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Abstract: There are many longstanding problems associated with orbital systems at all scales.
Direct Orbital Dynamics applies a set of independent orbital terms to the Newtonian orbital
equations, in place of the standard combined orbital terms. This results in a number of
surprisingly successful applications. The standard orbital equations treat the bodies in a
two-body system as orbiting their mass center point at the combined orbital period. These orbital
terms are all combined terms containing the influence of both bodies. The direct orbital system
treats each body as orbiting the other body directly at the full radius distance, with each body
also orbiting the other at its own natural, independent orbital period (which is a portion of the
combined period). The orbital velocity of each body is now based solely on the mass and radius
distance of the body being orbited. It is no longer affected by the mass of the orbiting body, as in
the standard system, because the effects of the combined orbital terms are removed from the
calculations. The orbital equations remain balanced when using the terms of the direct orbital
system frame of reference, with some additional equations balancing. The direct orbital set of
equations initially treats the bodies as orbiting each other independently rather than as a
combined system. The two bodies are treated as being the orbital center points of each other.
However, these two orbital center points are also in motion and are constantly altering the orbital
direction of the two bodies. The orbiting bodies must therefore be treated as responding to both
the gravitational acceleration and the physical motion of each other. This additional motion
factor of the orbital center points is then applied to the direct orbital system. This results in the
same mass and velocity to the fourth power relationship found in the excessive orbital velocities
and flat rotation curves of disk galaxies, as seen in the Baryonic Tully Fisher Relation (MocV*).
These excessive velocities are thought to be caused by either halos of dark matter, or by a change
in gravitation at low accelerations (MOND). Direct Orbital Dynamics is shown to be the source
of this fourth power radial force law. This same mass-velocity relationship of galaxies is found to
also exist in smaller orbiting systems within the high acceleration Newtonian regime. The direct
orbital system goes on to provide successful application to well known orbital problems.
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1 Introduction

There are many well known problems associated with orbital systems at all levels, from
the flyby anomaly of spacecraft swinging around the Earth, to the excessive velocities of
galaxies orbiting within clusters [1, 2]. Other notable examples include problems with the
formation and evolution of orbiting systems, the many orbital angular momentum distribution
problems [3], specific problems with the formation of the moons of both Pluto and the Earth [4],
and the flat rotation curves and excessive orbital velocities of stars within disk galaxies [5,6].
This last example led to the theories of dark matter halos and Modified Newtonian Dynamics
(MOND) in an attempt to account for these observations [7-12]. The Direct Orbital Dynamics
System uses a set of independent orbital terms in the standard Newtonian orbital equations with
successful results in addressing a number of orbital problems.

The standard orbital equations use the observed orbital period and the radius distance of
each body to the mass center point for the orbital terms of a two-body system. These are
combined orbital terms that are dependent on the mass of both the orbiting body and the body
being orbited. If an orbiting body is increased in size, its orbital terms are altered by an increase
in its orbital radius to the mass center point, and by a decrease in the combined orbital period of
the system. A change in the size of the mass of the orbiting body affects its orbital radius, period,
and velocity, because these are all combined, dependent terms. This system will be referred to as
the combined orbital system because it uses combined orbital terms. The alternative system will
be referred to as the direct orbital system because it uses direct orbital terms.

In the direct orbital system the orbital terms are no longer combined orbital terms that are
dependent on the orbiting body’s own mass. This system treats both bodies as orbiting each other
directly at the full radius distance between them, but at the reduced individual orbital period each
body would have if the other body was not in motion, or if the mass of the orbiting body was
negligible in comparison to the mass of the larger body. The individual orbital periods of the two
bodies each comprise part of the observed orbital period of the system (within the terms for the
square of the orbital period in the centripetal acceleration equations). If an orbiting body is
increased in size, its orbital terms are no longer altered. In the direct orbital system a change in
the size of the mass of the orbiting body does not affect its orbital radius, period, or velocity,
because the direct orbital terms are all independent terms. Each body is treated as being the
orbital center point and direct frame of reference of the other body, and these frames of reference
are in motion as will also be addressed.

2 The Independent Orbital Terms of Direct Orbital Dynamics
It would seem that the direct and combined orbital systems should be equivalent in all the

orbital calculations, and that the orbital terms in the two systems would be proportional. Both
systems yield the same result for the centripetal acceleration of each of the bodies in a two-body



system. However, the orbital velocities of the two bodies in the direct orbital system are not
equivalent or proportional to the orbital velocities in the combined orbital system, and this is
seen within the equivalent sets of centripetal acceleration equations. This difference between the
two systems is a crucial factor and has application to many of the orbital problems that are
observed.

In order to calculate the velocities of orbiting bodies in the direct orbital system, the
individual orbital periods of the two bodies must first be calculated. This can be done by using
the F=Ma equation of Newton’s Second Law of Motion, inserting the full radius term into the
acceleration formula, and solving for the orbital period (T). Circular orbits are assumed for
simplicity in all calculations of examples. For the equivalence of the gravitational force and the
centripetal force of the smaller body, F=Ma simplifies to

GM M,/1* = M,4m’r,*/T’t,  (or M4n’r,/T?) (1)

and for the equivalence of the gravitational force and centripetal force of the larger body it
simplifies to

GM M,/r* =M 4n’r */T’r, (or M 47°r,/T?) ()

where G is the gravitational constant (6.67 x 10"'m’kg's?), M, is the mass of the larger body,
M, is the mass of the smaller body, r is the full radius distance, r, is the distance of the larger
body to the center of mass of the two-body system, and r, is the distance of the smaller body to
the center of mass.

Equation 1 can be used to solve for the individual orbital period (T,) of the smaller body
if the mass of the smaller body (M,) is on the right hand side. In the centripetal acceleration
portion of the equation on the right, the terms for the radius distance to the center of mass (r,)
must be replaced with the terms for the full orbital radius distance between the two bodies (r).
Now that all the other terms are identified, the individual orbital period of the smaller body (T,)
can be solved for in the equation below

GM M, /r* = M 4n*r¥/T,r  (or M 47*t/T,?) 3)

where T, represents the orbital period that the smaller body has relative to the larger body when
the larger body is used as its frame of reference. This is the same as the orbital period the smaller
body would have around the larger body if the larger body was not in motion, or if the smaller
body had negligible mass relative to the larger body. Solving this equation for T, would then
give the individual orbital period of the smaller body relative to the frame of reference of the
larger body.



Equation 2 can be solved for the individual orbital period of the larger body (T),) if the
mass of the larger body (M,) is instead placed on the right hand side of the equation as

GM M,/r* =M 4r*/Tr  (or M 4n’r/T %) 4)

where T, represents the orbital period that the larger body has relative to the smaller body when
the smaller body is used as its frame of reference. Solving this equation for T, would then give
the individual orbital period of the smaller body relative to the frame of reference of the larger
body.

