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Abstract 
 

By inverting a key assumption of Relativity Theory, one can understand its predicted odd effects of time dilation, length contraction 

and mass increase in terms of Classical Physics.  The belief that must be suspended is that “Light always travels at constant speed”.  

The alternative premise is that “Light and matter waves travel through a field generated by mass, at a variable speed determined by 
the field’s intensity”. This new premise also leads to a Classical explanation for the attraction of Gravity.  

 

Introduction 
  

One of the most exciting, profound, yet hard-to-fathom theories in Physics is Einstein’s Theory of Relativity. The theory predicts several 

counter-intuitive, bizarre effects such as time dilation, length contraction and mass increase.  These effects occur most noticeably to objects that travel 

at very high speeds, or are subjected to high accelerations, as in intense gravitational fields. These effects are real - not just theory, or thought 

experiments - and have been verified, by carefully-performed experiments, to a high degree of accuracy.   

 

Even when presented with these experimental proofs, many people have great difficulty believing that the effects actually occur.  If the cause of 
the effects could be visualized, and explained in terms of Classical Physics concepts, they would be much easier to understand, and believe.   

 

Einstein’s Relativity comprises two theories: Special Relativity (1905), and General Relativity (1915). Special Relativity describes the effects on 
a body that has high speed motion, and General Relativity describes the effects on a body due to a gravitational field. Both theories provide equations 

for calculating the change in the rate of time (“time dilation“) that occurs, either as a result of the object’s speed, or its gravitational environment.  

One of the core assumptions of Relativity is that light always travels at a constant speed, and the claim made by Relativity is that this leads to effects 
such as length contraction and time dilation.   

 

It is interesting that two different situations, very high speed, and strong gravitational fields, yield the same effect of time dilation. In both 
situations, time “slows down” for the objects concerned. Given the same fundamental change to the physics of an object, what if the same underlying 

principle were causing the effect in both cases?   

 
This essay will demonstrate that both of these theories (Special and General Relativity), and their equations, describe the effects of a common 

causal factor. This factor is an energy field generated by matter, which fills space, and can be considered the root cause of the “strange” effects.   

 
By suspending Relativity’s assumption that light speed is constant, and by instead positing that light and matter waves flow through an energy 

field, at a rate determined by the field’s intensity, I will show how all of the odd effects of Relativity can be explained in terms of Classical Physics 
Field Theory.  

 

The proposal: 
 

(a) That space is filled with an energy field that is generated by mass and, the field is proportional to the gravitational potential [1, 2, 4]. 
(b) The field at any point in space is the sum of all the field contributions made by all masses in the causally connected Universe. 

(c) That matter waves and light waves are transmitted through the field at a speed that depends on the intensity of the field. Thus, waves travel 

through the field more slowly where it is intense  (such as in the space near a star). 
(d) Matter waves and light waves flow through the field much like water waves flow through water - so that they can be flowing 'upstream' or 

'downstream' with respect to the field. 

 

The gravitational potential   is a scalar quantity that expresses the gravitational potential of a single body generated by mass/energy: 

     
r Gm

a dr
r




       1Jkg  (1) 

where a  is the acceleration due to the gravitational force acting on a body that has unitary mass.  

I propose that a (positively signed) scalar field exists that is proportional to  , and is defined as follows: 

Let   be a scalar field, such that:   0a dr          1Jkg  (2) 

where 0  is the integration constant, that is, the magnitude the field has in the absence of the body being considered (i.e. if 0 ). The   field 

is visualized as a field extending into space around all bodies with mass/energy. It is known that the principle of superposition applies to the 

gravitational potential field, so the value of the   field at a point in space is the sum of all the field contributions made by all the masses in the 

system [7]. 

    n  ...3210   1Jkg  or equivalent  22 sm  (3) 

Now, suppose that the constancy of the speed of light c  were expressed in different terms - such that it is determined by the value of the   

field. In a high intensity   field, light’s speed decreases. However, the high intensity   field also slows all other physical processes equally, such 

that the rate of time within that reference frame slows too. Everything in the Universe is composed of waves. Ultimately the rate at which physical 

processes occur is determined by the speed at which these waves propagate. The speed of light’s apparent constancy then results from the time dilation 

that accompanies light’s change in speed. The quantity cc   remains constant, where c  is the speed of light in the   field, and   is the 
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General relativistic time dilation factor.  To an outside observer (in a weaker   field) observing the reference frame, both the rate of time and the 

speed of light of the observed frame are slower. 

