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We discuss the fact that a single spin observable σx in a quantum state does not have a counterpart
in physical reality. We consider whether a single spin-1/2 pure state has a counterpart in physical
reality. It is an eigenvector of Pauli observable σz or an eigenvector of Pauli observable σx. We
assume a state |+z�, which can be described as an eigenvector of Pauli observable σz. We assume
also a state |+x�, which can be described as an eigenvector of Pauli observable σx. The value of
transition probability |�+z|+x�|2 is 1/2. We consider the following physical situation. If we detect
|+z�, then we assign measurement outcome as +1. If we detect |+x�, then we assign measurement
outcome as −1. The existence of a single classical probability space for the transition probability
within the formalism of the measurement outcome does not coexist with the value of the transition
probability |�+z|+x�|2 = 1/2. We have to give up the existence of such a classical probability
space for the state |+z� or for the state |+x�, as they define the transition probability. It turns
out that the single spin-1/2 pure state |+z� or the single spin-1/2 pure state |+x� does not have
counterparts in physical reality, in general. We investigate whether the Stern-Gerlach experiment
accepts hidden-variables theories. We discuss that the existence of the two spin-1/2 pure states
| ↑� and | ↓� rules out the existence of probability space of specific quantum measurement. If
we detect | ↑�, then we assign measurement outcome as +1. If we detect | ↓�, then we assign
measurement outcome as−1. This hidden-variables theory does not accept the transition probability
|�↑ | ↓�|2 = 0. Therefore we have to give up the hidden-variables theory. This implies the Stern-
Gerlach experiment cannot accept the hidden-variables theory. A single spin-1/2 pure state (e.g.,
| ↑��↑ |) is a single one-dimensional projector. In other word, a single one-dimensional projector
does not have a counterpart in such physical reality, in general. The one-dimensional projectors
| ↑��↑ | and | ↓��↓ | are commuting with each other. Our discussion shows that we cannot assign
the specific definite values (+1 and −1) to the two commuting operators, simultaneously. We study
whether quantum phase factor accepts a hidden-variables theory. We discuss that the existence of
two spin-1/2 pure states |0� = (| ↑�+ | ↓�)/

√
2 and |θ� = (| ↑� + eiθ| ↓�)/

√
2 rules out the existence

of probability space of a hidden-variables theory. If we detect |0�, then we assign measurement
outcome as +1. If we detect |θ�, then we assign measurement outcome as −1. The hidden-variables
theory does not accept the transition probability |�0|θ�|2 = cos2(θ/2). Therefore we have to give up
the hidden-variables theory for quantum phase factor. We explore phase factor is indeed a quantum
effect, not classical. Our research gives a new insight to the quantum information processing which
relies on quantum phase factor, such as Deutsch’s algorithm.

PACS numbers: 03.65.Ud, 03.65.Ta, 03.67.-a, 03.67.Lx
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I. INTRODUCTION

The quantum theory (cf. [1—5]) gives accurate and at times remarkably accurate numerical predictions. Much
experimental data has fit to the quantum predictions for long time.

On the other hand, from the incompleteness argument of Einstein, Podolsky, and Rosen (EPR) [6], a hidden-variable
interpretation of the quantum theory has been an attractive topic of research [2, 3]. There are two main approaches
to study the hidden-variable interpretation of the quantum theory. One is the Bell-EPR theorem [7]. This theorem
says that the quantum predictions violate the inequality following from the EPR-locality condition. The EPR-locality
condition tells that a result of measurement pertaining to one system is independent of any measurement performed
simultaneously at a distance on another system.

The other is the no-hidden-variables theorem of Kochen and Specker (KS theorem) [8]. The original KS theorem
says the non-existence of a real-valued function which is multiplicative and linear on commuting operators. The
quantum theory does not accept the KS type of hidden-variable theory. The proof of the original KS theorem relies
on intricate geometric argument. Greenberger, Horne, and Zeilinger discover [9, 10] the so-called GHZ theorem for
four-partite GHZ state. And, the KS theorem becomes very simple form (see also Refs. [11—15]).

