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Preface

Game Theory is one of the most challenging and controversial fields of applied
Mathematics. Based on a robust theoretical framework, its applications range from
analyzing simple board games and conflict situations to modeling complex systems
and evolutionary dynamics.

This book is a short collection of introductory papers in the field, aimed primarily as
reading material for graduate- and postgraduate-level lectures in Game Theory and/or
Machine Learning. The four papers included here are all original works already
published as open-access or conference publications, spanning a timeframe of several
years apart and a wide range of topics. Hence, each paper is self-contained and can be
studied on its own, without any prerequisite knowledge from the previous ones.
However, their presentation order is consistent with going from the most elementary
issues to the more advanced and experiment-rigorous topics.

The first paper presents an overview of Game Theory in general, its core issues and
building blocks, game analysis and methods for identifying Minimax solutions and
Nash equilibria, as well as a brief introduction to coalitional gaming and collective
efficiency. There is also a short summary of other important elements like signaling,
credibility, threats/promises, etc. The second paper extends some of the topics from
coalitional gaming, focusing more on collective efficiency, optimal voting
mechanisms and weighted voting, as well as a brief proposal for applying this game-
theoretic framework to optimal combination of experts. The third paper builds upon
this proposed framework and employs it in Pattern Recognition (Machine Learning)
within the context of combining pattern classifiers. A “static” model for weighted
majority voting with an analytical model for the voting weights is experimentally
tested against other similar models. Finally, the forth paper presents an extension of
this game-theoretic approach for classifier combination, employing “adaptive” voting
weights via local accuracy estimates; in other words, the ensemble of classifiers is
adapted to local efficiency priors (instead of static globals) but keeping the same
analytical model for the voting weights, i.e., without the need to acquire them via
training. This new approach is experimentally validated against state-of-the-art
combination methods for pattern classifiers and it is proven highly competitive with
much lower complexity overhead.

These papers are all part of the author’s PhD work, conducted at the Department of
Informatics and Telecommunications (DIT), National & Kapodistrian University of
Athens, Greece (NKUA/Uo0A). The author wishes to give special thanks to prof.
Sergios Theodoridis (supervisor) and prof. Michael Mavroforakis, colleagues and
friends, for their valuable collaboration in parts of these works.
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Section 1: Elements of Game Theory

Summary:

In this paper, a gentle introduction to Game Theory is presented in the form of basic
concepts and examples. Minimax and Nash's theorem are introduced as the formal
definitions for optimal strategies and equilibria in zero-sum and nonzero-sum games.
Several elements of cooperative gaming, coalitions, voting ensembles, voting power
and collective e-ciency are described in brief. Analytical (matrix) and extended (tree-
graph) forms of game representation is illustrated as the basic tools for identifying
optimal strategies and “solutions” in games of any kind. Next, a typology of four
standard nonzero-sum games is investigated, analyzing the Nash equilibria and the
optimal strategies in each case. Signaling, stance and third-party intermediates are
described as very important properties when analyzing strategic moves, while
credibility and reputation is described as crucial factors when signaling promises or
threats. Utility is introduced as a generalization of typical cost/gain functions and it is
used to explain the incentives of irrational players under the scope of “rational
irrationality”. Finally, a brief reference is presented for several other more advanced
concepts of gaming, including emergence of cooperation, evolutionary stable
strategies, two-level games, metagames, hypergames and the Harsanyi transformation.

Citation:

"Elements of Game Theory — Part I: Foundations, acts and mechanisms",
H. Georgiou, ArXiv.org: 16-Jun-2015 (arXiv: 1506.05148v1 [cs.GT)).

"Games people play: An overview of strategic decision-making theory in conflict
situations”, H. Georgiou, viXra.org: 15-Jun-2015 (viXra: 1506.0114 [GenMath]).



Elements of Game Theory

Part I: Foundations, acts and mechanisms.

Harris V. Georgiou (MSc, PhD)*

Department of Informatics and Telecommunications,
National €& Kapodistrian University of Athens, Greece.

Abstract

In this paper, a gentle introduction to Game Theory. is presented in the form of basic
concepts and examples. Minimax and Nash’s theorem are introduced as the formal
definitions for optimal strategies and equilibria in zero:sumrand nonzero-sum games.
Several elements of cooperative gaming, coalitions, voting ensembles, voting power and
collective efficiency are described in brief., Analytical (matrix) and extended (tree-
graph) forms of game representation is illustratedr as the basic tools for identifying
optimal strategies and “solutions” in games of any kind. Next, a typology of four
standard nonzero-sum games is investigated, analyzing the Nash equilibria and the
optimal strategies in each case. Sigunaling, stance and third-party intermediates are
described as very important properties when analyzing strategic moves, while credibil-
ity and reputation is described as crucial factors when signaling promises or threats.
Utility is introduced as a generalization of typical cost/gain functions and it is used
to explain the incentives of irrational playersiunder the scope of “rational irrational-
ity”. Finally, a brief reference is presented for several other more advanced concepts of
gaming, including emergence of cooperation, evolutionary stable strategies, two-level
games, metagames, hypergames and the:Harsanyi transformation.

Keywords: Game Theory, Minimax theorem, Nash equilibrium, coalitional gaming,
indices of power, voting ensembles, signaling, bluff, credibility, promises, threats, util-
ity function, two-level games;shypergames, evolutionary stable strategies, Harsanyi
transformation, metagames.

GAME THEORY is a vast scientific and research area, based almost entirely on
Mathematics and some experimental methods, with applications that vary from
simple board games to Evolutionary Psychology and Sociology-Biology in group
behavior of humans and animals. Conflict situations are presented everywhere
in the real world, every day, for thousands of years - not only in human societies
but also in animals. The seller and the buyer have to come up with a mutually
acceptable price for the grocery. The employer and the employee have to bargain
in order to reach a mutually satisfying value for the salary. A buyer in an auction

*Email: harris@xgeorgio.info — URL: http://xgeorgio.info



1 The building blocks 2

has to continuously estimate the cost/gain value of making (or not) the next
higher bid for some object. The primary adversaries in a wolf pack have to
decide when it is beneficial to fight over the leadership and when to stop before
they are severely wounded. A swarm of fish has to collectively-“decide” what is
the optimal number and distance of the piket members or “scouts” that serve
as the early warning for the group, perhaps even self-sacrificing if required. All
these cases are typical examples, simpler or more complex, of conflict situations
that depend on bargaining, coordination and evolutionary optimization. Game
Theory provides a unified framework with robust mathematical foundations for
the proper formulation and analysis of such systems.

1 The building blocks

In principle, the mathematical theory of gamesiand gaming was first developed
as a model for situations of conflict. Game Theory is the-area of research that
provides mathematical formulations and a proper frameweork for studying ad-
versarial situations. Although E. Borel lookedwat similar problems in the 1920s,
John Von Neumann and Oskar Morgenstern provided two breakthrough papers
(1928, 1937) as a kick-start of the field. "Since the early 1940’s, with the end
of World War II and stepping into the era of the-Cold War that followed, the
work of Von Neumann and Morgenstern has proyvided a solid foundation for the
most simple types of games, as well as analytical forms for their solutions, with
many applications to Economics, Operations Research and Logistics. However,
there are several limitations that fail to explain various aspects of real-world
conflicts [25], especially when the human factor is a major factor. The applica-
tion of game-theoretic formulations in designing experiments in Psychology and
Sociology is usually referred to as’ gaming [46, 6].

1.1 Games, strategies and solutions

The term game is the mathematical formulation of adversarial situations, where
two or more players are involved.in‘competitive or cooperative acts. The zero-
sum games are able t0 model situations of conflict between two or more players,
where one’s gain is the other’s loss and vice versa. Most military problems can
be modeled as some form of two-player zero-sum game. When the structure of
the game and the rationale of the players is known to all, then the game is one
of complete information, while if some of these information is somehow hidden
or unknown to some players, it is one of incomplete information. Furthermore,
if all playerstare fully informed about their opponents’ decisions, the game is
one of perfect information. In contrast, if some of the information about the
other players’ moves, the game is one of partial or imperfect information. Such
games of bath complete and perfect information are all board games, like Chess,
Go and Checkers, and they are all zero-sum by nature.

