
August 6, 2015

A Standard Model at Planck Scale

Risto Raitio 1

02230 Espoo, Finland

Abstract

To extend the standard model to Planck scale energies I propose a phenomenological
model of quantum black holes and dark matter. I assume that at the center of any black
hole there is a core object of length scale LPlanck. The core replaces the singularity of
general relativity. A simple phenomenological schematic model is presented for the
core. In the high curvature t ∼ 0 universe a core is spontaneously created in a false
vacuum. Subsequently it tunnels into the true vacuum causing an inflationary process
in the universe. A survey is made of calculational models that could support the present
scheme and of theoretical frameworks for future work.
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1 Introduction and Summary

The motivation behind the model described here is to find an economic way to go beyond
the standard model (BSM), including mini black holes, inflation and the model of renor-
malization group improved quantum gravity. This short note is hoped to be a step forward
in exploring the role of Planck scale gravity in particle physics and inflationary universe
while a complete theory of quantum gravity remains beyond the scope of this note.

I made earlier a gedanken experiment of what might happen when exploring a mini
black hole deep inside with a probe. In [1] I made two assumptions

(1) Inside any black hole there is a three dimensional integral part core of spin 0 (1
2). The

core has an associated length scale of the order LPlanck. The core is called here the gravon,
and gravion if its a fermion.

(2) The black hole singularity of general relativity is replaced by the core.

Einstein equations hold outside black holes, but in the inner region of the hole a different
picture for the core is proposed. Let us start from the vacuum. At t ∼ 0 the core is a field
of large amount of energy that is spontaneously created in a false vacuum. From there it
tunnels to the true vacuum. Next it goes through an inflationary process leading to black
holes and dark matter. For the tunneling a single bubble inflationary model is assumed.
The core has an applicable lifetime on the inflation time scale (between 10−33 and 10−32

sec). The gravon has no horizon and it decays to gravitons which couple to classical objects
like black holes and the Higgs. From the high temperature side, the core is the T = 0 limit
remnant of a thermally end-radiated black hole [2].

As to cosmic microwave background (CMB) measurements, this model is not designed
to give new predictions - most current models compare very well with all available data.
The purpose of the model is to take a new look inside black holes. An illustrative, though
not very good, comparison might be to see the core as the hydrogen atom nucleus and a
black hole as the whole atom.

With the Planck scale having its the conventional value 1019 GeV finding a gravon is
hard. Gamma-ray signals from the sky may be a promising way. A gamma-ray, or particle,
with energy half the Planck mass would be a favorable signal for the model.

In this note I disclose the physical motivation and description of the model. In section
2 I discuss the core qualitatively and in subsection 2.2 alternative candidates for modeling
quantum black holes are being searched. From this subsection on this note is a survey
of literature. Section 3 is devoted to inflation mechanisms and the Starobinsky model of
gravity. In 4 I give some hints of what may come after a simple model turns inadequate.
I consider higher derivative gravity, issues of conformity in extra dimensions and a model
in string theory. I finish in section 5 with conclusions. What is not discussed here is the
horizon, which has been extensively treated in the literature after the AMPS paper [3]. 2

Dark energy is left for future considerations.

2Their paper introduced the field to this author.
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2 The Black Hole Core

2.1 Qualitative Properties

Apart from the assumption of the existence the core the model makes use of known phys-
ical processes, supported by calculations, and is largely under the control of present day
technology.

Properties of the gravon model include:

(1) at t ∼ 0 in the tiny very early spacetime the curvature value R was very high, near
singular, and a quantum fluctuation produced a gravon field of an associated length scale
of the order LPlanck,

(2) the created gravon is in a false vacuum with energy higher than the true vacuum energy.
The subsequent processes started the inflationary phase of the universe. 3

(3) the gravon is a horizonless remnant, either stable or with some lifetime, of a thermally
end-radiated black hole. Remnants have no singularity or information loss problems, see
the recent review [4],

(4) dark matter consists of neutral matter around a core, i.e. black holes.

2.2 Modeling the Core

The core is a finite lifetime bunch of energy, originating from vacuum or black hole decay,
and obeying the Klein-Gordon equation as a free particle. When enough matter falls into
the core it becomes a black hole and the wave function makes a transition into a different
state with general relativity outside the hole.

I consider a few different model cases below which might give insight into the quantum
nature of the core. There is an large amount of models and calculations in the literature
on the general title of quantum gravity, and it may not be too optimistic that a selective
synthesis of progress can be made in the near future. The modern view is that general
relativity forms a quantum effective field theory at low energies upon which models can be
built. The point of view advocated in this note gives an extremely minimal time interval
before the big bang for any major effect of quantum gravity.

