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ABSTRACT
Monte Carlo (MC) methods are widely used in statistics, signal processing and machine learning. A well-known class of
MC methods are Markov Chain Monte Carlo (MCMC) algorithms. In order to foster better exploration of the state space,
specially in high-dimensional applications, several schemes employing multiple parallel MCMC chains have been recently
introduced. In this work, we describe a novel parallel interacting MCMC scheme, called orthogonal MCMC (O-MCMC),
where a set of “vertical” parallel MCMC chains share information using some ”horizontal” MCMC techniques working on
the entire population of current states. More specifically, the vertical chains are led by random-walk proposals, whereas the
horizontal MCMC techniques employ independent proposals, thus allowing an efficient combination of global exploration and
local approximation. The interaction is contained in these horizontal iterations. Within the analysis of different implementations
of O-MCMC, novel schemes for reducing the overall computational cost of parallel multiple try Metropolis (MTM) chains are
also presented. Furthermore, a modified version of O-MCMC for optimization is provided by considering parallel simulated
annealing (SA) algorithms. We also discuss the application of O-MCMC in a big bata framework. Numerical results show
the advantages of the proposed sampling scheme in terms of efficiency in the estimation, as well as robustness in terms of
independence with respect to initial values and parameter choice.

Index Terms— Parallel Markov Chain Monte Carlo (MCMC), Parallel Multiple Try Metropolis, Adaptive Multiple Try
Metropolis, Block Independent Metropolis, Parallel Simulated Annealing.

1. INTRODUCTION

Monte Carlo (MC) methods are widely employed in different fields, for computational inference and stochastic optimization
[1, 2, 4, 5]. Markov Chain Monte Carlo (MCMC) methods [5] are well-known MC methodologies to draw random samples
and compute efficiently integrals involving a complicated multidimensional target probability density function (pdf), π(x) with
x ∈ D ⊆ Rdx . MCMC techniques only need to be able to evaluate the target pdf, but the difficulty of diagnosing and speeding
up the convergence has driven intensive research effort in this field. For instance, several adaptive MCMC methods have been
developed in order to determine adequately the shape and spread of the proposal density which is used to generate candidate
samples, within the MCMC scheme [3, 6, 5, 7]. Nevertheless, guaranteeing the theoretical convergence is still an issue in
most of the cases. Moreover, in a single specific (long) run, the generated chain can remain trapped in a local mode and, in
this scenario, the adaptation could even slow down the convergence. Thus, in order to speed up the exploration of the state
space (and specially to deal with high-dimensional applications [8]), several schemes employing parallel chains have been
recently proposed [2, 7], as well as multiple try and interacting schemes [9], but the problem is still far from being solved. The
interest in the parallel computation can be also originated by other motivations. For instance, several authors have studied the
parallelization of MCMC algorithms which have traditionally been implemented in an iterative non-parallel fashion, in order to
reduce their computation time [10, 11]. Furthermore, parallel MCMC schemes are required in a big data problems, where, for
instance, the complete posterior distribution is split in different partial sub-posteriors [12, 13, 14, 15, 16].

In this work, we focus mainly on the implementation of parallel MCMC chains in order to foster the exploration of the
state space and improve the overall performance.1 More specifically, we present a novel family of parallel MCMC schemes,

1A preliminary version of this work has been published in [17]. With respect to that paper, here we propose different novel interacting schemes for
exchanging information among the chains, analyze the theoretical basis of proposed approach and discuss certain relationships with other techniques, in detail.
Several variants are presented for reducing the overall computational cost and for applying O-MCMC in optimization problems. Furthermore, we provide more
exhaustive numerical simulations.



called orthogonal MCMC (O-MCMC) algorithms, where N different chains are independently run and, at some iterations,
they exchange information using another MCMC technique applied on the entire cloud of current states. Assuming that all the
MCMC techniques used yield chains converging to the target pdf, the ergodicity property is guaranteed: the whole kernel is still
valid, since it is obtained as the multiplication of ergodic kernels with the same invariant pdf. Fixing a given computational cost,
this computing effort can be divided in N parallel processes but, at some iteration, information among the chains is exchanged
in order to enhance the overall mixing. The novel O-MCMC scheme is able to combine efficiently both the random-walk
and the independent proposal approaches, as both strategies have advantages and drawbacks. On the one hand, random-walk
proposal pdfs are often used when there is no specific information about the target, since this approach turns out to be more
explorative than using a fixed proposal. On the other hand, a well-chosen independent proposal density usually provides less
correlation among the samples in the generated chain. The novel method can mix both approaches efficiently: the parallel
“vertical” chains (based on random-walk proposals) move around as “free explorers” roaming the state space, whereas the
“horizontal” MCMC technique (applied over the population of current states and based on independent proposals) works as a
“park ranger”, redirecting “lost explorers” towards the “beaten track” according to the target pdf. Unlike in [18], the exchange
of information occurs taking always into account the whole population of current states, instead of applying crossover or
exchange schemes between specific pairs of chains. Furthermore, in this work, tempering of the target pdf is not considered for
sampling purposes (but, it is employed for optimization). Hence, in this sense our approach resembles the nonreversible parallel
MH algorithms described in [19, 20] where the whole population of states is also updated jointly at the times of interaction,
pursuing non-reversibility instead of tempering as a means to accelerate convergence towards posterior mode regions. However,
both tempering and crossovers could also be easily implemented within an O-MCMC framework.

Another contribution of the work is the computational improvement provided by novel parallel implementations of MCMC
techniques using multiple candidates at each iteration. We present two novel schemes for parallel Multiple try Metropolis
(MTM) [21, 22, 23] chains in order to reduce the overall computational cost in the same fashion of [10], saving generated
samples, target evaluations and multinomial sampling steps. One of them is an extended version, using several candidates, of
the Block Independent Metropolis presented in [10]. The ergodicity of both schemes is guaranteed. These novel parallel MTM
techniques are employed as horizontal methods in O-MCMC. The corresponding O-MCMC scheme (using a novel parallel
MTM method) can be also interpreted as an MTM algorithm employing an adaptive proposal density. This pdf is a mixture of
N components: the adaptation of the location parameters of the N components is driven by the vertical parallel chains (note
that the outputs of these chains are also used in the estimation). Furthermore, we describe a modified version of O-MCMC for
solving optimization problems, considering parallel Simulated Annealing algorithms [24, 25, 26] for the vertical movements.
The application for big data problems is also discussed. Numerical simulations show that O-MCMC exhibits both flexibility
and robustness with respect to the initialization and parameterization of the proposals.

The paper is structured as follows. Section 2 summarizes the general framework and the aim of the work. Section 3
describes a generic complete O-MCMC scheme, whereas Sections 4 and 5 provide different specific examples of vertical and
horizontal movements, respectively. Section 7 provides different numerical results. Finally, we finish with some remarks in
Section 8.

2. BAYESIAN INFERENCE PROBLEM

In many applications, we aim at inferring a variable of interest given a set of observations or measurements. Let us denote the
variable of interest by x ∈ D ⊆ Rdx , and let y ∈ Rdy be the observed data. The posterior pdf is then

π̄(x) ∝ p(x|y) =
`(y|x)g(x)
Z(y)

, (1)

where `(y|x) is the likelihood function, g(x) is the prior pdf and Z(y) is the model evidence (a.k.a. marginal likelihood). In
general, Z(y) is unknown, so we consider the corresponding unnormalized target function,

π(x) = `(y|x)g(x) ∝ π̄(x). (2)

In general, the study of the posterior density π̄(x) is impossible analytically (for instance, integrals involving π̄(x) are typically
intractable), so that numerical approximations are required. Our goal is to approximate efficiently π̄(x) employing a cloud
of random samples. In general, a direct method for drawing independent samples from π̄(x) is not available and alternative
approaches (e.g., MCMC algorithms) are needed. The only required assumption is to be able of evaluating the unnormalized
target function π(x).



3. O-MCMC ALGORITHMS: GENERAL OUTLINE

Lt us considerN parallel “vertical” chains, {xn,t}Nn=1 with t ∈ N, generated by different MCMC techniques with random-walk
proposal pdfs qn(x|xi,t−1) = qn(x − xn,t−1), i.e., xn,t−1 plays the role of a location parameter for the density qn(x) in the
next iteration. Let us denote the population of current states at the t-th iteration as

Pt = {x1,t,x2,t, . . . ,xN,t}.

At certain selected iteration t, such that t = mTV where TV is a constant and m = 1, . . . ,M , we apply another MCMC
technique taking into account the entire population of state Pt−1, yielding a new cloud of samples Pt. In this “horizontal”
transitions, the different chains share information. The horizontal MCMC technique uses an proposal pdf ϕ(x), which is
independent from the previous states differently from the random walk proposals employed in the vertical MCMC chains. The
general O-MCMC approach is represented graphically in Figure 1 and summarized below:

1. Initialization: Set t = 1. Choose the N initial states,

P0 = {x1,0,x2,0, . . . ,xN,0},

the total number of iterations, T , and three positive integer values M,TV , TH ∈ N\{0} such that M(TV + TH) = T .

2. For m=1,. . . ,M:

(a) Vertical period: For
t = (m− 1)(TV + TH) + 1, . . . ,mTV + (m− 1)TH ,

run N independent MCMC techniques starting from xn,t−1 ∈ Pt−1, thus obtaining xn,t, for n = 1, . . . , N , and
then a new population of states Pt = {x1,t,x2,t, . . . ,xN,t}.