The two independent, individual orbital periods of the bodies in the direct orbital system
(T, and T,) appear in the acceleration portions of the equations above (Equations 3 and 4) as
inverse squares: 1/T,*and 1/T,%. These two components within the centripetal acceleration
calculations combine together to form the inverse square of the combined orbital period (1/T?%) of
the two-body system. This combination of terms appears as

l/T12+ l/T22 =1/T? %)
or
T22+ le = (T12 ’ T22)/T2 (6)

The combined orbital period is therefore composed of the individual orbital periods of the two
bodies. This shows that the two bodies really are orbiting each other directly as their frames of
reference in the direct orbital system, because the two individual orbital periods of the bodies (T,
and T,) are actually present as components of the combined orbital period of the system (T).

The full radius distance and individual orbital period terms of the Direct Orbital
Dynamics System can now be inserted into the standard Newtonian orbital equations. The orbital
terms in the direct orbital system are dependent only on the mass of the body being orbited and
the full radius distance. These direct orbital terms are not dependent on the mass of the orbiting
body, as in the combined orbital system. Each body’s set of direct orbital terms is
mathematically independent from their own masses.

The orbital velocities within the centripetal acceleration equations represent each body’s
orbital response to the gravitational acceleration (GM/r?) of the other body. The full radius
distance term and the individual orbital period terms in the direct orbital system are used in place
of the combined orbital terms to calculate the orbital velocity that a body of any size would have
when orbiting another body as its frame of reference. This provides a single orbital velocity that
any orbiting body would have as a result of the gravitational acceleration of the body being
orbited.



In the combined orbital system this cannot be done because the combined orbital terms,
the radii distances to the center of mass and the combined orbital period, are dependent on the
masses of both the orbiting body and the body being orbited. This dependent orbital velocity is
calculated to be different for orbiting bodies of different mass located at the same radius distance
from the body being orbited. A change in the mass of the orbiting body causes a change in its
orbital velocity in the combined orbital system . This does not happen with the orbital velocities
using the orbital terms of the direct orbital system.

3 The Proportionality Contradiction of Orbital Velocities in the Direct and Combined
Orbital Systems

The orbital velocity of a body calculated in the direct orbital system is neither equivalent
nor proportional to the velocity of a body in the combined orbital system due to a proportionality
difference in the orbital terms. In the combined system the radius distance of each body to the
center of mass (r, and r,) is variable in the two centripetal acceleration equations for the two
bodies. In the direct orbital system, it is the the inverse squares of the orbital periods (1/T,* and
1/T,?) that are variable in these two acceleration equations. So when the orbital velocity (27r/T)
of each body is calculated, the velocity varies as the radius r in the combined orbital equations
(Equations 1 and 2), and it varies as the inverse square of the orbital period 1/T? in the direct
orbital equations (Equations 3 and 4). The set of variables in the direct system is based on a
squared term, and the set of variables in the combined system is not based on a squared term.
This disproportionality in the sets of variables causes the proportionality difference in the
calculation of the orbital velocities in the two systems. The calculated velocities in the direct
orbital system could never be equivalent to those in the combined orbital system because of this
proportionality difference in their terms.

In the direct orbital system the velocities of the two bodies are inversely proportional to
the square roots of the masses. In the combined orbital system the velocities of the bodies are
inversely proportional to the masses directly. This difference affects the calculations of all the
orbital equations containing the velocity terms.

The calculation for the centripetal accelerations of the two bodies yields the same result
in both the direct and combined systems. Simplifying the centripetal acceleration term (a) in the
force equation (F=Ma) gives the equation

a=v/r (7)

The equivalence of the centripetal acceleration calculations for the smaller body in the combined
and direct orbital systems (using their respective orbital terms) appears as

Vi, = v, r (8)



where v is the velocity of the smaller body in the combined orbital system, and v, is the velocity
of the smaller body in the direct orbital system. The equivalence of the acceleration calculations
for the larger body in the combined and direct orbital systems appears as

v/, =v . r 9)

where v, is the velocity of the larger orbiting body in the direct orbital system.

In comparing these equivalent sets of centripetal acceleration equations for the direct and
combined orbital systems (Equations 8 and 9), each body has different radius (r) terms in the
denominator, and each body has different velocity squared (v?) terms in the numerator. The
velocity terms of both of the bodies in the combined orbital system are made variable by the
variable term for the radius distance to the mass center point located in the denominator of their
centripetal acceleration equations. The velocity terms of both of the bodies in the direct orbital
system are not variable because the radius terms in the denominators of their acceleration
equations are always the full radius distance between the bodies, which is not variable (at a given
radius distance). In this comparison of the the direct and combined orbital systems, the lack of
equivalence and proportionality in the velocities of the bodies between the two systems will be
shown to be the key to many of the problems that are currently seen in orbital systems.

4 Comparison of the Centripetal Acceleration Equations in the Direct and Combined
Orbital Systems

The formula for centripetal acceleration is v?/r (Equation 7) which simplifies to
An’rY /Tt (or 4m’r/T?) (10)

The centripetal acceleration formula for the larger body in the combined orbital system appears
as

4nr /T (11)

and the centripetal acceleration formula for the smaller body in the combined orbital system
appears as

4t T? (12)



where r, and r, are the radius distances of the larger and smaller bodies to the center of mass of
the combined system. These are the centripetal acceleration equations in the combined orbital
system.

The centripetal acceleration formula for the larger body in the direct orbital system
appears as

Amr/T 2 (13)

and the centripetal acceleration formula for the smaller body in the direct orbital system appears
as

Amr/T,? (14)

where T, and T, are the individual orbital periods of the larger and smaller bodies relative to the
opposite body. These last two equations are the acceleration equations in the direct orbital
system.

The variables that differ in the centripetal acceleration equations of the two systems are
the orbital radii to the mass center point in the combined orbital system, and the individual
orbital periods in the direct orbital system. If the two centripetal acceleration equations in the
combined orbital system are added together, the radii distances to the center of mass combine to
form the full radius distance. If the two centripetal acceleration equations are combined in the
direct orbital system, the inverse-squares of the two individual orbital periods of the bodies
combine to form the inverse square of the combined orbital period of the system.

The gravitational acceleration of the body being orbited is equal to the centripetal
acceleration of the orbiting body in both the combined orbital system and the direct orbital
system. The equivalence of the larger body’s gravitational acceleration to the two equivalent
centripetal accelerations of the smaller body (in Equation 8)

GM,/1* = 47°,%/T°r, = 4°r*/T,’r (15)

The equivalence of the smaller body’s gravitational acceleration to the two equivalent centripetal
acceleration calculations of the larger body (in Equation 9) in the combined and direct orbital
systems, respectively, appears as

GM,/r? = 4n’r */T?r, = 4%/ T *r (16)
The two portions of the equation on the right side in Equation 15 express the equivalence

of the centripetal accelerations calculated for the smaller orbiting body in both the combined
orbital system and direct orbital system, respectively. This equivalence is



47’r X/ Tr, = 4/ T, r (17)
and like terms can be cancelled out on each side to give

r,/T?=1/T, (18)
which is the same radius and orbital period relationship as in Equation 8. The two portions of the
equation on the right side in Equation 16 similarly express the equivalence of the centripetal
accelerations calculated for the larger orbiting body in both the combined orbital system and
direct orbital system, respectively. This equivalence is

4t */TPr, = 4/ T (19)
and like terms can be cancelled out on each side to give

r,/T>=1/T? (20)
which is the same radius and orbital period relationship as in Equation 9.