Mermin considers the Bell-EPR theorem in a multipartite state. He derives multipartite Bell inequality [16]. The
quantum predictions by n-partite GHZ state violate the Bell-Mermin inequality by an amount that grows exponentially
with n. And, several multipartite Bell inequalities are reported [17—25]. They also say that the quantum predictions
violate local hidden-variable theories by an amount that grows exponentially with n.

As for the KS theorem, it is begun to research the validity of the KS theorem by using inequalities (see Refs. [26—29]).
To find such inequalities to test the validity of the KS theorem is particularly useful for experimental investigation [30].
The KS theorem is related to the algebraic structure of a set of quantum operators. The KS theorem is independent
of a quantum state under study. One of authors derives an inequality [29] as tests for the validity of the KS theorem.
The quantum predictions violate the inequality when the system is in an uncorrelated state. An uncorrelated state
is defined in Ref. [31]. The quantum predictions by n-partite uncorrelated state violate the inequality by an amount
that grows exponentially with n.

Leggett-type nonlocal hidden-variable theory [32] is experimentally investigated [33—35]. The experiments report
that the quantum theory does not accept Leggett-type nonlocal hidden-variable theory. These experiments are done
in four-dimensional space (two parties) in order to study nonlocality of hidden-variable theories.

Recently, it is shown that the two expected values of a spin-1/2 pure state �σx� and �σy� rule out the existence
of the actually measured results of von Neumann’s projective measurement [36, 37]. More recently, it is also shown
that the expected value of a spin-1/2 pure state �σx� rules out the existence of the actually measured results of von
Neumann’s projective measurement [38, 39].

Many researches address non-classicality of observables. And non-classicality of quantum state itself is not investi-
gated very much (however see [40]). Here we ask: Does a single spin-1/2 pure quantum state have a counterpart in
physical reality? We see that two spin-1/2 pure states do not have such a counterpart in physical reality, simultane-
ously.

We see a single spin-1/2 pure state is used in quantum computation, quantum cryptography and so on. As
for quantum computation, we are inputting non-classical information into quantum computer. As for quantum
cryptography, we are exchanging non-classical information. Further, in various quantum information processing,
we control quantum state by means of Pauli observables, which are non-classical. This manuscript gives new and
important insight to quantum information theory, which can be implemented only by non-classical devices.

The double-slit experiment is an illustration of wave-particle duality. In it, a beam of particles (such as photons)
travels through a barrier with two slits removed. If one puts a detector screen on the other side, the pattern of detected
particles shows interference fringes characteristic of waves; however, the detector screen responds to particles. The
system exhibits behaviour of both waves (interference patterns) and particles (dots on the screen).

If we modify this experiment so that one slit is closed, no interference pattern is observed. Thus, the state of both
slits affects the final results. We can also arrange to have a minimally invasive detector at one of the slits to detect
which slit the particle went through. When we do that, the interference pattern disappears. An analysis of a two-atom
double-slit experiment based on environment-induced measurements is reported [41].

We consider the Stern-Gerlach experiment. The Stern-Gerlach experiment, named after German physicists Otto
Stern and Walther Gerlach, is an important experiment in quantum mechanics on the deflection of particles. This
experiment, performed in 1922, is often used to illustrate basic principles of quantum mechanics. It can be used
to demonstrate that electrons and atoms have intrinsically quantum properties, and how measurement in quantum
mechanics affects the system being measured.

On the other hand, in quantum mechanics, a phase factor is a complex coefficient eiθ that multiplies a ket |ψ� or
bra �φ|. It does not, in itself, have any physical meaning, since the introduction of a phase factor does not change the
expectation values of a Hermitian operator. That is, the values of �φ|A|φ� and �φ|e−iθAeiθ|φ� are the same. However,
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differences in phase factors between two interacting quantum states can sometimes be measurable (such as in the
Berry phase) and this can have important consequences. In optics, the phase factor is an important quantity in the
treatment of interference.

