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Abstract 

The Wave/Particle duality of particles in Physics is well known. Particles have 
properties that uniquely characterize them from one another, such as mass, 
charge and spin. Charged particles have associated Electric and Magnetic 
fields. Also every moving particle has a De Broglie wavelength determined by 
its mass and velocity. In this paper I show that all of these properties of a 
particle can be derived from a single wave function equation for that particle. I 
present wave functions for the Electron and the Positron and provide 
principles that can be used to calculate the wave functions of all the 
fundamental particles in Physics. 
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1. Introduction 
 

In order to provide the foundations of a link between Classical Physics field 

concepts and the wave/particle duality in Quantum Mechanics it is necessary 

to demonstrate how particles can be modeled both from a Classical Wave 

perspective while also satisfying the requirements of Quantum Mechanics, in 

particular the Schrödinger wave equation and the De Broglie equations. 

There is already evidence of this connection in the energy sum of the Electric 

and Magnetic fields in the Hamiltonian function that expresses the total energy 

of an atomic system: 

[Ref. 1] “In 1926 Schrödinger used energy conservation to obtain a quantum 

mechanical equation in a variable called the wave function that accurately 

described single-electron states such as the hydrogen atom. The wave function 

depended on a Hamiltonian function and the total energy of an atomic system, 

and was compatible with Hertz's potential formulation. The wave function 

depends on the sum of the squares of E- and H-fields as is seen by examining 

the energy density function of the electromagnetic field.” 

In order to satisfy both the wave and particle natures of particles in a model of 
a particle, the particle’s wave function must satisfy both the Classical wave 
equation (which ensures that the wave function can represent a vibration of 
the space-time continuum) and the Schrödinger wave equation (which ensures 
that the wave function can represent a quantum of energy – thus a particle) 
(Ref. [3]). 

A wave function solution to the Classical wave equation describes the motion 

of all points on the wave at any location in space and time. The position of a 

test point in space as it is affected by the wave motion can be represented as a 

displacement vector drawn from the starting location of the point to its current 

location. 

In the case of Electromagnetism there is a single vector field that describes the 

motion of an Electromagnetic wave in this way, it is known as the Hertzian 

vector field [Ref. 2, 6]. The Electric and Magnetic fields can both be derived 

from the Hertzian vector field by differentiation with respect to space and 

time. 



[Ref. 2] “in a vacuum a single Hertz vector written as the product of a scalar 

potential and a constant vector, naturally arises as consequence of the 

transversality of the electromagnetic fields” 

Therefore, a wave function that describes a field of vectors representing 

Hertzian vectors can also represent a wave function describing Electric and 

Magnetic field vectors. If the wave function satisfies both the Classical wave 

equation and the Schrödinger wave equation then it can also represent a 

vibration of space-time and a potential solution for a Quantum particle. 

This paper presents two such solutions, one representing an electron and one 

representing a positron. In addition, I show that the correct Classical fields are 

produced by them and that the Quantum Mechanical requirements of the De 

Broglie equations are also met by them. 

  



2. The solutions 
 

These are the suggested wave function equations for the Electron and the 
Positron.  The images located in [Fig. 2-10] show graphical representations of 
the fields derived from these wave functions using a 3D vector modelling 
program I wrote to aid in the visualization and testing of proposed wave 
function solutions. 

For the Electron: 

Ψ𝑒 =
√2𝑖𝑄𝑒ℏ

4𝜋𝑟𝑀𝑒𝑐𝜀0
𝑒𝑥𝑝 [

−𝑖𝑀𝑒𝑐2

ℏ
(𝑡 −

𝑟2

2𝑐
)]  (1) 

For the Positron: 

Ψ𝑝 =
√2𝑖𝑄𝑒ℏ

4𝜋𝑟𝑀𝑒𝑐𝜀0
𝑒𝑥𝑝 [

−𝑖𝑀𝑒𝑐2

ℏ
(𝑡 +

𝑟2

2𝑐
)]  (2) 

Where:  

    

e    = Electron wave function  p    = Positron wave function 

eQ    = Electron Charge (-)  pQ    = Positron Charge (+) 

eM   = Mass of an Electron  pM   = Mass of a Positron 

      

 0     = Permittivity of free space 

  t  = Time 

 r  = Distance from particle's centre 

 c  = The speed of light 

           = The Reduced Plank’s Constant 

 



3. The solutions satisfy the wave equations 
 

The wave nature of particles is being modelled here as a vibration of the space-
time continuum and the particle nature is modelled as localized quanta of this 
wave energy. In order to satisfy both the wave and particle natures of particles 
in the model, the wave function must satisfy both the Classical wave equation 
(which ensures that the wave function can represent a vibration of the space-
time continuum) and the Schrödinger wave equation (which ensures that the 
wave function can represent a quantum of energy – thus a particle) (Ref. [3]). 