2.2.1 Einstein-Dirac Cosmology

The singularity of general relativity is a property independent of the size of the system,
whether the whole universe or a mini black hole. I start with an example from the
large scales. The work of ref. [6] gives indication of singularity avoidance in Friedmann-
Robertson-Walker (FRW) cosmology. Their analysis leads to the formation of a fermion
condensate, instead of the singularity, and a bouncing scale function. I summarize [6] as
follows.

The authors study Einstein-Dirac (ED) equations

3The common multiverse picture of bubbles as universes is not excluded but it does not change conclusions
for this model. The bubble collision rate can be made small by the vacuum tunneling potential height.
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Rij −
1

2
Rδij = 8πκT ij (1)

(D −m)Ψ = 0 (2)

where T ij is the energy-momentum tensor of the Dirac particles, κ is the gravitational
constant, D is the Dirac operator and Ψ the wave function. For metric the closed Friedmann-
Robertson-Walker is chosen

ds2 = dt2 −R2(t)dσ2 (3)

where R is the scale function and dσ2 is the line element on the unit 3-sphere

dσ2 =
dr2

1− r2
+ r2dθ2 + r2sin2θdφ2 (4)

where r, θ and φ are the standard polar coordinates. The Dirac operator in this metric is
written as

D = iγ0

(
∂t +

3Ṙ(t)

2R(t)

)
+

1

R(t)

(
0 DS3

−DS3 0

)
, (5)

where γ0 is the standard Dirac matrix, and DS3 is the Dirac operator on the unit 3-sphere.
The operator DS3 has discrete eigenvalues λ = ±3

2 ,±
5
2 , . . ., corresponding to quantization

of momenta of the particles. The Dirac equation is separate with the ansatz

Ψλ = R(t)−
3
2

[
8πκ

3

(
λ2 − 1

4

)]− 1
2
(
α(t) ψλ(r, ϑ, ϕ)
β(t) ψλ(r, ϑ, ϕ)

)
, (6)

where α and β are complex functions. For a homogenous system the components of the
energy-momentum tensor simplify and the time component is

8πκT tt =

[
m
(
|α|2 − |β|2

)
− 2λ

R
Re(αβ)

]
. (7)

Substituting ψ and T ji into the Einstein-Dirac equation one gets

i
d

dt

(
α
β

)
=

(
m −λ/R
−λ/R −m

)(
α
β

)
(8)

Ṙ2 + 1 =
m

R

(
|α|2 − |β|2

)
− λ

R2

(
βα+ αβ

)
. (9)

With the ansatz (6) all single particle wave functions have the same time dependence thus
they form a coherent macroscopic quantum state. The fermionic many-particle state is a
spin condensate.

The ED equations further reduce to ordinary differential equations involving the scale
function R(t) and the complex functions α(t) and β(t). In the limits λ = 0 and m = 0 the
equations reduce to the Friedmann equations for dust and radiation universes, respectively.
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For large R the universe behaves classically as in the dust case. But near the singularities
big bang and big crunch quantum effects change the situation. Under certain conditions Ṙ
can become zero and change sign even for small values of R. Thus the formation of a big
bang or big crunch is prevented. This effect is called the bouncing scale function.

2.2.2 Asymptotically Free Quantum Gravity

Building on higher derivative terms in the Einstein-Hilbert action, super-renormalizable
and asymptotically free theories of gravity have been discussed in the literature [7], see
also [8]. Asymptotic freedom removes the singularity. Secondly, asymptotic freedom due
to higher derivative form factor causes an effective negative pressure. Repulsive gravity at
high density produces a bounce of a black hole. Black holes in fact never form. A distant
observer sees a long lifetime for the trapped surface and interprets it as a black hole. The
bounce is not given by Heisenberg uncertainty but follows from the dynamics of the system.

In [7] the following non-polynomial extension of the quadratic gravitational action of [9]
has been considered

S =

∫
d4x

2
√
|g|

κ2

[
R−Gµν

V (−�/Λ2)−1 − 1

�
Rµν

]
, (10)

where κ2 = 32πGN and Λ is the Lorentz invariant energy scale. Its value is of the order of
Planck mass. The form factor, an entire function V contains the non-polynomial property of
the theory. V cannot have poles in the complex plane to ensure unitarity and it must have at
least logarithmic behavior in the UV to give super-renormalizability at the quantum level.
The theory reduces to general relativity in the low energy limit since all the corrections to
the Einstein-Hilbert action are suppressed by the factor Λ−1.