In this paper, we discuss the fact that a single spin observable σx in a quantum state does not have a counterpart
in physical reality. We consider whether a single spin-1/2 pure state has a counterpart in physical reality. It is an
eigenvector of Pauli observable σz or an eigenvector of Pauli observable σx. We assume a state |+z�, which can
be described as an eigenvector of Pauli observable σz . We assume also a state |+x�, which can be described as an
eigenvector of Pauli observable σx. The value of transition probability |�+z|+x�|2 is 1/2. We consider the following
physical situation. If we detect |+z�, then we assign measurement outcome as +1. If we detect |+x�, then we
assign measurement outcome as −1. The existence of a single classical probability space for the transition probability
within the formalism of the measurement outcome does not coexist with the value of the transition probability
|�+z|+x�|2 = 1/2. We have to give up the existence of such a classical probability space for the state |+z� or for
the state |+x�, as they define the transition probability. It turns out that the single spin-1/2 pure state |+z� or the
single spin-1/2 pure state |+x� does not have counterparts in physical reality, in general. We investigate whether the
Stern-Gerlach experiment accepts hidden-variables theories. We discuss that the existence of the two spin-1/2 pure
states | ↑� and | ↓� rules out the existence of probability space of specific quantum measurement. If we detect | ↑�,
then we assign measurement outcome as +1. If we detect | ↓�, then we assign measurement outcome as −1. This
hidden-variables theory does not accept the transition probability |�↑ | ↓�|2 = 0. Therefore we have to give up the
hidden-variables theory. This implies the Stern-Gerlach experiment cannot accept the hidden-variables theory. A
single spin-1/2 pure state (e.g., | ↑��↑ |) is a single one-dimensional projector. In other word, a single one-dimensional
projector does not have a counterpart in such physical reality, in general. The one-dimensional projectors | ↑��↑ |
and | ↓��↓ | are commuting with each other. Our discussion shows that we cannot assign the specific definite values
(+1 and −1) to the two commuting operators, simultaneously. We study whether quantum phase factor accepts

a hidden-variables theory. We discuss that the existence of two spin-1/2 pure states |0� = (| ↑� + | ↓�)/
√

2 and

|θ� = (| ↑� + eiθ| ↓�)/
√

2 rules out the existence of probability space of a hidden-variables theory. If we detect |0�,
then we assign measurement outcome as +1. If we detect |θ�, then we assign measurement outcome as −1. The
hidden-variables theory does not accept the transition probability |�0|θ�|2 = cos2(θ/2). Therefore we have to give
up the hidden-variables theory for quantum phase factor. We explore phase factor is indeed a quantum effect, not
classical. Our research gives a new insight to the quantum information processing which relies on quantum phase
factor, such as Deutsch’s algorithm.

Our paper is organized as follows.
In Sec. II, we discuss the fact that a Pauli observable in a quantum state does not have a counterpart in physical

reality.
In Sec. III, we consider whether a single spin-1/2 pure quantum state has a counterpart in physical reality.
In Sec. IV, we investigate whether the Stern-Gerlach experiment accepts hidden-variables theories.
In Sec. V, we study whether a quantum phase factor accepts hidden-variables theories.
In Sec. VI, we give simple discussion about physical meaning.
Section VII concludes this paper.

II. DOES PAULI OBSERVABLE IN A QUANTUM STATE HAVE A COUNTERPART IN PHYSICAL
REALITY?

We assume an implementation of the double-slit experiment. There is a detector just after each slit. Interference
figure does not appear, and we do not consider such a pattern. Let (σz, σx) be Pauli vector. We assume that a source
of spin-carrying particles emits them in a state |+z�, which can be described as an eigenvector of Pauli observable σz.

We consider a quantum expected value �σx� as

�σx� = �+z|σx|+z� = 0. (1)

We introduce a hidden variables theory for the quantum expected value of Pauli observable σx. Then, the quantum
expected value given in (1) can be

�σx� =
�
dλρ(λ)f(λ). (2)

where λ is some hidden variable, ρ(λ) is a probabilistic distribution, and f(λ) is the predetermined “hidden” result
of the measurement of the dichotomic observable σx. The possible values of f(λ) are ±1 (in �/2 unit). If a particle
passes one side slit, then the value of the result of measurement is +1. If a particle passes another slit, then the value
of the result of measurement is −1.
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In what follows, we discuss that we cannot assign the truth value “1” for the proposition (2). Assume the proposition
(2) is true. We have same proposition

�σx� =
�
dλ′ρ(λ′)f(λ′). (3)

An important note here is that the value of the right-hand-side of (2) is equal to the value of the right-hand-side of
(3) because we only change the label.