 

 Classical wave equation:  
2

2

2 2

1

c t





 


   (3)  

 Schrödinger wave equation: 
ˆi H

t








  

Where: ˆ  H Total Energy   

   ˆ      H Kinetic Energy KE PotentialEnergy PE    

The wave function describes a field of rotating vectors which can each be 
thought of as comprising two Quantum Harmonic Oscillators (Ref. [10]); one 
along each axis of the complex plane. The vectors trace out a circle, such that 
at any given time half of the energy is present as Kinetic energy and half as 
Potential energy depending on the phase of each of the component Quantum 
Harmonic Oscillators. In their simple harmonic motion oscillation, each 
oscillates between full KE and full PE, but when one has full KE the other has 
full PE and vice-versa. 

 Due to Equipartition of energy in a Classical wave (Ref. [4]): 

          KE = PE =

2
2

2m
      

  So: i
t




 =

2
2

m
         (4) 



Testing the solution with the Schrödinger wave equation 

Referring to Equations 1 and 4: 

In Spherical coordinates the Laplacian of Ψ𝑒  is: 

∇2Ψ𝑒 =
1

𝑟2

𝜕

𝜕𝑟
(𝑟2 𝜕Ψ𝑒

𝜕𝑟
) +

1

𝑟2𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃2 (𝑠𝑖𝑛𝜃
𝜕Ψ𝑒

𝜕𝜃
) +

1

𝑟2𝑠𝑖𝑛2𝜃

𝜕Ψ𝑒

𝜕∅2   (5) 

 

As the wave function Ψ𝑒 is spherically symmetrical, all the vectors at the same 

distance 𝑟 from the origin are identical, so the terms involving 𝜃 and ∅ are 

zero. 

So ∇2Ψ𝑒 reduces to: 

∇2Ψ𝑒 =
1

𝑟2

𝜕

𝜕𝑟
(𝑟2 𝜕Ψ𝑒

𝜕𝑟
)      (6) 

Thus, the Schrödinger wave equation (4) becomes: 

𝑖ℏ
𝜕Ψ𝑒

𝜕𝑡
= −

ℏ2

𝑚

1

𝑟2

𝜕

𝜕𝑟
(𝑟2 𝜕Ψ𝑒

𝜕𝑟
)     (7) 

Thus: 

𝜕Ψ𝑒

𝜕𝑡
=

𝑖ℏ

𝑚

1

𝑟2

𝜕

𝜕𝑟
(𝑟2 𝜕Ψ𝑒

𝜕𝑟
)      (8) 

 

As from Ψ𝑒 by differentiation of Eqn 1, we can also say that: 

𝜕Ψ𝑒

𝜕𝑡
=

√2𝑄𝑒𝑐

4𝜋𝑟𝜀0
𝑒𝑥𝑝 [

−𝑖𝑀𝑒𝑐2

ℏ
(𝑡 −

𝑟2

2𝑐
)]    (9) 

And 

𝜕Ψ𝑒

𝜕𝑟
=

√2𝑄𝑒

4𝜋𝑟𝜀0
𝑒𝑥𝑝 [

−𝑖𝑀𝑒𝑐2

ℏ
(𝑡 −

𝑟2

2𝑐
)]    (10) 

So: 

𝜕

𝜕𝑟
(𝑟2 𝜕Ψ𝑒

𝜕𝑟
) =

√2𝑖𝑄𝑒𝑟𝑀𝑒𝑐

4𝜋𝜀0ℏ
𝑒𝑥𝑝 [

−𝑖𝑀𝑒𝑐2

ℏ
(𝑡 −

𝑟2

2𝑐
)]  (11) 



Thus: 

𝑖ℏ

𝑚

1

𝑟2

𝜕

𝜕𝑟
(𝑟2 𝜕Ψ𝑒

𝜕𝑟
) =

√2𝑄𝑒𝑐

4𝜋𝑟𝜀0
𝑒𝑥𝑝 [

−𝑖𝑀𝑒𝑐2

ℏ
(𝑡 −

𝑟2

2𝑐
)]  (12) 

 

So LHS = RHS of the Schrödinger wave equation (Eqn 4), so the wave function 

(Eqn 1) is a solution to it: 