 

The following definitions follow from the above discussion, and will be used through the rest of this essay: 

 

  0   1Jkg   The definition of the   field near a mass m   (4) 

 




c
c    1secm   The speed of light in a field of magnitude    (5) 

Light is a Classical Wave 
 
Light is treated as a different sort of wave than other types of waves, such as sound waves or water waves. This is indicated by the fact that 

Doppler frequency shift equations used for sound or water waves do not hold for light waves. However, light waves can be treated as normal 

Classical waves if one takes the Doppler-shift equation for light and splits it into two component parts: 

 
(1) The usual Doppler-shift attributed to other types of waves. 

(2) A relativistic frequency shift of the emitted light at its source.  

 

If the frequency of the emitted light is frequency-corrected due to the source’s motion prior to applying the normal Doppler-shift equation, then 

the resulting frequency shift is the same as that given by the equation normally used for calculating the Doppler-shift for light. 
 Doppler-shift equation for normal waves (6):    Doppler-shift equation for light (7): 

vc

c
ff


    (6)  

c

v
c

v

ff







1

1

  (7) 

Where:  c  is the transmission speed of the wave. 

 v  is the recession speed of the source. 

 

For a light source moving at speed v , Relativity states that the frequency of the emitted light will be: 

       
2

2

1
c

v
ff emitted    (8) 

So, treating light as a normal wave, the total Doppler-shift should be : 

vc

c
ff emitted


  (9)   

vc

c

c

v
ff




2

2

1  (10) 

 
To prove that this treatment is correct, it is necessary to show that (7) and (10) are equivalent. This proof follows: 

Using (10) gives:  

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
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
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
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thus  

'

1

1

c

v
c

v

ff





         which is the same as  (7).          Q.E.D. 

The Doppler equation for sound waves can be applied to light waves, also, if one splits the Doppler equation for light into its two component 

parts. Thus the same general Doppler equation can be used for all types of waves 

 

General Relativity Considered 

 

Gravitational Acceleration/Potential: 

The accepted time dilation due to General Relativity [6] is: 




 0  (11) 










20 1
c


  (12) 

where  

r

Gm
   is the gravitational potential difference between the source of the photon and the detector.  

Equation (12) can be derived from   field considerations alone: 
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Let:    = field intensity of the source of the photon. 0 = field intensity at the detector of the photon. 

We can see that the potential difference between the source and detector is: 

 

  0         (13) 

The field at the detector is the fraction k  times more intense than the field at the source. 

 00  k  (14) So...  

0

0




k   (15) 

Substituting (13) into (15) gives: 

 

0



k         (16) 

So the frequency of the photon at the detector will be less than the frequency at the emitter by the quantity 0k : 

 00   k     k 10     (17) 

Substituting (16) into (17) gives:   













0

0 1


    (18) 

If we let 
2

0 c  then we have:  









20 1
c


  which is the same as equation (12). Q.E.D. 

Thus the full definition of the   field is:       2c     (19) 

 

So the   field is completely defined, and can account for the time dilation due to General Relativity. The value of 
2c  can be understood as 

the field contribution from the whole Universe. Performing a calculation of 

R

GM
 , using values for the Universe, yields 

2c .  Other research backs 

up this finding [8]: 
 

“The well known solution for   here is just the sum of the contributions to the potential due to all of the matter in the causally connected part 

of the Universe (that is, within the ‘particle horizon’ in the parlance of cosmologists). When calculated, this turns out to be roughly RGM , 

where M  is the mass of the Universe and R  is about c  times the age of the Universe. Using reasonable values for M and R , 

RGM  computes to a value of about 
2c . Not only does RGM  have roughly the numerical value of 

2c ,  it has the same dimensions 

too. This seems to suggest a deep connection between   and 
2c .” 