Von:Neumann and Morgenstern [48] proved that there is at least one optimal
plan of decisions or strategy for each player in all zero-sum games, as well as
a solution to the game that comes naturally as a result of all players following
their optimal strategies. At the game’s solution, each player can guarantee that
the maximum gain an opponent can gain is kept under a specific minimal limit,
defined only by this player’s own strategy. This assertion was formulated as a
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theorem called Minimaz and in the simple case of two opposing players with
only two strategies each the Minimax solution of the game can be calculated
analytically as a solution of a 2x2 set of linear equations, which determine the
stable solution or saddle-point.

The consequences of the Minimax theorem have been theroughly studied
for many years after its proof. As an example, it mathematically proves the
assertion that all board games, including the most complex ones like Chess,
have at least one solution, i.e., an optimal (pure) strategy for both players that
can be analytically calculated, at least in theory [44446; 37]. Of course, in
the case of Chess the game space is so huge that it is.still unfeasible today
to calculate this theoretically optimal strategy, even'with the help of parallel
processing in supercomputers. In contrast, Checkers'is a much smaller (3x3)
and simpler game, making it possible to create the complete game space in any
typical desktop computer' and calculate the exact optimal strategy - in fact, it
is the same strategy that every child soon learns by trial-and-error, playing in
a way that always leads to a win or a draw (never loose).

In general, if the chosen strategy of one player is known to its opponent,
then an optimal counter-strategy is always available. Hence, in simultaneous
games where the opposing moves are conducted at the same time, each player
would normally try not to employ a deterministic.way of choosing its strategy
and conceal this choice until the very. last moment. However, the Minimax
theorem provides a mathematically solid way of nullifying any stochastic aspect
in determining the opponent’s choice and, in essence, make its exact choice
irrelevant: no matter what the opponent does, the Minimax solution ensures
the minimum losses to each player, given a/specific game setup. In other words,
it provides an analytic way to determine.the best defensive strategy, instead
of a preference to offensive strategies. In.some zero-sum games this leads to
one stable outcome or equilibrium, where each player would have no incentive
not to choose its Minimax strategy; however, if this choice leads to a negative
handicap for this player if itvis known with complete certainty by the others,
then this choice should not be manifested as certain. In practice this means that
the Minimax solution would not be any single one of the player’s pure strategies
but rather a weighted combination of them in a mized strategy scheme, where
each weight corresponds to the probability of choosing one of the available pure
strategies via a _random mechanism. This notion of using mixtures of pure
strategies for randomly choosing between them leads to a false sense of security
in single-turn games, since the optimality of the expected outcome of the mixed
strategy scheme-refers to the asymptotic (long-term) and not the “spot” (one-
shot) payoffs, Moreover, a game may involve an infinite number of strategies
for the players, in a discrete or continuous set; in this case the game is labeled
as continwous or infinite, while a finite game is one with a limited number of

1 In Checkers, the board size is 3x3 and each position can be either empty or host the mark
of of one of the two players, “X” or “O”. Hence, if the two players are treated as interchangeable
(i.e., who plays first) and no other symmetries are considered, the total number of all possible
distinct board setups is: 9-8-...-2.1 = 9! = 362,880. After applying the game rules and
pruning the game tree for early stops (with incomplete boards), the true number of game
states is about 2/3 of that set. Using simple tree-node representation for each board setup,
e.g. a 3-value 9-positions vector dictionary (= 3% ~ 214:265 < 215 < 916 — 2 bytes), such a
program would only require about 484 KB or less than 0.5 MB. This is roughly the size of a
small-sized photo taken by the camera of a low-end smart-phone today, while in the ’80s this
was almost the total size of RAM in a typical PC.
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(discrete) strategies [14, 46].

When the game is inherently repetitive or iterative, i.e., includes multiple
turns and not just one, even the pure strategy suggested by Minimax should
not be chosen deterministically in every turn if according to-the game setup
this information might provide a handicap to the opponent. This is a topic of
enthusiastic discussion about the optimality of the Minimax solution and its
inherent defensive nature, as it is not clear in general when information about
an opponent’s next move is available and trustworthy tenough to justify any
deviation from this Minimax strategy.

Summary:

e In zero-sum games, one player’s gains is another’s losses (and vice
versa).

e Information about the game structure and the opponents’ moves
may be complete or not, perfect or not.

e All board games are inherently zero-sum, of complete and perfect
information.

e The Minimax theorem assures that all board games have at least
one theoretically optimal way to play them, although its exact
calculation may be unfeasible in practice for some games (e.g.

Chess, Go).

e The Minimaz solution of a game is the combination of players’
strategies that lead to an equilibrium or saddle-point.

1.2 Nonzero-sum games and Nash equilibria

Although the Minimax theoremsprovided a solid base for solving many types
of games, it is only applicable. in:practice for the zero-sum type of games. In
reality, it is common that in.a conflict not all players receive their opponents’
looses as their own. gain and. vice versa. In other words, it is very common
a specific combination of decisions between the players to result in a certain
amount of “loss” to one and a corresponding “gain”; not of equal magnitude, to
another. In this case, the game is called nonzero-sum and it requires a new
set of rules for estimating optimal strategies and solutions. As each player’s
gains and losses are not directly related to the opponents’, the optimal solution
is only based on the assertion that it should be the one that ensures that the
player has *no regrets” when choosing between possible decision options. This
essentially means that, since each player is now interested in his/her own gains
and losses, the optimal solution should only focus on maximizing each player’s
own expectations [33, 28, 13]. The Minimax property can still be applied in
principle when the single most “secure” option must be identified, but now the
solution of the game gains a new meaning.

During the early 1950’s, John Nash has focused primarily on the problem
of finding a set of equilibrium points in nonzero-sum games, where the players
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eventually settle after a series of competitive rounds of the game [29, 30]. The
failure of the Minimax approach to predict real-world outcomes in nonzero-sum
games comes from the fact that the players are assumed to act independently
and simultaneously, while in reality they usually are not. Experience shows that
possibly better payoffs with what a player might choose, after observing the
opponent’s moves, is a very strong motivator when choosing.its actual strategy
[27]. In strict mathematical terms, these equilibrium points would not be the
same in essence with the Minimax solutions, as they would‘come as a result of
the players’ competitive behavior over several “turns”’of moves and not as an
algebraic solution of the mathematical formulation in‘a single-turn game.

In 1957 Nash has successfully proved that indeed such/equilibrium points ex-
ist in all nonzero-sum games, in a way that is analogous to the Minimax theorem
assertion. This new type of stable outcome is referred to as Nash equilibrium
after his name and can be considered a generalization of the corresponding Min-
imax equilibrium in zero-sum games. In essence, they are the manifestation of
the no regrets principle for all players, i.e., not regretting their final choice after
observing their opponents’ behavior [44, 46]. However, although the Nash the-
orem ensures that at least one such Nash equilibrium exists in all nonzero-sum
games, there is no clear indication on how the game’s solution can be analyti-
cally calculated at this point. In other words, although a solution is known to
exist, there is no closed form for nonzere-sum games until today. Seminal works
by C. Daskalakis & Ch. Papadimitriou'in 2006-2007 and on have proved that,
while Nash equilibria exist, they may.be unattainable and/or practically impos-
sible to calculate due to the inherent algorithmic complexity of this problem,
e.g. see: [12, 34].

It should be noted that players participating in a nonzero-sum game may or
may not have the same options available as alternative course of action, or the
same set of options may lead-to different gains or payoffs between the players.
When players are fully interchangeable and their ordering in the game makes not
difference to the game setup and its solutions, the game is called symmetrical.
Otherwise, if exchanging players’ position does not yield a proportional exchange
of their payoffs, then the game is called asymmetrical. Naturally, symmetrical
games lead to Nash equilibrium. points that appear in pairs, as an exchange
between players creates its symmetrical counterpart.
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Summary:

e In nonzero-sum games, the payoffs of the players are separated
(although may be correlated).

e If players are allowed to observe their opponents moves over sev-
eral iterations, then the “no regrets” principle is a strong incentive
to revise their own strategies, even though their payoffs are sepa-
rated.

e The Nash equilibrium theorem ensures that, under these condi-
tions, there are indeed stable solutions in nonzero-sum games,
similarly to the Minimax theorem for zero-sum games.

e However, calculating the optimal strategies and the game solution
for these Nash equilibria is a vastly more complex and generally
unfeasible task.