If Equation 18 is then divided by Equation 20 in order to give a ratio of the smaller
body’s orbital terms to the larger body’s orbital terms in the two systems, the equation appears as

rz/T2 _ r/T22 .
rl/T2 r/Tl2 (21

and by deleting like terms on both sides it becomes

2

ry 1T,

2 =22 22
,,1 N /le (22)

or the expression on the right can be inverted to give
2

r, _ T,

2 =_1 23
T, (23)

which gives the relationship between the radius variables in the combined orbital system to the
squared orbital period variables in the direct orbital system.



S Comparison of the Mass-Velocity Relationship in the Direct and Combined Systems

In the combined orbital system, the terms for the radii distances of the smaller and larger
bodies to the mass center point (r, and r,) are in the ratio on the left side of Equation 22. The
ratio of the masses of the two bodies (M, and M,) is inversely proportional to the ratio of these
two mass center point distances in the combined orbital system, therefore

A1 (24)

M, rn
Because of the equivalency of terms in Equation 22, this means that the ratio of the masses of the
two bodies is also inversely proportional to the ratio of the inverse squares of the individual
orbital periods of the two bodies in the direct orbital system, therefore

M, _UT,
M, oyt

(25)

If both of the r terms in Equation 24 are each multiplied by 2n/T, then the velocity of the
smaller body in the combined orbital system appears in the numerator and the velocity of the
larger body appears in the denominator on the right hand side of the equation. This equation now

appears as
M,  2mr,/T
M,  ZmwrJT (26)

This equation shows that the velocities of the two orbiting bodies in the combined orbital system
are inversely proportional to the masses of the bodies. The velocities in this system are relative to
the center of mass.

If both of the 1/T? terms in Equation 25 are multiplied by 47’r?, then it is the square of the
velocity of the smaller body that appears in the numerator and the square of the velocity of the
larger body that appears in the denominator on the right hand side of the equation for the direct
orbital system. The equation appears as

]\ﬁ _ 471:2r2/T22 .
M2 4 I’Z/Tl ( )

or this equation can be also be expressed as
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Qur/T,)?
Qnur/T )

M,
M, (28)
2
It is the squares of the orbiting velocities of the two bodies that are inversely proportional
to the masses of the bodies in the direct system. This is very different from the velocities in the
combined orbital system shown in Equation 26. If we take the square root of each side of

Equation 28, then the velocities of the bodies in the direct orbital system are inversely
proportional to the square roots of the masses. This equation appears as

\/2\71 _ 2T,

\/Vz - 2mwr/T ! (29)

Both the combined orbital system and the direct orbital system calculate the same
centripetal accelerations for the bodies in a two-body orbital system. But they do so with
different sets of orbital terms. This difference in terms causes the velocities in the combined
orbital system to be inversely proportional to the masses of the bodies, while it causes the
squares of the velocities in the direct orbital system to be inversely proportional to the masses
(before the inclusion of the additional motion factor of the orbital center points in Section 7).

6 The Application of Direct Orbital Dynamics to the Orbital Equations

The terms used in the orbital equations for the Direct Orbital Dynamics frame of
reference are the full radius distance between the bodies (1), the individual orbital period of the
smaller body relative to the larger (T,), and the individual orbital period of the larger body
relative to the smaller (T,). These terms can be inserted into all the standard Newtonian orbital
equations with successful results that balance the equations. These calculations provide the direct
orbital response of each body to the gravitational equations without using the combined terms of
the standard system.

This set of equations is important because it shows the gravitational action and orbital
reaction taking place in the direct orbital system before the factoring in of the interactive motion
of the two bodies and their orbital center points in the next section. This set of gravitational and
orbital equations with actual calculations is located in the middle column of Table 2 below, with
the first column containing the combined orbital system calculations for comparison, and the
third column containing the direct orbital system with the application of the additional motion
factor. The calculations for the orbital angular momentum of the two bodies will be addressed
separately in the next section as well, as they carry another important difference. Below are the
gravitational and equivalent orbital equations of the direct orbital system.
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The orbital equations using the terms of the Direct Orbital Dynamics System:

Gravitational Force = Centripetal Force or F=Ma
(For both the larger body M, and the smaller body M,)

GM M, /r* = M,v,*/r = M4’ r*/ T *r (30)
GM M, /r* =M,v *r =M 4 t¥/T *r (31)
Gravitational Acceleration = Centripetal Acceleration (For both M, and M,)

GM /r* =4nr*/T,r  (Centripetal Acceleration of the smaller body) (32)
GM,/r* =47*r*/Tr  (Centripetal Acceleration of the larger body) (33)
Gravitational Potential Energy + Kinetic Energy M, + Kinetic Energy M, =0 (For M, and M,)
-GM M, /r + (a)M,4m*r*/T,* + ()M, 4n’r?/T 2= 0 (34)
Kinetic Energy of the Smaller Body (M,) = Kinetic Energy of the Larger Body (M,)

()M, AT/ T,? = (Ya)M 4n’r*/T (35)
Negative '% Gravitational Potential Energy = Orbital Kinetic Energy (For both M, and M,)
+(Y2)GM, M, /r = (Ya)M,4n*r*/T,? (36)
+(Y2)GM M./t = (Vo))M 4n’r?/T 2 (37)

NGMTr= Orbital Velocity  (For both M, and M,)

\JGM /r =2nr/T, Velocity of the smaller body (38)
\JGM,/r =2nr/T, Velocity of the larger body (39)

Notice the balancing of the orbital kinetic energies of the larger and smaller bodies in
Equation 35. In the direct orbital system the masses are inversely proportional to the squares of
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the velocities (Equation 27 and 28). So the (*2)M,v,* and (Y2)M,v,” formulas of the orbital kinetic
energies of the two bodies now balance. These equations contain the mass term for each body
multiplied by the velocity squared term of that same body, and these are equivalent calculations
in the direct orbital system. This does not happen in the combined orbital system because of the
influence of the combined orbital terms on the calculated orbital velocities, and because of the
resulting velocity proportionality difference between the two systems. Equations 36 and 37
further show that the positive (or absolute) value of 'z of the gravitational potential energy is
now equal to the kinetic energy of either orbiting body in the direct orbital system.

Notice also that in Equations 38 and 39 the gravitational form of the velocity equation
appears, which is usually only used for calculating the velocity of a body of negligible mass
(such as a satellite) around a larger body. Equation 38 does not work in the combined orbital
system when the smaller orbital body (M,) is increased in mass and thereby causes the radius
term to the center of mass (r,) on the right hand side of the equations to decrease significantly
from the full radius term. There is no term on the left hand side of this equation that can
compensate for a change in the orbital velocity due to an increase in the mass of the smaller body
in the combined system. For the larger body, Equation 39 could not work at all in the combined
system for the same reasons. In the direct orbital system Equations 38 and 39 do work and do
balance the velocity equation for two bodies having masses of any size. This is because the
radius terms in the equations are the full radius terms, and the orbital period term on the right
hand side of the equations is balanced by the mass terms on the left hand side of the equation.