(b) Horizontal period: For
t = mTV + (m− 1)TH + 1, . . . ,m(TV + TH),

apply an MCMC approach taking in account the entire population Pt−1 at each step t, for generating the next cloud
Pt.

3. Output: Return the T = M(TV + TH) samples contained in all the sets Pt, t = 1, . . . , T .

One vertical period contains TV iterations of the chains whereas, in one horizontal period we have TH iterations. Hence, given
t = (m − 1)(TV + TH), after one cycle of vertical and horizontal steps we have t = m(TV + TH). The total number of
cycles (or epochs)2 is M = T

TV +TH
. The ergodicity is guaranteed if the vertical and horizontal steps produce ergodic chains

with invariant density π(x). See, Appendix A for further details. Relationships with other techniques, for instance [27, 28], are
discussed in Section 5.4. In the following two sections, we discuss different specific possible implementations of O-MCMC.

4. VERTICAL MOVEMENTS

In this section, we describe different suitable implementations of the vertical parallel chains. Although it is not strictly necessary,
we suggest using random walk proposal densities in the vertical chains. The idea is to exploit predominantly the explorative
behaviors of the independent parallel MCMC methods. Therefore, we consider proposal of type qn(x|xn,t−1) where xn,t−1

plays the role of a location parameter. For instance, a sample x′ ∼ qn(x|xn,t−1) can be expressed as

x′ = xn,t−1 + ξn,t, (3)

where ξn,t has pdf q(ξ) with zero mean and covariance matrix Cn. Another more sophisticated possibility is to include the
gradient information of the target within the proposal pdf as suggest in the Metropolis-Adjusted Langevin Algorithm (MALA)
[29]. Namely, in this case a sample x′ ∼ qn(x|xn,t−1),

x′ = xn,t−1 +
ε

2
∇ log [π(xn,t−1)] + ξn,t, (4)

2One cycle, or epoch, includes one the vertical period and one horizontal period.
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Fig. 1. A graphical representation of the O-MCMC approach. After TV vertical transitions, then TH horizontal steps are
performed.

where ξn,t has pdf q(ξ) with zero mean, covariance matrix Cn = εIdx×dx and Idx×dx is the unit matrix and∇f(x) denotes the
gradient of a generic function f(x). This second alternative can be particularly useful in high-dimensional spaces, although it
inevitably increases the probability of the chain becoming trapped in one mode of the target, in a multi-modal scenario. Thus,
the joint application of N parallel chains appears very appropriate in this scenario. Moreover, the application of the O-MCMC
scheme facilitates the jumps among different modes. Clearly, the random walk proposal density qn(x|xn,t−1) can be applied
within different MCMC kernels. The simplest possibility consists in using a Metropolis-Hastings (MH) algorithm [5]. For each
n = 1, . . . , N and for a given time step t, one MH update of the n-th chain is obtained as

1. Draw x′ ∼ qn(x|xn,t−1).

2. Set xn,t = x′ with probability

αn = min
[
1,

π(x′)qn(xn,t−1|x′)
π(xn,t−1)qn(x′|xn,t−1)

]
,

otherwise, with probability 1− αn, set xn,t = xn,t−1.

Other possible schemes can be used as alternative to MH: for instance, two famous alternatives are the Multiple Try Metropolis
(MTM) [21, 23] and the Delayed Rejection Metropolis [30] techniques.

5. HORIZONTAL MOVEMENTS

As described above, at each iteration t, the vertical chains return a population Pt = {x1,t, . . . ,xN,t}. When t = mTV +
(m − 1)TH , with m ∈ {1, ...,M}, i.e., after TV vertical transitions, then TH horizontal steps are performed. The purpose of
these horizontal MCMC transitions is to share information among the N different chains, improving the global mixing. In the
following, we consider two different general approaches for sharing the information among the chains:

• In the first one, a population-based MCMC algorithm is applied. The states of vertical chains contained in Pt are used
as initial population. Furthermore, the population-based MCMC scheme takes in account all the current population for
making decisions about the next population. The simple case describes previously, i.e., the direct application of an MH
scheme in the extended space, is an specific example of this approach.

• In the second one, the initial population Pt is also used for building a suitable proposal density ψ(x). This pdf ψ is
employed by the N parallel MCMC chains for yielding the next populations Pt+1, . . . ,Pt+TH . More specifically, in this
work, we suggest to construct ψ(x) as a mixture of N pdfs, each one centered in xn,t ∈ Pt.

Next we show several specific examples. In all the different cases, for the horizontal movements, we consider the use of
independent proposal pdfs, unlike for the vertical ones, where we have suggested the use of random walk proposals.



Table 1. Sample Metropolis-Hastings (SMH) algorithm for horizontal transitions in O-MCMC.

1. For t = mTV + (m− 1)TH + 1, . . . ,m(TV + TH):

(a) Draw x0,t−1 ∼ ϕ(x).

(b) Choose a “bad” sample xk,t−1 in Pt−1, i.e., k ∈ {1, ..., N}, according to the inverse of the importance sampling weights, i.e., with
probability

γk =

ϕ(xk,t−1)

π(xk,t−1)

NP
n

ϕ(xn,t−1)

π(xn,t−1)

, k = 1, . . . , N.

(c) Accept the new population,
Pt = {x1,t = x1,t−1, . . . ,xk,t = x0,t−1, . . . ,xN,t = xN,t−1},

with probability

α =

PN
n=1

ϕ(xn,t−1)

π(xn,t−1)

NP
i=0

ϕ(xi,t−1)

π(xi,t−1)
− min

0≤i≤N

ϕ(xi,t−1)

π(xi,t−1)

. (6)

Otherwise, set Pt = Pt−1.

5.1. Population-based approach

Here, we consider a generalized target density,

π̄g(x1, . . . ,xN ) ∝
N∏
n=1

π(xn), (5)

where each marginal, π(xn) with n = 1, ..., N and xn ∈ D ⊆ Rdx , coincides with the target pdf in Eq. (2). The idea is
that the horizontal MCMC transitions leave invariant the extended target π̄g . Namely, after a “burn-in” period, the samples in
the population Pt = {x1,t, . . . ,xN,t} are distributed according to π̄g . The simplest possible population-based scheme consists
in employing an standard Metropolis-Hastings (MH) algorithm directly in the extended domain, DN ⊆ RdX×N , with target
π̄g(x1, . . . ,xN ), generating (block) transitions from Pt−1 = {x1,t−1, . . . ,xN,t−1} to Pt = {x1,t, . . . ,xN,t}. However, the
probability of accepting a new population becomes negligible asN grows. An alternative example of possible population-based
scheme, we describe the Sample Metropolis-Hastings (SMH) method [31, Chapter 4]. At each iteration, the underlying idea of
SMH is replacing one “bad” sample in the population with a “better” one, according to a certain suitable probability. The new
sample, candidate of be incorporated in the population, is generated from and independent proposal pdf ϕ(x). The algorithm
is designed so that, after a “burn-in” period tb, the elements in Pt′ (t′ > tb) are distributed according to π̄g in Eq. (5). Table 1
shows the details of the algorithm.

Let us remark that the difference between Pt−1 and Pt is at most one sample, and the acceptance probability, 0 ≤ α ≤ 1,
depends on the entire population, xn,t−1 for n = 1, . . . , N and the proposed one, x0,t−1. At each step, the sample chosen to
be replaced is selected according to a probability the inverse of the corresponding importance weight. The ergodicity can be
proved considering the extended density π̄g as target pdf. For further details see considerations in [31, Chapter 4]. Note also that
the SMH algorithm becomes the standard MH method for N = 1. Hence, for N = 1 the specific O-MCMC implementation
using SMH consists of applying alternatively two MH kernels with different types of proposals: a random walk proposal,
qn(x|xn,t−1), and an independent one, ϕ(x). This a well-known scheme (cf. [5, 31]), which can be seen as a particular case of
the O-MCMC family of algorithms.

5.2. Mixture-based approach

An alternative approach consists in defining the following mixture of pdfs, updated each TV vertical transitions,

ψ(x) = ψm(x|Pt) =
1
N

N∑
n=1

ϕn(x|xn,t), where t = mTV + (m− 1)TH , (7)

where m = 1, . . . ,M and each xn,t ∈ Pt plays the role of location parameter of the n-th component of the mixture, ϕn.
Observe that ψ(x) changes at the beginning of the horizontal iterations, considering the last vertical states, but remains fixed
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n-th chain.

during horizontal iterations. Thus, during the complete O-MCMC run, we employ M different mixtures ψ’s, one for each
horizontal period, so that a more adequate notation would be ψm(x) instead of ψ(x). However, for simplifying the notation,
we keep ψ(x).

Figure 2 provides for a graphical representation. We employ ψ(x) withinN independent MCMC schemes as an independent
proposal density, namely independent from the previous state of the chain. The underlying idea is using the information in Pt,
with t = mTV +(m−1)TH , to build a good proposal function for performingN independent MCMC processes. The theoretical
motivation is that, after the burn-in periods, the vertical chains have converged to the target so that we can write xn,t ∼ π̄(x)
for n = 1, . . . , N . Then, ψ(x) in Eq. (7) can be interpreted as a kernel density estimation of π̄ where ϕn play the role of kernel
functions.

As first example of this strategy, we consider the application of MH transitions. The procedure is shown in Table 2. At each
iteration t, one sample x′ is generated from ψ(x) and then N different MH tests are performed. Then, TH transitions of N
parallel chains are performed.