2 Cooperation instead of competitiveness

The seminal work of Nash and others in nonzero-sum games was a breakthrough
in understanding the outcome in real-world adversarial situations. However, the
Nash equilibrium points are not«always the globally optimal option for the play-
ers. In fact, the Nash equilibrium=is optimal only when players are strictly
competitive, i.e., when there is'no chance for a mutually agreed solution that
benefits them more. These strictly competitive forms of games are called non-
cooperative games. The alternative option; the one that allows communication
and prior arrangements between the players, is called a cooperative game and
it is generally a much more complicated form of nonzero-sum gaming. Natu-
rally, there is no option of having cooperative zero-sum games, since the game
structure itself prohibits any other settlement between the players other than
the Minimax solution.

2.1 The cooperative option

The problem of cooperative or possibly cooperative gaming is the most common
form of conflict'in real life situations. Since nonzero-sum games have at least one
equilibrium point when studied under the strictly competitive form, Nash has
extensively studied the cooperative option as an extension to it. However, the
possibilityr.of finding and mutually adopting a solution that is better for both
players.than the one suggested by the Nash equilibrium, essentially involves a set
of behavioral rules regarding the players’ stance and “mental” state, rather than
strict optimality procedures [27]. Nash named this process a bargain between the
players, trying to mutually agree on one solution between multiple candidates
within a bargaining set or negotiation set. In practice, each player should enter a
bargaining procedure if and only if there is a chance that a cooperative solution
exists and it provides at least the same gain as the best strictly competitive
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solution, i.e., the best Nash equilibrium. In this case, if such a solution is
agreed between the players, it is called bargaining solution of the game [28, 33].

As mentioned earlier, each player acts upon the property of no regrets, i.e.,
follow the decisions that maximize their own expectations. Nevertheless, the
game setup itself provides means of improving the final gain invan agreed solu-
tion. In some cases, the bargaining process may involve the option of threats,
that is a player may express the intention to follow a strategy that is particularly
costly for the opponent. Of course, the opponent can do thesame, focusing on a
similar threat. This procedure is still a cooperative bargaining process, with the
threshold of expectations raised for both players. The result of such a process
may be a mutually deterring solution, which in this case/is called a threatening
solution or threat equilibrium. There is also evidence that, while cooperative
strategies do exist, in some cases “cooperation” may ‘be the result of extortion
between players with unbalanced power and choices [36].

In his work, Nash has formulated a general and fairly logical set of six axioms,
the Nash’s bargaining azioms, regarding the behavior of rational players, in
order to establish a non-empty bargainingset, ite., to have at least one stable
solution (equilibrium) [28, 33, 29]. In non-strict form,"these axioms can be
summarized in the following propositions:

e Any of the cooperative options under consideration must be feasible and
yield at least the same payoff as the best strictly non-cooperative option
for all players, i.e., cooperation must be mutually beneficial.

e Strict (mathematical) constraints: Pareto, optimality, independence of ir-
relevant alternatives, invariance under linear transformations, symmetry
[46, 33, 28].

The first proposition essentially defines the term “rationality” for a player:
he/she always acts with the goal of maximizing own gains and minimizing losses,
regardless if this means strictly competitive or possibly cooperative behavior.
The second proposition_names a set, of strict mathematical preconditions (not
always satisfied in practice), in order for such a bargaining set to exist. Having
settled on these axioms, Nash was able to prove the corresponding bargaining
theorem: under theseraxioms, there exists such a bargaining process, it is unique
and it leads to a bargaining solution, i.e., equilibrium. However, as in the general
case of strictly competitivergames, Nash’s bargaining theorem does not provide
analytical means of finding such solutions.

The notion of bargaining sets and threat equilibrium is often extended in
special forms,of games that include iterative or recursive steps in gaming, either
in the form:of multi-step analysis (meta-games) or focusing on the transitional
aspects of‘the game (differential games). Modern research is focused on methods
that introduce probabilistic models into games of multiple realizations and/or
multiple.stages [33].
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Summary:

e In nonzero-sum games, there may be non-competitive (coopera-
tive) options that are mutually beneficial to all players.

e Under some general rationality principles, Nash’s bargaining theo-
rem ensures that these cooperative outcomes may indeed become
the game solution, provided that strict competitiveness yields
lower gains for all.

e The procedure of structuring the “common ground” of cooperation
between the players, normally conducted over several iterations,
is the bargaining process.

2.2 Coalitions, stable sets, the Core

Nash’s work on the Nash equilibrium and bargaining:theorem provides the nec-
essary means to study n-person non-ceoperative and:cooperative games under
a unifying point of view. Specifically;na nonzerossum game can be realized as
a strictly competitive or a possibly cooperative form, according to the game’s
rules and restrictions. Therefore ~the cooperative option can be viewed as a
generalization to the strictly competitive mode of gaming.

When players are allowed to cooperate in order to agree on a mutually
beneficial solution of game, they essentially ¢hoose one strategy over the others
and bargain this option with allithe others'in order to come to an agreement.
For symmetrical games, this is like each player chooses to join a group of other
players with similar preference over their initial choice. Each of these groups is
called a coalition and it constitutesthe basic module in this new type of gaming:
the members of each coalition act as cooperative players joined together and at
the same time each coalition competes over the others in order to impose its own
position and become the winning coalition. This setup is very common when
modeling voting schemes, where the group that captures the relative majority
of the votes becomes the winner:

Coalition Theory is closely related to the classical Game Theory, especially
the cooperating gaming [33, 28]. In essence, each player still tries to maximize
its own expectations, not individually any more but instead as part of a greater
opposing term. “Therefore, the individual gains and capabilities of each player
is now considered in close relation to the coalition this player belongs, as well
as how its individual decision to join or leave a coalition affects this coalition’s
winning/pesition. As in classic nonzero-sum games, the notion of equilibrium
points and solutions is considered under the scope of domination or not in the
gamerat hand. Furthermore, the theoretical implications of having competing
coalitions of cooperative players is purely combinatorial in nature, thus making
its analysis very complex and cumbersome. There are also special cases of
collective decision schemes where a single player is allowed to abstain completely
from the voting procedure, or prohibit a contrary outcome of the group via a
veto option.

In order to study the properties of a single player participating in a game
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of coalitions, it is necessary to analyze the wining conditions of each coalition.
Usually each player is assigned a fixed value of “importance” or “weight” when
participating in this type of games and each coalition’s power is measured as a
sum over the individual weights of all players participating in this coalition. The
coalition that ends up with the highest cumulative value of power is the winning
coalition. Therefore, it is clear that, while each player’s power is related to its
individual weight, this relation is not directly mapped on how_the participation
in any arbitrary coalition may affect this coalition’s winning or losing position.
As this process stands true for all possible coalitions that.can be formed, this
competitive type of “claiming” over the available pooliof.players/voters by each
coalition suggests that there are indeed configurations'that marginally favor the
one or the other coalition, i.e., a set of “solutions”.

The notion of solution in coalition games is somewhat different from the one
suggested for typical nonzero-sum games, as itridentifies minimal settings for
coalitions that dominate all the others. In other words, they do not identify
points of maximal gain for a player or even a coalition, but equilibrium “points”
that determine which of the forming coalitions4s the winning one. This type
of “solutions” in coalition games is defined in close relation to domination and
stability of such points and they are often referred to‘as.the Core. Von Neumann
and Morgenstern have defined a somewhat.more relaxed definition of such con-
ditions and the corresponding solutions are called stable sets [33, 28]. It should
be noted that, in contrast to Nash’s theorems and the Minimax assertion of
solutions, there is generally no guarantee that solutions in the context of the
Core and stable sets need to exist in aniarbitrary coalition game.

Summary:

e Players of similar preferences and mutual benefits may join in
groups or coalitions; these coalitions may be competing with each
other, similarly to competitive games between single players.

e The study of games between coalitions is inherently more complex
than with single players, as in this case every player contributes
to the collective “power” and enjoys a share of the wins.

e In general, coalitions are formed and structured under the scope
of voting ensembles, where the voting weight of each individual
player contributes to the combined weight of the coalition.