These are examples of some of the equations that are balanced by using the terms of the
direct orbital system, and which do not balance in the standard orbital system using combined
orbital terms. All of the above gravitational and orbital calculations work successfully in practice
as can be seen in the actual calculated examples in Table 2.

7 The Interactive Motion Between the Two Bodies in the Direct Orbital System

In the direct orbital system both bodies orbit each other as their orbital center points, and
each body carries the orbital path of the other body around with it. This interactive motion
continuously changes the orbital direction of each body as the bodies move, and this creates two
smaller apparent orbits of the bodies around a combined orbital center point (Figures 1 and 2).
Since each body is orbiting the other body as a moving orbital center point, the motion of each
body is affected by both the gravitational acceleration and the physical motion of the other body.
Each body not only exerts gravitational attraction on the other body, it also alters the orbital path
of the other body with its own orbital motion. The physical motion of the two orbital center
points located at each of the bodies presents an additional motion factor for the two bodies in the
direct orbital system.
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Figure 1. The Two-Body System in Direct Orbital Dynamics: each body orbits the other body
directly and carries the orbital center point of the other body around with it. This interactive
motion of the two orbital paths (in black) continuously alters the direction of each body on its
own path, and creates the two apparent orbits (in red) around a combined orbital center point.

Figure 2. Sequential motion of a two-body system in Direct Orbital Dynamics: a series of
diagrams showing the interacting motion of the two bodies and their orbital paths (in black)
creating the two apparent orbital paths (in red) around the combined orbital center point.
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The orbital motion of each body due to the gravitational attraction of the other body has
been accounted for in the equations of the direct orbital system. Now the physical motion of the
two orbital center points of the bodies have to be accounted for as an additional interactive
motion effect on the two bodies. Since the orbital center points are located at the two bodies,
they have the same orbital velocities as the bodies themselves. The individual orbital velocities
calculated for the bodies in the direct orbital system can be applied to the motion of the two
orbital center points to account for the additional motion factor. These additional velocities of the
orbital center points can then be included into the direct orbital system to get the combined
interactive motion of the two bodies.

The two bodies are now referred to as having a combined motion and a combined orbital
center point, and this sounds like a description of the combined orbital system examined
previously. The important difference here is that the individual orbital velocities of the direct
orbital system are now being applied to the orbiting bodies rather than the orbital velocities of
the combined orbital system, which are neither equivalent nor proportional to the orbital
velocities of the direct system. The two bodies in the direct orbital system interact differently in
their orbital motion than they would in the combined system due to the two systems having
different orbital velocities. The difference in the orbital velocities, caused by the difference in the
terms used in the calculation of the velocities, is the key difference in the motion of the two
bodies in the direct and combined orbital systems. In the direct system, the direct orbital
velocities of the two bodies relative to each other are determined first, and then those two
velocities are applied to the two orbital center points that are in motion to determine the
combined orbital motion of the two-body system.

The ratio of the two individual orbital velocities of the bodies determines the location of
the combined orbital center point of the system. In the direct orbital system the masses of the two
bodies are inversely proportional to the squares of the orbital velocities as seen in Equation 28:

M, _ QuriT,)’
M,  Q@miT,) (28)
If the two orbiting bodies (in Figures 1 and 2) had masses of 4 and 1 units in the equation above,
their orbital velocities (T, and T,) would be 1 unit and 2 units of velocity respectively in the
direct orbital system. The squares of these velocities would be 1 and 4, and it is these squares of
the velocities that are inversely proportional to the masses in the direct orbital equation.

In the combined orbital system it is the velocities of the bodies, not the squares of their
velocities, that are inversely proportional to the masses. So in this scenario the two bodies in the
example above would instead have velocities of 1 and 4 units and would therefore orbit the
center of mass of the system. This is actually what is observed in multiple body planetary
systems within the solar system. However, in all these systems the planetary bodies are locked
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into orbit around the Sun, and the Sun is the primary source of their gravitational acceleration.
The center of mass of a planetary system would orbit the Sun, and the planetary system would
naturally appear to orbit the center of mass of the system. The planetary body is not part of a
freely orbiting independent system with respect to the smaller body or bodies orbiting it, and so
the bodies in such a system are not observed to be operating according to the direct orbital
system. Most planetary systems orbiting the Sun do not represent the freely orbiting systems of
the direct orbital system (the Pluto-Charon system may be an exception).

The Earth and Moon do not orbit each other freely because the gravitational force of the
Sun on the Earth is far greater than that of the Moon on the Earth. The gravitational force of the
Sun on the Moon is also greater than that of the Earth on the Moon. And so the Earth and the
Moon simply orbit their own center of mass while the two orbit together around the Sun. The
effects of the direct orbital system would not be visible in a system gravitationally locked within
another system like the Earth and Moon in relation to the Sun.

It is a completely different situation with a freely orbiting body in the direct orbital
system. In the above example of a direct system with masses of 1 and 4 units, the masses of the
bodies were stated to be proportional to the squares of their orbital velocities (Equation 28). The
smaller body with 1 unit of mass would therefore have 2 units of orbital velocity, and the larger
body with 4 units of mass would have 1 unit of orbital velocity. With the ratio of 2 units of
orbital velocity for the smaller body and 1 unit of orbital velocity for the larger body, the two
bodies would have an orbital center point that is located one third the distance from the larger
body to the smaller body, as in Figures 1 and 2. This is not the location of the mass center point
that is currently viewed as being the orbital center point of a two-body system. The mass center
point would have a 4 to 1 radius distance proportionality to the two bodies as in the combined
orbital system, with the radii being inversely proportional to the masses directly.

In the direct orbital system, freely orbiting bodies have an inverse square ratio
relationship of their masses to their individual orbital velocities (Equation 28). This results in an
inverse square ratio relationship of their masses to their radii distances to their orbital center
point located at the center of gravity. This “distance squared” gravitational center point in the
direct orbital system is located at a point directly opposite the Lagrangian L1 point between the
bodies. This point is the same distance from the larger body that the L1 point is from the smaller
body. The square of the radius distance of each body to this distance squared center of gravity
orbital center point is inversely proportional to the mass of each body. The distance squared radii
of this gravitational center point reflects the inverse square law of gravitation. Each body is still
gravitationally orbiting the other body directly in the direct orbital system, but the interactive
motion of the bodies and their orbits causes the two bodies to also jointly orbit the distance
squared gravitational center point. The center of mass in the direct orbital system is located
closer to the larger body than the distance squared center of gravity orbital center point, and so it
would revolve around this gravitational center point with the orbital motion of the two bodies.
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Both the body and its orbital path are in motion, and together this combined orbital
motion causes each body to actually traverse the entire orbital path around the other body during
the observed orbital period of the system (Figure 2). Part of this orbit is due to the forward
motion of the body, and part is due to the reverse motion of its orbital path. The ratio of these
combined motions of the body and its orbital path is the same as the ratio of the radii distances of
the bodies to the distance squared center of gravity. The result of this interactive motion is that
the direction of each body’s orbit on the moving orbital path is continuously changing, causing
each body to orbit a smaller apparent orbit around the combined orbital center point (with the
circumferences of these smaller orbits having the same ratio as above). This combined motion
incorporating the additional motion factor also has an important effect on the calculation of the
centripetal acceleration of each body relative to the combined orbital center point, with an
important application to the excessive rotation of disk galaxies (Section 9).