The form factor is related to the propagator and to the effective potential of the theory.
An example of a form factor is

V (z)−1 = exp(zn) (11)

where z = −�/Λ2 and n is a positive integer. String theory suggests n = 1. These theories
have only the graviton pole. There are no ghosts or tachyons. The UV is dominated by the
bare action, counterterms are negligible. Further details of these theories are discussed in
[7].

It is known that if one adds all quadratic curvature invariants to the Einstein-Hilbert
action the resulting theory is renormalizable at the price of ghost modes [9]. In string theory
the Einstein-Hilbert action is the first term of an infinite series containing powers of the
curvature tensor and its derivatives.

According to Narain and Anishetty [10] the behavior of running coupling constant in
the coupled system of higher derivative gravity and gauge fields is renormalizable to all
order loops. The leading contribution to the gauge coupling beta function comes entirely
from quantum gravity effects and it vanishes to all order loops.

In [10] the authors study fourth order higher derivative gravity which is claimed to be
renormalizable to all loops [9] and unitary [11]. The motivation for their study came from
the realization that at one loop four kinds of divergences appear

√
−g,
√
−gR,

√
−gRµνRµν
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and
√
−gR2. They consider the following higher derivative gravity action in dimensions

2 ≤ d ≤ 4

S =

∫
d4x
√
−g

16πG

[
−R− 1

M2

(
RµνR

µν − d

4(d− 1)
R2

)
+

(d− 2)ω

4(d− 1)M2
R2

]
(12)

where M has dimension of mass and ω is dimensionless. There are negative norm states,
the propagator of the spin 2 massive mode appears with wrong sign violating unitarity at
tree level. It was found though that in a certain domain of coupling parameter space, large
enough to include known physics, the one loop running of gravitational parameters makes
the mass of spin 2 massive mode behave in such a way that it is always above the energy
scale being studied.

For our scheme asymptotically free quantum gravity is very interesting but there may
not be at the moment general consensus whether it works as hoped.

2.2.3 Asymptotic Safety

Asymptotic safety was proposed by Weinberg [12] in 1976 as a condition of renormalizabil-
ity, for a thorough review see [13]. It is based on a nontrivial, or non-Gaussian, fixed point
(NGFP) of the underlying renormalization group (RG) flow for gravity. It is nonpertur-
bative in character and it guarantees finite results for measurable quantities. The method
for investigation of this scenario is functional renormalization group equation (FRGE) for
gravity. The FRGE defines a Wilsonian RG flow on a theory space which consists of all
diffeomorphism invariant functionals of the metric gµν of the type occuring in the action of
general relatvity. From this construction emerges a theory called Quantum Einstein Gravity
(QEG). QEG is not a quantization of classical general relativity, but it is consistent and
predictive theory within the framework of quantum field theory.

The nature of the fundamental degrees of freedom is of secondary importance. From the
viewpoint of renormalization theory it is the universality class that matters, not the par-
ticular choice of dynamical variables. Once a functional integral picture has been adopted,
even nonlocally and nonlinearly related sets of fields or other variables may describe the
same universality class and hence the same physics.

The method of ref. [14] uses the effective average action Γk, which is background inde-
pendent. The RG scale dependence is governed by the FRGE of ref. [15]

k∂kΓk[Φ, Φ̄] =
1

2
Str

[(
δ2Γk

δΦAδΦB
+Rk

)−1

k∂kRk

]
. (13)

where ΦA is the collection of all dynamical fields and Φ̄A denotes their background coun-
terparts. Rk is an infrared cutoff which vanishes for p2 � k2 and provides a k-dependent
mass term for fluctuations with momenta p2 � k2. Solutions of the FRGE give families
of effective field theories Γk[gµν ], 0 ≤ k < ∞, labeled by the coarse graining scale k. The
solution Γk interpolates between the microscopic action at k →∞ and the effective action
Γk→0.

Suppose there is a set of basic functionals Pα[·]. Any functional can be written as a
linear combination of the Pα’s. The the solutions Γk of the FRGE have expansions of the
form
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A[Φ, Φ̄] =
∞∑
α=1

ūα Pα[Φ, Φ̄] . (14)

The basis Pα[·] may include local field monomials and non-local invariants. The generalized
couplings ūα are used as local coordinates. Or use a subset of couplings, so called essential
couplings, which cannot be absorbed by a field reparametrization. The method is non-
perturbative but truncations have to be made to the expansions of solutions.

Expanding Γk as above and inserting into FRGE one obtains a system of infinitely many
coupled differential equations for the ūα’s

k∂k ūα(k) = βα(ū1, ū2, · · · ; k) , α = 1, 2, · · · . (15)

which can be solved using analytical or numerical methods.

