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ABSTRACT. The shared background independence of spacetime algebra and the impedance ap-
proach to quantization, coupled with the natural gauge invariance of phase shifts introduced
by quantum impedances, opens the possibility that identifying the geometric objects of the
impedance model with those of spacetime algebra will permit a more intuitive understanding
of the equivalence of gauge theory gravity in flat space with general relativity in curved space.

INTRODUCTION

In the preface to the newly published second edition of his seminal text[1], Professor Hestenes
makes four “bold and explicit... claims for innovation” in SpaceTime Algebra:

• STA enables a unified, co-ordinate free formulation for all of relativistic physics, in-
cluding the Dirac equation, Maxwell’s equation, and General Relativity.

• Pauli and Dirac matrices are represented in STA as basis vectors in space and spacetime
respectively, with no necessary connection to spin.

• STA reveals that the unit imaginary in quantum mechanics has its origin in spacetime
geometry.

• STA reduces the mathematical divide between classical, quantum, and relativistic physics,
especially in the use of rotors for rotational dynamics and gauge transformations.

The preface encourages making such claims, lest the innovations be overlooked. “Modestly
presenting evidence and arguing a case is seldom sufficient.”[1] In this spirit, the following five
bold and explicit claims are made for the Impedance Approach to quantization:

• IA is background independent - This fundamental connection with STA goes deep, to
the co-ordinate free formulation essential for quantum gravity[2, 3, 4]. In STA, motion
is described with respect to the object in question rather than an external coordinate
system. Similarly, impedances are calculated from Mach’s principle applied to the two
body problem[5, 6]. Motion is described with respect to one of the two bodies. IA
is background independent. There is no third body, no independent observer to whom
rotations can be referenced, only spin.

• IA contains gravity - Matching quantized impedances at the Planck scale reveals an
exact identity between electromagnetism and gravity [7]. By far the most imprecise of
the fundamental constants, the gravitational constant G cancels out in the calculation.

• IA is gauge invariant - Impedances shift phase. Quantum impedances shift quantum
phase. In gauge theories phase coherence is maintained by covariant derivatives. In IA
coherent phase shifts are introduced by the impedances. IA is gauge invariant.

• IA is finite - In IA the quantization scale is taken to be the electron Compton wave-
length. Low and high energy impedance mismatches provide natural cutoffs as one
moves away from the quantizaton length. No need to renormalize. IA is finite.

• IA is confined - Reflections from the natural cutoffs of the impedance mismatches
provide confinement to the vicinity of the quantization length.

The presence of gravity in IA in conjunction with the coordinate-free background independence
common to STA and IA invites the conjecture[8] that scale dependent impedances (Coulomb,
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dipole, scalar Lorentz,...) of IA can be associated with the translation gauge field of gauge
theory gravity [9, 10, 11, 12, 13, 14] and scale invariant impedances (quantum Hall/vector
Lorentz, chiral, centrifugal, Coriolis, three body,...) with the rotation gauge field.

Let us see how this comes about, and what consequences might follow.

HISTORICAL PERSPECTIVE ON THE IMPEDANCE APPROACH

Given the practical everyday utility of the impedance concept in technical applications, it is
not surprising that one finds the most helpful historical introductions and expositions not in
the academic literature, but rather in that of technologically advanced industries, where proper
application of the concept is essential for economic success [15, 16, 17, 18].

This inadvertent divorce of theoretical from practical has profound consequences for quantum
field theory (QFT), where the Hamiltonian and Lagrangian formalisms focus upon conservation
of energy and its flow between potential and kinetic, rather than upon that which governs the
flow, the impedances.

The most rudimentary example can be found at the foundation of quantum electrodynamics
(QED), in the photon-electron interaction. The formidable breadth of the crack through which
the impedance concept has fallen becomes apparent when one considers that the near field pho-
ton impedances [19] shown in figure 1 cannot be found in the physics textbooks of electricity
and magnetism, QED, or QFT [20].

What governs the flow of energy in photon-electron interactions is explicitly absent from the
formal education of the PhD physicist.

The significance can be seen by examining energy flow between a 13.6 eV photon and the
quantum Hall impedance of the electron. The figure illustrates the scale-dependent photon
near-field dipole impedance that permits energy to flow without reflection between Rydberg
and Bohr, between photon and hydrogen atom. However, what is lacking in the impedance
match is the corresponding scale dependent electron dipole impedance.