We derive a necessary condition for the quantum expected value given in (2). We derive the maximum value of the
product �σx�2 of the quantum expected value. The quantum expected value is �σx� given in (2). We have

�σx�2

=

�
dλρ(λ)f(λ)×

�
dλ′ρ(λ′)f(λ′)

=

�
dλρ(λ)

�
dλ′ρ(λ′)f(λ)f(λ′)

=

�
dλρ(λ)

�
dλ′ρ(λ′)|f(λ)f(λ′)|

≤
�
dλρ(λ)

�
dλ′ρ(λ′) = 1. (4)

Here we use the fact

|f(λ)f(λ′)| = 1 (5)

since the possible values of f(λ) are ±1. The inequality (4) can be saturated because we have

{λ|f(λ) = 1} = {λ′|f(λ′) = 1}
{λ|f(λ) = −1} = {λ′|f(λ′) = −1}. (6)

Hence we derive the following proposition if we assign the truth value “1” for a hidden variables theory for Pauli
observable σx

(�σx�2)max = 1. (7)

We derive a necessary condition for the quantum expected value for the system in a pure spin-1/2 state |+z� given
in (1). We derive the possible value of the product

�σx� × �σx� = �σx�2. (8)

�σx� is the quantum expected value given in (1). We have the following proposition since �σx� = 0

�σx�2 = 0. (9)

We have

�σx�2 ≤ 0. (10)

We have the following proposition concerning quantum mechanics

(�σx�2)max = 0. (11)

We do not assign the truth value “1” for two propositions (7) and (11), simultaneously. We are in the contradiction.
We have to give up a hidden variables theory for the expected value of Pauli observable σx. The measured observable
σx in the state does not have a counterpart in physical reality.

III. DOES A SINGLE SPIN-1/2 PURE QUANTUM STATE HAVE A COUNTERPART IN PHYSICAL
REALITY?

Let (σz, σx) be Pauli vector. We assume a state |+z�, which can be described as an eigenvector of Pauli observable
σz . We assume also a state |+x�, which can be described as an eigenvector of Pauli observable σx. We consider a
quantum expected value (transition probability) |�+z|+x�|2 as

|�+z|+x�|2 = 1/2. (12)
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We introduce a hidden variables theory for the quantum state |+z� and for the quantum state |+x�. Then, the
quantum expected value given in (12) can be

|�+z |+x�|2 =

�
dλρ(λ)f(λ). (13)

The possible values of f(λ) are ±1 (in �/2 unit). If we detect |+z�, then we assign measurement outcome as +1. If
we detect |+x�, then we assign measurement outcome as −1.

In what follows, we discuss that we cannot assign the truth value “1” for the proposition (13). Assume the
proposition (13) is true. We have same proposition

|�+z|+x�|2 =

�
dλ′ρ(λ′)f(λ′). (14)

An important note here is that the value of the right-hand-side of (13) is equal to the value of the right-hand-side of
(14) because we only change the label.

We derive a necessary condition for the quantum expected value given in (13). We derive the maximum value of
the product |�+z|+x�|4 of the quantum expected value. The quantum expected value is |�+z|+x�|2 given in (13). We
have

|�+z|+x�|4

=

�
dλρ(λ)f(λ)×

�
dλ′ρ(λ′)f(λ′)

=

�
dλρ(λ)

�
dλ′ρ(λ′)f(λ)f(λ′)

=

�
dλρ(λ)

�
dλ′ρ(λ′)|f(λ)f(λ′)|

≤
�
dλρ(λ)

�
dλ′ρ(λ′) = 1. (15)

Here we use the fact

|f(λ)f(λ′)| = 1 (16)

since the possible values of f(λ) are ±1. The inequality (15) can be saturated because we have

{λ|f(λ) = 1} = {λ′|f(λ′) = 1}
{λ|f(λ) = −1} = {λ′|f(λ′) = −1}. (17)

Hence we derive the following proposition if we assign the truth value “1” for a hidden variables theory for the
quantum state |+z� and for the quantum state |+x�

(|�+z|+x�|4)max = 1. (18)