8 Orbital Angular Momentum in the Direct Orbital Dynamics System

In the direct orbital system the bodies in a two-body system were shown to engage in an
orbital interaction around an orbital center point located at the distance squared center of gravity,
and not around the center of mass which is used in the combined orbital system. When the orbital
angular momentum of a two body or multiple body system is calculated relative to the center of
mass in the standard system, the smaller body is always calculated to have the vast majority of
the orbital angular momentum (not taking into account axial angular momentum). For example,
Jupiter is calculated to have 60% of the orbital angular momentum of the solar system, and the
four Jovian planets together account for over 99%. This is referred to as the angular momentum
problem, and this problem appears at all scales in the universe [3].

The basis for this problem is the combined orbital terms, and the resulting velocities, of
the combined orbital system that are used in the calculations for orbital angular momentum. The
equation for angular momentum (L) is

L =Mvr (40)
or, when simplified
L = M2nr¥/T (41)
In the combined orbital system the r terms are the radii distances of the larger and smaller
bodies to the mass center points, r, and r,. The equations for the two bodies in this combined

system therefore appears as

M 27 /T (42)
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for the larger body, and
M, 27, %/ T (43)

for the smaller body. For the combined orbital system, we will use the example from above
where M, is equal to 4 units of mass, and M, is equal to 1 unit of mass. The radius distance of the
larger body (r,) to the mass center point will be 1 unit, and the radius distance of the smaller
body (r,) to the mass center point will be 4 units. We will set 2r/T equal to 1 in both equations so
that these terms will cancel out for comparison purposes. The variable terms in the first equation
are therefore M,(r,?), and when the numbers above for the larger body are inserted the resulting
quantity is 4(1%) or 4. The variable terms in the second equation are M,(r,?), and when the
numbers above for the smaller body are inserted the resulting quantity is 1(4%) or 16. The orbital
angular momentum of the smaller body is four times as large as that of the larger body in this
example of how the combined orbital system works.

When the mass is multiplied by the distance squared in the orbital angular momentum
equations of the combined orbital system, the radius distance of the bodies to the mass center
point will always give such a disproportional result. The orbital angular momentum of the
smaller body will always be calculated to be greater than that of the larger body by an amount
that is inversely proportional to their masses. If Jupiter and the Sun are treated as a two-body
system, Jupiter will be calculated to have about 1047 times the amount of orbital angular
momentum as the Sun (not taking into account the axial angular momentum of the bodies). The
Sun in turn has about 1047 times the amount of mass as Jupiter.

In the direct orbital system, different orbital terms are used that give different results for
the calculated orbital angular momentum of each of the bodies. As in the above examples, the
masses will be equal to 4 and 1 units again. In the direct system the masses of the bodies are
inversely proportional to the squares of their radii to the distance squared center of gravity orbital
center point. The radius distance of the larger body (r,,) to the distance squared center of gravity
would be 1 unit, and the radius distance of the smaller body (r,,) to the distance squared center of
gravity would be 2 units in this example (these quantities of distance are used in this example
only and are not comparable to the last example). We will set 2n/T equal to 1 again in both
equations so that these terms will cancel out for comparison purposes. In the direct orbital system
the variable terms in the first equation are Ml(rglz), and when the terms are inserted the quantity
is 4(1?) or 4. The variable terms in the second equation are Mz(rgzz), and when the terms are
inserted here the quantity is 1(2%) or 4. In the direct orbital system the larger and smaller bodies
are calculated to have equal amounts of orbital angular momentum. The orbital angular
momentum of the two-body system is balanced between the two bodies in these equations.

This is another example of an equation balancing with the orbital terms used in the direct
orbital system, that did not balance with the terms used in the combined system. This also
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occurred with the balancing of the kinetic energies of the two bodies (Equation 35) and with the
balancing of the two types of velocity equations (Equations 38 and 39). The orbital angular
momentum of the larger body (M,) equals the orbital angular momentum of the smaller body
(M,). In the orbital angular momentum equations for the direct orbital system this appears as

M, (2nr,/T)r, = M,(2mr, /T)r,, (44)
which reduces to
Mir,,? =M, (45)

where r,, is the radius distance of the larger body to the distance squared center of gravity orbital
center point, and r,, is the radius distance of the smaller body to this distance squared orbital
center point. The combined orbital period term (T) is now being used in the orbital angular
momentum equations, along with radius distance terms of each of the bodies to the distance
squared center of gravity orbital center point of the direct orbital system.

9 The Application of the Additional Motion Factor to Direct Orbital Dynamics

The orbital radius terms of the larger and smaller body to the distance squared
gravitational center point (r,, and ry), along with the combined orbital period (T) of the
two-body system, can now be applied to the other orbital equations in the direct orbital system.
These terms replace the full radius term (r) and the individual orbital period terms (T, and T,)
used up until now in this direct system. These direct terms were used to calculate the individual
orbital response of each body to the gravitational attraction of the other body, with each body
being treated as the the orbital center point of the other body. The reason for applying the new
set of orbital terms is to incorporate the orbital velocities of these two orbital center points,
which are located at the bodies. The motion of these orbital center points represents an additional
motion factor affecting the combined orbital motion of the two bodies. The proportionality of the
orbital velocities in the direct orbital system defined the location of the combined orbital center
point to be at the distance squared center of gravity.

The newly defined radius terms to the distance squared gravitational center point were
applied to the orbital angular momentum equations, along with the combined orbital period term
of the system. The orbital angular momentum of each of the two bodies was calculated to be
equivalent and balanced when using these terms (Equation 44). If these terms of the direct orbital
system are applied to the orbital angular momentum calculations for Jupiter and the Sun as an
example, these quantities are also calculated to be equal and balanced (in the third column of
Table 2). This result would be the same for a binary star system, a pair of orbiting galaxies, a star
and its planet, or any two-body system.
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The balanced relationship between the orbital kinetic energies of each of the bodies in the
direct orbital system was given in Equation 35:

Kinetic Energy of the Smaller Body M, = Kinetic Energy of the Larger Body M,
()M, AT/ T,? = (Ya)M 4n’r*/T (35)

If the new orbital terms for the radii and orbital period in the direct orbital system are inserted
into this equation it becomes

(BIMATT YT = ()M 4rr, T (46)

The orbital kinetic energy of each body is still equal to that of the other body in this equation
even though the orbital terms have changed. The application of the additional motion factor
changes the quantities on each side of the equation slightly, as it does in all the equations (Table
2), but the equation itself remains equivalent.