2.3 Indices of power in committees

The notion of the Core and stable sets in coalition gaming is of vital importance
when'trying to identify the winning conditions and the relative power of each
individual player in affecting the outcome of the game. The observation that
a player’s weight in a weighted system may not intuitively correspond to its
voting “power” goes back at least to Shapley and Shubik (1954). For example, a
specific weight distribution to the players may make them relatively equivalent
in terms of voting power, while only a slight variation of the weights may render
some of them completely irrelevant on determining the winning coalition [45].
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Shapley and Shubik (1954) and later Banzhaf and Coleman (1965, 1971)
suggested a set of well-defined equations for calculating the relative power of
each player, as well as each forming coalitions as a whole [33, 28]. The Shapley-
Shubik index of power is based on the calculation of the actual.contribution of
each player entering a coalition, in terms of improving a coalition’s gain and
winning position. Similarly, the Banzhaf-Coleman index .of power calculates
how an individual player’s decision to join or leave a coalition (“swing vote”)
results in a winning or loosing position for this coalition, accordingly. Both
indexes are basically means of translating each player’ssindividual importance
or weight within the coalition game into a quantitative. measure of power in
terms of determining the winner. While both indices include combinatorial
realizations, the Banzhaf index is usually easier to calculate, as it is based on
the sum of “shifts” on the winning condition a player can incur [5]. Furthermore,
its importance in coalition games is made clearer when the Banzhaf index is
viewed as the direct result of calculating the derivatives of a weighted majority
game (WMG).

Seminal work by L. S. Penrose [35], as well assmore recent studies with com-
puter simulations [8], have shown that this discrepancy between voting weights
and actual voting power is clearly evident when there is large variance in the
weighting profile and/or when the voting'group has less than 12-15 members.
Even in large voting pools, the tasksof designing optimal voting mechanisms
and protocols with regard to some collective efficiency criterion is one of the
most challenging topics in Decision=Theory.

Summary:

o Weighted majority games (WMG) are the typical theoretical struc-
tures of the process of formulating the collective decision within a
coalition.

e In voting ensembles, each player’s voting weight is not directly
proportional to his/her true voting power within the group, i.e.,
the level of steering the collective decision towards its own choices.

2.4 \Voting ensembles and majority winners

In most cases; majority functions that are employed in practice very simplistic
when it comes:to weighting distribution profile or they imply a completely uni-
form weight distribution. However, a specific weighting profile usually produces
better results, provided that is simple enough to be applied in practice and
attain a consensus in accepting it as “fair” by the voters. Taylor and Zwicker
[45] have'defined a voting system as trade robust if an arbitrary series of trades
among several winning coalitions can never simultaneously render them losing.
Furthermore, they proved that a voting system is trade robust if and only if it
is weighted. This means that, if appropriate weights are applied, at least one
winning coalition can benefit from this procedure.

As an example, institutional policies usually apply a non-uniform voting
scheme when it comes to collective board decisions. This is often referred to
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as the “inner cabinet rule”. In a hospital, senior staff members may attain
increased voting power or the chairman may hold the right of a tie-breaking
vote. It has been proven both in theory and in practice that such schemes are
more efficient than simple majority rules or any restricted versions of them like
trimmed means. Nitzan and Paroush [32] have studied the problem of optimal
weighted majority rules (WMR) extensively and they have proved that they are
indeed the optimal decision rules for a group of decision makers in dichotomous
choice situations. This proof was later extended by Ben-Yashar and Paroush,
from dichotomous to polychotomous choice situations [3]; hence, the optimality
of the WMR formulation has been proven theoretically.for any n-label voting
task.

The weight optimization procedure has been applied experimentally in trained
or other types of combination rules, but analytical solutions for the weights is
not commonly used. However, Shapley and Grofman [42] have established that
an analytical solution for the weighting profile exists and it is indeed related
to the individual player skill levels or competencies [23].. _Specifically, if deci-
sion independence is assumed for the participating players, the optimal weights
in a WMR scheme can be calculated as the log-odds of their respective skill
probabilities, i.e.:

wy, = log (Oy) =log < s ) (2.1)

1 —pw
where py is the competency of player k£ and ‘wj is its corresponding voting
weight. Interestingly enough, this is‘exactly, the solution found by analytical
Bayesian-based approaches in the (context of decision fusion of independent ex-
perts in Machine Learning [24]. The optimality assertion regarding the WMR,
together with an analytical solution for the optimal weighting profile, provides
an extremely powerful tool for designing theoretically optimal collective deci-
sion rules. Even when the independence assumption is only partially satisfied
in practice, studies have proved that- WMR-based models employing log-odds
weighting profiles for combining pattern classifiers confirm these theoretical re-
sults [19, 18].

Summary:

o Weighted majority rules (WMR) have been proven theoretically
as the optimal decision-making structures in weighted majority
games.

e The log-odds model has been proven both as the theoretically op-
timal way to weight the individual player’s votes, provided that
they decide independently.

e The optimality of the log-odds weighting method has also been
proven experimentally, even when the independence assumption
is only partially satisfied.
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2.5 Collective efficiency

Condorcet (1785) [9] was the first to address the problem of how to design
and evaluate an efficient voting system, in terms of fairness among the people
that participating in the voting process, as well as the optimal outcome for
the winner(s). This first attempt to create a probabilistic model of a voting
body is known today as the Condorcet Jury Theorem [51].In essence, this
theorem says that if each of the voting individuals is somewhat more likely
than not to make the “better” choice from a set of alternative options; and if
each individual makes its own choice independently from all the others, then the
probability that the group majority is “correct” is greater than the individual
probabilities of the voters. Moreover, this probability.of correct choice by the
group increases as the number of independent voters increases. In practice, this
means that if each voter decides independently and.performs marginally higher
than 50%, then a group of such voters is gudranteed to perform better than
each of the participating individuals. This assertion has been used in Social
sciences for decades as a proof that decentralized decision making, like in a
group of juries in a court, performs better than centralized expertise, i.e., a sole
judge. The Condorcet Jury Theorem andits implications have been used as one
guideline for estimating the efficiency of-any voting system and decision making
in general [51]. Under this context, the eealition games are studied by applying
quantitative measures on collective competence and optimal distribution of power
in the ensemble, e.g. tools like the Banzhaf or Shapley indices of power. The
degree of consistency of such a voting scheme on establishing the pair-wise
winner(s), as the Condorcet Jury Theorem indicates, is often referred to as the
Condorcet criterion.

Shapley-Shubik and Banzhaf-Coleman are only two of several formulations
for the indices of power in voting ensembles, each defining different payoff dis-
tributions or realizations among the members of winning coalitions. In general,
these formulations are collectively.referred to as semivalue functions or semi-
values and they are considered more, or less equivalent in principle, although
may be different in exact values. Almost all of them are based on combinatorial
functions (inclusion-exclusion operations in subsets) and, as a result, there is
no easy way to formulate proper inverse functions that can be calculated in
polynomial time. Therefore; the design of exact voting profiles with weights
based on semivalugs; instead of competencies as described above (log-odds), is
generally impractical even forrensembles of small sizes.

For further insight on weighted majority games, weighted majority voting,
collective decision efficiency and Condorcet efficiency, as well as applications to
Machine Learning for designing pattern classifiers, see [17, 19, 18].
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Tab. 1: Generic 2x2 zero-sum game in analytical form.

Game Player-2
example y l—y
T a b
Player-1 12 ¢ d

Summary:

e Under the assumption of independent voters and that each de-
cides “correctly” marginally higher than 50% of the time, then
their collective decision as a group is theoretically proven to be
asymptotically better any single member of the ensemble.

e Furthermore, as the size of the ensemble increases, its collective
competency is guaranteed to increase too.

e In the other hand, the problem of formulating an analytical so-
lution for the optimal distribution of voting power within such a
group, i.e., the design of theoretically optimal voting mechanisms,
is still an open research topic.

3 Game analysis & solution concepts

One of the most important factors in understanding and analyzing games cor-
rectly is the way they are.represented. Games can be represented and analyzed
in two generic formulations:” (a). the analytical or normal form, where each
player is manifested as one dimension and its available choices (strategies) as
offsets on it, and (b) the eztensive.ortree-graph form, where each player’s “move”
correspond to a node split in a tree representation. Each one of them has its
own advantages and-disadvantages, but theoretically they are equivalent.