The force operative in the quantum Hall effect is the vector Lorentz force. Impedance quanti-
zation is a possibility for all forces [6]. Quantizing with electromagnetic forces only and taking
the quantization length to be the electron Compton wavelength gives the impedance network
of figure 2, where the electron ‘external dipole’ impedance match to the photon is represented
by the large blue diamonds. The nodes of the network are strongly correlated with the unstable
particle coherence lengths [21, 22], suggesting that, as in the hydrogen atom, energy flows to
and from the unstable particle spectrum via this network of electron impedances.

FIGURE 1. Electron quantum
Hall and photon near and far field
impedances vs. photon energy [19]

If impedance quantization is both a fact
of nature and a powerful theoretical tool
(as explicated later in this paper), how
is it not already present in the Standard
Model? One might suggest that the ab-
sence is simply an historical accident,
a consequence of the order in which
experimentalists revealed relevant phe-
nomena [20]. The scaffolding of QFT
was erected on experimental discoveries
of the first half of the twentieth century,
on the foundation of QED, which was
set long before the Nobel prize discov-
ery of the scale invariant quantum Hall
impedance in 1980 [23].
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FIGURE 2. The ‘One Slide’ [35]

The discovery of exact impedance quantization was greatly facilitated by the scale invariance.
This classically peculiar impedance is topological, the measured impedance being independent
of the size or shape of the Hall bar, independent of the size or shape of the resistor that governs
the flow of current. Prior to that discovery, impedance quantization was more implied than
explicit in the literature [24, 25, 26, 27, 28, 29, 30]. Early mentions include the 1955 paper of
Jackson and Yovits [24] and the 1957 paper of Landauer [25].

The 1959 thesis of Bjorken [26] presents an approach summarized [27] as “...an analogy be-
tween Feynman diagrams and electrical circuits, with Feynman parameters playing the role of
resistance, external momenta as current sources, and coordinate differences as voltage drops.
Some of that found its way into section 18.4 of...” the canonical text [28]. As presented there,
the units of the Feynman parameter are [sec/kg], the units of mechanical conductance [31].

It is not difficult to understand what led Bjorken astray, as well as those (including the present
author) who have made more recent similar attempts [5, 32, 33, 34]. The units of mechanical
impedance are [kg/sec]. One would think that more [kg/sec] would mean more mass flow.
However, the physical reality is more [kg/sec] means more impedance and less mass flow. This
is one of many interwoven mechanical, electromagnetic, and topological paradoxes [35] to
be found in the SI system of units, which ironically were developed with the intent that they
“...would facilitate relating the standard units of mechanics to electromagnetism.” [36].

With the confusion that resulted from misinterpreting conductance as resistance and lacking the
concept of quantized impedance, the anticipated intuitive advantage [28] of the circuit analogy
was lost. The possibility of the jump from a well-considered analogy to a photon-electron
impedance model was not realized at that time.

Like the first Rochester Conference on Coherence and Quantum Optics in 1960, the 1963 pa-
per/thesis by Feynman and Vernon [29] on the “Interaction of Systems” was motivated by the
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invention of the maser. The authors devoted a thesis to concepts needed for impedance match-
ing to the maser. Lacking again was the explicit concept of quantized impedance.

While the 1970 paper by Landauer [30] somewhat clarified his earlier work, the explicit concept
of impedance quantization remained obscure.

Quantization of mechanical impedance in the hydrogen atom was introduced in a 1975 unpub-
lished note [5]. However, the quantity with units [kg/sec] was interpreted as mass flow in the
deBroglie wave, with confusion arising again due to the inversion in the SI system of units.

Had impedance quantization been discovered in 1950 rather than 1980, one wonders whether
the concept might have found its way into the foundation of QED at that time, before it was set
in the bedrock. As it now stands, the inevitable reconciliation of practical and theoretical, the
incorporation of impedances into the foundations of quantum theory, is paradigm-changing.