We derive a necessary condition for the quantum expected value given in (12). We derive the possible values of the
product

|�+z|+x�|2 × |�+z|+x�|2 = |�+z|+x�|4. (19)

|�+z|+x�|2 is the quantum expected value given in (12). We have the following proposition since |�+z|+x�| = 1/2

|�+z|+x�|4 = 1/4. (20)

We have

|�+z|+x�|4 ≤ 1/4. (21)

We have the following proposition concerning quantum mechanics

(|�+z |+x�|4)max = 1/4. (22)

We do not assign the truth value “1” for two propositions (18) and (22), simultaneously. We are in the contradiction.
We have to give up a hidden variables theory for the quantum state |+z� or for the quantum state |+x�. It turns out
that the single spin-1/2 pure state |+z� or the single spin-1/2 pure state |+x� does not have counterparts in physical
reality.

In short, we give up the following situation

observable� �� �
|+z��+z | →

physical reality
����
+1 and

observable� �� �
|+x��+x| →

physical reality
����
−1 . (23)
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IV. THE STERN-GERLACH EXPERIMENT AND HIDDEN-VARIABLES THEORIES

Let σz be Pauli observable of z-axis. We consider two quantum states | ↑� and | ↓�, which can be described as an
eigenvector of Pauli observable σz .

We consider a quantum expected value (the transition probability) as

|�↑ | ↓�|2 = 0. (24)

We introduce a hidden-variables theory for the quantum expected value of the transition probability. Then, the
quantum expected value given in (24) can be

|�↑ | ↓�|2 =

�
dλρ(λ)f(λ). (25)

where λ is some hidden variable, ρ(λ) is a probabilistic distribution, and f(λ) is the predetermined “hidden” result
of measurement. The possible values of f(λ) are ±1 (in �/2 unit). If we detect | ↑�, then we assign measurement
outcome as +1. If we detect | ↓�, then we assign measurement outcome as −1.

In what follows, we discuss that we cannot assign the truth value “1” for the proposition (25). Assume the
proposition (25) is true. We have the same quantum expected value

|�↑ | ↓�|2 =

�
dλ′ρ(λ′)f(λ′). (26)

An important note here is that the value of the right-hand-side of (25) is equal to the value of the right-hand-side of
(26) because we only change the label.

We derive a necessary condition for the quantum expected value given in (25). We derive the maximum value of
the product |�↑ | ↓�|4 of the quantum expected value. The quantum expected value is |�↑ | ↓�|2 given in (25). We have

|�↑ | ↓�|4

=

�
dλρ(λ)f(λ)×

�
dλ′ρ(λ′)f(λ′)

=

�
dλρ(λ)

�
dλ′ρ(λ′)f(λ)f(λ′)

≤
�
dλρ(λ)

�
dλ′ρ(λ′)|f(λ)f(λ′)|

=

�
dλρ(λ)

�
dλ′ρ(λ′) = 1. (27)

Here we use the fact

|f(λ)f(λ′)| = 1 (28)

since the possible values of f(λ) are ±1. The inequality (27) can be saturated because we have

{λ|f(λ) = 1} = {λ′|f(λ′) = 1}
{λ|f(λ) = −1} = {λ′|f(λ′) = −1}. (29)

Hence we derive the following proposition if we assign the truth value “1” for a hidden variables theory for the
transition probability

(|�↑ | ↓�|4)max = 1. (30)

We derive a necessary condition for the quantum expected value given in (24). We derive the possible value of the
product

|�↑ | ↓�|2 × |�↑ | ↓�|2 = |�↑ | ↓�|4. (31)

|�↑ | ↓�|2 is the quantum expected value given in (24). We have the following proposition since |�↑ | ↓�|2 = 0

|�↑ | ↓�|4 = 0. (32)

We have

|�↑ | ↓�|4 ≤ 0. (33)
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Thus,

(|�↑ | ↓�|4)max = 0. (34)

We do not assign the truth value “1” for two propositions (30) and (34), simultaneously. We are in the contradiction.
We give up assigning the truth value “1” for the proposition (25).