3.1 Games in analytical (matrix) form

In Table 1, an.example of a zero-sum game in analytical form is presented.
Player-1 is usually referred to as the “max” player and Player-2 is referred to as
the “min” player, while rows and columns correspond to each player’s available
strategies; respectively. Since this is a zero-sum game and one player’s gains
is the other-player’s losses, the “max” player tries to maximize the game value
(outcome) while the “min” player tries to minimize it. In the context of the
Minimax theorem, Player-2 chooses the mazimum-of-minimums, while Player-2
chooses the minimum-of-maximums. The z and y correspond to the weight or
probability of choosing the first strategy and, since this is a 2x2 game, the other
strategies are attributed with the complementary probabilities, 1-z and 1-y.
The exact Minimax solution for z and y depends solely on the values of the
individual payoffs for each of the four outcomes. Here, it is assumed that there is
no domination in strategies, i.e., there is no row/column that is strictly “better”
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Tab. 2: Example 2x2 zero-sum game in analytical form.

Game Player-2
example (0) (1)
0 o -3

Player-1 1) 4 1

Tab. 3: Example of a 2x2 nonzero-sum game in analytical form.
Game Player-2
example Y 1—y

x (a1,a2) (blab2)
1—z  (c1,02) (di,do)

Player-1

than another row/column (column-wise/row-wise, respectively, all payoffs). For
example, Player-1 would have a dominating strategy in the first row if and only
if a > cand b > d. Based on this generic setup, this.is a'typical 2x2 system of
linear equations and, if no domination is present, its selution can be determined
analytically as [44, 14, 26]:

d='¢ a—2b
[x’l_x]_{a—b—c—i—d’a—b—c—f—d} (8-1)
d—b a—c
[y’l_y]_{a*b~c+d’abc+d} (3-2)
ad.—bc
Sl (3:3)

The Minimax solution [#;y] determines the saddle-point, i.e., the equilibrium
that is reached when both opponents play optimally in the Minimax sense, when
the game has no pure (non-mixed) solution. In this case, the expected payoff
or value of the game for both players is calculated by u (remember, this is a
zero-sum game). If the;game has a pure solution, then it is determined as either
0 or 1 for each probability = and.y. Table 2 illustrates a zero-sum game and the
corresponding pure Minimax selution, by selecting the appropriate strategies for
each player. In thisicase, “max” Player-1 chooses the the maximum {1} between
the two minimum values {-3,1} from its own two possible worst-case outcomes,
while “min”, Player-2 chooses the the minimum {1} between the two maximum
values {4,1} from its own two possible worst-case outcomes. Hence, the pure
solution [151]is the Minimax outcome.

In nonzero-sum games, the analytical form is still a matrix, but now the pay-
offs for.each player are separate, as illustrated in Table 3. Here, since the payoffs
are separated, both players are treated as “max” and the Minimax solution for
each one'is calculated by selecting the maximum-of-minimums as described be-
fore for zero-sum games, focused solely on its own payoffs from each value pair.

Although a (pure) Minimax solution can always be calculated for nonzero-
sum games, the exact Nash equilibrium solution is a non-trivial task that cannot
be solved analytically in the general case. However, pure Nash equilibrium
outcomes can be identified by locating any payoff pairs (z,w) such that z is
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Tab. 4: Example of a 2x2 nonzero-sum game with one Nash equilibrium at
[A,B]:(2,4).
Game Player-2
example A B
A (33) (245
B (4%1) (1,2%)

Player-1

the maximum of its column and w is the maximum of'its row. In other words,
every row for Player-1 is scanned and every entry in itis compared to the values
in the same column, marking it if it is the maximum’ among them; the same
process is conducted for every column for Player-2; scanning each value row-wise
for its maximum; any payoff pair that has both values marked as maximums
is a Nash equilibrium in the game. Table 4 illustrates such an example, where
asterisk (*) marks the identified max-values and the_ single Nash equilibrium
for [A,B] at (2,4). Here, although the strategiessare the'same for both players,
their (separated) payoffs are not, hence the'game is referred to as asymmetric.
According to the oddness theorem by Wilson.(1971)the Nash equilibria almost
always appear in odd numbers [44, 33], at'least for non-degenerate games, where
mixed strategies are calculated upon k:linearly independent pure strategies.

Summary:

e Game representation in analytical form introduces a game matrix,
with row and column positions associated to the strategies available
to the players and contents associated to the corresponding payoffs.

e Analytical-form representation introduces very convenient ways to
identify Minimax solutions and Nash equilibria in games.

e However, they are appropriate mostly for 2-player simultaneous
games, since any other configuration cannot be fully illustrated.

3.2 Games in extensive (tree-graph) form

In the extensiveform the game is represented as a tree-graph, where each node
is a state labeled by a player’s number and each (directed) edge is a player’s
choice or “move”. Strictly speaking, this is a form of state-transition diagram
that illustrates how the game evolves as the players choose their strategies.
Figure 3:1'shows such a 2x2 nonzero-sum game of perfect information, while
Figure 3.2 shows a similar 2x2 game of imperfect information [46, 28, 49, 41,
16, 14]. Nodes with numbers indicate players, edges with letters indicate chosen
strategies (here, symmetric) and separated payoffs (in parentheses) indicate the
game outcome after one full round. The dashed line between the two nodes
for Player-2 indicate that its current true state is not clearly defined due to
imperfect information regarding Player-1’s move. In practice, these two states
form an information set for Player-2, which has no additional information to
differentiate between them. This is also valid in the case of simultaneous moves,
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D’ 3,1)

Fig. 3.1: Example of a 2x2 nonzero-sum game of perfect information.

where Player-2 cannot observe Player-1’s move in advance of its own, and vice
versa. In extensive form, an information. set is indicated by a dotted line or by
a loop, connecting all nodes in that set,

The extensive form of game is usually the'preferred way to represent the
tree-graph of simple 2-player board games, where each node is clearly a state
and each edge is a player’s move. (Even in single-player games, where a puzzle
has to be solved through a series'of moves (e.g. Rubik’s cube)?, the tree-graph
is a very effective way to organize the game under an algorithmic perspective, in
order to program a “solver” in a,computer. In practice, the problem is structured
as sequences of states and tramsitions in-a tree-graph manner and the “game”
is explored as it is evolving, move after move, expanding the tree-graph from
every terminal node. Theutree-graph can be expanded either by full a level
(“breadth-first”), or from a'branchsall'the way down to non-expandable terminal
nodes (“depth-first”), or.some hybrid scheme between these two alternatives.

As described above, 'small games like Checkers can be structured and ex-
panded fully, with their treetgraph having only internal (already expanded) and
terminal nodes; however, intlarger games like Chess or Go this is practically
unfeasible even with super-computers. In such cases, the algorithm should as-
sess the “optimality” of each expandable terminal node with regard to relevance
towards the predefined goal (“win” or “solution”), sort all these nodes according
to their ranking and choose the “best” ones for expansion in the next iteration.
This way, thessearch is sub-optimal but totally feasible with almost any mem-
ory constraints - this is exactly how most computer players are programmed
for playing board games or solving complex puzzle games. In Artificial Intelli-
gence, algorithms like A* and AB solve this type of problems as a path-finding
optimization procedure towards a specified goal [40, 31].

2 The combinatorial analysis of the classic 3x3x6 Rubik’s cube should take into account
tile permutations that can only be reached by the available shifts and turns of the slices of
the device. Therefore, a totally “free” permutation scheme would produce: 8!-38 .12!.212 =
519,024,039, 293, 878,272,000 cube instances, while in practice the possible permutations are
only: 8!-37-(12!/2)-211 = 43,252,003, 274, 489, 856, 000 cube instances (about 12 times fewer)
[50].
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(3,1)

Fig. 3.2: Example of a 2x2 nonzero-sum,game of imperfect information.

Figure 3.3 illustrates the way a path-finding algorithm like A* would work
in expanding a tree-graph as described above. The“root” node is the starting
state in a puzzle game (single-player) and each node represents a new state
after a valid move. The numbers indicate the sequence in which the nodes are
expanded, according to some optimality-ranking function (not relevant here).
For example, node “4” in the 3rd level is expanded before node “5” in the 2nd
level, node “21” in the 5th level is.expanded before node “22” in the 3rd level,
etc. Here, node “30” in the 5th level is the last and most relevant terminal node
(still expandable) towards thesgoal, hence.the optimal path from the “root” state
is currently the: “57—=“7"—11"—“30” ‘and the next “best” single-step move is
the one towards “5”. The tree-graph-can be expanded in an arbitrary number
of levels according to the current memory constraints for the program, but the
same path-finding procedure has to be reset and re-applied after the realization
of each step when two.or'more players are involved, since every response from
the opponent effectively nullifies every other branch of the tree-graph.