Alternatively, a different sample x′n, drawn from ψ(x), can be tested for each chain, as shown in Table 3. Hence,N different
samples are drawn at each iterations (instead of only one) but, after building ψ(x|Pt), the process could be completely paral-
lelized. The variant in Table 3 provides in general better performance, although at the expense of a increasing computational
cost, in terms of evaluations of the target and number of generated samples. However, the methodology called block indepen-
dent MH [10], proposed exactly for reducing the computational effort recycling generated samples and target evaluations, can
be also employed. For clarifying that, consider for simplicity TH = N . Step 2(a) in Table 2 could be modified drawing N
independent samples x′1, . . . ,x

′
N from ψ(x) and, at each iteration t, a different circular permutation of the set {x′1, . . . ,x′N}

could be tested in the different N acceptance MH tests3. Finally, observe that the procedure in Table 2 presents certain similar-
ities with the Normal Kernel Coupler (NKC) method introduced in [32]. Clearly, NKC-type algorithms can be also employed
as alternative populated-based approaches.

More advanced techniques can be also modified and used as horizontal methods. Specifically, the adaptation to this scenario

3For further clarifications, see the extension of this scheme for a Multiple Try Metropolis method described in Section 5.2.1.



Table 2. Basic mixture scheme for horizontal transitions in O-MCMC.

1. Build ψ(x) = ψm(x|Pt) as in Eq. (7) where t = mTV + (m− 1)TH .

2. For t = mTV + (m− 1)TH + 1, . . . ,m(TV + TH):

(a) Draw x′ ∼ ψ(x).

(b) For n = 1, . . . , N :

i. Set xn,t = x′, with probability

αn = min

»
1,
π(x′)ψ(xn,t−1)

π(xn,t−1)ψ(x′)

–
= ω(x′) ∧ ω(xn,t−1).

Otherwise, set xn,t = xn,t−1. We have denoted ω(x) =
π(x)
ψ(x)

and a ∧ b = min [a, b], with a, b ∈ R.

(c) Set Pt = {x1,t, . . . ,xN,t}.

Table 3. Variant of the basic mixture scheme for horizontal transitions in O-MCMC.

1. Build ψ(x) = ψm(x|Pt) as in Eq. (7) where t = mTV + (m− 1)TH .

2. For t = mTV + (m− 1)TH + 1, . . . ,m(TV + TH):

(a) For n = 1, . . . , N :

i. Draw x′n ∼ ψ(x).
ii. Set xn,t = x′n, with probability

αn = min

»
1,
π(x′n)ψ(xn,t−1)

π(xn,t−1)ψ(x′n)

–
= ω(x′n) ∧ ω(xn,t−1).

Otherwise, set xn,t = xn,t−1. We have denoted ω(x) =
π(x)
ψ(x)

and a ∧ b = min [a, b], with a, b ∈ R.

(b) Set Pt = {x1,t, . . . ,xN,t}.

of multiple try schemes is particularly interesting. For instance, we adjust two special cases4 of the Ensemble MCMC [33] and
Multiple Try Metropolis methods [21, 34, 23] for fitting them within O-MCMC. Tables 4 and 5 summarize them. In both
cases, L ≥ 1 different i.i.d. samples z1, . . . , zL are draw from ψ(x). In the parallel Ensemble MCMC (P-EnM) scheme,
at each iteration t, one resampling step per chain is performed, considering the set of L + 1 samples {z1, . . . , zL,xn,t−1},
n = 1, . . . , N (using clearly importance weights). In the parallel MTM (P-MTM) scheme, at each iteration t, N resampling
steps are performed considering the set of L candidates {z1, . . . , zL} and then the new possible states are tested (i.e., accepted
or not) according to suitable acceptance probabilities αn, n = 1, . . . , N , involving also the previous states xn,t−1.

The ergodicity of both schemes is discussed in Appendix C. The algorithms in Tables 4-5 are obtained by a rearrangement
of the basic schemes in [33, 21, 34] in order to generate, at each iteration t, N new states for N independent parallel chains.
The new states of the N chains are selected filtering the same set of candidates {z1, . . . , zL}, drawn from the same independent
proposal pdf ψ. Note that, with respect to a standard parallel approach, they require less evaluations of the target pdf: at each
iteration, the algorithms in Tables 4-5 require L new evaluations of the target instead of NL (as occurs in a standard parallel
approach). For further explanations, see Appendix C.1.1 and Figure 8. With L = 1, the algorithm in Table 4 coincides with the
application of N parallel MH methods with Barker’s acceptance rule [35]. The algorithm in Table 5 with L = 1 coincides with
the scheme presented in Table 2. However, a number of tries L ≥ N is suggested.

5.2.1. Block Independent Multiple Try Metropolis algorithm

Previously, we have pointed out that with the scheme in Table 5 only L evaluations of the target are required at each iteration,
instead of NL as standard parallel approach. The proposed scheme in Table 5 can be also modified in the same fashion of the
block independent MH method [10] in order to and reducing the number of multinomial sampling steps, without jeopardizing
the ergodicity of the parallel chains. We remark that the corresponding technique, called Block Independent Multiple Try

4They are special cases of the corresponding algorithms, since an independent proposal pdf ϕ is used.



Table 4. Parallel Ensemble MCMC (P-EnM) scheme for horizontal transitions in O-MCMC.

1. Build ψ(x) = ψm(x|Pt) as in Eq. (7) where t = mTV + (m− 1)TH .

2. For t = mTV + (m− 1)TH + 1, . . . ,m(TV + TH):

(a) Draw L possible i.i.d. candidates z1, . . . , zL ∼ ψ(x).

(b) For n = 1, . . . , N :

i. Set xn,t = zk ∈ {z1, . . . , zL}, i.e., with k ∈ {1, . . . , L}, with probability

αk =

π(zk)
ψ(zk)PL

`=1
π(z`)
ψ(z`)

+
π(xn,t−1)

ψ(xn,t−1)

k = 1, . . . , L, (8)

or, set xn,t = xn,t−1 with probability

αL+1 = 1−
LX
k=1

αk =

π(xn,t−1)

ψ(xn,t−1)PL
`=1

π(z`)
ψ(z`)

+
π(xn,t−1)

ψ(xn,t−1)

. (9)

ii. Set Pt = {x1,t, . . . ,xN,t}.

Table 5. Parallel Multiple Try Metropolis (P-MTM) scheme for horizontal transitions in O-MCMC.

1. Build ψ(x) = ψm(x|Pt) as in Eq. (7) where t = mTV + (m− 1)TH .

2. For t = mTV + (m− 1)TH + 1, . . . ,m(TV + TH):

(a) Draw L possible i.i.d. candidates z1, . . . , zL ∼ ψ(x).

(b) Draw N independent samples {zk1 , . . . , zkN } such that zkn ∈ {z1, . . . , zL}, i.e., with kn ∈ {1, . . . , L} and n = 1, . . . , N , with
probability

βkn =

π(zkn )

ψ(zkn )PL
`=1

π(z`)
ψ(z`)

. (10)

Namely, resample N times the samples in the set {z1, . . . , zL} with probability βk , k = 1, . . . , L.

(c) For n = 1, . . . , N :

i. Set xn,t = zkn with probability

αn = min

2641,

PL
`=1

π(z`)
ψ(z`)PL

`=1
π(z`)
ψ(z`)

− π(zkn )

ψ(zkn )
+

π(xn,t−1)

ψ(xn,t−1)

375 . (11)

Otherwise, set xn,t = xn,t−1 (with probability 1− αn).

(d) Set Pt = {x1,t, . . . ,xN,t}.

Metropolis (BI-MTM), can be always employed when N parallel independent MTM are applied (even outside the O-MCMC
scheme, clearly) in order to reduce the overall computational cost. Here, let us assume that the value N is such that the number
of total transitions of one chain, TH , can be divided inB = TH

N ∈ N blocks. The idea is based on usingN circular permutations
of the resampled set {zk1 , . . . , zkN }, i.e.,

V1 = {v1,1 = zk1 ,v2,1 = zk2 , . . . ,vN−1,1 = zkN−1 ,vN,1 = zkN },
V2 = {v1,2 = zkN ,v2,2 = zk1 , . . . ,vN−1,2 = zkN−2 ,vN,2 = zkN−1},

...
VN = {v1,N = zk2 ,v2,N = zk3 . . . ,vN−1,N = zkN ,vN,N = zk1},

(12)

where each set Vn denotes one the N possible circular permutations of {zk1 , . . . , zkN }. In order to preserve the ergodicity,
each zkj ’s is drawn from a different set of tries Sj = {z(j)

1 , . . . , z(j)
L }. More specifically, before a block of N iterations, NL
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Fig. 4. A graphical representation of one block within the BI-MTM technique, described in Table 6. One specific transition of
one MTM chain is represented with the probability αn(xn,t−1,vn,j), showing the two possible future states at the t-th iteration,
of the n-th chain. One block is formed by N transitions.

tries are drawn from ψ(x), yielding N different sets Sj = {z(j)
1 , . . . , z(j)

L }, j = 1, . . . , N , each one containing L elements.
Then, one sample zkj is resampled from each Sj with probability proportional to the corresponding importance weight, and
the circular permutations in Eq. (12) are created considering {zk1 , . . . , zkN }. The complete BI-MTM algorithm is detailed
in Table 6 and further considerations are provided in Appendix C. In Table 6, we have denoted the acceptance probability as
αn(xn,t−1,vn,j) for remarking the two possible future states of the n-th chain at the t-th iteration. Figure 4 depicts a schematic
sketch of the different steps of one block within the BI-MTM algorithm. Moreover, Figure 8 provides a graphical comparison
among different parallel MTM approaches. BI-MTM requires only N multinomial sampling steps for each block, i.e., N
iterations, instead of N2 as in P-MTM in Table 5. Moreover, BI-MTM is completely parallelizable. Indeed, alternatively one
could draw NLTH samples from ψ(x), perform NTH multinomial sampling steps within NTH different sets, and then run
the TH parallel iterations of the N chains, i.e., one unique block, using circular permutations of the NTH resampled samples
(previously obtained). The reduction of computation cost is obtained at the expense of a moderate decrease of the performance.