Assume we give up proposition (25). We cannot assign the specific definite values (+1 and −1) for the quantum
state | ↑� and for the quantum state | ↓� simultaneously. It turns out that the single spin-1/2 pure state | ↑� or the
single spin-1/2 pure state | ↓� does not have counterparts in such physical reality simultaneously. A single spin-1/2
pure state (e.g., | ↑��↑ |) is a single one-dimensional projector. In other word, a single one-dimensional projector does
not have a counterpart in such physical reality, in general. The one-dimensional projectors | ↑��↑ | and | ↓��↓ | are
commuting with each other. Our discussion shows that we cannot assign the specific definite values (+1 and −1) to
the two commuting operators, simultaneously.

In short, we give up the following situation

observable
� �� �
| ↑��↑ | →

physical reality
����
+1 and

observable
� �� �
| ↓��↓ | →

physical reality
����
−1 . (35)

V. QUANTUM PHASE FACTOR AND HIDDEN-VARIABLES THEORIES

Let σz be Pauli observable of z-axis. We consider two quantum states | ↑� and | ↓�, which can be described as an
eigenvector of Pauli observable σz .

We study whether quantum phase factor accepts a hidden-variables theory. We use the transition probability for
two spin-1/2 pure states

|0� = (| ↑�+ | ↓�)/
√

2,

|θ� = (| ↑�+ eiθ| ↓�)/
√

2. (36)

We consider the following transition probability

|�0|θ�|2 = cos2(θ/2). (37)

We introduce a hidden-variables theory in order to explain the value of the transition probability. If we detect |0�,
then we assign measurement outcome as +1. If we detect |θ�, then we assign measurement outcome as −1. In this
case, the transition probability given in (37) can be depictured as follows:

|�0|θ�|2 =

�
dλρ(λ)f(λ). (38)

The possible values of f(λ) are ±1 (in �/2 unit).
Assume the proposition (38) is true. We have the same value of the transition probability

|�0|θ�|2 =

�
dλ′ρ(λ′)f(λ′). (39)

An important note here is that the value of the right-hand-side of (38) is equal to the value of the right-hand-side of
(39) because we only change the label.

We derive a necessary condition for the transition probability given in (38). We derive the maximum value of the
product

|�0|θ�|2 × |�0|θ�|2. (40)

We have

|�0|θ�|4

=

�
dλρ(λ)f(λ)×

�
dλ′ρ(λ′)f(λ′)

=

�
dλρ(λ)

�
dλ′ρ(λ′)f(λ)f(λ′)

=

�
dλρ(λ)

�
dλ′ρ(λ′)|f(λ)f(λ′)|

≤
�
dλρ(λ)

�
dλ′ρ(λ′) = 1. (41)
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Here we use the fact

|f(λ)f(λ′)| = 1 (42)

since the possible value of f(λ) is ±1. The inequality (41) can be saturated because we have

{λ|f(λ) = 1} = {λ′|f(λ′) = 1}
{λ|f(λ) = −1} = {λ′|f(λ′) = −1}. (43)

Hence we derive the following proposition concerning a hidden-variables theory.

(|�0|θ�|4)max = 1. (44)

And we derive a necessary condition for the transition probability given in (37). We derive the possible value of
the product

|�0|θ�|2 × |�0|θ�|2. (45)

We have the following proposition since the transition probability is cos2(θ/2)

|�0|θ�|4 = cos4(θ/2). (46)

We have

|�0|θ�|4 ≤ cos4(θ/2). (47)

Thus,

(|�0|θ�|4)max = cos4(θ/2). (48)

We do not assign the truth value “1” for two propositions (44) and (48), simultaneously. We are in the contradiction.
We give up proposition (38) and we accept quantum theory. We have to give up the hidden-variables theory in order
to explain the value of the transition probability cos2(θ/2). Thus, the quantum phase factor does not accept the
hidden-variables theory.

In the case that

θ = π/2 (49)

we get the same result of the section III.
In the case that

θ = π (50)

we get the same result of the section IV.
In short, we give up the following general situation

observable
� �� �
|0��0| →

physical reality
����
+1 and

observable
� �� �
|θ��θ| →

physical reality
����
−1 .