𝜕Ψ𝑒

𝜕𝑡
=

𝑖ℏ

𝑚
∇2Ψ𝑒 

Eqn 9 equals Eqn 12: 

√2𝑄𝑒𝑐

4𝜋𝑟𝜀0
𝑒𝑥𝑝 [

−𝑖𝑀𝑒𝑐2

ℏ
(𝑡 −

𝑟2

2𝑐
)] =

√2𝑄𝑒𝑐

4𝜋𝑟𝜀0
𝑒𝑥𝑝 [

−𝑖𝑀𝑒𝑐2

ℏ
(𝑡 −

𝑟2

2𝑐
)] 

 

  



Testing the solution with the Classical wave equation 

Referring to Equations 1 and 3: 

𝜕Ψ𝑒

𝜕𝑡
=

√2𝑄𝑒𝑐

4𝜋𝑟𝜀0
𝑒𝑥𝑝 [

−𝑖𝑀𝑒𝑐2

ℏ
(𝑡 −

𝑟2

2𝑐
)]    (13) 

So: 

𝜕2Ψ𝑒

𝜕𝑡2 = −
√2𝑖𝑄𝑒𝑀𝑒𝑐3

4𝜋𝑟𝜀0ℏ
𝑒𝑥𝑝 [

−𝑖𝑀𝑒𝑐2

ℏ
(𝑡 −

𝑟2

2𝑐
)]   (14) 

Thus: 

1

𝑐2

𝜕2Ψ𝑒

𝜕𝑡2 = −
√2𝑖𝑄𝑒𝑀𝑒𝑐

4𝜋𝑟𝜀0ℏ
𝑒𝑥𝑝 [

−𝑖𝑀𝑒𝑐2

ℏ
(𝑡 −

𝑟2

2𝑐
)]  (15) 

And, substituting Eqns 6 and 15 into Eqn 3: 

1

𝑟2

𝜕

𝜕𝑟
(𝑟2 𝜕Ψ𝑒

𝜕𝑟
) = −

√2𝑖𝑄𝑒𝑀𝑒𝑐

4𝜋𝑟𝜀0ℏ
𝑒𝑥𝑝 [

−𝑖𝑀𝑒𝑐2

ℏ
(𝑡 −

𝑟2

2𝑐
)] (16) 

 

So LHS = RHS of Classical Wave equation (Eqn 3) too, so the electron wave 

function (Eqn 1) is a solution to it also. 

 

  



4. The wave function and electromagnetism 
 

Each of the measurable fields in Electromagnetic Theory (Ref. [5, 6]), and their 

connection back to the wave function, can be expressed quite simply by the 

following set of equations and illustrated by Fig (1). 

 

Fig. 1. The mathematical connections between the fields. 

 
 

1
A

c t


 


 (17)  .V             (18)   

1 A
E V

c t


  


   (19)  

H A  (20)   
1

.
4

E


       (21) 

 

Where: 

        = Wave function 

      V   = Voltage (electric potential) 

      E   = Electric field vector 

      A  = Vector potential 

      H     = Magnetic field vector 

         = Charge density 



5. Analysis of the wave functions 
 

Both wave functions represent a field of rotating vectors. The pattern 
described by the phases of the field of rotating vectors is that of a spinning 
spiral wave. The phase wave flows either away from or towards the centre of 
the particle (Fig. [2, 3a, 3b]). The Electron spins with the phase wave flowing 
outward and the Positron with the phase wave flowing inwards (Ref [5]). 

The angular frequency in the wave function is derived from the following three 

known equations. 

   E h              (22)  

2E mc              (23)  

2h            (24) 

Substituting Eq. (23) and Eq. (24) into Eq. (22) and solving for we have: 

 
2

2

eM c



           (25) 

Then to convert to angular frequency: 

 2             (26) 

Substituting Eq. (25) into Eq. (26) gives: 

 

2

eM c
     Radians per Second   (27) 

This describes the rate of rotation of the vectors in the vector field that 
describes the Electron/Positron wave function. 

The centre of the Electron comprises a vector that rotates around a fixed 
position at the particle’s centre over time. As time progresses this vector 
propagates radially outwards away from the centre thus forming the phase 
wave spiral. Every point on this spiral comprises a vector that rotates on the 
spot as the phase waves pass through each point.  

In a classical wave, each point in the medium supporting that wave (such as 

the water molecules in a water wave) moves in a circular motion as the wave 

passes. The frequency of this circular motion is the same as that of the wave. 