A simple ansatz for action is the Einstein-Hilbert action where Newton’s constant Gk
and the cosmological constant Λk depend on the RG scale k. Let gµν and ḡµν denote
the dynamical and background metric, respectively. The effective action then satisfies in
arbitrary spacetime dimension d

Γk[g, ḡ, ξ, ξ̄] =
1

16πGk

∫
ddx
√
g
(
−R(g) + 2Λk

)
+ Γgfk [g, ḡ] + Γghk [g, ḡ, ξ, ξ̄] (16)

where R(g) is the scalar curvature from metric gµν , Γgfk denotes the gauge fixing action and

Γghk the ghost action with the ghost fields ξ and ξ̄.

The corresponding β-functions describing the evolution of the dimensionless Newton
constant gk = kd−2Gk and dimensionless cosmological constant λk = k−2Λk, were derived
the first time in [14] for any value of the spacetime dimensionality. The most important
result is the existence of a non-Gaussian fixed point suitable for asymptotic safety. It is
UV-attractive both in g- and λ-directions (roughly λ ≈ .35 and g ≈ .4).

In the study of [16] it was shown that for r → 0 the RG improved black hole metric
approaches that of de Sitter space. This means that the quantum corrected spacetime is
completely regular, free from any curvature singularity. The improved regularity comes
because the 1/r-behavior of fclass = 1− 2G0M/r is tamed by very rapidly vanishing of the
Newton constant at small distances.

A heavy black hole obeys the classical relation TBH ∼ 1/M . The mass of the hole is
reduced by the radiation the temperature increases. This tendency is opposed by quantum
effects. Once the mass is as small as Mcr ∼MPlanck the temperature reaches its maximum
value TBH(Mcr) [16]. For even smaller masses it drops very rapidly and vanishes at or below
the MPlanck. In the present model the microscopic black hole is supposed have a remnant
which does not Hawking radiate any more.

Asymptotic safety is an important theoretical tool for quantum gravity. The methods
used to derive the result are relevant to our scheme, even though the analysis does not
support asymptotic freedom. On the other hand, the FRGE analysis necessitates approx-
imations, like series truncations with unknown accuracy, and contains a number of field
theory subtleties.
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2.2.4 Sub-Planckian Black Holes

In [17] an approach with a more extensive length scale, including sub-Planckian, is consid-
ered although with the same type of goals as in this note. The authors discuss the concept
of mass using the Komar integral and find that this provides a useful way of linking black
holes and elementary particles. Their definition of mass suggests that gravity is effectively
2-dimensional near the Planck scale.

The Compton wave length RC = ~/(Mc) and Schwarzschild radius RS of a black hole
are equal at the Planck scale. As one approaches the Planck point from the left in Fig. 1, it
has been argued [19] that the Heisenberg uncertainty principle (HUP) should be replaced
by a generalized uncertainty principle (GUP) of the form

∆x >
~

∆p
+

(
αL2

Planck

~

)
∆p (17)

where α is a dimensionless constant (usually assumed positive) which depends on the par-
ticular model and the factor of 2 in the first term has been dropped.

Figure 1: The division of the (M,R) diagram into the classical, quantum, relativistic and
quantum gravity domains. - This figure is from [17].

If one rewrites (17) using the substitution ∆x→ R and ∆p→ cM one gets

R > R′C ≡
~
Mc

+
αGM

c2
=

~
Mc

[
1 + α

(
M

MPlanck

)2
]

(18)

This expression might be regarded as a generalized Compton wavelength, the last term
representing a small correction as one approaches the Planck point from the left.

The GUP has important implications for the black hole horizon size, as can be seen by
examining what happens as one approaches the intersect point from the right Fig. 1. In
this limit, it is natural to write (18) as

R > R′C =
αGM

c2

[
1 +

1

α

(
MPlanck

M

)2
]

(19)

and this represents a small perturbation to the Schwarzschild radius for M � MPlanck if
one assumes α = 2. There is no reason for anticipating α = 2 in the heuristic derivation of
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the GUP. However, the factor of 2 in the expression for the Schwarzschild radius is precise,
whereas the coefficient associated with the Compton term is somewhat arbitrary. This
motivates an alternative approach in which the free constant in (18) is associated with the
first term rather than the second. One then replaces Eqs. (18) and (19) with the expressions

R′C =
β~
Mc

[
1 +

2

β

(
M

MPlanck

)2
]

(20)

and

R′S =
2GM

c2

[
1 +

β

2

(
MPlanck

M

)2
]

(21)

for some constant β, with the second expression being regarded as a generalized event
horizon (GEH).