 

This field definition embodies Mach’s Principle in the way it includes the contributions from all the matter in the Universe. Thus   represents 

the total potential of a body : 

 Total Potential =   = Global potential (
2c ) + Local Potential (  )  1Jkg  (20) 

and the quantity m  expresses the total energy required to remove a body from this potential.  

 Energy = Global potential energy (
2mc ) + Local Potential energy ( m ) 

 Energy = m           mmcE  2
     Joules  (21) 

 

Special Relativity Considered 

 

Part A - Light moving perpendicular to the direction of Motion: 
 

Consider the following: 

(a) A reference frame at rest in a region of space filled with a field of magnitude 0 .  

(b) An identical reference frame to (a), moving with a velocity v  through the same field with magnitude 0 . 

 
Please refer to Figure (1) below. A pulse of laser light (depicted as the dashed arrow) is sent across the reference frame (from a source 

connected to the reference frame) perpendicular to the direction of motion through the   field. In the stationary frame, the path length taken by the 

light is L  as expected; but in the moving frame the path taken is longer ( 1L ) due to the constant flow of the   field through the frame, and the 

fact that the light moves with a certain velocity with respect to the field, rather than the moving reference frame. 
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 A moving laser will emit a beam that follows the path given by 1L . This can be demonstrated with a Huygens construction [10] of the 

wavelets comprising the beam as it is being emitted. 

  Stationary Frame                                                Moving Frame 

 

In this example, the   = 0  so cc  : 

c

L
t  0    (22)    

c

L
t 1   (23) 

     222

1 tvLL   (24) 

 

Using (22) and (24) we have:    22

01 tvtcL      (25) 

Using (23) gives:        22

0

2
tvtctc      (26) 

 

Solving for t  gives:  
2

0

1 












c

v

t
t      (27) 

The Lorentz factor [7] :    
2

0

1

1

t

t v

c




 
  

  
 

     (28) 

Equation (28) is the accepted (and verified) equation for calculating the time dilation due to relative motion. 

 

Part B - Light moving parallel to the direction of Motion: 
 

Please refer to Figure (2) below.  Now consider the same situation as depicted in Fig 1(b), but with a light pulse sent across the reference frame 

parallel to the direction of motion. Consider the light’s journey both in the direction of travel, Fig 2(a), and in the opposite direction, Fig 2(b), as 
separate cases, then combine the results to give an overall, round-trip result. The reference frame travels different distances in each case as 

21 tt  . This means that the actual time dilation is different in each direction, but it can be  demonstrated that for a round trip the total time 

dilation during the trip is the same as it was in Fig 1(b) – where the light travelled perpendicular to the direction of motion. 

 

 

In this example, the   field has a value of 0    so    cc   ,   giving: 

    

c

tvL
t 1
1


  (29)  

c

tvL
t 2

2


  (30) 

Solving for 1t  and 2t  gives : 

 vc

L
t


 1   (31)  

 vc

L
t


 2   (32) 
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The round trip time is defined as : 21 ttta      (33) 

  

Let at  be the total time taken by the light pulses to complete the round trip in reference frame A that is traveling at speed v  through the  

field, and bt  be the total time taken by similar light pulses in reference frame B that is stationary in the   field. If the source of the   field is 

known, and we are able to determine each frame's relative motion with respect to it (indicating that frame A is the one moving relative to that field 

and frame B is not), then we expect that ba tt   because in Frame A the light has had to travel further than the light in Frame B had to. 