However, when two waves of equal frequency (but travelling in opposite 

directions) combine to form a standing wave, each point in the medium 

rotates at twice the angular frequency of each of the two component waves.  

The spinning spiral of rotating vectors that the wave function describes can be 
modelled as a standing wave comprised from two interfering waves: a 
spherical IN wave and a spherical OUT wave. Thus, each point in the medium 
supporting this standing wave is rotating at twice the frequency of either the 
IN or OUT wave alone.  

The spherical IN and OUT waves work together, by means of constructive and 
destructive interference due to a slight frequency difference between the IN 
and OUT waves, forming the spinning spiral structure of the particle. As each 
point in this spatial structure is being influenced by both IN and OUT waves 
(one wave from each side), a vector at that point spins around at a rate which 
is the sum of the IN and OUT wave frequencies, as it receives wave crests from 
both sides simultaneously. The vector rotation period at each point is 
completed in the time is takes only half of the wavelength of an IN or OUT 

wave to pass each point ( Radians rather than 2 Radians). The frequency of 
the IN and OUT waves is the same except for a slight difference that modulates 
this fundamental frequency and thereby forms the spiral pattern, therefore 
the rotation rate of each vector is two times the fundamental frequency of an 
IN or OUT wave. 

The frequency of the vector rotation for any point in the wave function is given 
by Eq. (27). Thus, the angular wave frequency of each IN/OUT wave is given by: 

  
2


  Radians per Second     (28) 

From Eq. (26) and Eq. (28), the travelling wave fundamental frequency of an IN 
or OUT wave is: 

  𝜈 =
𝜔

4𝜋
  Hertz       (29) 

So, from Eq. (27) and Eq. (29), the Electron’s IN/OUT wave frequency is: 

 𝜈 =  6.17794982 × 1019   Hertz    (30a) 

And (as the propagation speed is 𝑐) the spatial frequency (wavenumber) is: 

electronf = 2.06074224199 × 1011    (30b) 



6. Verification using the De Broglie equations 
 

The De Broglie wavenumber for a moving particle is     
mv

h
   (31) 

This is 13747.792 for an Electron travelling at 
110 secm 
   (32) 

The Classical interpretation of the De Broglie wave is that of a beat frequency 
of the upstream and downstream components (with respect to the particle’s 
direction of motion) of the Electron’s IN/OUT wave, so: 

  up electron

c
f f

c v
 


        (33)

 down electron

c
f f

c v
 


        (34) 

Again, the speed of the Electron    𝑣 = 
110 secm 
 

Thus from Eq. (33) and Eq. (34) the beat frequency wavenumber is: 

 up downf f 13747.792       (35) 

So, we can see that the De Broglie wavenumber matches the beat frequency 
wavenumber of the calculated Electron IN/OUT waves for an Electron 

travelling at 
110 secm 
(Eq. (32) equals Eq. (35)). 

 

The Energy of the Electron can be checked too, using the De Broglie relation: 

  E           (36) 

Using Eq. (27): 

  

2
2   e

e

M c
E M c        (37) 

Which is the Energy/Mass relationship as it should be. 

 



7. Derivation of the classical electric potential for 

the Electron 
 

For the Electron wave function, the Electric Potential (V ) is ( )ediv , which in 

spherical coordinates is (Ref. 8]). 

div(Ψ𝑒) =
1

𝑟2

𝜕

𝜕𝑟
(𝑟2Ψ𝑒) +

1

𝑟𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
(Ψ𝑒𝑠𝑖𝑛𝜃) +

1

𝑟𝑠𝑖𝑛𝜃

𝜕Ψ𝑒

𝜕𝜙
  (38) 

As the wave function Ψ𝑒 is spherically symmetrical, all the vectors at the same 

distance 𝑟 from the origin are identical, so the terms involving 𝜃 and ∅ are 

zero. So this reduces to: 

div(Ψ𝑒) =
1

𝑟2

𝜕

𝜕𝑟
(𝑟2Ψ𝑒)      (39) 

Recalling Eqn 1 for Ψ𝑒, so div(Ψ𝑒) is: 

1

𝑟2

𝜕

𝜕𝑟
(𝑟2Ψ𝑒) =

1

𝑟2

𝜕

𝜕𝑟
(

√2𝑖𝑄𝑒ℏ𝑟

4𝜋𝑀𝑒𝑐𝜀0
𝑒𝑥𝑝 [

−𝑖𝑀𝑒𝑐2

ℏ
(𝑡 −

𝑟2

2𝑐
)]) (40) 