The relationship between the gravitational acceleration and centripetal acceleration of
each body in the direct orbital system was given in Equations 32 and 33:

Gravitational Acceleration = Centripetal Acceleration (both M, and M,)
GM,/r* = 4n’r*/T,r (32)
GM,/r* = 4n’c*/T *r (33)

where the centripetal acceleration of the smaller body is on the right side of the top equation, and
the centripetal acceleration of the larger body is on the right side of the bottom equation. If the
new orbital terms for the radii and orbital period in the direct orbital system are inserted into
these equations they become

GM /1* # 4n’r )/ T’r, (47)
GM,/r* # 4’r,,*/T’r,, (48)

These equations are no longer equalities once the new terms are inserted. This would at
first appear to invalidate the incorporation of the new terms into the direct orbital system, but it
instead leads to the explanation for the increased velocity and acceleration problem that is
observed in galactic rotation curves (the dark matter problem). The total sum of the two
centripetal accelerations on the right hand side of the equations remains the same in the top set
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and bottom set of equations (as will be seen in the examples below in Table 2). This equivalence
appears as

(4mrT,r) + (4m2/T ) = (4rr /T y) + (dnr, YT (49)

The equivalence of the gravitational acceleration to the sum of the right hand side of the
centripetal acceleration equations of Equation 47 and 48 would appear as

GM,/1? = Va(4m’r )/ Tt ) + Va(Amr Y/ T, (50)

Newton’s second law is preserved in the orbital system because of this equality. The total
sum of the centripetal acceleration of the two body system remains the same when the new
orbital terms of the direct orbital system are used. However, a shift occurs in the proportionality
of the individual accelerations of the bodies. The larger body in the direct orbital system is now
calculated to have a large increase in its acceleration, and the smaller body has an equivalent
decrease in acceleration. This is caused by the interactive orbital motion of the bodies, and the
motion of their orbital center points and orbital paths.

Some of the acceleration of the smaller body transfers to the larger body in their
interactive orbit around the distance squared center of gravity. This transfer of acceleration
causes the average acceleration of the mass of the system (per unit of mass) to increase to the
relationship Moca?, or Moc V* (instead of the relationship of Moca, or Moc V* which exists in the
static direct orbital system before the additional motion factor is applied). The total sum of the
centripetal acceleration of the system remains the same, conserving Newton’s second law of
motion. But this transfer of acceleration between the two bodies causes a greatly increased
acceleration of the larger body, resulting in a large increase in the amount acceleration per unit of
mass within the system.

The last equation (Equation 50) is similar to the situation of the kinetic energy
calculations in the standard orbital equations. The absolute value of the gravitational energy is
equal to the sum of one half the kinetic energy of each of the two bodies.

10 Mass is Proportional to the Velocity to the Fourth Power in Both Disk Galaxies and the
Direct Orbital System with the Additional Motion Factor

In the first set of centripetal acceleration equations (Equations 32 and 33) the
accelerations of the two bodies are inversely proportional to their masses in the direct orbital
system. Now a new set of orbital terms is being used to incorporate the motion of the orbital
center points that represents an additional motion factor in the bodies. These new orbital terms
are the radius distances of the bodies to the distance squared gravitational point, and the
combined orbital period (which is the observed period of the system).
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When these terms are inserted into the centripetal acceleration equations, the
accelerations of the bodies are no longer inversely proportional to the masses directly. The
accelerations are now inversely proportional to the square roots of the masses in the direct orbital
system containing the additional motion factor. When each side of this proportionality is
squared, the masses of the bodies are inversely proportional to the squares of their
accelerations. This would mean that the total mass of the system is proportional to the total sum
of the accelerations squared, which has an important application to the excessive rotational
velocities found in disk galaxies. Acceleration carries the velocity squared term within it, so the
mass would be also proportional to the velocity to the fourth power.

Here is the equation for centripetal acceleration showing the velocity squared term:

a=vir (51)
so the acceleration squared would appear as

a’ = (v¥/r)? (52)
or

a’=vir? (53)
which contains the term for velocity to the fourth power on the right hand side.

Since the squares of the accelerations of the bodies are now inversely proportional to the
masses, this means that the velocities to the fourth power are also inversely proportional to the
masses, as in the equations below:

M /M, = (v,2/r,)*/ (v /1)) (54)
or

M,/M, = (v,*/t,2) / (v,*r,) (55)

and by inserting the new orbital terms incorporating the additional motion factor for the direct
orbital system this appears as

M/M, = v,'r, /v 'r,,” (56)

The mass of the system is therefore proportional to the acceleration squared
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M oc a? (57)
or the mass is proportional to the velocity to the fourth power
M oc v* (58)

A comparison of the sets of orbital equations using actual orbital terms (of Jupiter and the
Sun as an example) is given in the three columns of Table 2. The three columns represent the
calculations of the combined orbital system, the direct orbital system, and the direct orbital
system incorporating the additional motion factor of the two orbital center points.

This velocity to the fourth power effect is also seen in the flat rotation curves of disk
galaxies where it is observed that the mass of the galaxy is proportional to its acceleration
squared, or to the velocity to the fourth power. This mass-velocity relationship is charted in the
Baryonic Tully Fisher Relation between the baryonic masses of disk galaxies and the fourth
power of their rotational velocities (v*) [14,15]. The rotation curves of disk galaxies contain this
mass-velocity relationship and are asymptotically flat at large radial distances [5,6]. This
observation is what led to the theories of dark matter and Modified Newtonian Dynamics or
MOND. A halo of dark matter is theorized to account for the excessive rotational velocities of
disk galaxies [7,11,20]. MOND theorizes a change in gravitation at low accelerations to account
for these excessive velocities [ 8-12 ].

The Direct Orbital Dynamics System also contains the mass and velocity to the fourth
power relationship (M o< v*) in small orbiting systems within the high acceleration Newtonian
regime (Equation 58). This is exactly the same as the same radial force law that is found in the
mass-velocity relationship of disk galaxies charted in the Baryonic Tully Fisher Relation [13-15].
Application of the direct orbital system with the revised orbital terms provides the physical basis
for the velocity to the fourth power law that is observed in disk galaxies. The basis for this lies in
this additional motion factor incorporated into the direct orbital system. The bodies are orbiting
each other directly in this system as their orbital center points, but the fourth power relationship
only appears after incorporating the additional velocities of these orbital center points relative to
the distance squared center of gravity.