So the time dilation factor  

b

a

parallel
t

t




      by definition   (34) 

For Frame B, the time taken by the light pulse in his reference frame is simply: 

c

L
tb

2
        (35) 

For Frame A, the upstream & downstream times must be considered separately, and then summed : 

Using equations (31) (32) and (33) gives : 

 

 
22

)(

vc

vcLvcL
ta




    =   

22

2

vc

cL


     (36) 

 

Then using (34) (35) and (36) we are able to calculate parallel  : 






















c

L

vc

cL

parallel
2

2
22

 = 

 22

2

vc

c


  (37)    So   








 


2

22

1

c

vc
parallel    =   

2

1

1











c

v
=  

2  (38) 

Also the length is shorter by an amount equal to the Lorentz factor. So the length of the moving reference frame in the previous calculation is L  

rather than L , where : 

 




L
L          (39) 

If this new length is used in the calculation for equation (36), we have: 

 

 
22

)(

vc

vcLvcL
ta







   =   

22

2

vc

cL




    (40) 

Then using (34) (35) and (36) we are able to re-calculate parallel  : 
























c

L

vc

cL

parallel
2

2
22



    =   

 22

2

vc

c


     (41) 

Substituting (37)  into (41) :    
2

2

1

1













c

v
parallel 




    (42) 

Thus, we can see that the times taken for a light pulse to travel in the perpendicular and parallel directions are equal, despite the motion of the 

experimental apparatus and the observer through the   field. This is the same outcome as predicted by Special Relativity theory. 

 

Modeling a laser moving at Relativistic speed: 
 

We have seen how the timing of the light pulses can be explained and matches the experimental results, but what about the frequency & phase 

of the waves? A laser’s resonating cavity provides a good experimental test-bed for these considerations, as it contains a standing wave which can be 
thought of as comprising two sinusoidal waves traveling at the same speed, but in opposite directions, and with matching frequencies. 

 

Thus, according to my proposal, if the operating laser is brought up to relativistic speed through space, one of the waves composing the standing 
wave is traveling ‘upstream’ and the other wave is traveling ‘downstream’. To an observer moving with the laser cavity there should not be any 

detectable difference in the laser’s operation, or the structure of the standing wave contained within it, when it is moving compared to when it is 
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stationary. Of course, if he looks to another (stationary) reference frame, he  will discover the time dilation that exists in his reference frame and 
therefore be able to deduce that the laser is in actual fact running more slowly too. 

 

In modeling the moving laser cavity, several different effects must be considered at the same time. The path length taken between the reflecting 
mirrors of the laser cavity by the upstream & downstream waves will be different, since they are traveling at the local speed of light through the field 

that fills space.  Due to the time dilation that exists in the atoms of gas inside the moving laser (that are moving with the laser), the initial frequency of 

the light emitted into the cavity will be lower than for an equivalent stationary laser. The frequencies of the upstream and downstream waves will also 
be Doppler-shifted due to the relative motion of the laser's mirrors through the space-filling field (higher for the upstream & lower for the 

downstream), and as shown earlier, the length of the cavity will be contracted. 

 
I have written a computer program to model all of these various effects simultaneously. This model clearly shows how the actual 

electromagnetic waveform changes in space due to the relativistic motion, and yet to the observer traveling with the cavity, the waveform appears to 

be unchanged from its appearance when at rest. Figure (3) is a screen shot of the output of this program, modeling a laser cavity traveling at 40% the 
speed of light. 

 
 

 Figure 3 

 
Box 1 depicts the laser cavity as it operates when stationary in the space-filling field. 

Box 2 depicts the laser cavity as it operates when traveling at 40% of the local speed of light. 
Box 3 depicts the operation of the cavity as measured by an observer traveling with the laser. 

 

In boxes 1 and 2, the two waveforms on the left  are the upstream and downstream waves (respectively) as they exist in the space between the 
two reflectors of the laser cavity. The waveform on the right is the sum of the upstream and downstream waves, and thus represents the actual 

electromagnetic wave that exists in the space inside the cavity. The black vertical lines intersecting the waveforms indicate points where the electric 

field is zero (the nodes of the standing wave, for example).  
 