It should be mentioned that, although the extensive form of game represen-
tation is often inefficient for-large games like Chess, it can be used as a tool in
the proof of the existence of'an optimal solution [15, 46]. Specifically, in every
such game of complete and perfect information (all board games), each player
knows its exact position in the graph-tree prior to choosing the next move. In
other words; each player is not only aware of the complete structure of the game
but also knows all the past moves of the game, including the ones of random
choice. Hence, since there is no uncertainty in the moves, each player can remove
the dominated strategies and subsequently identify the optimal choice, which is
always a pure strategy, i.e., the one that corresponds to the saddle-point of the
game. This proof actually ensures the existence of a (pure) optimal strategy
in every typical board game, no matter how large or complex it is. Examples
include Tic-Tac-Toe, Chess, Backgammon, etc.
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Fig. 3.3: Example of the way a path-finding algorithmelike A* would work in
expanding the tree-graph of a single-player “puzzle” game like Rubik’s
cube.

Summary:

e Game representation in extended form introduces a tree-graph, with
nodes associated to individual players and (directed) edges associated
to selected strategies (“moves”).

e Extended-form representation introduces very convenient ways to
identify chains of moves and solution paths.

e However, the calculation of Minimax solutions and Nash equilibria is
not straight-forward.

4 The four interesting cases

In the real world, games may be either zero-sum or nonzero-sum by nature.
As describedupreviously, the case of zero-sum games can be considered simpler
and much easier to solve analytically, since it can be formulated as a typical
algebraic set of linear equations that define the Minimax solution, regardless
if it contains pure or mixed strategies [44, 14]. However, nonzero-sum games
are inherently much more complex and require non-trivial solution approaches,
usually via some Linear Programming (constraint) optimization procedure, e.g.
see: [20, 43]. In fact, it has been proven that the general task of finding the
Nash equilibria is algorithmically intractable® [12, 10, 11, 34| - something that

3 In their seminal works, Daskalakis, Goldberg and Papadimitriou have shown that the task
of finding a Nash equilibrium is PPAD-complete; informally, PPAD is the class of all search
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Tab. 5: The general analytical (matrix) form of a 2x2 nonzero-sum symmetric
game.

Game Player-2
template C D

c )
Player- p(15) (P.P)

puts into a “philosophical” question the very nature and practical usefulness of
having proof of game solutions (i.e., stable outcomes).that we may not be able
to calculate.

Some cases of nonzero-sum games are particularly interesting, especially
when they involve symmetric configurations. The"players can switch places,
the actual payoff values are usually of much less importance than their relative
ordering as a simple preference list, the Minimax and Nash equilibria can be
easily identified, yet these simple games seem to capture the very essence of
bargaining and strategic play in a vast set of real-world conflict situations with
no trivial outcomes.

Table 5 shows a generic template for'such very simple symmetric nonzero-
sum games, employing only two strategiessand four payoff values to completely
define such games in analytical (matrix) form.“Here, the game is symmetric
because the players can switch roles without anyeffect in their corresponding
payoff pairs. Furthermore, they share two common strategies C' and D, named
typically after the choices of “cooperate” or+“defect”, while constants P, R, S
and T are the real-valued payoffs in-each case [7].

In practice, a player’s preference of ‘strategies (and hence, the equilibria)
depends only on the relative ordering of the corresponding payoffs and not their
exact values, which become of real importance only when the actual payoff value
of the game solution is to be'calculated for each player. There is a finite number
of rank combinations, i.ef, permutations, of these four constants, which produce
all the possible unique game‘matrices of this type. Specifically, there are 4! = 24
different ways to order these four numbers, 12 of which can be discarded as
qualitatively equivalentto other game configurations. Out of the 12 remaining
games, eight of them possess optimal pure strategies for both players, therefore
they can be considered trivial'in terms of calculating their solution. The four
remaining configurations are the most interesting ones, as they do not possess
any optimal pure strategy. These are the following;:

o Leader:L'> S > R > P.

e Battle. of the Sexes: S >T > R > P.
o ‘Chicken: T > R > S > P.

o Prisoner’s Dilemma: T > R > P > 5.

These four qualitatively unique games seem to capture the essence of most
of the majority real-world conflict situations historically. Although they have

problems which always have a solution and whose proof is based on the parity argument for
directed graphs. Due to the proof of intractability, the existence of Nash equilibrium in all
nonzero-sum games somewhat loses its credibility as a predictor of behavior.
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Tab. 6: The typical setup of the Leader game with two players. Nash equilibria
are marked with paired asterisks and the Minimax solution with bold
numbers.

Leader Player-2
game C D
c  (2,2) (3547
D (4*3%) (1,1)

Player-1

been studied extensively in the past, there are still many open research topics
regarding the feasibility, tractability and stability of the theoretical solutions.

4.1 VLeader

The Leader or Coordination game [28, 33, 46,44, 7, 16] is named after the
typical problem of two drivers attempting to enter a stream of increased traffic
from opposite sides of an intersection. When the roadvis clear, each driver has
to decide whether to move in immediately or concederand wait for the other
driver to move first. If both drivers move.in (i.e., choose D), they risk crashing
onto each other, while if they both wait.(i.e., chgose C), they will waste time
and possibly the opportunity to enter the traffic.. The former case is the worst,
hence the payoff of (1,1), while the later case is slightly more preferable with a
payoff of (2,2). The best outcome is for one driver to become the “leader” and
move first, while the other becomes the “follower” and move second. There is
still some difference in their absolute gains, but now the deadlock is resolved
in the best possible way, no matter who'is @actually the leader and who is the
follower.

Table 6 illustrates the analytical form of this game setup, where numbers
indicate relative preferences rather than absolute gain values. There are two
pure Nash equilibria, (3,4) and (4,3), which correspond to the proper assignment
of roles to the players, explicitly omimplicitly, such that coordination is achieved.
Since the game is symmetric the two players can switch roles, with only marginal
increase/decrease to their payoffs:In terms of Minimax strategies, each player
is free to choose the strategy that guarantees the maximum-of-the-minimums
without any concern about ‘the opponent’s payoffs, since this is a nonzero-sum
game. Hence, the.Minimax solution is [C,C] at (2,2) marked in bold.

In the real world, the assignment of roles as leader/follower is more effective
when applied explicitly, typically by some external mechanism or a predefined
set of rules.c Street signs, traffic policemen and highway code for driving prop-
erly are all such mechanisms for explicit resolution of deadlocks via priority
assignment in traffic.

4.2%./Battle of the Sexes

In the Battle of the Sexes game [28, 33, 46, 7, 16], a married couple has to decide
between entertainment options for the evening. The husband prefers one choice,
while the wife prefers another. The problem is that they would both prefer to
concede to the same choice together even if it is not their own, rather than follow
their own choices alone. For example, of he wants to watch a sports match on
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Tab. 7: The typical setup of the Battle of the Sexes game with two players. Nash
equilibria are marked with paired asterisks and the Minimax solution
with bold numbers.

Battle of Player-2

the Sexes C D
¢ (L1 (3%4%)
D (4*3%) (2,2)

Player-1

TV and she wants to go out for dinner, they both prefer either watching TV or
going out for dinner as long as they are together.

Table 7 illustrates the analytical form of the game, where strategy C is for
conceding to the other’s preference and D is for defecting to his/her own choice.
If they both concede the payoff (1,1) is the worst outcome, since they both
end up miserable and bored. If they both defect the payoff (2,2) is marginally
better for both, but they end up being alone. The two other cases of someone
following the other yields the best payoffs for both, sinceithe game is symmetric
and they can switch places. The outcomes(3,4) and.(4;3) are actually the two
Nash equilibria, similarly to the Leader-game; however, the Minimax solution
(2,2) here corresponds to both players.choosing D' (not C as in Leader) as their
best Minimax strategy.