1

𝑟2

𝜕

𝜕𝑟
(𝑟2Ψ𝑒) =

1

𝑟2 (
√2𝑄𝑒𝑟

4𝜋𝜀0
𝑒𝑥𝑝 [

−𝑖𝑀𝑒𝑐2

ℏ
(𝑡 −

𝑟2

2𝑐
)])  (41) 

1

𝑟2

𝜕

𝜕𝑟
(𝑟2Ψ𝑒) =

√2𝑄𝑒

4𝜋𝑟𝜀0
𝑒𝑥𝑝 [

−𝑖𝑀𝑒𝑐2

ℏ
(𝑡 −

𝑟2

2𝑐
)]  (42) 

When viewed close up, the spinning spiral and charge layers that comprise the 
electron/positron are clearly visible. Due to the fast spinning of the spiral (and 
outward or inward phase flow), or at large distance scales where the 
undulations of the spinning charge layers are small by comparison, the fields 
appear to become smooth and be of a continuous nature [Fig. 5-10]. So, for 
example, the Electric Potential for the Electron in this case appears to be the 
RMS (Root-Mean-Squared Ref. [9]) of Eq. (42), which is equal to the classical 
equation: 

𝑄𝑒

4𝜋𝑟𝜀0
         (43) 

 

  



8. Conclusion 
 

The wave functions presented here describe particles with all the correct 
properties for an Electron and a Positron and satisfy the requirements of both 
the Classical and Quantum Mechanical interpretations.  

The wave function represents a field of rotating vectors. The spinning vectors 
form a phase wave that describes a spinning spiral. The phase wave flows 
either away from or towards the centre of the particle. Interactions between 
the phase waves of two or more particles could be the cause of the Electrical & 
Magnetic attraction/repulsion between charged particles due to momentum 
exchanges between the wave structures (Ref. [7]). 

In general, the concepts use to build these two wave equations could be 
applied to all particles in Physics. The key principles are: 

 

1. The frequency of the waves that comprise the three-dimensional wave 
structure of the particle is based on the particle's mass (via the 
calculation shown above). 
 

2. A particle's charge is defined by either an outward or inward flowing 
phase wave. A neutral particle would have no net phase flow inward or 
outward, but may contain regions of either inward or outward flow, 
which cancel out in the region surrounding the particle. 
 

3. The completed wave function must satisfy both the Classical and 
Schrödinger wave equation. 
 

4. Particles such as Protons (or other particles containing Quarks) would 
contain several components to the overall wave function, which work 
together to form a stable particle (i.e. together they satisfy the other 
three principles stated here). 

  



9. Supplementary material 

9.1 Images from the Model 

 

 

 

Fig. 2. The electron wave function from the side (the spin axis is vertical). 



 

 

Fig. 3(a). The electron wave function viewed from the top (looking down the 
spin axis). 

 



 

 

Fig. 3(b). The electron wave function (vector arrows only) viewed from the top 

(looking down the spin axis). 

 

 



 

 

Fig. 4. The electric potential of the electron showing the double spiral of charge 
layers. 

 



 

 

Fig. 5. The electric potential of the electron with the small scale wave function 
undulations smoothed out (the individual charge layers are not 
visible). 

 



 

 

Fig. 6. The electric field of the electron with the small scale wave function 
undulations smoothed out. 

 



 

 

Fig. 7. The magnetic field of the electron viewed from the side (spin axis is 
vertical) with the small scale wave function undulations smoothed out. 
The vectors into/out of the page are not shown in order to reveal the 
nice magnetic field lines. 

 



 

 

Fig. 8. The magnetic field of the electron viewed from the top (looking down 
the spin axis) with the small scale wave function undulations 
smoothed out.  

 



 

 

Fig. 9. The vector potential field of the electron viewed from the side (the spin 
axis is vertical) with the small scale wave function undulations 
smoothed out.  

 



 

 

Fig. 10. The vector potential field of the electron viewed from the top (looking 
down the spin axis) with the small scale wave function undulations 
smoothed out. Note how the energy of the particle flows around the 
spin axis in closed loops. 

 

  



9.2 Field Calculation Code from the Model 
 

This is a portion of the model I wrote to model the Electron/Positron and their 

associated fields; such as Electric, Magnetic, Vector Potential fields. It is written in the 

Delphi language and is the function that calculates the fields from the mathematical 

wave function.  
 