5.3. Computational Cost

In general, the most costly steps are the evaluation of the target pdf, depending on the model or the number of data. The number
of evaluations EH of the target, in one horizontal period, are EH = TH for SMH in Table 1, whereas EH = LTH in P-EnM
and P-MTM (considering, in all cases, only the new evaluations at each iteration, the others can be automatically reused). Using
SMH, TH multinomial sampling steps are performed, each one over a population of N samples. In P-EnM and P-MTM, NTH
multinomial sampling steps are required (with N > 1), each one over a set of L samples. The total number of evaluations
of the target ET = M(EV + EH) ,including the vertical transitions, is ET = M(NTV + TH) when the SMH is employed
in the horizontal steps, or ET = M(NTV + LTH) when P-EnM and P-MTM are employed. Furthermore, in BI-MTM, we
have again ET = M(NTV + LTH) but only TH multinomial sampling steps. Note also that in a standard parallel multiple try
approach we would have EH = NLTH evaluations of the target and NTH multinomial sampling steps, each one over a set
of L samples. Finally, we remark that, using SMH, we perform one acceptance test in step, i.e., TH in one horizontal period.
Using a multiple candidates scheme, we employ NTH acceptance test in one horizontal period. All these considerations are
summarized in Table 7. For further details and observations, see Appendix C.1.1.

5.4. Relationship with other techniques

The techniques in Table 4 and 5 are particular interesting since they involve the use of resampling steps without jeopardizing the
ergodicity of the resulting global O-MCMC process. Moreover, the SMH algorithm in Table 1 employs an inverted resampling
scheme since a sample in the population is chosen to be replaced with probability proportional to the inverse of the importance
weights. Other methodologies in literature employ a combination of MCMC iterations and resampling steps, for instance,
iterated batch importance sampler (IBIS) and sequential Monte Carlo (SMC) samplers for a static scenario [27, 28]. Their
underlying idea could be interpreted belonging to the O-MCMC philosophy: in these methodologies, the resampling steps are
applied as an “horizontal” approach for interchanging information within the population. The resampling procedure generates



Table 6. Block Independent Multiple Try Metropolis (BI-MTM) algorithm for N parallel chains.

1. Let N be the total number of parallel MTM chains and TH be the total number of iterations of each chain, such that TH
N
∈ N. Choose a

number of tries L. Set t0 = mTV + (m− 1)TH if BI-MTM is used within O-MCMC, otherwise set t0 = 0.

2. For each block b = 1, . . . , B = TH
N

do:

(a) Draw NL possible i.i.d. candidates z
(h)
1 , . . . , z

(h)
L ∼ ψ(x) with h = 1, . . . , N .

(b) Draw one sample zkh from each set Sh = {z(h)
1 , . . . , z

(h)
L }, h = 1, . . . , N , with probability

β
(h)
` =

π(z
(h)
`

)

ψ(z
(h)
`

)PL
`=1

π(z
(h)
`

)

ψ(z
(h)
`

)

.

Thus, finally we have N different samples, {zk1 , . . . , zkN }, such that each zkh ∈ Sh.

(c) Create the circular permutations vn,j ∈ {zk1 , . . . , zkN } defined as in Eq. (12).

(d) For t = (b− 1)N + 1 + t0, . . . , bN + t0 (i.e., exactly N transitions):

i. Set j = t− (b− 1)N − t0 (so that j = 1, . . . , N , in one block).
ii. For n = 1, . . . , N :

A. Set xn,t = vn,j , with probability

αn(xn,t−1,vn,j) = min

266641,

PL
`=1

π(z
(j)
`

)

ψ(z
(j)
`

)PL
`=1

π(z
(j)
`

)

ψ(z
(j)
`

)
− π(vn,j)

ψ(vn,j)
+

π(xn,t−1)

ψ(xn,t−1)

37775 .
Otherwise, set xn,t = xn,t−1.

iii. Set Pt = {x1,t, . . . ,xN,t}.

Table 7. Computional cost of O-MCMC given different horizontal schemes. Recall that M = T
TV +TH

.
Computational features SMH P-EnM and P-MTM BI-MTM Standard Parallel MTM chains

EH TH LTH LTH NLTH
ET = M(EV + EH) M(NTV + TH) M(NTV + LTH) M(NTV + LTH) M(NTV +NLTH)

Total number of
MTH MNTH MTH MNTHmultinomial sampling steps

Cardinality of set for
N L L Lthe multinomial sampling

Total number of
M(NTV + TH) M(NTV +NTH) M(NTV +NTH) M(NTV +NTH)acceptance tests

samples from a particle approximation

π̂(L)(x) =
L∑
`=1

β`δ(x− z`), (13)

of the measure of π̄(x), where z` ∼ ψ(x) (or, similarly, z` ∼ q`(x) [36]) and β` are defined in Eq. (10) in Table 5, with
` = 1, . . . , L. The quality of this approximation improves as the number L of samples grows. However, for a finite value
of L there exists a discrepancy which can produce problems in the corresponding sampling algorithm. For further details see
Appendix B. One main issue is the loss in diversity in the population.

This problem is reduced drastically in O-MCMC since the ergodicity is ensured in both, vertical and horizontal movements.
Clearly, this improvement in the performance is obtained at the expense of an increase of the computational cost. For instance,
let us consider the use of SMH in horizontal transitions. The cloud of samples is not impoverished by the application of SMH,
even if a poor choice of the proposal ϕ(x) is made. In the worst case, the newly proposed samples are always discarded and
computational time is wasted. In the best case, a proposal located in a low probability region can jump close to a mode of the
target. Clearly, In the mixture multiple try approach, it is better to choice L ≥ N for fostering the safeguard of the diversity.



Moreover, in the mixture approach, the mixture ψ(x) = ψ(x|Pt) is built using the states in Pt as location parameters, and
then it does not change for the next TH horizontal steps. Thus, the information contained of the state {xn,t}Nn=1 ∈ Pt is
employed in the next TH iterations even if some state is not well-located. For clarifying this point, consider for instance the
basic scheme in Table 2. The mixture ψ(x) = ψ(x|Pt) does not change so that the information provided by the population
Pt = {x1,t, . . . ,xN,t} at the iteration t is still used in the iterations t + 1, . . . , t + TH . Namely, using a “particle filtering
slang”, in these TH steps, “no particles are killed” where the “particles” in this case are the N states {xn,t}Nn=1 ∈ Pt at the t-th
iteration. This feature is also the main difference between the scheme in Table 2 and the NKC-type methods [32], where one
component of the mixture is relocated after each iteration.

5.5. Joint adaptation of the proposal densities

Let us denote as Cn and Λn the covariance matrices of the vertical and horizontal proposal pdfs, respectively. In order to
design an algorithm as robust as possible, we suggest keeping the scale parameters Cn fixed for the vertical proposal pdfs
qn(x|xn,t−1,Cn), to avoid a loss of diversity within the set of chosen variances. However, if desired, they could be adapted
easily as suggested in [7]. On the other hand, we suggest of adapting the scale parameters of the horizontal proposal pdfs ϕn,
n = 1, . . . , N , since it is less delicate since a poor choice of the ϕn’s entails an increase in the computational cost but the
diversity in the cloud of samples is always preserved. Several strategies have been proposed in [3, 37] and [7], for adapting
proposal functions online within MCMC schemes. For the sake of simplicity, we discuss separately the cases of population-
based or the mixture-based approaches.

• Adaptation within SMH: in this case, the strategies in [37, 7] are appropriate. Thus, After a training period Ttrain < T ,
all the generated samples (i.e., for each t > Ttrain and from all the chains) can be used to adapt the location and scale
parameters of proposal pdf ϕ(x). Namely, denoting ϕt(x) = ϕ(x; µt,Λt), we can use the following approach:

– If t ≤ Ttrain: set µt = µ0, Λt = Λ0 (where µ0 and Λ0 are the initial choices).
– If t > Ttrain: set µt = 1

Nt

∑t
j=1

∑N
n=1 xn,j , and Λt = 1

Nt

∑t
j=1

∑N
n=1(xn,j−µt)(xn,j−µt)>+C, where C is

a chosen covariance matrix. The empirical mean and covariance matrix estimators can be also computed recursively
[3].

• Adaptation of the mixture ψ(x): the methods in Section 5.2 employ a mixture ψ(x) = 1
N

∑N
n=1 ϕn(x). In this case,

each components ϕn,t(x) = ϕn,t(x; µt,Λt) should be adapted, jointly with the weights of the mixture. A possible (and
simple) adaptation scheme is provided in [3] where all the parameters of the mixture are updated online. The method in
[3] can easily reformulated for a framework with parallel chains. In this case, the states of the parallel chains are divided
in N different clusters according to the euclidean distance between them and location parameters of the N components
in the mixture ψ(x). Then, new centroids (i.e., location parameters), covariances matrices and weights are updated
according to the mean, covariances and cardinality of each cluster, respectively.