THE IMPEDANCE MODEL

Given the experimental evidence of quantization in the photon and quantum Hall impedances
and the realization that mechanical impedances can be calculated from Mach’s principle ap-
plied to the two body problem [5], it is a short step to introduce the (inverse square of) line
charge density needed to convert mechanical impedances [6] to electrical, where techniques for
calculating electromagnetic interactions between the objects of Geometric Algebra are known.

With electromagnetic fields only, taking maximal symmetry between electric and magnetic,
and taking the simplest geometric objects needed for a realistic model [6] gives

• quantization of magnetic and electric flux, charge, and dipole moment
• three objects - flux quantum (no singularity), monopole (one), and dipole (two)
• confinement to a fundamental length, taken to be the electron Compton wavelength
• the photon

In seeking to link IA to STA, one possibility is to explore the correspondence between the
geometric objects of the two approaches, as shown in figure 3:

FIGURE 3. Possible linking of a
subset of the objects of IA with STA

The calculated coupling impedances of
the interactions between these geomet-
ric objects[6, 21, 37], the coupling
impedances of the modes of the model,
are shown in figure 2. Of immediate
interest in terms of defining the com-
ponents of the Dirac wavefunction are
the modes intersecting at the electron
Compton wavelength, including those
of the .511 MeV photon. The energy
of a photon whose wavelength is the
electron Compton wavelength equals the
.511 MeV rest mass of the electron.

The modes at the .511 MeV node that is
matched to the 377 Ω photon impedance fall into one of three categories:

• self-interaction between the electric and magnetic flux quanta of the photon
• interaction between the flux quanta of the photon and the electron modes
• self-interaction of the excited electron modes

The three categories are stages in the transfer of energy from photon to electron. Results of the
geometric products that describe these interactions are shown in figure 4.



QUANTIZED IMPEDANCES IN SPACETIME ALGEBRA 5

FIGURE 4. Grades of the photon-
electron interaction at .511 MeV

In the first stage the coupled magnetic
and electric flux quanta of the photon are
propagating in free space [38]. The geo-
metric product of the two flux bivectors
delivers a pseudoscalar and a scalar.

In the second stage, which describes ex-
citation of the electron by the photon,
we have four interactions, each between
one of the flux quanta of the photon
and one of the geometric objects of the
impedance model as shown in figure 3.

Here the two flux quanta of the free
space photon start to decohere due to the
opposing phase shifts of the capacitive
and inductive impedances of the elec-
tron. Keller summarizes a possible in-
terpretation of this process in the preface
to his treatise on quantum theory in near-
field electrodynamics [39].

“Matter-attached fields are unavoidably
present in the near-field... and in the co-
variant notation their quantization leads
to the scalar and longitudinal photons,
and then by a certain unitary transfor-
mation to gauge and near-field photons.”

In near-field electrodynamics “The longitudinal electric field is always of crucial importance...this
field involves the difference between the longitudinal and scalar photons”. [40]

The ‘certain unitary transformation’(
i −i
1 1

)
is complex. Applying this transformation to the scalar and longitudinal photon

wave functions delivers their ‘real’ sum (the gauge photon) and ‘imaginary’ difference (the
near-field photon) [40]. The gauge photon carries the phase information (not a single measure-
ment observable) that permits the instantaneous non-local projection of entangled photons into
complementary eigenstates [22]. In the impedance model the associated impedance is scale
invariant.

Assigning the experimental reality of non-local state reduction of entangled photons to the
gauge photon implies the reality of the near-field photon in the excited states of the electron.

Keller’s treatment doesn’t employ STA. Presumably the geometric aspects of i in the transfor-
mation matrix are not yet understood, and certainly not by the present author. With that in mind,
it should be noted that the above interpretation assumes that Keller’s longitudinal and near-field
photons can be identified with the corresponding pseudoscalars of STA shown in figure 4.

In the third stage we have the self-interacting modes of the electron model that were excited
by the impedance matched photon. These modes comprise an even sub-algebra of STA. The
complete algebra appears only in the photon-electron interaction of the second stage.