In the direct orbital system, a body in a two-body system orbits the other body directly as
its orbital center point, but as that orbital center point moves the orbiting body follows it and its
orbit is altered. The orbiting body therefore has an additional motion factor apart from its
gravitational motion. A star orbiting within a disk galaxy would behave the same way in the
direct orbital system. The star would react to both the gravitational acceleration of the galaxy and
to the motion of the other stars orbiting in its section of the galaxy. The star would be orbiting
the galaxy, but it would also respond to the movement of the other orbiting stars around it, just as
the bodies in the two-body system follow their moving orbital center points. The additional
motion of these other moving stars has to be factored in with the gravitational motion of the star
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orbiting the galaxy. This is the apparent reason for the flat rotation curves seen in all disk
galaxies. The stars are all orbiting at the same velocity because each star is tied in to the orbital
velocities of all the stars around it, like a mass of moving orbital center points. Each star is
orbiting the galaxy, but is also being pulled along at the same velocity as all the other stars. Both
gravitation and motion have an effect on the velocity of a star in a disk galaxy.

This is the essence of the Direct Orbital Dynamics System, treating bodies as orbiting
each other directly while in motion. A body orbits due to gravitational acceleration, but there is
this additional motion factor involved with the body also responding to the motion of other
bodies. This occurs in two-body systems, in disk galaxies, and at all scales.

11 Other Possible Applications of Direct Orbital Dynamics

Pluto and Charon and the proportionality of their masses

Pluto and its moon Charon comprise one of the only systems in the solar system where
the larger body has a moon proportionally large enough to surpass the gravitational attraction of
the Sun. The bodies are also far enough away from the Sun so that the Sun has much weaker
gravitational attraction than in the inner solar system. Pluto’s gravitational attraction to Charon is
stronger than Pluto’s gravitational attraction to the Sun (in the equation for gravitational
acceleration). Pluto is primarily orbiting Charon and Charon is primarily orbiting Pluto, with
both bodies secondarily orbiting the Sun. This is very different from the Earth-Moon system
where both bodies primarily orbit the Sun. Pluto and Charon would be orbiting the distance
squared gravitational center point of their system rather than the mass center point. This would
cause the masses of Pluto and Charon to be in different proportion that is currently calculated,
though the total mass of the system would be the same. This difference may be observed when
the New Horizons spacecraft passes the Pluto system and its major moon Charon. Pluto should
be found to contain about 10% more mass than expected (1.44x10*kg), and Charon should be
found to contain far less mass than expected (1.95x10% kg). Precessional effects in the
Pluto-Charon orbit could alter these mass estimates somewhat. The system would have
approximately the same total mass as expected, but the mass ratio will be different due to Pluto
and Charon orbiting the distance squared gravitational center point of the direct orbital system.
This would also mean that the orbital angular momentum of Pluto and Charon would be
balanced, as well as the orbital kinetic energy. It would also mean that the velocity of the New
Horizons spacecraft should be increased slightly more than expected, and the trajectory should
also be slightly affected as it passes Pluto. This is due to the current incorrect mass proportion
estimates, since the Pluto-Charon system is currently treated as orbiting its mass center point and
would instead be orbiting the distance squared gravitational center point.

The formation and the orbital angular momentum of the Earth and the Moon

The Earth and the Moon are both gravitationally locked to the Sun and so cannot engage
in the balance of orbital angular momentum that they would have if they were a freely orbiting
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system. It is thought that this system must have been created by the giant impact of another body
because the Earth-Moon system only has about half of the angular momentum that it should have
if the system formed out of a rotating nebula of gas and dust [4]. However, the Earth-Moon
system would have about twice as much orbital angular momentum if they were orbiting freely
and not gravitationally locked to the sun. The large portion of the Earth’s orbital angular
momentum relative to the Moon that the Earth should have in the direct orbital system is not
present. Since angular momentum is conserved, this missing angular momentum may be
showing up instead as the small secular increase in the astronomical unit (AU) distance of the
Earth from the Sun each year [16]. This would gradually increase the orbital angular momentum
of the Earth and the Sun. The Earth and Moon do not require the giant impact hypothesis of a
third body to form this system because they would have initially had the required angular
momentum necessary when forming out of a rotating nebula. The missing orbital angular
momentum would have been transferred to the Earth-Sun relationship because the Earth and
Moon are gravitationally locked to the Sun.

This same argument is applicable to the formation of the Pluto-Charon system as well.
Here again a giant impact hypothesis is given for the same reason that there does not appear to be
enough orbital angular momentum present in the system to allow for the formation of the system
out of a nebula [17]. Direct Orbital Dynamics provides the necessary orbital angular momentum
just as with the Earth-Moon system formation, and a giant impact hypothesis in not necessary.

Two-body formation with angular momentum transfer to a second coalescing body

When a spinning nebula of gas and dust is collapsing into a large central body (star,
planet, etc.) the formation of a secondary body or bodies around it would transfer angular
momentum out from the central body. There would be a balance of orbital angular momentum
between the two bodies in Direct Orbital Dynamics. This would allow the larger body to shed a
large amount of axial angular momentum and further contract into a star, planet, etc.

As the secondary body formed, the combined orbital period of the two bodies would be
smaller (and the velocity faster) than the orbital periods of smaller bodies at the same radius
distance from the larger body. The secondary body would therefore move faster in the same orbit
than the rest of the mass orbiting at that radius, and it would gradually collect all the additional
mass in that zone and grow into a much more massive secondary body. As a result, yet more
orbital angular momentum would be gained by both this body and the primary body, with this
orbital angular momentum balanced out by the two bodies orbiting the distance squared
gravitational center point. The larger central orbiting body would shed more angular momentum
and contract further. And so a binary star, or a solar system, or Pluto and Charon, or the Earth
and its Moon could form out of the same nebula with balanced orbital angular momentum,
without having to resort to a giant impact hypothesis in the case of the last two.

The Flyby Anomaly

Direct Orbital Dynamics treats orbiting bodies as orbiting each other directly, and as
having the motion and acceleration of each body affected by the motion of the other. The
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influence of moving bodies may have impact in areas other than those mentioned above. The
axial rotation of a massive body may influence a body orbiting or passing it. This may be the
cause of the flyby anomaly, where spacecraft at times have an unexpected increase in velocity
when swinging around the Earth [1]. The axial rotation of the Earth may cause the increase in
this velocity as the spacecraft passes, which has already been suspected in the past.

The Retrograde Orbit of Triton

The moon Triton orbits Neptune, and it is in a retrograde orbit relative to the planet’s
rotation. The orbit of Triton is gradually slowing and decaying so that eventually Triton will
crash into Neptune. The motion of the enormous mass of the planet that is rotating opposite to
Triton’s orbit may be causing the moon to slow as is observed.

The Impossible Triple Star KIC 2856960

A star system was recently discovered that is being called “The Impossible Triple Star”
because it defies the laws of physics [18]. The researchers were unable to find a set of masses
and radii for the stars that could explain the system. This may be due to the incorrect orbital
terms and velocities used in the combined orbital system. Application of the direct orbital system
may yield results to explain the masses and orbits of this triple star system.

The Calculation of Stellar Masses

The calculated masses of stars in binary systems are proportionally affected when the
bodies are calculated to be orbiting the distance squared gravitational center point of the direct
orbital system. For example, Cygnus X-1 would no longer be required to contain a black hole, as
this object now would fall within the required mass parameters of a neutron star.