1. procedure TForm1.RecalcFields(scr:smallint);  

2. var  

3.   Current_Ex,Current_Ey,Current_Ez: extended;  

4.   Current_Bx,Current_By,Current_Bz : extended;  

5.   r,x,y,z,unit_x,unit_y,unit_z,k : extended;  

6.   theta, delta, theta_const, expTheta, lnTheta, term0, term1, term2, term3 : extended;  

7.   normal_x,normal_y,normal_z,dir_x,dir_y,dir_z : extended;  

8.   scalar_amp, Vector_amp, SpinConstant, E_amp : extended;  

9.   NewScreen : smallint;  

10.   xpos,ypos,zpos,midx,midy,midz:smallint;  

11.   ThisGroup,NewGroup: PointGrp;  

12.   vect,CurlVect,DivVect: vector;  

13.   Scalar_Group: ScalarGrp;  

14.   VectGrp: VectorGrp;  

15.   I: Integer;  

16.  

17. begin  

18.   

19.   if scr=0 then NewScreen:=1 else NewScreen:=0; {determine which data to update}  

20.  

21.   if not Flip_YZ then begin  

22.  

23.      midx:=Trunc(GridWidth/2);  

24.      midy:=Trunc(GridHeight/2);  

25.      midz:=Trunc(GridDepth/2); 

26.   

27.      SpinConstant:=( Hhat / ElectronMass ); // Metres^2/(Radians*Second)  

28.      delta := ( sqrt(2) * ElectronCharge * Hhat ) / ( 4 * Pi * ElectronMass * SpeedOfLight * Permittivity );  

29.       

30.      // theta_const is in Radians/Second ( i.e. the same as solving E = hf for f, where E=mc^2, and h=2*Pi*Hhat,  

31.      // then converting f to angular frequency w, via w = 2*Pi*f )  

32.      // ( theta_const could be, equivalently : - c^2/SpinConstant )  

33.      theta_const:=( -ElectronMass * sqr(SpeedOfLight) ) / Hhat;  

34.       

35.      k:=FREQ_FACTOR/SpeedOfLight; // Seconds/Metre ( multiply by 2E-3 to make PsiWave visible (magnify) in model )  

36.     

37.      /////////////////////////////////////  

38.      // Thus the Total Electron Wave Equation (Ye) is:  

39.      //  



40.      // Ye = ((sqrt(2) * i * Qe*Hhat) / (4*Pi*Me*c*Eo )) * Exp( ( - i * Me * c^2 / Hhat ) * ( T – r^2/2c ) )  

41.      //  

42.      // and the Electric Potential div(psi) in spherical coordinates is  

43.      //  

44.      // V = ((sqrt(2) * Qe) / ( 4 * Pi * r * Eo )) * Exp( ( - i * Me * c^2 / Hhat ) * ( T – r^2/2c ) )  

45.      //  

46.      // Where:  

47.      // Ye is Electron Wave Function (psi) 

48.      // Qe is Electron's Charge  

49.      // Pi is 3.14159 etc  

50.      // Eo is the Permittivity of free space  

51.      // Exp is the Exponential function  

52.      // i is the Complex number (square root of -1)  

53.      // Me is the Mass of an Electron  

54.      // c is the speed of light  

55.      // Hhat is the reduced Plancks constant ( i.e. h/(2*Pi) )  

56.      // T is Time  

57.      // r is the radial distance from the center of the Electron  

58.      //  

59.      // exp(-theta) = cos(theta) - isin(theta)  

60.      // using x,y,z coordinates:  

61.      // x = cos(theta)  

62.      // y = sin(theta)  

63.       

64.      // theta:=theta_const*(Time - k*r*r/2);  

65.      //  

66.      // term1:=delta  

67.      // term2:=cos(theta);  

68.      // term3:=-sin(theta);  

69.      //  

70.      // if ( ViewTop ) then begin // Assign values to x, y, z coordinates, depending on view from the top or side.  

71.      //   x:=term1 * term2;  

72.      //   y:=term1 * term3;  

73.      //   z:=0;  

74.      // end  

75.      // else begin  

76.      //   x:=term1 * term2;  

77.      //   y:=0;  

78.      //   z:=term1 * term3;  

79.      // end; 

80.      /////////////////////////////////////  

81.  

82.      for xpos:=0 to GridWidth-1 do begin {scan grid's x coords}  

83.        for ypos:=0 to GridHeight-1 do begin {scan grid's y coords}  

84.          for zpos:=0 to GridDepth-1 do begin {scan grid's z coords}  

85.            ThisGroup:=PointGroup(scr, xpos, ypos, zpos);  

86.             