In the impedance approach the ‘electron’ is a coupled mode family obeying linear superpo-
sition. The correlation of the network nodes with the coherence lengths shown in figure 2
suggests that the elementary particle spectrum consists of excited modes of the impedance net-
work, that the network comprises the ‘structure of the vacuum’ as cited earlier [38]. Any of
them, when taken as components of the Dirac wave function, should deliver meaningful results.
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The initial conjecture [8] relating IA and STA was based upon the distinction between scale
invariant (rotation gauge field) and scale dependent (translation gauge field) impedances. With
the one known exception of the massless photon, which is unique in having both scale invariant
far-field and scale dependent near-field impedances, the invariant impedances cannot commu-
nicate energy/information, only quantum phase. This distinction plays a fundamental role in
entanglement, non-locality, and state reduction [22], the black hole information paradox [41],
the chiral anomaly [42], time asymmetry [43], the extreme early Big Bang [44] and at the
foundational level in interpretations of quantum mechanics [45].

The centrifugal impedance shown in figures 2 (green dots) and 5 (green line) is scale invariant.
Scale invariant impedances cannot be shielded [43]. The vector Lorentz impedance of the
Aharonov-Bohm effect is one example. The question here is what role invariant impedances
might play in gravitation. The equivalence principle as stated by Heisenberg [46] reads

“...gravitational forces can be put on the same level as centrifugal or other forces that arise as
a reaction of the inertia...”

THE PLANCK PARTICLE

Just as the energy of a photon whose wavelength is the electron Compton wavelength equals
the electron rest mass, the energy of a photon whose wavelength is the Planck particle Compton
wavelength is the rest mass of the Planck particle and its associated event horizon. This is the
‘electromagnetic black hole’, the simplest Planck particle eigenstate. A more detailed model
can be had by taking the quantization length to be not the electron Compton wavelength, but
rather the Planck length, resulting in the network of figure 5.

FIGURE 5. An impedance template for the Big Bang - a subset of the electron
and Planck particle impedance networks, showing a .511 Mev photon entering
from the right and the ‘primordial photon’ from the left. The green line repre-
sents both quantum Hall and centrifugal impedances [7, 41, 44].

Calculating the impedance mismatch between electron and Planck particle gives an identity be-
tween electromagnetism and gravity [7, 41]. The calculation proceeds in the same manner as the
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impedance match of the 13.6 eV photon near-field impedance to the quantum Hall impedance
at the Bohr radius, by attempting to match the .511 MeV photon near-field impedance to the
quantum Hall impedance at the Planck length. Similar calculations can be done with any of the
coupled impedances of figure 5.

The gravitational force between these two particles is equal to the impedance mismatched elec-
tromagnetic force they share. This result suggests that both gravity and rest mass are of electro-
magnetic origin. While strong classical arguments have been advanced against electromagnetic
theories of gravity [47], preliminary examination suggests that such arguments fail when the
full consequences of quantum phase coherence are taken into consideration.

IA delivers exact results at the Planck particle event horizon (and beyond to the singularity,
completely decoupled by the infinite mismatch to the dimensionless point). Relativistic curva-
ture corrections are unneeded. The impedance model is flat space.

MASS

At the nine digit limit of experimental accuracy, the exact identity between gravity and electro-
magnetism that was found by impedance matching to the Planck particle [7] limits the energy
transfer between these two particles to the rest mass of the electron. In this sense the electro-
magnetic interaction with the Planck particle can be considered a route to the ‘origin of mass’,
and the Planck particle almost but not quite virtual. The Casimir effect comes to mind.

The impedance model offers a simple second route to mass. The model is comprised of self-
interacting electromagnetic fields in flat space, configured as geometric objects in the flat space-
time algebra of gauge theory gravity, and confined by impedance mismatches as one moves
away from the quantization scale. The mode impedances of the self-interacting geometric ob-
jects are shown in figures 2 and 5.

The second ‘origin of mass’ in the impedance model is the stored energy of the electromagnetic
fields. Calculating that energy [48] at the relevant quantization scales gives the electron mass
at the limit of experimental accuracy, the muon mass at one part per thousand, the pion at two
parts in ten thousand, and the nucleon at seven parts in one hundred thousand. The pion and
muon calculations invoke a supersymmetry of sorts. The nucleon calculation is admittedly a
bit of a kludge, but interesting none-the-less.

GRAVITY

The relatively recent discovery that Gauge Theory Gravity in flat space is equivalent to General
Relativity in curved space [9, 10, 11, 12, 13, 14] is both astounding and a paradigm shift of
itself. Why work in curved space all these years if one can work so much more simply in flat
space? How did it get this way?