An important caveat is that (17) assumes the two uncertainties add linearly. On the
other hand, since they are independent, it might be more natural to assume that they add
quadratically [18]:

∆x >

√(
~

∆p

)2

+

(
α`2Pl∆p

~

)2

. (22)

One refers to Eqs. (17) and (22) as the linear and quadratic forms of the GUP. Adopting
the β formalism, then gives a unified expression for generalized Compton wavelength and
event horizon size

R′C = R′S =

√(
β~
Mc

)2

+

(
2GM

c2

)2

, (23)

leading to the approximations

R′C ≈
β~
Mc

[
1 +

2

β2

(
M

MPlanck

)4
]

(24)

and

R′S ≈
2GM

c2

[
1 +

β2

8

(
MPlanck

M

)4
]

(25)

for M � MPlanck and M � MPlanck, respectively. These might be compared to the exact
expressions in the linear case, given by Eqs. (20) and (21).

Regardless of the exact form of the GUP, these arguments suggest that there is a connec-
tion between the uncertainty principle on microscopic scales and black holes on macroscopic
scales. This is termed the black hole uncertainty principle (BHUP) correspondence and it
is manifested in a unified expression for the Compton wavelength and Schwarzschild radius
[20]. It is a natural consequence of combining the notions of the GUP and the GEH. Indeed,
it would be satisfied for any form of the function R′C ≡ R′S which asymptotes to RC for
M �MPlanck and RS for M �MPlanck. Models in which this function is symmetric under
the duality transformation M ↔ 1/M (such as the linear and quadratic forms given above)
are said to satisfy the strong BHUP correspondence [20].
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One controversial implication of the BHUP correspondence is that it suggests there
could be sub-Planckian black holes with a size of order their Compton wavelength. One can
argue that there is only a low probability of sub-Planckian objects becoming black holes.

The authors explore another type of solution which involves sub-Planckian black holes
but avoids some of the complications associated with the LBH solution. In particular, it
implies a linear rather than quadratic form of the GUP and it does not involve another
asymptotic space.

The continuity between the Compton and Schwarzschild lines suggests some link between
elementary particles and sub-Planckian black holes. However, one might prefer to maintain
a distinction between these objects. For example, the function |∆x| has a minimum at 0
for models with α < 0 but with a discontinuity in the gradient. Since R′C = R′S = 0 at this
point, one effectively has G → 0 (no gravity) and ~ → 0 (no quantum discreteness) The
distinction between particles and black holes could also be maintained with more general
forms of the GUP and GEH.

In the standard picture, the Schwarzschild solution is obtained by solving Einstein’s
equations in vacuum and matching the metric coefficients with the Newtonian potential as
a boundary condition to fix the integration constant. This constant relates to the mass
specified by the Komar integral [21, p. 251]:

M ≡ 1

4πG

∫
∂Σ
d2x

√
γ(2) nµσν∇µKν (26)

where Kν is a timelike vector, Σ is a spacelike surface with unit normal nµ, and ∂Σ is
the boundary of Σ (typically a 2-sphere at spatial infinity) with metric γ(2)ij and outward
normal σµ.

The authors consider only the particle case in the sub-Planckian regime and write (26)
as

M ≡
∫

Σ
d3x
√
γ nµKνT

µν ' −4π

∫ RC

0
dr r2T 0

0 (27)

where γ is the determinant of the spatially induced metric γij , Tµν is the stress-energy tensor
and T 0

0 accounts for the particle distribution on a scale of order RC. This corresponds to
the rest mass appearing in the expression for the Compton wavelength, RC = ~/(Mc).

Consider now a decaying black hole with mass M & MPlanck. The fate of such an
object is an open problem in quantum gravity with at least three possible scenarios for the
end-point of evaporation.
(1) The black hole keeps decaying semi-classically with a runaway increase of the tempera-
ture and a final explosion involving non-thermal emission of hard quanta. In this case, the
energy momentum tensor exhibits an integrable singularity, T 0

0 = −Mδ(~x), and the Komar
energy has a standard profile. However, this scenario may be criticized since it relies on
classical and semi-classical arguments applied to a quantum gravity dominated regime.
(2) Quantum gravity effects modify the classical profile of the mass-energy distribution, so
that T 0

0 6= −Mδ(~x). This happens in a variety of proposals, including asymptotically safe
gravity, non-commutative geometry, non-local gravity and gravitational self-completeness,
for refs. see [17]. In all these cases, the end-point of evaporation turns out to be a stable
zero-temperature extremal black hole configuration, preceded by a positive heat capacity
cooling phase. The Komar energy would again be defined by (26), while the size of the
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black hole remnant would correspond to the natural ultraviolet cut-off of quantum gravity.
This means that the endpoint of evaporation separates the two phases, i.e. particles and
black holes. Such a scenario has the following three properties:

• singularity avoidance or inaccessibility

• non-singular final stage of evaporation

• consistent definition of black hole size with RS > `Pl for all masses.