87.            x:= xpos - midx;  

88.            y:= ypos - midy;  



89.            z:= zpos - midz;  

90.             

91.            r:=sqrt( sqr(x) + sqr(y) + sqr(z) );  

92.            if ( r < 0.00000000001 ) then r:=0.00000000001;   // prevent divide by zero errors  

93.             

94.            unit_x:= x/r;  

95.            unit_y:= y/r;  

96.            unit_z:= z/r;  

97.             

98.            r:=r*(ActualWidth/GridWidth);   // get actual distance in metres  

99.            if ( r < 0.00000000001 ) then r:=0.00000000001;   // prevent divide by zero errors 

100.             

101.            /////////////////////////////////////  

102.            /// WAVE FUNCTION TO TEST  

103.            ///  

104.            case StartOption of  

105.              1: begin  

106.               

107.              if ( electron ) then begin                   // if electron being modelled  

108.                theta:=theta_const*(Time - k*r*r/2);  

109.                term1:=delta;  

110.              end  

111.              else begin                                            // if positron being modelled  

112.                theta:=theta_const*(Time + k*r*r/2);  

113.                term1:=-delta;  

114.              end;  

115.               

116.              term2:=cos(theta);  

117.              term3:=-sin(theta);  

118.               

119.              // Assign values to x, y, z coordinates, depending on view from the top or side.  

120.              with points[NewScreen,xpos,ypos,zpos].PsiVect do begin  

121.                if ( ViewTop ) then begin  

122.                  x:=term1 * term2;  

123.                  y:=term1 * term3;  

124.                  z:=0;  

125.                end  

126.                  else begin  

127.                  x:=term1 * term2;  

128.                  y:=0;  

129.                  z:=term1 * term3;  

130.                end;  

131.              end;  

132.              points[NewScreen,xpos,ypos,zpos].Psi := term1;  

133.              end;  

134.            end;  

135.            ///  

136.            /////////////////////////////////////  

137.             



138.          end;  

139.        end;  

140.      end;   // end {scan grid's x coords}  

141.       

142.      for xpos:=0 to GridWidth-1 do begin {scan grid's x coords}  

143.        for ypos:=0 to GridHeight-1 do begin {scan grid's y coords}  

144.          for zpos:=0 to GridDepth-1 do begin {scan grid's z coords}  

145.           

146.            ThisGroup:=PointGroup(scr, xpos, ypos, zpos);  

147.            NewGroup:=PointGroup(NewScreen, xpos, ypos, zpos);  

148.             

149.            with points[NewScreen,xpos,ypos,zpos] do begin  

150.              if (smoothing) then begin                                          // If smoothing of the wave-function’s undulations is 

enabled. 

151.                x:= xpos - midx;  

152.                y:= ypos - midy;  

153.                z:= zpos - midz;  

154.                 

155.                r:=sqrt( sqr(x) + sqr(y) + sqr(z) );  

156.                if ( r < 0.004 ) then r:=0.004;   // prevent divide by zero errors  

157.                 

158.                ElectricPotential:=ElectronCharge/(4*Pi*r*Permittivity);  

159.              end  

160.              else begin  

161.                VectGrp:=VectorGroup(NewGroup, PSI_VECTOR_FIELD);  

162.                ElectricPotential:=VectDiv(VectGrp);  

163.              end;  

164.            end; 

165.          end;  

166.        end;  

167.      end; // end {scan grid's x coords}  

168.       

169.      for xpos:=0 to GridWidth-1 do begin {scan grid's x coords}  

170.        for ypos:=0 to GridHeight-1 do begin {scan grid's y coords}  

171.          for zpos:=0 to GridDepth-1 do begin {scan grid's z coords}  

172.             

173.            ThisGroup:=PointGroup(scr, xpos, ypos, zpos);  

174.            NewGroup:=PointGroup(NewScreen, xpos, ypos, zpos);  

175.             

176.            { ThisGroup's points are assigned as follows: P3                      P5  

177.                                                                                       P1 P0 P2  

178.                                                                                             P4            P6  

179.            Where P5 & P6 are in the Z plane (P5 at the back and P6 at the front) }  

180.             

181.            x:= xpos - midx;  

182.            y:= ypos - midy;  

183.            z:= zpos - midz;  

184.             

185.            r:=sqrt( sqr(x) + sqr(y) + sqr(z) );  



186.            r:=r*(ActualWidth/GridWidth);   // get actual distance in metres  

187.  

188.            if ( r < 0.00000000001 ) then r:=0.00000000001;   // prevent divide by zero errors  

189.                