The Cosmological Redshifting of Light

Direct Orbital Dynamics may also have an application to the cosmological redshifting of
light. Since the motion of mass has an affect on the motion of a body in its gravitational field, the
motion of the mass of the universe passing in the opposite direction relative to a moving wave of
light may be expected to have an effect on that wave. This effect would be in addition to the
expected slight gravitational redshifting. The light wave cannot slow down in response to the
effect of the motion of the mass of the universe passing by it, so the light would instead have to
exhibit a redshifting in response to this effect. If the effect is large enough to account for the
observed redshifting of light in the universe, then the cosmological interpretation of the
redshifted light of distant objects would be in question. If the cosmological redshifting of light is
caused by the effect of the motion of the mass in the universe moving past the light wave, then
there will be more or less redshifting of the light based on the density of the portion of the
universe that the light is passing through.

When light waves pass near a massive body such as a star (or galaxy, or cluster of
galaxies, or the Sun specifically) the gravitation of that mass bends the light wave. The effect of
the motion of the massive body passing the light wave should cause an additional acceleration in
the direction of the mass. This would be represented by an additional bending of the light wave
beyond what is currently expected.
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Large Scale Structures in the Universe

Since dark matter is no longer required as an explanation for the increased rotation of
galaxies in Direct Orbital Dynamics, it should not be used as an explanation for how the
extremely large scale structures of the universe formed in only 13.7 billion years. If the effect of
the motion of the mass of the universe passing a light wave is responsible for the redshifting of
light in the universe, then the cosmological interpretation of a Big Bang at a point 13.7 billion
years in the past is also in question, as well as cosmological inflation. The formation of the large
scale structures in the universe (such as large superclusters of galaxies, walls and filaments, and
immense voids) would therefore not be constrained by time or by the existence of dark matter to
accomplish this task [19].

The Advanced Precession of Mercury’s Perihelion

Mercury is precessing faster than expected in its orbit around the Sun. The extra 43
seconds of precession of perihelion per century is currently accounted for by General Relativity.
But the motion of the axial rotation of the enormous mass of the Sun may be expected to cause
additional motion in the orbit of Mercury around the Sun. If any of the advanced precession of
Mercury is due to this motion factor, then General Relativity would have a problem since the
theory must account for 43 seconds of precession exactly.

12 Explanation of Tables 1 and 2

Table 1, below, contains the orbital terms for the planet Jupiter and the Sun. These two
bodies are treated as if they are a two-body system test model. Their real orbital terms are used in
the equations in Table 2 to compare the combined orbital system that is currently used, the direct
orbital system treating the bodies as orbiting each other directly, and finally the direct orbital
system incorporating the additional motion of the orbital center points (located at the two bodies)
around the distance-squared gravitational center point. The orbital angular momentum of each of
the bodies balance in the third column, as do the kinetic energies of the bodies. The centripetal
acceleration of the two bodies in the third column have the same relationship between their
masses and velocities as that observed for the flat rotation curves of disk galaxies charted in the
Baryonic Tully Fisher Relation: mass is proportional to velocity to the fourth power (MocV*).

Table 1. Orbital Terms Used for Jupiter and Saturn in the Table Below

Mass (Jupiter | Full Radius Orbital Period | Individual Center of Distance Squared

includes Distance Orbital Mass Radius | Center of

Moons) Period Gravity Radius
Jupiter | 1.8987x10* kg | 7.7857x10" m | 3.7434x10%s | 3.7451x10%s | 7.7783x10" m | 7.5523x10"' m
Sun 1.9886x10° kg | 7.7857x10" m | 3.7434x10%s | 1.2120x10" s | 7.4266x10* m | 2.3336x10'" m
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Table 2. Calculation Comparison: The Sun as M, and Jupiter as M, in a Two-Body System

Standard Newtonian System
(Combined Orbital System)

Direct Orbital System
Before Motion Factor Added

Direct Orbital System
With r? Center of Gravity Orbits

Gravitational Acceleration (GM/r?)

1 | GM,/r*=2.091 x 107 (of the Sun)
2 | GM,/* =2.189 x 10 (of Jupiter)
Centripetal Acceleration (v¥/r) m-s? | Sums of sets are equivalent M /M, < (a,)*/(a,)* or (v,)*/(v,)*
3 | 47, Y/T?r,; = 2.092 x 107 (Sun) 4T r=2.092 x 107 4n2rg12/T2r =6.574x 10°
4 | 41°r Y/ T?r, = 2.191 x 10™* (Jupiter) 4/ T, r=2.191 x 10 4m’r,*/Tr = 2.128 x 10
Gravitational Force (GM,M,/r*) N
5 | GMM,/* = 4.157 x 107
Centripetal Force (Mv*/r) kg'm's? | = Newtons (N)
6 | M,4n’r*/Tr, = 4.161 x 10* (Sun) M 47/ T ’r=4.162 x 10% M 4n’r, */Tr, = 1.307 x 10%
7 | My4n’r,Y/T’r, = 4.161 x 10% (Jupiter) | M4n’r*/T,’r=4.161 x 10* M 4n’r,,*/Tr,, = 4.040 x 107
Grav. Potential Energy (-GM ,M,/r) J
8 | -GM,M,r=-3.237x 10%
Kinetic Energy (*aMv?) kg -m?*-s? = Joules (J) Balanced Equations Below
9 | (A)M4mr > = 1,545 x 107 (Sun) | (M Am/T,2 = 1.620 x 10° | ()M dr, YT? = 1,526 x 10
10 | (M4, T2 = 1.618 x 10 (Jup.) | (A)MAT/T,2 = 1.620 x 10% | (V)M,dn’r, YT = 1526 x 10%
Angular Momentum (Mvr) kg-m? s | =L
11| M,Qar,/Tr, = 1.841 x 10° (Sun) | M,2nr/T))r=6.249 x 10% | M(2nr, /T)r,, = 1.818 x 10+
12 | My(2nr,/T)r, = 1.928 x 10% (Jupiter) | M,2ar/Ty)r=1.931x 10% | MyQ2mr,/T)r,, = 1.818 x 10%
Velocity Equivalent ( NGMTr = V)
13 | JGM,TF = 4.034 x 10 (Sun)
\GM,/r =1.306 x 10* (Jupiter)
14
Velocity (v) m-s?
15 | 2nr,/T = 1.246 x 10' (Sun) 27tr/T, = 4.036 x 10* (Sun) 27‘crgl/T =3.917 x 10?
16 | 27r,/T = 1.306 x 10* (Jupiter) 2mr/T, = 1.306 x 10° (Jupiter) | 2nr,,/T =1.268 x 10*
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G = gravitational constant, M, = mass of larger body, M, = mass of smaller body, T = measured

orbital period of the system, T, = individual period of the larger body relative to the smaller, T, =

individual period of the smaller body relative to the larger, r = full radius distance, r, = radius

distance of the larger body to the center of mass, r, = radius distance of the smaller body to the

center of mass, r,, = radius distance of the larger body to the distance squared center of gravity,

r,, = radius distance of the smaller body to the distance squared center of gravity
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