Only a self-consistent theory of quantum gravity can confirm this possibility.

(3) In the absence of further theoretical indications or experimental evidence, the authors
explore a third scenario, which reverses the usual logic but still assumes the above three
properties. In so far as the black hole undergoes a final stage of evaporation, the major
contribution to integral (26) will be

M = −4π

∫ `Pl

0
dr r2T 0

0 (28)

where T 0
0 accounts for an unspecified quantum-mechanical distribution of matter and en-

ergy. One still has M 6= −Mδ(~x) but the profile differs from the second scenario. Integral
(28) is generally not known and might lead to a completely different definition of the Ko-
mar energy. Some anomalies are expected to emerge at the Planck scale since they already
emerge at the GUP level.

3 Inflation

It is assumed that the universe originated from a primordial quantum fluctuation in vacuum,
creation of a gravon field in a false vacuum. That lead in the next phase to inflation where
gravity and the Higgs play major roles.

3.1 False Vacuum and Higgs Inflation

Inflation [22, 48, 24] stretches the initial quantum vacuum fluctuations to the size of the
present Hubble patch, seeding the initial perturbations for the cosmic microwave background
radiation and large scale structure in the universe [25]. For a theoretical review, see [26].
Since inflation dilutes all matter it is pertinent that after the end of inflation the universe
is filled with the right thermal degrees of freedom: the standard model particles together
with dark matter. For a review on pre- and post-inflationary dynamics, see [27].

The decay of the initial false vacuum is a nucleation process in a first order phase
transitions [28]. It is initiated by the materialization of a bubble of true vacuum within the
false vacuum by quantum tunneling causing a change in the cosmological constant [29].

I assume the tunneling of the scalar gravon takes place from a de Sitter vacuum to a
lower energy vacuum, de Sitter or flat, by the one bubble inflationary scenario [30, 31].
Slow roll inflation, by the scalar field potential, follows after the gravon tunneling to the
true vacuum in the standard inflationary way. The gravon decay produces primordial black
holes which slow down inflation towards exit.
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The Higgs scalar field inflation action is [32, 33]

S =

∫
d4x
√
−g
[
LSM −

(
M̄2

Planck

2
+ ξ|H|2

)
R

]
(29)

where LSM is the SM Lagrangian minimally coupled to gravity, ξ is the parameter that
determines the non-minimal coupling between the Higgs and the Ricci scalar R, H is the
Higgs doublet and, as a consequence of such large non-minimal coupling, there is a new
scale in the theory, M̄Pl/

√
ξ, lower than the standard reduced Planck mass, M̄Pl ≈ 2.43 ×

1018 GeV. The part of the action that depends on the metric and the Higgs field only (the
scalar-tensor part) is

Sst =

∫
d4x
√
−g
[
|∂H|2 − V −

(
M̄2

Planck

2
+ ξ|H|2

)
R

]
, (30)

where V = λ(|H|2 − v2/2)2 is the Higgs potential and v is the electroweak Higgs vacuum
expectation value. In [33] a sizable non-minimal coupling is taken, ξ > 1, because it is
required by inflation.

3.2 Starobinsky Model

Starobinsky has pointed out that quantum corrections to general relativity should be im-
portant in the early universe. The Starobinsky model action is [34]

S =

∫
d4x
√
−g
( 1

16πG
R+

1

b
R2
)

(31)

with the dimensionless coupling b = 6M2/M2
Planck, where M is a constant of mass dimension

one, MPlanck = G−1/2, G is the Newton’s constant with scale dependence and g is the
determinant of the metric. This action creates de Sitter expansion phase in the early
universe and removes the early singularity.

Usually the Einstein term is regarded as the fundamental term, and the other terms
(higher powers in R) are secondary in the sense that they are originate from quantum
corrections. But one can take the view that the fundamental term is the one-loop second
term R2 rather than the linear term R.