As I showed earlier, light is a Classical wave, so the normal Doppler-shift equation can be used. The upstream wave will be blue-shifted in the 

space inside the cavity, but will arrive at the upstream reflector with the same apparent frequency as when it was emitted (since  the destination mirror 
is moving at the same speed as the source of the photons). Similarly, the downstream wave will be red-shifted in the space inside the cavity, but will 

arrive at the downstream reflector with the same apparent frequency as when it was emitted. 

If 0f  is the frequency of both the upstream and downstream waves in the laser cavity when it is at rest, and ef  is the frequency of the light 

emitted into the laser cavity when it is moving, then: 
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
0f

f e     is the Lorentz Factor.     (43) 

Using the Doppler equation for a moving source, the frequencies of the upstream  
upf  and downstream  downf  waves are: 

  

sc

c
ff eup


   (44)  

sc

c
ff edown


   (45) 

Also, the apparent speeds of the waves traversing the cavity can be expressed : 
 

  scsup    (46)  scsdown     (47) 

 

The observer knows how far down the cavity each sensor is, and expects that the time taken by the signal from that sensor to reach the point at 

the end of the cavity to be proportional to the sensor’s distance from the end of the cavity. In order to get a picture of the electric field inside the 
cavity, the observer needs to construct a profile of the waveform using these signals. To determine what the profile of the electric field in the laser 

cavity looks like at a given point in time, one must apply a time correction to the received signals, such that a set of signals from all the sensors 

actually correspond to the same moment in time. In applying this correction, the observer will naturally assume that the time taken by the signal t  

is simply the distance that the sensor is from the end of the cavity x divided by the speed of light c . 

  
x

t
c

          (48) 

So the time that a particular signal was emitted at its source is given by : 

  emitted measuredt t t         (49) 

 

This time correction will always be applied by the observer on the signals he receives, regardless of the speed of the laser (and the observer), 

because one always measures light to travel at speed c  regardless of one's speed through space. So substituting  (64) into (65) gives:  

  
emitted measured

x
t t

c
         (50) 

This is the equation to be used for a laser that is at rest with respect to the space-filling field. However, when the observer  is traveling at speed, 

the time measuredt  (the time at which the signal from a sensor reaches the end of the laser cavity) will actually be different than the value it has for a 

stationary laser. It will also be a different value depending on which end of the laser cavity the signals are taken to.  For a moving laser, if the signals 

are taken to the upstream end of the laser cavity, the time taken for the signal to reach that point will be: 

  
v

up

up

x
t

s
    (51)   



x
xv      (52) 

where vx  is the length-contracted distance to the sensor. Thus for the upstream direction, substituting (46) and (52) into (51) gives:  

  

 
up

x
t

c s
 


       (53) 

For a moving laser, an observer will calculate emittedt  to be : 
emitted measured upt t t t     (54) 

So substituting (53) and (48) into (54) gives:   

 
emitted measured

x x
t t

c s c
  


 (55) 

If a plot is then made of all the signals from the sensors that have the same value of emittedt  then that plot represents a profile of the electric 

field as measured by the observer moving with the laser. As a result of the correction equation (55), the waveform in Box 2 is transformed into the 

waveform shown in Box 3. The waveform in Box 3 is a standing wave just like that in Box 1, but it oscillates more slowly as a result of the time 

dilation that accompanies the laser’s motion. Its oscillation is slower by a factor of 1 .  For the downstream direction, the equation is: 

 
emitted measured

x x
t t

c s c
  


     (56) 

Also to be noted from this model is that when the upstream and downstream waves are summed, the distance between the nodes of the standing 
wave are shorter by the exact amount required by relativistic length shortening. Therefore, we can now understand how the length contraction occurs: 

from the summation of the higher & lower frequency waves. 