4.3 Chicken

One of the most well-known strategic games.is Chicken [15, 26, 28, 33, 46, 7],
dating back at least as far as the Homeric era. Two or more adversaries engage
in a very dangerous or even lethal confrontation, each having a set of choices at
his/her disposal and each of'these choices producing more or less damage to all
players if their choice is the.same. Typically, this translates to the Hollywood’s
favorite version of two cars speeding towards each other, the drivers can choose
to turn and avoid collision orkeep the'course and risk death if the other driver do
not turn either. The game seems'simple enough, but there are several theoretical
implications that make.it one of the most challenging situations, appearing in
many real-world conflicts throughout History.

Table 8 illustrates the typical Chicken game setup with two players and two
strategic choices..Option C corresponds to turning away (“swerve”) and losing
the game, while option D corresponds to keeping the course and risk death.
The worst possible outcome is at (1,1) when players persist in keeping course
and eventually:crashing against each other. The mutually beneficial outcome
or “draw” is at (3,3) when both players decide to play safe and turn away; this
is actually. the Minimax solution of the game, i.e., the most conservative and
“rational” outcome if the game is a one-off round. On the other hand, there are
two Nash equilibria for the two outcomes when only one player turns away and
one persists.

One particularly interesting feature of the Chicken game is that it is impos-
sible to avoid playing it with some insistent adversary, since refusing to play
is effectively equivalent to choosing C' (swerve). Furthermore, the player who
succeeds in making his/her commitment to D adequately convincing is always
the one that can win at the expense of the other player, assuming that the other
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Tab. 8: The typical setup of the Chicken game with two players. Nash equilibria
are marked with paired asterisks and the Minimax solution with bold
numbers.

Chicken Player-2
game C D
¢ (33) (254%)
D (4*2%) (1,1)

Player-1

player is rational and would inevitably decide to avoid disaster. In other words,
the player that is somehow bounded to avoid losing at-any cost and makes this
commitment very clear to the opponent, is the one that will always win against
any rational player.

This aspect of credible commitment is closely related to the notion of repu-
tation, as well as the strange conclusion that in this game the most effectively
“rational” strategy is the manifestation of “irrational” commitment to lethal risk.
This becomes especially relevant in cases where the game is played a number
of times repeatedly and previous behaviors.directly affect the players’ strategic
choices in the future: once the risky player starts winning he/she may maintain
or even improve this advantage, as confidence and prior “risky” behavior makes
it more and more difficult for future oppomnents to.decide and deviate from their
cautious Minimax choice of swerving. The Chicken game is perhaps the most
descriptive and simple case where players’ ptevious behavior (i.e., reputation)
is of such importance for predicting the actual outcome.

4.4 Prisoner’'s Dilemma

This forth basic type of nonstrivial, nonzero-sum game is by far the most inter-
esting one. The Prisoner’stDilemma game [15, 26, 28, 33, 46, 44, 7, 16] typically
involves two prisoners who are accused of a crime. Each of them has the option
of remaining silent and withholding any information or confessing to the police
and accusing the other-by disclosing details about the crime. The first choice C'
is effectively the cooperative option, while the second choice D corresponds to
purely competitive behavior'in order to reduce he/her own damages.

Table 9 illustrates the typical Prisoner’s Dilemma game setup with two play-
ers and two strategic choices."The payoffs here correspond simply to preferences
and not real gain/cost values, but the essence and the strategic properties of
the game remain intact. In practice, what the game matrix says is that if the
two prisoner’s remain silent, i.e., mutually cooperate, they will not be freed but
they will share an equal, relatively mild conviction. If they both talk and accuse
each other, i.e., mutually defect, they will share and equal but more severe con-
viction. If.only one of them talks to the police and the other remains silent, the
one that talked is freed and the other serves a full-time conviction for both. It
is of course imperative that the two prisoners are immediately separated upon
capture and no communication between them is allowed; this does not nullifies
any prior arrangements they may have, but isolation after being captured means
that neither of them can confirm they loyalty of the other. This is one of the
main reasons why police always isolates suspects prior and during any similar
investigation.
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Tab. 9: The typical setup of the Prisoner’s Dilemma game with two players.
Nash equilibria are marked with paired asterisks and the Minimax so-
lution with bold numbers.

Prisoner’s Player-2
Dilemma C D
¢ (33 (1,49
D (4%1) (2*2%)

Player-1

The real beauty and singularity of the Prisoner’s/Dilemma is that it implies
a paradox. A quick analysis of the payoffs in Table 9 yields two extremes at (1,4)
and (4,1), corresponding to the two interchangeable cases one player cooperating
(C) and one not (D), but in contrast to the three previous games these are not
Nash equilibria. There is only one Nash equilibriam at (2,2), which is in fact
the Minimax solution too. This means that under the solution concepts of both
Minimax strategy and Nash equilibrium, theory suggests that the two prisoner’s
will probably choose to betray one another, despite any previous arrangements.
It is clearly evident that the outcome (3;3) is mutually beneficial and at the
same time unattainable due to lack of communication. However, in therms of
strict personal gain, defecting (D) is the deminant strategy for both and neither
of them has any incentive to deviate from it. In.other words, it appears that
defecting is always the optimal choice regardless of what the other prisoner does
- but if both adopt the same rationale, they will end up at (2,2) which is clearly
worse than the (3,3) that they,could have-gotten if they had chosen mutual
cooperation.

The essence of the paradox of Prisoner’s Dilemma lies in the inherent conflict
between individual and collective rationality. While individual rationality is
well-understood, collective rationality deals with the scope of optimizing the
mutual gain of the players.“This ismot a default behavior in strictly competitive
situations, as in zero-sum games;. or, nonzero-sum games that do not imply
cooperation. However, nonzero-sum games permit the idea of mutually optimal
gains as a combinationvef simultaneously optimal separate payoffs. Under this
broader scope, even (4;1) andy(1,4).are worse than (3,3) since they yield a sum
of 5 in gain value rather than 6, .respectively.

It should also be noted.thatthe single Nash equilibrium in Prisoner’s Dilemma
is stable, while thecorresponding pairs of Nash equilibria in the three previous
games are inherently unstable, since the players are not in agreement as to
which of the two equilibria is preferable. Furthermore, in the three previous
games the worst possible outcome comes when both players choose their non-
Minimax strategy; in Prisoner’s Dilemma this is not so. In fact, Prisoner’s
Dilemma-has produced lengthy academic debates and hundreds of studies in a
wide range of disciplines, from Game Theory and Mathematics to Sociology and
Evolutionary Biology. The paradox of this game (as described above) has been
illustrated as a notorious example where theory often fails to predict the true
“gaming” outcomes in the real world: cooperation can emerge spontaneously,
even though theory says it should not [1, 2, 27, 7].
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Summary:

e There are four basic nonzero-sum game types of particular interest
namely: Leader (or Coordination), Battle of the Sexes, Chicken and
Prisoner’s Dilemma.

e Three of these games (except Prisoner’s Dilemma) have two “mir-
rored” pure Nash equilibria and players receive the worst possible pay-
off when they choose to deviate from their optimal Minimax strategy.

e Prisoner’s Dilemma is a very unique type of game, since neither Min-
imax solution or Nash equilibrium (single one in this case) point to
the best mutually beneficial outcome; this is informally labeled as the
paradox of this game.

5 Signals, mechanisms & rationality

Game formulation and representation in,analytical-or extensive form are imper-
ative for proper analysis and identification of equilibria. However, they fail to
capture many elements of gaming as a multi-aspect process, especially in rela-
tion to strategic moves; these are actions performed by the players at different
places and times, even before the realization of the current game, with the goal of
enhancing strategic advantages and increasing the effectiveness of chosen strate-
gies. Sometimes the “moves” are no more ‘than message exchanges between the
players, explicit or implicit, or simply tracking the history of previous choices
in iterated games. Formulating these factors into a proper mathematical model
can be very difficult, but‘nevertheless they are matters of great importance in
real-world conflict situations.