A non-perturbative renormalization group (RG) analysis the Starobinsky action leads
to asymptotically safe (AS) gravity [12]. There exists a non-trivial, or non-Gaussian, UV
fixed point, where G is asymptotically safe and the R2 coupling vanishes. The starting
point for RG calculations is an exact renormalization group equation (ERGE) in Wilsonian
context, for details see [35]. The aim of [33] is to address both the classical and quantum
issues. The latter issue is more of a challenge, but the authors have performed both of them
carefully.

4 Theoretical Directions

When any simple model turns out inadequate one has to turn to an analysis with more
mathematical machinery. At present there are several possibilities to follow. I mention
below just a few.
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4.1 Dynamic Planck Scale

Assuming scalar and fermion fields a scheme for dynamic generation of the Planck scale
with inflation seems possible as discussed in [36]. The authors aim at a model independent
analysis and make the interesting proposal that a complete theory of quantum gravity may
not even be needed because inflation is described by Einstein gravity at energies below the
Planck scale. This is supported by the model of the present note, the quantum era of gravity
occurs only extremely briefly before the big bang.

4.2 Higher Derivative Gravity

There is ample literature of higher derivative gravity but I mention only a recent paper [37]
which gives an up-to-date view to the field (authors include the originator of the idea). The
authors start with a general second-plus-fourth-order action

I =

∫
d4x
√
−g
(
γR− αCµνρσCµνρσ + βR2

)
(32)

where Cµνρσ is the Weyl tensor, the traceless part of the curvature tensor Rµνρσ, one obtains
a renormalisable system [38]. The spectrum of this theory contains [39] a massless graviton,
a massive spin-two ghost excitation with (m2)2 = γ

2α , and a massive non-ghost spin-zero
excitation with (m0)2 = γ

6β . The canonical value of γ is 1
16πG = 2

κ2
, where G is the 4D

Newton constant. Quadratic curvature terms in the action arise in most effective theories
of quantized gravity, including string theory.

This article explores the set of static, spherically symmetric and asymptotically flat
solutions of this class of theories. From a Frobenius analysis of the asymptotic small-radius
behavior, the solution space is found to split into three asymptotic families, one of which
contains the classic Schwarzschild solution. These three families are carefully analyzed to
determine the corresponding numbers of free parameters in each. One solution family is
capable of arising from coupling to a distributional shell of matter near the origin; this
family can then match on to an asymptotically flat solution at spatial infinity without
encountering a horizon. Another family, with horizons, contains the Schwarzschild solution
but includes also non-Schwarzschild black holes. The third family of solutions obtained from
the Frobenius analysis is nonsingular and corresponds to ‘vacuum’ solutions. In addition
to the three families identified from near-origin behavior, there are solutions that may be
identified as ‘wormholes’, which can match symmetrically on to another sheet of spacetime
at finite radius.

Without a full stability analysis of the various phases of the static solution space one
can extract some partial stability information from various quasinormal mode studies of
the stability of the Schwarzschild solution itself, considered as a solution of the higher-
derivative (32) theory. This has been studied in ref. [40]. It was, firstly, found there that
the Schwarzschild solution is stable in the γR + βR2 theory with α = 0. This is not
surprising, because that theory is equivalent to ordinary general relativity coupled to a
positive-energy massive scalar field.

In ref. [40] it was also suggested that the Schwarzschild solution could become unstable,
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for nontachyonic values of (m2)2 = γ
2α , for sufficiently small values of

µW =
Mm2

M2
Pl

, (33)

where MPl is the Planck mass. ref. [40] then went on to claim, nonetheless, that detailed
analysis of the quasinormal modes of the theory (32) showed no such instability. This
conclusion has, however, been challenged more recently in ref. [41], where it is claimed
that ref. [40] erred in considering only a static S-wave potential instability. Instead, the
analysis of ref. [41] does find Schwarzschild S-wave instabilities for µW . 1 by treating the
Ricci tensor Rµν as an effective massive field. This instability is compared to Schwarzschild
instabilities found in massive theories of gravity [42].

Instability of the Schwarzschild solution for small black holes (i.e. small µW ) raises the
question whether a stable sector of the static solution space exists, and whether one or
another of the non-Schwarzschild solutions the authors have discussed could then represent
a stable final phase. Clearly, the relation between µW and the branch point in the black-hole
solution space could be an important issue in this regard.

4.3 Extra Dimensions

In [43] the Starobinsky model is studied from the point of view of extra dimensions, usually
taking six extra dimensions. The authors take the view that the main term is the R2

term. The pure R2 theory does not contain any dimensional constant and is therefore scale
invariant. Scale symmetry may be spontaneously broken, eg. by coupling to matter sector,
leading to a scale Λ. The authors give an estimate of the lower limit of scale Λ ∼ 5× 1015

GeV. This is very close to the grand unified theory (GUT) value and the authors suggest
associating higher dimensional theory with GUT.