(51)

VI. SIMPLE DISCUSSION ABOUT PHYSICAL MEANING

This seems a very complicated analysis of a rather simple situation. It would be much easier to understand if we
used the language of probability theory (random variables, expectation values etc). Instead of writing out integrals we
can just write E(X) and so on. In order to understand this paper we needed to translate it into this simple language.

Let’s consider spins (of a spin 1/2 particle) in two directions x and z and suppose we create a particle in the state
spin up in direction z. Now the question is what do we mean by transition probabilities? We want that if the particle
is initially in state spin up in z direction, then, if it is measured in the direction x the result is equally likely to be
up or down. We know that after this, if it is measured again in the z direction, it is equally likely to be up or down
again. So any sensible hidden variables model for the spins of one particle has to take account of the measurement
changing the spin. We seem to want the spin to be unchanged by the measurement. This is clearly impossible.
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VII. CONCLUSIONS

In conclusion, we have discussed the fact that a single spin observable σx in a quantum state does not have a
counterpart in physical reality. We have considered whether a single spin-1/2 pure state has a counterpart in physical
reality. It has been an eigenvector of Pauli observable σz or an eigenvector of Pauli observable σx. We have assumed
a state |+z�, which can be described as an eigenvector of Pauli observable σz. We have assumed also a state |+x�,
which can be described as an eigenvector of Pauli observable σx. The value of transition probability |�+z|+x�|2 has
been 1/2. We have considered the following physical situation. If we have detected |+z�, then we assign measurement
outcome as +1. If we have detected |+x�, then we assign measurement outcome as −1. The existence of a single
classical probability space for the transition probability within the formalism of the measurement outcome does not
have coexisted with the value of the transition probability |�+z|+x�|2 = 1/2. We have had to give up the existence of
such a classical probability space for the state |+z� or for the state |+x�, as they define the transition probability. It has
turned out that the single spin-1/2 pure state |+z� or the single spin-1/2 pure state |+x� does not have counterparts
in physical reality, in general. We have investigated whether the Stern-Gerlach experiment accepts hidden-variables
theories. We have discussed that the existence of the two spin-1/2 pure states | ↑� and | ↓� rules out the existence of
probability space of specific quantum measurement. If we have detected | ↑�, then we assign measurement outcome as
+1. If we have detected | ↓�, then we assign measurement outcome as −1. This hidden-variables theory does not have
accepted the transition probability |�↑ | ↓�|2 = 0. Therefore we have had to give up the hidden-variables theory. This
implies the Stern-Gerlach experiment cannot have accepted the hidden-variables theory. A single spin-1/2 pure state
(e.g., | ↑��↑ |) has been a single one-dimensional projector. In other word, a single one-dimensional projector does not
have had a counterpart in such physical reality, in general. The one-dimensional projectors | ↑��↑ | and | ↓��↓ | have
been commuting with each other. Our discussion has shown that we cannot assign the specific definite values (+1
and −1) to the two commuting operators, simultaneously. We have studied whether quantum phase factor accepts a

hidden-variables theory. We have discussed that the existence of two spin-1/2 pure states |0� = (| ↑�+ | ↓�)/
√

2 and

|θ� = (| ↑�+ eiθ| ↓�)/
√

2 rules out the existence of probability space of a hidden-variables theory. If we have detected
|0�, then we assign measurement outcome as +1. If we have detected |θ�, then we assign measurement outcome as
−1. The hidden-variables theory does not have accepted the transition probability |�0|θ�|2 = cos2(θ/2). Therefore we
have had to give up the hidden-variables theory for quantum phase factor. We have explored phase factor is indeed
a quantum effect, not classical. Our research has given a new insight to the quantum information processing which
relies on quantum phase factor, such as Deutsch’s algorithm.
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[27] J.-Å. Larsson, Europhys. Lett. 58, 799 (2002).
[28] A. Cabello, Phys. Rev. A 65, 052101 (2002).
[29] K. Nagata, J. Math. Phys. 46, 102101 (2005).
[30] Y. -F Huang, C. -F. Li, Y. -S. Zhang, J. -W. Pan, and G. -C. Guo, Phys. Rev. Lett. 90, 250401 (2003).
[31] R. F. Werner, Phys. Rev. A 40, 4277 (1989).
[32] A. J. Leggett, Found. Phys. 33, 1469 (2003).
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