 

Relativistic Mass Increase 
 

The key to understanding mass increase is the understanding that solid matter is actually composed of standing waves that can be thought of as 

being the sum of an ‘upstream’ and a ‘downstream’ wave. Each of the two waves that comprise a particle has a certain energy associated with it 

(depending on that wave’s frequency), and the total energy of the particle is the sum of the energies of the ‘upstream’ and ‘downstream’ waves. Once 

this total energy has been calculated, then the mass equivalent for that energy can be calculated using the usual equation:  
2E mc      (57) 

 



                     Page 8 of 10  

We can use the standing wave inside a laser’s resonating cavity as a model for a particle, because it is composed of an ‘upstream’ and 

‘downstream’ wave that are summed, resulting in a standing wave. The proof that this approach can work mathematically follows: Let  0e  = energy 

per unit length of the upstream/downstream wave. Since there are two waves inside the laser’s cavity (upstream & downstream), the total energy of 

the waves inside the cavity is: 

  0 02stationaryE e L    Where 0L  is the length of the laser’s cavity.  (58) 

 
For a laser (or particle) that is moving at Relativistic speed, the following equations apply: 

Let:   
upe  = energy per unit length of the upstream wave.     downe  = energy per unit length of the downstream wave. 

The frequency of the upstream wave and downstream wave are: 

  
0up

c
f f

c v
 


 (59)  

0down

c
f f

c v
 


  (60) 

Where 0f  is the frequency of the upstream/downstream waves in the stationary laser. 

Since the energy per unit length of a wave is proportional to the wave’s frequency ( e f  ), then (59) and (60) can be rewritten as : 

 

The energy per unit length of the upstream wave is:  
0up

c
e e

c v
 


    (61) 

The energy per unit length of the downstream wave is:  
0down

c
e e

c v
 


   (62) 

So the total energy of the waves inside the moving laser’s cavity (or comprising a moving particle) is expressed as : 

         moving up downE e L e L      (63) 

where L  is the contracted length of the laser cavity due to the laser’s Relativistic motion: 

  
0L

L


         (64) 

and   is the Lorentz factor due to Special Relativity :   
2

1

1
v

c

 

 
  
 

  (65) 

So by substituting (61), (62) and (64) into (63) we have the following : 

 
0

0 0moving

L c c
E e e

c v c v

 
    

  
      (66)

 
 

0 0

2 2

( )
moving

c c v c c vL e
E

c v

   
  

 

2

0 0

2 2

2L e c

c v

 
  

 
 

0 0

2

2 1

1

L e

v

c



 
 
 
  
  
  

 (67) 

Then by substituting (65) into (67) :  
20 02

moving

L e
E 


  0 02L e     (68) 

Finally, by substituting (58) into (68) we have : moving stationaryE E      (69) 

and by converting Energy into mass equivalent (equation (57) ) :  moving stationarym m    (70) Q.E.D. 

 

The exact mass increase predicted by Special Relativity can be explained and calculated using this new model, where a moving mass can be 
modelled as comprising an upstream and a downstream wave, each with different frequencies, hence energies. When the mass equivalent of these 

waves’ energies are summed, the correct mass increase is obtained. 

 

An Explanation for Gravitational Acceleration 
 

A particle can be modeled as a standing wave composed of  inward and outward traveling spherical waves [9] that each reflect at the combined 

standing wave’s nodes – thus an inward wave becomes an outward wave and vice versa at each reflection. A balance is achieved in the distribution of 

the inward and outward waves’ amplitude (and hence momentum) such that the natural shape for a particle in free space is spherical. As the outward 
waves travel away from the center of the particle and into space, they decrease in amplitude and energy density; but they are perfectly balanced by the 

inward waves that increase in amplitude and energy density as they converge towards the center of the particle. 
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To see how such a wave structure behaves in a gravitational field, we must consider how each of the component waves are affected by the 
gravitational field [3]. The gravitational field itself is a field of varying time dilation. The closer one gets to a mass where the gravitational potential is 

greater, the more time is dilated (running slowly). The effect is very small, but when it has an effect on waves that are traveling very fast, and which 

remain in the field for a considerable period of time, the result is gravity, as we know it. 
 

