e) N G(g))(a),d}.

It follows that F'(e)NG(g) C Vq(y,5)F (¢)oG (). That is H(e) C Vq(y,s)(Fo
G)(g). Thus in any case, we have

Therefore

H(€) Q \/Q(%(;)(F e} G)({-ﬁ)

(F, A) N (G, B) €.0) (F,A) ® (G, B).

Conversely assume that the given condition hold. Let B be any bi-ideal
of S then X(B, E) is an (€4, €y Vgs)—fuzzy soft bi-ideal of S. Now by the

assumption, we have X(B, E) N Y(B,E) €(y,5) (B, E) © ¥(B, E). Hence

we have

§
XVB

s s s s 5
= (1,)Xy(BnB) =(1,6) X4B N X5B € 4(+,5)XyB © X5B

5 5
(7,0)XyBB = (v,8) XyB2.

It follows that B C B2. Also B?> C B. This implies that B = B2.
Therefore S is intra-regular. m
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Theorem 400 In intra-regular AG-groupoid S with left identity the fol-
lowing are equivalent.

(1) A fuzzy subset f of S is an (€, € Vqi)-fuzzy right ideal.

(i) A fuzzy subset f of S is an (€, € Vqi)-fuzzy left ideal.

(7i1) A fuzzy subset f of S is an (€, € Vqi)-fuzzy bi-ideal.

(iv) A fuzzy subset f of S is an (€, € Vqi)-fuzzy interior ideal.

(v) A fuzzy subset f of S is an (€, € Vqi)-fuzzy quasi-ideal.

Proof. It is easy. m

Theorem 401 Let S be an AG-groupoid with left identity then the follow-
ing conditions are equivalent.

(1) S is intra-regular.

(ii) For all left ideals A, B, AN B C BA.

(#i1) For all (€, € Vqi)-fuzzy left ideals f and g, f A, g < g oy f.

(iv) For all (€, € Vay)-fuzzy bi-ideals f and g, f N, g < g oy f.

(v)For all (€, € Vqi)- generalized fuzzy bi-ideals f and g, f Ay g < gog f.

Proof. It is easy. m

Theorem 402 Let S be an AG-groupoid with left identity e. Then S is
intra-reqular if and only if (G, R) N (F,Q) €5 (F,Q) © (G, R) for any
(€, €~ Vas)-fuzzy soft left ideal (F, Q) and for any (€, €y Vqs)-fuzzy soft
ideal (G, R) over S.

Proof. Let S be an intra-regular and (F,Q) and (G, R) are any (&,, €,
Vgs)-fuzzy soft left ideal and (€., €, Vgs)-fuzzy soft ideal of S . Now let

x be an element of S, ¢ € QU R and (F, Q) N (G,R) = (H,QU R). We
consider the following cases.

Case 1: e € @ — R. Then H(e) = F(e) = (F o G)(e).

Case 2: ¢ € R— Q. Then H(e) = G(g) = (F o G)(¢).

Case 3: e € QN R.Then H(e) = F(e) = F(e) N G(e) and (F o G)(e) =
F(g) o G(g). Now we show that F(e) N G(g) €(,,5) G(g) o F'(e). Since S is
intra-regular, therefore for any a in S there exist  and y in S such that
a = (za?)y.

a = (va’)y = (z(aa))y = (a(za))y = (y(za))a = (y(va))(ca)
(ye)((za)a) = (za)((ye)a) = (za)(ta), where t = (ye).



Theory of Abel Grassman's Groupoids 202

Then we have

max {(G(e) o F(£))(a), 7}
_ max{ sup min {G(e) (), F(e)(0)} w}

a=uv

max {min {G(¢) (za) , F'(¢)(ta)}, 7}

min {max{G(g)(za)), v}, max{F(¢)(ta),v}}
min {min {G(¢)(a), 0}, min{F(e)(a),s}}

= min{min{G(¢)(a), F(¢)(a),d}}

= min{(G(e) N F(e))(a),d}

= min{(F(e) NG(e))(a),d}.

It follows that F'(¢)NG(g) € Vq(4,5)G(e)oF (¢). That is H(e) C Vq(y,s)(Go
F)(e). Thus in any case, we have

Y

H(g) C Vq(y,6)(G o F)(e).

Therefore,
<F7 Q> N <Ga R> @(7,5) <G7 R> © <Fa Q>

Conversely assume that the given condition hold. Let L and Lo are any
two left ideal of S then, ¥(L1, F) and X(Ls, E) are
(€, €4 Vags)-fuzzy soft left ideal of S. Now by the assumption, we have

(L1, E) N Y(La, E) €(4,5) X(L2, E) © X(L1, E).Hence we have

) _ 1) 1
Xy(LinLy) =  (n6)XyL (XA,

N

8 § 8
Q(’y,5)X'yL2 © X’yLl =(~,6) X’YLQLl

It follows that L; N Ly C LoLq. Therefore by theorem S is intra-regular.
| ]
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An AG-groupoid is an algebraic structure that lies in between a groupoid
and a commutative semigroup. It has many characteristics similar to that of a
commutative semigroup. If we consider x?y?= y2x2, which holds for all x, y in a
commutative semigroup, on the other hand one can easily see that it holds in an
AG-groupoid with left identity e and in AG**-groupoids. This simply gives that

how an AG-groupoid has closed connections with commutative agebras.

We extend now for the first time the AG-groupoid to the Neutrosophic
AG-groupoid. A neutrosophic AG-groupoid is a neutrosophic algebraic
structure that lies between a neutrosophic groupoid and a neutrosophic
commutative semigroup.
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