6. O-MCMC FOR OPTIMIZATION AND BIG DATA CONTEXT

6.1. Interacting Parallel Simulated Annealing

We can be easily modified the O-MCMC schemes converting them in stochastic optimization algorithms. Indeed, it is possible
replacing the N vertical MH chains with N parallel simulated annealing (SA) methods [24, 25]. Let us denote as γn,t ∈
(0,+∞) a finite scale parameter that is decreasing function of t approaching zero for t→ +∞, i.e.,{

γn,t ≥ γn,t+1 ≥ . . . ≥ γn,t+τ > 0,
lim

t→+∞
γn,t = 0, (14)

for n = 1, . . . , N . Moreover, for the sake of simplicity, we consider symmetric proposal functions qn(y|x) = qn(x|y). Then,
one transition of n-th SA is described below:

1. Draw x′ ∼ qn(x|xn,t−1).

2. Set xn,t = x′ with probability

αn = min

[
1,

[π(x′)]
1

γn,t

[π(xn,t−1)]
1

γn,t

]
= min

[
1,
(

π(x′)
π(xn,t−1)

) 1
γn,t

]
,



otherwise, with probability 1− αn, set xn,t = xn,t−1.

Above, with respect to the MH algorithm, we have replaced the target π(x) > 0 with [π(x)]
1

γn,t > 0 with modes that
become sharper and narrower when we reduce the scale parameter γn,t. Note that the movements such π(x′) > π(xn,t−1) are

always accepted whereas, when π(x′) < π(xn,t−1), they are accepted with probability Pd =
(

π(x′)
π(xn,t−1)

) 1
γn,t ∈ (0, 1]. This

probability Pd → 0 vanishes to zero as γn,t → 0 (guaranteeing the convergence to the global maximum when t → +∞). In
the same fashion, for the horizontal steps we also consider the modified extended target,

π̄g(x1, . . . ,xN ) ∝
N∏
n=1

[π(xn)]
1

γn,t , (15)

so that all the presented schemes, previously described, can be automatically applied. Several possible decreasing functions
γn,t has been suggested in [24, 26, 25].

6.2. O-MCMC for big data and data-tempered distributions

In a Big Data context, the posterior density π̄(x) ∝ π(x) is typically split in different partial posteriors, π̄n(x) ∝ πn(x), with
n = 1, . . . , N , each one considering a disjoint sub-sets of the observed data and such that

π̄(x) ∝
N∏
n=1

πn(x),

The general idea is to generate samples from the partial posteriors π̄n(x), and then to combine them in some way for approx-
imating the complete target π̄(x) [13]. Here, we remark that “O-MCMC philosophy” can be applied in this framework, for
improving the mixing of each chain. Thus, let us consider the application of N parallel (vertical) MCMC chains, addressing
one different partial target π̄n(x). Since each observed data provides information about the same phenomenon, an interaction
among theN parallel chains can be improve the mixing of different MCMC techniques. In this context, the use of a mixture pdf
as described in the O-MCMC approach of Section 5.2, appears appropriate for providing a cooperative interaction among the
parallel chains. Using the similar observations, O-MCMC can be apply within the so called “data point tempered” techniques
[27] where a sequence of P posteriors, π1(x), π2(x),...,πP (x), with an increasing number of data, are considered (typically,
the last one contains all the data, i.e., πP (x) = π(x)).

7. NUMERICAL SIMULATIONS

7.1. Multimodal target distribution

In this section, we consider a bivariate multimodal target pdf, which is itself a mixture of 5 Gaussian pdfs, i.e.,

π̄(x) = π(x) =
1
5

5∑
i=1

N (x; νi,Gi), x ∈ R2, (16)

with means ν1 = [−10,−10]>, ν2 = [0, 16]>, ν3 = [13, 8]>, ν4 = [−9, 7]>, and ν5 = [14,−14]>, and with covariance matri-
ces G1 = [2, 0.6; 0.6, 1], G2 = [2, −0.4;−0.4, 2], G3 = [2, 0.8; 0.8, 2], G4 = [3, 0; 0, 0.5], and G5 = [2, −0.1;−0.1, 2].
The target pdf π(x) has then 5 different modes. We apply O-MCMC to estimate the expected value E[X] of X ∼ π̄(x) (the
true mean is E[X] = [1.6, 1.4]>) using different values for the number of parallel chains N ∈ {5, 100, 1000}. Furthermore, we
choose deliberately a “bad” initialization to test the robustness of the algorithm. Specifically, we set xn,0 ∼ U([−4, 4]×[−4, 4])
for n = 1, . . . , N . This initialization is “bad” in the sense that it does not cover the modes of π(x). In all cases, we consider
qn(x|xn,t−1) = N (x; xn,t−1,Cn) using the same isotropic covariance matrix, Cn = σ2I2, for every proposal of the vertical
chains. We test different values of σ ∈ {2, 5, 10, 70} to gauge the performance of O-MCMC. In O-MCMC, we consider the
application of SMH and P-MTM as horizontal techniques, as described below. In both cases, we adapt the covariance matrices
of the proposal pdfs as suggested in Section 5.5.

• O-MCMC with SMH: As horizontal proposal, we use again a Gaussian pdf, ϕt(x) = N (x; µt,Λt) where µt and Λt are
adapted online: namely, µt = 1

Nt

∑t
j=1

∑N
n=1 xn,j , and Λt = 1

Nt

∑t
j=1

∑N
n=1(xn,j − µt)(xn,j − µt)> + Λ0, where



µ0 = [0, 0]>, Λ0 = λ2I2 with λ = 2.5 As remarked in Section 5.5, this adaptive procedure is quite robust since employs
samples generated by different parallel chains [7]. Furthermore, we fix T = 4000 and TH = TV . We test different
values of TV ∈ {1, 100} and, as a consequence, M = T

TV +TH
= T

2TV
∈ {20, 2000}.6 Recall that the total number of

evaluations of the targets in O-MCMC with SMH is ET = M(NTV + TH) = T
2 (N + 1) (see Section 5.3).

• O-MCMC with P-MTM: We also test the O-MCMC scheme with P-MTM as horizontal technique. In this case, the
(independent) proposal pdf is the mixture ψ(x) = ψm(x|Pt) = 1

N

∑N
n=1 ϕn(x|xn,t,Λt) with t = mTV + (m− 1)TH ,

Λt = 1
Nt

∑t
j=1

∑N
n=1(xn,j − µt)(xn,j − µt)> + Λ0, where µt = 1

Nt

∑t
j=1

∑N
n=1 xn,j , Λ0 = 4I2 (for all n =

1, . . . , N ). We consider different number of tries L = {5, 50} and set again TV = TH . In this case, the number of
evolution of the target is ET = M(NTV + LTH) = T

2 (N + L) (see Section 5.3).

Comparison with independent parallel chains (IPCs). We compare the performance of O-MCMC with the application of
IPCs, namely, only vertical independent transitions. Therefore, we can infer the benefit of applying the horizontal interaction.
For a fair comparison, in IPCs we use the same MH kernels, i.e., with the same proposals qn’s, and we keep fixed the total
number of evaluations of the target ET in both cases, O-MCMC and IPCs. Note that ET = NT ′ in IPCs where N is the
number of chains and T ′ the total number of iterations for each one. We test different values of N . Tables 8 and 9 show the
Mean Square Error (MSE), averaged among the two dimensions, in the estimation of the expected value E[X] = [1.6, 1.4]>,
averaged over 200 independent runs. O-MCMC with SMH always outperforms IPCs, specially for small σ and N . O-MCMC
shows a much more stable behavior w.r.t. the parameter choice σ. For large scale parameters (σ ∈ {10, 70}) and a large number
of chains (N ∈ {100, 1000}), the MSE of IPCs approaches the MSE of O-MCMC. A possible explanation is that the interaction
is particularly useful with small N and a wrong choice of σ, whereas the use of large number of chains such as N = 100 or
N = 1000 is enough, in this bidimensional example, for obtaining good performance. Moreover, O-MCMC with SMH presents
an anomalous behavior when the variance of the vertical proposal pdfs is σ = 2. In this specific case, i.e., only for σ = 2, the
MSE seems increases with N . However, note that O-MCMC provides the lower MSE, in any cases, comparing with the same
computational effort ET (with the exception of O-MCMC with P-MTM and σ = 10).

Comparison with Population Monte Carlo (PMC). We also compare with the standard PMC technique [38], described
in Appendix B. We use N ∈ {100, 500, 2000} and T = 2000 for PMC, so that the total number of evaluations of the target is
ET = NT ∈ {2 · 105, 10 · 105, 40 · 105}. The proposal pdfs used in PMC are the same that we apply for the vertical chains in
O-MCMC, i.e., qn(x|xn,t−1) = N (x; xn,t−1,Cn) using again the same covariance matrix, Cn = σ2I2, for n = 1, . . . , N and
σ ∈ {2, 5, 10, 70}. We have considered a higher number of ET for PMC with respect to O-MCMC, since O-MCMC involves
several acceptance tests which are not contained in PMC. Thus, in order to provide a comparison as fair as possible, we allow
a greater number of evaluations of the target, ET , for PMC. Table 10 shows the MSE (mean of the MSEs of each component)
of the O-MCMC schemes and the PMC method, for estimating E[X]. We can see that the O-MCMC schemes, even with less
ET , provide lower MSEs with the exception of the cases corresponding to σ = 10.