Normally, light waves do not stay within the gravitational field for very long because their speed is so high, so only a slight bending of the wave 

occurs toward the mass. The waves that make up matter are affected in the same way, but they remain localized in the field for much longer, so the 
effects are much more noticeable.  

 

To see what the effect on the waves of a particle would be, we need to do the following math. From my earlier analysis of moving standing 

waves, we saw that for a standing wave (particle) that is traveling along at speed v : 

 0

highf c

f c v



  (71)   

0

lowf c

f c v



  (72) 

(‘high’ and ‘low’ refer to the frequencies of the waves compared to the original frequency 
0f ) 

And from General Relativity [5] we know that when a wave travels from one gravitational potential to another, its frequency (which equates to 

energy) changes. Thus for a standing wave (particle) that is placed in a gravitational field with acceleration a : 

 

2

0

1
highf ah

f c
    (73)   

2

0

1lowf ah

f c
    (74) 

The time taken for light to travel the vertical distance h  is given by:  
h

t
c

    (75) 

If  a particle is held stationary in a gravitational field by an upward force, such as from a table top, the waves at the bottom of the particle travel 
very slightly slower than the waves on the top (due to the greater gravitational potential at the bottom), so in order for the standing wave to remain a 

continuous waveform, the waves at the bottom must bunch up (get closer together) so that the same number of wave crests travel from top to bottom 

as from bottom to top. As the downward waves slow down and bunch up as they move into a region of higher gravitational potential, their frequency 
increases, as does the momentum they carry, thus the force they impart on the table on which they are resting increases. 

 

If the table is suddenly removed, the first thing that happens is that the opposing force from the waves comprising the table is removed, so the 
bunched up waves at the bottom of the particle spread out to restore the particle's normal spherical geometry. Once this occurs, however, the number 

of wave-crests propagating from the bottom of the particle to the top decreases. Similarly, the upward wave reflecting at the node to form the 

downward wave will arrive at the bottom as a slightly higher frequency wave because it is reflected and Doppler-shifted at a node that is moving 

downwards. By this method the change is transmitted from one node to the next and affects the whole particle’s wave structure. 

 

Consequently, a moment after the table is removed, the particle becomes a standing wave composed of a higher frequency down wave and 
lower frequency up wave. As a result, the particle will gain more momentum in the downward direction, and the standing wave’s nodes (and therefore 

the whole particle) will attain a downward speed ( v ). This is the configuration for a particle in motion. So to calculate this speed ( v ) for a particle 

accelerating in a gravitational field for the period of time ( t ), we can perform the following operations on the above equations: 

Substitute (71) and (75) into (73): 1
c at

c v c
 


  so:   1

at
c c v

c

 
   

 
 

and...   
vat

c c at v
c

     so: 
vat

at v
c

    (76) 

Then substitute (72) and (75) into (74): 1
c at

c v c
 


  so:   1

at
c c v

c

 
   

 
 

and...   
vat

c c at v
c

     so: 
vat

at v
c

     (77) 

Then substitute (76) into (77) :  at v at v     so: 2 2at v  

 

 thus...   v at     Q.E.D.   (78) 

 

I have derived the classical velocity that a particle achieves when it is accelerated by gravity for a period of time ( t ) by considering only the 

time dilation effect in the gravitational field and its effect on the frequencies of the upward and downward waves. It appears that the acceleration due 

to gravity is explained by the following four-step process: 

 

The Primary Cause: 

(1) An increase in frequency (hence momentum) of the downward component of the particle's standing wave, due to the slowing of waves in a 

higher gravitational potential. Similarly, a decrease in frequency of the upward component wave, due to a speeding-up of waves in a lower 

gravitational potential. 

 

Secondary Considerations: 

(2) The higher momentum downward wave then pushes the standing wave’s nodes downward. 

(3) The reflected upward wave is then Doppler-shifted to a slightly lower frequency. 
(4) The upward/downward waves then continue to reflect backwards and forwards between the nodes, constantly undergoing small Doppler-

shifts, causing momentum to build in the downward direction. 
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