Like the absence of impedances from QED, this is another historical accident. It arose because
the geometric algebra of Grassman and Clifford was lost with the early death of Clifford and
the ascendancy of the simpler Gibbs’ vector formalism in the late 19th century. Clifford alge-
bra persisted in various forms without geometric insight until rediscovered and expanded by
Hestenes starting in the 1950s. Einstein and company did not have that tool at hand, worked
with tensor calculus (which is a subset of geometric algebra/calculus, as is the Dirac algebra
of quantum mechanics) in curved space. Whether one describes gravity as the effect of mass
curving space or quantum phase shifts, the claim here is that they yield equivalent results.

Just as mass is of electromagnetic origin in the impedance approach, so must be gravity. What
then of the graviton? Which of Keller’s photons [49] is the graviton?
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Some guidance comes from two essential characteristics of gravity that, upon first consider-
ation, would seem to rule out an electromagnetic origin [47]. First, unlike electromagnetic
forces, it appears that gravity cannot be shielded. However, as mentioned earlier in the context
of both the centrifugal force and the Aharonov-Bohm effect of the vector Lorentz force, scale
invariant impedances cannot be shielded [22, 43]. And second, gravity appears to have only one
sign. We observe only attractive gravitational forces. However again it seems these impedances
have a particular characteristic that is relevant here. These impedances are DC. As such, they
can account for the attractive-only character of gravity. In the case of observables it seems that
they act by retarding the phases [50], or the space bending if you will. In the case of the ‘dark
matter/energy’ of the impedance model [6] the possibility exists that either or both the phase
or/and its effect upon such matter/energy would be repulsive rather than attractive.

Given that linear superposition applies to this quantum network of nonlinear coupled modes (!),
it would seem that any of the scale invariant impedances would be equal to the tasks outlined
above, as appropriate for a given set of initial conditions. The phase shifts of Gauge Theory
Gravity could be communicated by any of the scale invariant impedances. Yet a paradox re-
mains, apparently topological and one of many. The scale invariant impedances can do no
work, can only communicate quantum phase. And we all know gravity can do work.

Given that gravity is of electromagnetic origin and that Keller’s three-stage formalism gives a
reasonable approximation of the near field photon-electron interaction, we return to the question
of which of Keller’s photons, the ‘gravity photon’, corresponds to the graviton of quantum GR.

For the interaction between two electrons, gravity is about forty-two orders of magnitude
weaker than the Coulomb force. If we take a characteristice length to be the electron Compton
wavelength (about 10-12 meters), or equivalently the wavelength of a .511MeV photon, then
the wavelength of the ‘gravity photon’ will be about forty-two orders of magnitude greater, or
about 1030 meters. The radius of the observable universe is about 1026 meters.

The point is that our material existence appears to be in the extreme near field of the ‘gravity
photons’ of almost all of the mass in the universe. The almost arises due to the π phase shift of
those ‘gravity photons’ whose average energy is above a few GeV. The phase shift due to field
oscillation reverses the effective direction at around the present age of the universe. The high
energy portion of matter becomes repulsive on the scale of the universe.

It can be argued that in the extreme near field the scale dependent impedances appear scale
invariant, due to the flatness of the phase as the amplitude goes to zero. One might conjecture
that this is what permits the scale dependent ‘Coulomb’ impedance of the monopole mass to ap-
pear to have the ‘cannot be shielded’ property of the scale invariant impedances. Hopefully the
topological character of geometric algebra as informed by quantized impedances will provide
a proper formalism for such a conjecture.

CONCLUSION

Trusting and following the rigorous logics of both the geometric algebra of Grassman and
Clifford and the foundations of Mach’s intuitions regarding the origins of mass have led most
unexpectedly to an electromagnetic model that offers the possibility of a formalism bringing
together electromagnetism, nuclear forces, and gravity. One hopes that this possibility will be
recognized, and eagerly awaits the work by mathematical physicists with geometric algebra as
informed by impedance quantization. Please. If it exists, show us that formalism.

Equally or more promising is the integration of impedance quantization in the toolbox of the
nano-engineer, the quantum chemist, the biologist,... The economic future of impedance quan-
tization appears to be in AMO/condensed matter physics [52].
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