O-MCMC with SMH Independent parallel chains (IPCs)
N 5 100 1000 5 100 1000
TV 1 100 1 100 1 100 − − −

σ = 2 1.4881 2.3649 1.7515 2.9146 5.6803 6.1354 28.7856 8.2925 7.3543
σ = 5 1.4989 2.1724 1.4512 1.7089 1.3606 1.4825 13.0602 2.2842 1.8373
σ = 10 1.1769 1.4034 0.1062 0.1129 0.0142 0.0139 2.4443 0.1247 0.0128
σ = 70 1.8175 2.0730 0.3554 0.3483 0.2866 0.2815 5.4897 0.5469 0.3264
T 4000 2400 2020 2002
ET 12 · 103 2.02 · 105 20.02 · 105 12 · 103 2.02 · 105 20.02 · 105

Table 8. Mean Square Error (MSE) in the estimation of the mean of the target, using O-MCMC with SMH and IPCs, considering
different values of σ and TV (recall, we set TV = TH ). The total number of evaluations of the target ET is the same for O-
MCMC (where ET = T

2 (N + 1) since TV = TH ) and IPCs (where ET = NT ).

5We set Ttrain = TV , i.e., the adaptation starts after that the samples of the first vertical period are collected. Thus, before of the first horizontal step,
ϕt(x) has been already updated.

6We use all the generated samples in the estimation without removing any “burn-in” period.



O-MCMC with P-MTM Independent parallel chains (IPCs)
N 5 50 5 50
TV 1 1 − −
L 5 50 5 50 − −

σ = 2 1.3907 1.1421 1.3156 0.7678 17.1352 3.5950
σ = 5 1.6159 0.9074 1.4011 1.0072 12.5791 2.3277
σ = 10 1.5738 0.8634 1.0982 0.8379 0.9403 0.1134
T 4000 4000
ET 2 · 104 11 · 104 11 · 104 20 · 104 2 · 104 20 · 104

Table 9. Mean Square Error (MSE) in the estimation of the mean of the target, using O-MCMC with P-MTM and IPCs,
considering different values of σ and TV (recall, we set TV = TH ). The total number of evaluations of the target ET is the
same for O-MCMC (where ET = T

2 (N + L) since TV = TH ) and IPCs (where ET = NT ).

O-MCMC with SMH O-MCMC with P-MTM PMC
N 5 100 1000 5 50 100 500 2000

σ = 2 1.4881 1.7515 5.6803 1.3907 1.3156 48.11 35.1772 28.4326
σ = 5 1.4989 1.4512 1.3606 1.6159 1.4011 2.5998 2.3230 1.9153
σ = 10 1.1769 0.1062 0.0142 1.5738 1.0982 0.0512 0.0141 0.0054
σ = 70 1.8175 0.3554 0.2866 2.0185 2.3963 0.8252 0.1161
T 4000 2000
ET 12 · 103 2.02 · 105 20.02 · 105 2 · 104 11 · 104 2 · 105 10 · 105 40 · 105

Table 10. Mean Square Error (MSE) in the estimation of the mean of the target, using O-MCMC (TV = TH = 1 and L = 5
for P-MTM) and the standard PMC method [38].

7.2. Spectral analysis: estimating the frequencies of a noisy multi-sinusoidal signal

Many problems in science and engineering require dealing with a noisy multi-sinusoidal signal, whose general form is given by

yc(τ) = A0 +
S∑
i=1

Ai cos(2πfiτ + φi) + r(τ), τ ∈ R, (17)

where A0 is a constant term, S is the number of sinusoids, {Ai}Si=1 is the set of amplitudes, {2πfi}Si=1 are the frequencies,
{φi}Si=1 their phases, and r(τ) is an additive white Gaussian noise (AWGN) term. The estimation of the parameters of this
signal is required by many applications in signal processing [39, 40], in control (where a multi-harmonic disturbance is often
encountered in industrial plants) [41, 42] or in digital communications (where multiple narrowband interferers can be roughly
modeled as sinusoidal signals) [43, 44]. Let us assume that we have K equispaced points from yc(τ), obtained discretizing
yc(τ) with a period Ts < π

max1≤i≤S 2πfi
(in order to fulfill the sampling theorem [45]):

y[k] = A0 +
S∑
i=1

Ai cos(Ωik + φi) + r[k], k = 1, . . . ,K, (18)

where y[k] = yc(kTs) for k = 0, 1, . . . ,K − 1, Ωi = 2πfiTs for i = 1, . . . , S, and r[k] ∼ N (0, σ2
w). Our goal is applying

the O-MCMC-type algorithms to provide an accurate estimate of the set of unknown frequencies, {Ωi}Si=1 or merely {fi}Si=1.
For keeping the notation of the rest of the work, we define the vector of possible frequencies as x ∈ RS . Thus, given a fixed
considering the hyper-rectangular domain D =

[
0, 1

2

]S
(it is straightforward to note the periodicity outside D), and a uniform

prior on D, the posterior distribution given K data is π̄(x) ∝ exp (−V (x)), where

V (x) = V (x1, . . . , xS) =
1

2σ2
w

K∑
k=1

(
y[k]−A0 −

S∑
i=1

Ai cos(xik + φi)

)2

ID(x). (19)



We have denoted ID(x) the indicator function such that ID(x) = 1 if x ∈ D and ID(x) = 0 if x /∈ D. Moreover, for the sake of
simplicity, we have assumed also that S and σ2

w are known. Furthermore, we set A0 = 0, Ai = A = 1 and φi = 0.7 Note that
the problem is symmetric with respect to the hyperplane x1 = x2 = . . . = xS (and, in general, multimodal). Bidimensional
examples of V (x) = log π(x) are depicted in Figure 5. We apply O-MCMC, comparing with IPCs, in two different types of
experiments described briefly below. In all cases, we set xn,0 ∼ U(D) for n = 1, . . . , N , TH = TV = 1, and consider the
proposals qn(x|xn,t−1) = N (x; xn,t−1,Cn) with Cn = σ2IS , n = 1, . . . , N , for the vertical chains (IS is the unit matrix of
dimension S × S).
First experiment. We set f = [f1 = 0.1, f2 = 0.3]> and generate K = 10 synthetic data from the model. Since in this
case, S = 2 and D =

[
0, 1

2

]2
, it is possible to approximate the posterior with a very thin grid and compute the first 4 non-

central moments and, as a consequence, we can compare the performance of different Monte Carlo sampling methods. Then,
we test O-MCMC-SMH with the horizontal proposal ϕ(x) = N (x; µ,Λ) where µ = [0.25, 0.25]> and Λ = σ2I2, i.e.,
uses the same σ considered for the vertical chains (recall that Cn = σ2I2). We set the total number of target evaluations
ET = M(N + 1) ∈ {2730, 5450, 10.9 · 103}. For a fair comparison, we consider N independent parallel chains (IPCs)
choosing T such that E′T = NT is equal to ET , i.e., E′T = ET (see Section 5.3). We test different values of σ ∈ [0.05, 0.5] and
N ∈ {2, 5, 10}. We test the combinations of number of chains N and epochs M (T for IPCs) in order to keep fixed ET . The
Relative Error (RE) in the estimation, averaged over 500 independent runs, is shown in Figure 6. We can observe that O-MCMC
(solid line) outperforms IPCs (dashed line) providing lower REs. The performance becomes similar as the computational effort
ET grows since the state space in the first experiment, D =

[
0, 1

2

]2
, is small enough for allowing an exhaustive exploration of

D by independent chains.
Second experiment. We test O-MCMC in higher dimension considering S = 4, i.e., D =

[
0, 1

2

]4
. We fix f = [f1 =

0.1, f2 = 0.2, f3 = 0.3, f4 = 0.4]>. In this experiment, we consider an optimization problem for finding the global mode
of π with K = 30 observations. With K = 30 observations, the main mode is enough tight around f , so that we consider
f as true localization of the global mode. For simplicity and for breaking the symmetry, we restrict the search to the simplex
contained in D = with vertices at [0, 0, 0, 0]>, [ 12 , 0, 0, 0]>, [ 12 ,

1
2 , 0, 0]>, [ 12 ,

1
2 ,

1
2 , 0]> and [ 12 ,

1
2 ,

1
2 ,

1
2 ]>. We test O-MCMC-

PMTM considering again Gaussian horizontal proposals in the mixture ψ, with Λ = λ2I4 for all n. We test λ = 0.1 and
λ = σ (where σ is employed in the covariance matrices Cn = σ2I4 of the vertical chains). Moreover, we test the adaptation
of Λ, i.e., Λt = 1

Nt

∑t
j=1

∑N
n=1(xn,j − µt)(xn,j − µt)> + Λ0, where µt = 1

Nt

∑t
j=1

∑N
n=1 xn,j , Λ0 = 0.02I4, for all

n = 1, . . . , N . We set N = 20 as number of chains, L = 20 as number of tries, and ET ≈ 8700 as total number of evaluations
of the target. For a fair comparison, we again consider N and T for IPCs such that E′T = NT is equal to ET , i.e., E′T = ET .
The vertical proposal pdfs are the same than those for the IPCs scheme. Furthermore, we apply a data-tempering approach [27]
described in Section 6, employing a sequence of 29 target pdfs πi each one considering an increasing number of observations
Ki = 2 + (i − 1) with i = 1, . . . , 29. The computational effort ET is distributed uniformly in each πi. We compute the
Relative Error (RE) of the last states of the N chains with respect to the true vector f . Figure 7 depicts the curves of the RE
versus different values of σ ∈ [0.05, 0, 5]. We can observe that O-MCMC-PMTM always outperforms IPCs in this optimization
problem.