In ten dimensional theories, originally in 5D Kaluza-Klein theory, a dilaton comes always
with gravity. If the Newton’s constant, or Planck mass, is promoted to a dynamical field
the result is the dilaton. The dilaton field has been considered as a model of dark energy
in [44].

4.4 Non-Supersymmetric Strings

In the light of present LHC results research based on non-supersymmetric vacua is be-
coming more important. In non-supersymmetric vacua almost all the moduli are lifted up
perturbatively, contrary to the supersymmetric ones which typically possess tens or even
hundreds of flat directions that cannot be raised perturbatively. An interesting analysis
of non-supersymmetric SO(16) × SO(16) heterotic string theory is presented in [45]. It is
based on the observation that there is a triple coincidence with the Higgs potential

V = m2|H|2 + λ|H|4 (34)

(with m2 ∼ −(90GeV )2 and λ ' 0.13) namely: quartic coupling λ, its running, and the
bare Higgs mass can all be accidentally small at around the Planck scale. This is a direct
hint for Planck scale physics in the context of superstring theory. The vanishing bare Higgs
mass implies that the supersymmetry is restored at the Planck scale and that the Higgs field
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resides in a massless string state. The smallness of both λ and its beta function is consistent
with the Higgs potential being very flat around the string scale. Such a flat potential opens
up the possibility that the Higgs field plays the role of inflaton in the early universe.

In [45] the authors study the concrete model: the SO(16) × SO(16) heterotic string
theory [46, 47]. This model breaks supersymmetry at the string scale but, unlike the bosonic
string theory in 26 dimensions, the tachyonic modes are projected out as in the ordinary
heterotic superstring theories. In the fermionic construction, the modular invariance of the
partition function restricts the allowed set of the fermion numbers in Neveu-Schwarz (NS)
and Ramond (R) sectors. The SO(16) × SO(16) model is the only one that has neither a
tachyon nor supersymmetry in ten dimensions.

There are two possibilities for the potential beyond the maximum: (i) the potential
smoothly becomes runaway (ii) the potential has another local minimum

In the latter case, the false vacuum gives a mechanism of eternal inflation. This situation
is similar to the idea of the inflation being a first order phase transition. In the medium of
the false vacuum, there appears a bubble of the electroweak vacuum due to the tunneling.
This eternal inflation in the false vacuum has caused the so-called the graceful exit problem
in the old inflation scenario [48]. However in the case (ii) there is a down hill, slow roll and
a down hill structure. The space inside the bubble experiences the second stage of inflation
hence this problem is ameliorated as one does not need let bubbles collide.

The above described inflation scheme is close to one considered in sec. 3.1, for both the
Higgs and the gravon. May be the gravon and gravion are superpartners. Further details
should be checked out and there are a lot of subtleties to be resolved.

5 Conclusions

The present note contains a proposal of a schematic model, and references to literature
for more details with calculations and a hint of tests. It takes a step beyond the standard
model of particles towards a model of Planck scale phenomena, assuming the standard
model is valid up to that scale. At the Planck scale black holes are the key objects to
study. Unfortunately not all existing calculational results concerning Planck mass region
black holes are in consensus. ERGE based calculations provide rather solid results for f(R)
type gravity [49].

The scheme I propose here can be summarized as having the gravon a fundamental
elementary particle of quantum gravity, which should be included in the standard model and
the modified theory of Einstein-Hilbert gravity. But the main conclusion is, unfortunately,
that no detailed action could be written for the present model. I only present the gravon
as a candidate for non-singular blacks hole and dark matter. In [45] the Higgs has been
considered to be a string state. The gravon in turn could be constructed as a massless black
string, it remains open at this stage whether it is stable enough or suitably unstable.

One might classify the gravon and the Higgs as the ”arsenal” sector and the traditional
SM as the ”customer” sector of the standard model at Planck scale (SM@P). The details of
the present scheme remain to be fixed to a mathematical structure, a task I wish to return
in the future. One of the most interesting questions is what happens to a black hole below
the Planck mass value. Here it is tentatively supposed that the hole becomes particle-like
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and ”explodes” to known particles. A simple toy model is sometimes a useful tool until
experimental evidence is found for theories of more mathematical structure.
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[36] K. Kannike, G. Hütsi, L. Pizza, A. Racioppi, M. Raidal, A. Salvio and A. Stru-
mia, Dynamically Induced Planck Scale and Inflation, JHEP 1505 (2015) 065
[arXiv:1502.01334v3].
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