190.            // Electric Field is: -div of ElectricPotential Field - d/dt of Vector Potential field  

191.            Scalar_Group:=ScalarGroup(NewGroup, ELECTRIC_POTENTIAL_FIELD);  

192.             

193.            // This is the negative div of ElectricPotential Field (will add the rest once the Vector Potential is 

known) 

194.            points[NewScreen,xpos,ypos,zpos].Electric:=ScalarGrad(Scalar_Group);  

195.            with points[NewScreen,xpos,ypos,zpos]. Electric do begin    // Make negative 

196.              x:= -x;  

197.              y:= -y;  

198.              z:= -z;  

199.            end; 

200.  

201.            // From Schrodinger's wave equation:  

202.            // d(psi)/dt = i * Hhat/ElectronMass * Laplacian(psi) 

203.            // 

204.            // Note: div(V) = Laplacian(psi)  

205.            // SpinConstant = Hhat/ElectronMass  

206.            // 

207.            // So… 

208.            // d(psi)/dt = i*SpinConstant*div(V)  

209.            // 

210.            // VectorPotential = (1/c)*d(psi)/dt 

211.            //  

212.            // A is orthogonal to and proportional to the div(V) vector  

213.            // (multiplying by i rotates the vector 90 degrees in the complex plane). 

214.            // so use the Normal vector to the div(V) vector and the Static Electric field amplitude (E_amp). 

215.               

216.            // get amplitude of Static Electric field component  

217.            E_amp:=VectSize(points[NewScreen,xpos,ypos,zpos].Electric);  

218.           

219.            // Calculate the Unit & Normal vectors of the div(V) vector (depending on view from top or side) 

220.            with points[NewScreen,xpos,ypos,zpos]. Electric do begin  

221.              unit_x:= x/E_amp;  

222.              unit_y:= y/E_amp;  

223.              unit_z:= z/E_amp;  

224.  

225.              if ( ViewTop ) then begin  

226.                 normal_x:=unit_y;  

227.                 normal_y:=-unit_x;  

228.                 normal_z:=unit_z;  

229.              end  

230.              else begin  

231.                 normal_x:=unit_z;  

232.                 normal_y:=unit_y;  

233.                 normal_z:=-unit_x;  



234.              end;  

235.           end;  

236.  

237.            with points[NewScreen,xpos,ypos,zpos].VectorPotential do begin  

238.              x := normal_x*SpinConstant*E_amp/SpeedOfLight;  

239.              y := normal_y*SpinConstant*E_amp/SpeedOfLight;  

240.              z := normal_z*SpinConstant*E_amp/SpeedOfLight;  

241.            end;  

242.             

243.            // Electric Field is: -div of ElectricPotential Field - d/dt of Vector Potential field  

244.            // In Electric, we already have negative div of ElectricPotential Field, now subtract d/dt of Vector 

Potential field  

245.  

246.            with points[NewScreen,xpos,ypos,zpos].Electric do begin  

247.              // E = -div(V) - (1/c)*dA/dt 

248.              if (Time <> 0) then begin 

249.                x := x - (1/TimeStep)*(sqr(points[NewScreen,xpos,ypos,zpos].VectorPotential.x-

sqr(points[scr,xpos,ypos,zpos].VectorPotential.x))/SpeedOfLight); 

250.                y := y - (1/TimeStep)*(sqr(points[NewScreen,xpos,ypos,zpos].VectorPotential.y-

sqr(points[scr,xpos,ypos,zpos].VectorPotential.y))/SpeedOfLight); 

251.                z := z - (1/TimeStep)*(sqr(points[NewScreen,xpos,ypos,zpos].VectorPotential.z-

sqr(points[scr,xpos,ypos,zpos].VectorPotential.z))/SpeedOfLight); 

252.              end; 

253.            end;  

254.             

255.            // Magnetic Field is Curl of Vector Potential Field  

256.            VectGrp:=VectorGroup(NewGroup, VECTOR_POTENTIAL_FIELD);  

257.            CurlVect:=VectCurl(VectGrp);  

258.             

259.            // Calculate Magnetic B Field 

260.            with points[NewScreen,xpos,ypos,zpos].Magnetic do begin  

261.              x:=Permeability*CurlVect.x;  

262.              y:=Permeability*CurlVect.y;  

263.              z:=Permeability*CurlVect.z;  

264.            end;  

265.          end;  

266.        end;  

267.      end; // end {scan grid's x coords}  

268.   end; //if Flip_YZ  

269. end; 
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