8. CONCLUSIONS

In this work, we have introduced a novel family of MCMC algorithms, named Orthogonal MCMC schemes, that incorporates
“horizontal” MCMC transitions to share information among a cloud of parallel “vertical” MCMC chains. We have described
different alternatives for exchanging information among independent parallel chains. Compared to the fully independent parallel
chains approach, the novel interacting techniques show a more robust behavior with respect to the parameterization and better
performance for different number of chains. One reason is that the novel algorithms provide a good trade-off between the use of
an independent or random walk proposal density, i.e., between local an global explorations. We have considered two different
approaches for the interaction among the chains: in the first one, a MCMC technique over the entire population is directly
applied whereas, in the second one, the initial population Pt is used for building a suitable mixture density ψ(x) employed as
proposal function in the horizontal transitions. This second approach can be interpreted as an adaptive MCMC scheme where
the location parameters of the N components of mixture ψ(x) are updated driven by N parallel MCMC chains. The outputs
of these parallel chains are also employed in the approximation of the target. Furthermore, we have designed different parallel
Multiple Try Metropolis (P-MTM) schemes using an independent proposal pdf, where the drawn candidates are “recycled” in
order to reduce the overall computational cost. Finally, we have described two modified versions of O-MCMC for optimization
and the application to big data problems. The ergodicity of all the proposed methodologies have been discussed and several

7Let us remark that the estimation of all these parameters would make the inference harder, but can be easily incorporated into our algorithm.
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Fig. 5. Several examples of function V (x) = log π(x) with S = 2, given different realizations of the measurements
y[1], . . . , y[K]. In Figures (a)-(d)-(e)-(f), we set f = [ 16 ,

1
3 ]> and consider K = 10, 15, 20, 30, respectively. In Figures (b)-(c),

we set f = [0.1, 0.3]> and K = 10. Black dotted points shows all the states generated throughout an O-MCMC-PMTM run
with N = 10, L = 10 and T = 500. The initial states are chosen uniformly within D = [0, 1

2 ]>.
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(c) ET = 10900

Fig. 6. Relative Error (averaged over 500 runs) in the first experiment for O-MCMC-SMH (solid line) and IPCs (dashed
line) with different computational effort ET . Note that O-MCMC always outperforms IPCs. Note also that their performance
becomes similar as the overall computational cost ET grows (due to the small size of the state space, D =

[
0, 1

2

]2
).

numerical simulations have been provided showing the advantages of the novel approach.
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(b) λ = σ
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(c) adapting Λt

Fig. 7. Relative Error (averaged over 500 runs) in the second experiment (dimension S = 4) searching the global maximum
with O-MCMC (solid line) and IPCs (dashed line). In the O-MCMC-PMTM scheme, we use different λ = 0.1 and λ = σ, for
the covariance matrices Λn = λ2I4 of the horizontal proposal pdfs in the mixture ψ. Moreover, we test an adapted covariance
matrices for the horizontal proposal pdfs (see Figure (c)).
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A. STATIONARY DISTRIBUTION OF O-MCMC

A.1. Analysis for the mixture-based approach

Let us consider two MCMC kernels, K(V )
n (y|x), K(H)

n (z|y) with x,y, z ∈ D ∈ Rdx , corresponding to the n-th chain for the
vertical and horizontal steps, respectively. We assume π̄(·) is the invariant density of both chains. Namely, we consider MCMC
techniques which steps are summarized in the two conditional probabilities K(V )

n (y|x) and K(H)
n (z|y), such that∫

D
K(V )
n (y|x)π̄(x)dx = π̄(y),

∫
D
K(H)
n (z|y)π̄(y)dy = π̄(z).

For the sake of simplicity, we tackle a simpler case where K(V )
n , K(H)

n are used sequentially, once each. Namely, we consider
the sequential application of K(V )

n and K(H)
n , i.e, first y′ ∼ K(V )

n (y|x) and then draw z′ ∼ K(H)
n (z|y′), i.e., the probability of

transition from z to x

T (z|x) =
∫
D
K(H)
n (z|y)K(V )

n (y|x)dy. (20)



The target π̄ is also invariant w.r.t. T (z|x) [46, Chapter 1]. Indeed, we can write∫
D
T (z|x)π̄(x)dx =

∫
D

[∫
K(H)
n (z|y)K(V )

n (y|x)dy
]
π̄(x)dx,

=
∫
D
K(H)
n (z|y)

[∫
K(V )
n (y|x)π̄(x)dx

]
dy,

=
∫
D
K(H)
n (z|y)π̄(y)dy,

= π̄(z), (21)

that is the definition of invariant pdf w.r.t. T (z|x).

A.2. Analysis for the population-based approach

Considering now an extended state space RdX×N , we can interpret that O-MCMC yields a unique chain in RdX×N . Namely,
one population of states at the t-th iteration represents one extended state of this unique chain. Here, we show that this chain,
generated by O-MCMC, has the extended target density

π̄g(x1, . . . ,xN ) ∝
N∏
n=1

π(xn),

as invariant pdf. We can use similar arguments employed for the mixture-based schemes, considering now a population of
current states, i.e.,

Pt−1 = {x1,t−1, . . . ,xN,t−1}.

We denote the vertical MCMC kernels asKn(xn,t|xn,t−1) with π̄ invariant, whereas one horizontal kernelKH(Pt|Pt−1)8 with
invariant pdf the following extended target pdf

π̄g(P) ∝ πg(x1, . . . ,xN ) =
N∏
n=1

π(xn).

The complete kernel of the orthogonal procedure, formed by one vertical and one orthogonal step, is

T (Pt|Pt−2) =
∫
DN

KH(Pt|Pt−1)

[
N∏
n=1

Kn(xn,t−1|xn,t−2)

]
N∏
n=1

dxn,t−1.

In this case, we can write ∫
DN

T (Pt|Pt−2)π̄g(Pt−2)dPt−2 =

=
∫
DN

∫
RN

KH(Pt|Pt−1)
N∏
n=1

Kn(xn,t−1|xn,t−2)
N∏
n=1

π̄(xn,t−2)
N∏
n=1

dxn,t−1

N∏
n=1

dxn,t−2.

=
∫
DN

KH(Pt|Pt−1)
N∏
n=1

π̄(xn,t−1)
N∏
n=1

dxn,t−1 =
∫

RN
KH(Pt|Pt−1)π̄g(Pt−1)dPt−1 = π̄g(Pt).

Namely, the kernel T (Pt|Pt−2) has π̄g as invariant density. This result can be easily extended when TV vertical and TH
horizontal transitions are applied, using the same arguments. Note that the generated chain preserves the pdf π as shown
previously, but in general is not reversible [46, Section 1.12.7].

8For the sake of simplicity, we abuse of the notation using here the set Pt as a vector.



B. DISTRIBUTION AFTER RESAMPLING

Resampling procedures are employed in different Monte Carlo techniques such as Population Monte Carlo (PMC), Iterated
Batch Importance Sampler (IBIS) and, more generally, in Sequential Monte Carlo (SMC) methods for a static scenario [38,
27, 28]. For simplicity, let us consider here a standard PMC-type scheme. In PMC, N different proposal pdfs q1, . . . , qN are
employed at each iteration. Starting from {x1,0, . . . ,xN,0}, the basic PMC scheme consists of the following steps:

1. For t = 1, . . . , T :

(a) For n = 1, . . . , N , draw one sample xn,t from qn, i.e.,

xn,t ∼ qn(x|xn,t−1),

(b) Draw N independent samples {z1, . . . , zN} such that each zn ∈ {x1,t, . . . , zN,t}, with n = 1, . . . , N , with proba-
bility

βn =
π(xn,t)
qn(xn,t)∑N
n=1

π(xn,t)
qn(xn,t)

. (22)

(c) Set xn,t = zn.

The step 2(b) corresponds to resample (with replacement) N times the population {xn,t}Nn=1. Note that the weights in Eq. (22)
are the same used in (10). For the sake of simplicity, since here we consider a generic iteration t, let us simplify the notation
denoting as xn = xn,t ∼ qn(x|xn,t−1) (1 ≤ n ≤ N , 1 ≤ t ≤ T ), and as qn(x) = qn(x|xn,t−1). Moreover, we define as

m¬n = [x1, . . . ,xn−1,xn+1, . . . ,xN ],

the matrix containing all the samples except for the n-th. Let us also denote as z ∈ {x1 . . . ,xN}, a generic sample after
applying one multinomial resampling step. Hence, the distribution of z is given by

φ(z) =
∫
DN

π̂(N)(z|x1, . . . ,xN )

[
N∏
n=1

qn(xn)

]
dx1 . . . dxN , (23)

where

π̂(N)(z|x1, . . . ,xN ) =
N∑
j=1

βjδ(z− xj), (24)

and βj are given in Eq. (22). Here, with the notation π̂(N)(z|x1, . . . ,xN ) we have remarked the dependence on the generated
samples xn’s in order to facilitate the understanding of Eq. (23). Then, after some straightforward rearrangements, Eq. (23)
can be rewritten as

φ(z) =
N∑
j=1

∫
DN−1

π(xj)
qj(xj)∑N

n=1
π(xn)
qn(xn)

 N∏
n=1
n 6=j

qn(xn)

 dm¬j
 δ(z− xj). (25)

Finally, we can write

φ(z) = π(z)
N∑
j=1

∫
DN−1

1
NẐ

 N∏
n=1
n 6=j

qn(xn)

 dm¬j , (26)

where Ẑ = 1
N

∑N
n=1

π(xn)
qn(xn) is the estimate of the normalizing constant of the target obtained by using the importance sampling

technique. When N →∞, then Ẑ → Z [5], and thus φ(z)→ 1
Zπ(z) = π̄(z). Clearly, there exists a discrepancy between φ(z)

and π̄(z).



C. ERGODICITY OF THE PARALLEL SCHEMES BASED ON MULTIPLE CANDIDATES

Similarly as in PMC, the parallel Ensemble MCMC (P-EnM) and Multiple Try Metropolis (P-MTM) schemes in Tables 4-5 are
based on the particle approximations of the measure of the target. In both cases, L independent samples z1, . . . , zL drawn from
ψ(x), i.e.,

z` ∼ ψ(x), (27)

for ` = 1, . . . , L. Below, we show that P-EnM and P-MTM yield reversible chains with stationary density the generalized pdf
π̄g , proving the detailed balance condition is satisfied [5].

C.1. Parellel Multiple Try Metropolis

In P-MTM, we can define the particle approximation based on the set {z1, . . . , zL}, i.e.,

π̂(L)(z) =
L∑
`=1

β`δ(z− z`), (28)

where the normalized weights β`’s are given in Eq (10). Note that, the expression above coincides with Eq. (24). Let us also
denote as the matrix

m¬k = [z1, . . . , zk−1, zk+1, . . . , zL],

containing all the samples z`’s with the exception of zk. We denote as Kn(xn,t|xn,t−1) is the MTM kernel of n-th chain,
namely, Kn(z|x) is the probability of the n-th chain of jumping from the state x = xt−1 to z = zk ∈ {z1, . . . , zL} (for
simplicity, we consider here only the case z 6= x). Note that all the z`’s are both drawn and resampled independently (see steps
2(a) and 2(b) in Table 5). Thus, the conditional probability Kn(z|x) can be expressed as

Kn(z = zk|x) =
L∑
`=1

Kn(zk|x, k = `),

= L

∫
DL−1

[
L∏
`=1

ψ(z`)

]
π̂

(L)
MTM (zk) αn(x, zk|m¬k) dm¬k, for z 6= x. (29)

where the function αn is given in Eq. (11) and we have considered the case x and z (the case, z = x is straightforward). The
factor L is due of the exchangeability among the L random candidates. Thus, we can also write

π̄(x)Kn(zk|x) = Lπ̄(x)ψ(zk)
∫
DL−1

 L∏
`=1;` 6=k

ψ(z`)

βk αn(x, zk|m¬k) dm¬k,

= Lπ̄(x)ψ(zk)
∫
DL−1

 L∏
`=1;` 6=k

ψ(z`)

 π(zk)
ψ(zk)∑L
`=1

π(z`)
ψ(z`)

αn(x, zk|m¬k) dm¬k,

=
L

Z
π(x)π(zk)

∫
DL−1

 L∏
`=1;` 6=k

ψ(z`)

 1∑L
`=1

π(z`)
ψ(z`)

αn(x, zk|m¬k) dm¬k, (30)

where we have also used the equality π̄(x) = 1
Zπ(x). Replacing

αn(x, zk|m¬k) = min

1,

∑L
`=1

π(z`)
ψ(z`)∑L

`=1
π(z`)
ψ(z`)

− π(zk)
ψ(zk)

+ π(x)
ψ(x)

 ,
in the expression (30) and with some simple rearrangements, we obtain

π̄(x)Kn(zk|x) =
L

Z
π(x)π(zk)

∫
DL−1

 L∏
`=1;` 6=k

ψ(z`)


min

 1∑L
` 6=k

π(z`)
ψ(z`)

+ π(zk)
ψ(zk)

,
1∑L

` 6=k
π(z`)
ψ(z`)

+ π(x)
ψ(x)

 dm¬k. (31)
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↵(x2,t�1, zk2)

↵(x1,t�1, zk1) ↵(x1,t, zk1)

↵(x2,t, zk2)

t� 1 t

zk1zk1

zk2 zk2

z2

z1

z3

z2

z1

z3

2-nd Chain

1-st Chain

(b) The P-MTM scheme in Table 5.

t� 1 t

z2

z1

z3

2-nd Chain
zk

↵(x2,t�1, zk)

↵(x1,t�1, zk) ↵(x1,t, zk)

↵(x2,t, zk)

z2

z1

z3

zk

1-st Chain

(c) Approach equivalent to BI-MTM scheme.

t� 1 t

2-nd Chain ↵(x2,t�1, zk2)

↵(x1,t�1, zk1)

↵(x2,t, zk1)

↵(x1,t, zk2)
z
(1)
1

z
(1)
2

z
(1)
3

zk1

z
(2)
3

z
(2)
2

z
(2)
1 zk2

Block

1-st Chain

(d) The BI-MTM scheme in Table 6.

Fig. 8. A graphical representation of the several parallel MTM schemes with N = 2 chains and L = 3 tries. The BI-MTM
scheme in (d) requires only 6 evaluations of the target pdf and 2 multinomial sampling steps considering two iterations, t − 1
and t.

We can observe that, in equation above, we can exchange the position of the variables x so that zk and the expression does not
change. So that we can write

π̄(x)Kn(zk|x) = π̄(zk)Kn(x|zk), (32)

for all n = 1, . . . , N . The expression above is the so-called detailed balance condition [5]: since it holds for all n, the complete
horizontal MTM process has π̄g as invariant pdf.

C.1.1. Important observations and Block Independent MTM

First of all, note that with respect to a standard parallel multiple try approach, the novel P-MTM scheme generates only L
candidates at each iteration, instead of NL samples. Indeed, P-MTM “recycles” the samples z1, . . . , zL from the independent
proposal pdf ψ(x), using them in all the N chains. Namely, in P-MTM, at one iteration, the different MTM chains share the
same set of tries. However, looking a single chain, each time L new samples are drawn from ψ(x) so that the chain is driven
exactly from a standard (valid) MTM kernel. Figures 8(a) and (b) compare graphically the standard parallel MTM approach
and te P-MTM scheme (with N = 2 chains and L = 3 tries). Observe that, in Figure 8(a), 12 new evaluations of the target are
needed whereas only 6, in Figure 8(b).

Using the same arguments, the method remains valid if only one resampling step is performed at each iteration, providing
one z∗: in this case the same z∗ is tested in the different acceptance tests of the N parallel MTM chains, at the same iteration
(exactly as in Table 2 and Fig. 3 for MH kernels). Figure 8(c) shows this case. In order to reduce the possible loss of
the diversity, since several chains could jump at the same new state z∗, an alternative strategy can be employed: the Block
Independent MTM (BI-MTM) algorithm described in Table 6. Since the proposal ψ is independent and then fixed, before a
block of N transitions, we can draw NL tries from ψ(x). Then, we can divide them in N sets Sj , with j = 1, . . . , N and select
one sample from each set, obtaining {zk1 , . . . , zkN } with zkj ∈ Sj . Then, we use N different permutations of {zk1 , . . . , zkN }
for performing N iterations of the N parallel chains, providing a better mixing with respect to the case in Figure 8(c). This
strategy, i.e., the BI-MTM scheme, is perfectly equivalent to the previous one, shown in Figure 8(c), from a theoretical and
computational point of view. BI-MTM is represented graphically in Figure 8(d).



C.2. Parallel Ensemble MCMC

Let us consider now the method in Table 4. In this case, the particle approximation is

π̂(L+1)
n (z) =

L∑
`=1

α`δ(z− z`) + αL+1δ(z− xn,t−1)

=
L+1∑
`=1

α`δ(z− z`), where zL+1 = xn,t−1, (33)

In this case, for a given n = 1, . . . , N , the conditional probability Kn(z = zk|x), where x = xn,t−1 and zk ∈
{z1, . . . , zL, zL+1 = xn,t−1}, is given by

Kn(zk|x) =
L∑
`=1

Kn(zk|x, k = `),

= L

∫
DL−1

[
L∏
`=1

ψ(z`)

]
π̂(L+1)
n (zk) dm¬k, for z 6= x. (34)

After some simple rearrangements (similarly in P-MTM) and using the formula of the weights in Eq. (8), we obtain

π̄(x)Kn(zk|x) = Lπ̄(x)ψ(zk)
∫
DL−1

 L∏
`=1, 6̀=k

ψ(z`)

 π(zk)
ψ(zk)∑L

`=1
π(z`)
ψ(z`)

+ π(x)
ψ(x)

dm¬k,

=
L

Z
π(xπ(zk)

∫
DL−1

 L∏
`=1, 6̀=k

ψ(z`)

 1∑L
`=1;` 6=zk

π(z`)
ψ(z`)

+ π(zk)
ψ(zk)

+ π(x)
ψ(x)

dm¬k. (35)

Observing the last equation, we can clearly replace the variable x with zk and vice versa, without changing the expression.
Hence, finally we obtain

π̄(x)Kn(zk|x) = π̄(zk)Kn(x|zk),

for all n = 1, . . . , N , that is the detailed balance condition. For further considerations, see App. C.1.1 above.