5.1 Signals, carriers & bluffs

The exchange of messages hetween the players is a very useful option when a
player is trying to model or.even predict the behavior of its opponent(s). A
message or signal from one player to another may be voluntary or involuntary,
direct or indirect, explicit or implicit [46, 44]. In any case, it carries some sort
of strategic information, which is always valuable to the other player if it can be
asserted as credible with a high degree of confidence. On the other hand, if this
credibility .can be manipulated and falsely asserted as such, the source player
may gain Some strategic advantage by means of deceiving its opponent.
Strategic signaling is the process of information exchange between two or
more players in a game, using any means or intermediate third-parties as car-
riers. If .the source player does this deliberately, the purpose is to project some
strategic preference or stance (“posturing”) in the game without making any ac-
tual “move”; in order to intimidate or coordinate with the opponent(s). This is
particularly useful in situations where mutually beneficial equilibria are achiev-
able but lack of preference ranking can lead to disastrous lack of coordination.
The Leader and Baitle of the Sexes games are such examples (see Tables 6 and
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7). On the other hand, if the source player signals its opponent unintention-
ally, this strategic information could be a “leak” of such importance that may
determine the actual outcome of the game.

Ezplicit signaling means that the source player sends out-a clear message
with undeniable association and content. An explicit signalumay be volun-
tary or involuntary; in the later case, the message is simply.a “leak” with very
clear origin and content. Implicit signaling happens when the origin or (most
commonly) the content of the message is somehow inconclusive or “plausibly
deniable” as to the intentions of the source player. A signaliexchange may occur
directly between the players or via a third-party that performs the role of a car-
rier. A number of combinations of these attributes are possible in practice, em-
ploying direct/indirect messaging, voluntary/involuntary information exchange,
with explicit/implicit messages. For example, a third-party carrier may share
an implicit signal or “leaked” (involuntary) information about a player’s stance
with another player, participating in the game only as a mediator, coordinator
or “referee”, rather than an actively involved player.

A very special type of signaling is when/the message exchange involves false
information, i.e., a bluff. This kind of signals is a .very common practice in
games of imperfect and/or incomplete information; where the players do not
have a complete view of the game structure.itself and /or the opponents’ choices,
respectively. In this case, false signaling or bluffing is usually a strategic option
by itself, exploiting this uncertainty regarding.the true status of the game to
enhance advantages or mitigate disadvantages. | A very common example of
such games is Poker, where a player. with weaker deck of cards can project a
false stance to its opponents, iniorder to avoid defeat or even secure a victory
against players with better decks of cards [46, 44]. Bluffing can be realized
directly between players or indirectly via a'third-party carrier. In the later case,
especially when the signaling.is implicit'and assumed involuntary, the credibility
of the assertion is strongly associated with the credibility of the carrier itself.
In other words, even if the source player could not project a successful bluff on
its own, a credible third-party carrier' might be the necessary intermediate to
achieve such a move. The role of third-party mediators in signaling is a special
topic in the study of strategic moves and how they affect the final outcome in
games.
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Summary:

e A signal between players is a voluntary or involuntary, direct or indi-
rect, explicit or implicit exchange of a message; it is usually a declara-
tion of stance (“posture”) in the game, i.e., intent to include or exclude
a strategy from a set of open options.

e Strategic moves, e.g. signaling, project some strategic preference with-
out making any actual “move”, in order to intimidate or coordinate
with the other player(s).

e A bluff is a projection of false information, i.e., exploiting the incom-
plete/imperfect information structure of a game to gain some strate-
gic advantage that could not be achievable if the game was of com-
plete/perfect information.

5.2 Credibility, reputation, promises & threats

The effectiveness of projecting a strategic stance via signaling, regardless if it
is true or bluff, depends heavily on the credibility of that signal, as well as
the credibility of the player itself<[46, 44]. When it comes to a single signal
or stance, the credibility is closely“linked to the level of compatibility of that
signal or stance with the rationality“of the/player. Although rationality per se
may be only an assumption with regard to one’s opponent, in general terms it
is fairly easy to examine the matrix or the tree-graph representation of a game
and establish whether a declared stance is beneficial or not to the associated
player. In other words, if that player is assumed to behave rationally, Minimax
strategies and Nash equilibria can be used to filter out choices that are clearly
excluded, at least with a high probability.

The set of previous‘stances and /for moves, as well as their associated cred-
ibility values, can be‘used as the history or reputation of that player, which
is in fact the a priori probability for any future stance and/or move of being
consistent with its previous behavior [27]. Since games of complete and perfect
information, e.g. Chess, are not compatible with false signaling and bluffs, the
true theoretical aspect of credibility and reputation is relevant only in games
of incomplete/and /or imperfect information. Hence, Poker players are indeed
characterized.as'being cautious or risk-takers according to their reputation on
using bluffs in lower or higher frequency, respectively.

A player with a specific reputation can signal a specific stance to the others,
projecting ‘either a promise or a threat. A promise is a signal that usually
declares.the intent to cooperate, i.e., choose the less aggressive approach. This
is particularly useful when the players need to coordinate in order to avoid much
worse outcomes, as in the games Leader and Battle of the Sexes (see Tables 6
and 7). On the other hand, a threat is a signal that usually declares the intent
to compete, i.e., choose the more aggressive approach. This is still useful as the
means to enforce some kind of coordination, now in the form of extortion rather
than willful cooperation. The Chicken game is such any example (see Table 8),
where one player must force the other to swerve, in order to naturally end up
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in one of the two Nash equilibria and avoid the worst outcome of crash.

As it was mentioned earlier, Prisoner’s Dilemma is a very special type of
game, since neither Minimax solution or Nash equilibrium points to the mutually
beneficial option of cooperation; however, if signaling between.the prisoners is
possible, i.e., if they are allowed to communicate with each other, cooperation
becomes much more plausible: all they have to do is to premise each other to
remain silent and threat to accuse the other as a retaliation if they see the other
doing such thing. One of the most interesting topics in modern Game Theory is
the study and analytical formulation of the conditionssthe constraints and the
exact processes of the evolution of cooperation in gameslike Prisoner’s Dilemma,
where typical theory fails to predict optimal strategies; although such strategies
seem to exist, usually in accordance to some Tit-for-Tat variation [1, 2, 27, 7].

In any case, whether it is a promise or a threat, the signal or stance is labeled
as credible or not. Hence, a credible promise istone that comes from a player
with a reputation of being consistently reliable. in fulfilling that promise, i.e.,
actually choosing less aggressive strategies when signaling intent to cooperate.
Similarly, a credible threat is one that comes from a player with a reputation of
being consistently reliable in fulfilling that threat, i.e., actually choosing more
aggressive strategies when signaling intent to,compete.[28, 33].

Summary:

e Promise is a signal that usually declares the intent to cooperate, i.e.,
choose the less aggressive approach; it is useful when players need to
coordinate in order to avoid much worse outcomes.

o Threat is a signal that usually declares the intent to compete, i.e.,
choose the more aggressive approach; it is useful a player wants to
enforce some kind of coordination, in the form of extortion.

e Credibility is closely linked to the level of compatibility of a signal or
stance with the rationality of the player; in practice, it is a measure
(probability) of whether the player will fulfill a promise or a threat, if
necessary.

e Reputation of a player is the a priori probability for any future stance
and/or move of being consistent with its previous behavior.

o Credible promises and credible threats are associated with the reputa-
tion and credibility of each player, as well as the actual payoffs in the
corresponding game matrix.

5.3%./Utility, incentives & “rational irrationality”

As it was mentioned earlier, if that player is assumed to behave rationally, i.e.,
trying to minimize losses and maximize gains in terms of actual payoffs in each
outcome, the credibility of a promise or a threat can be easily established with
a high probability. Nevertheless, the fact that this is just a probability and not
a perfect forecast comes from the fact that, in turn, the level of rationality of
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Tab. 10: The typical setup of the Hostage Situation game with two players.
Player-1 is the assaulter and Player-2 is the rescuer-protector.
Hostage Player-2
Situation C D
¢ (23 (14%)
D (4*2%) (3%1)

Player-1

that player cannot be evaluated perfectly and in exact:terms.

Rationality and incentives of a player emerge naturally from the exact for-
mulation of its own utility function, which is nothing more than a generalization
of the loss/gain function that is described by the matrix or the tree-graph of
the game [33, 16, 28]. If the formulation of the game’s payoff matrix is perfect,
then it is clear when a strategy is optimal for a player and when it is not. How-
ever, the truth is that these payoff values may not reflect the exact wutility, i.e.,
overall loss/gain value for that player, usually due to some “hidden” outcomes
or side-effects. For example, a game matrix may describe the payoffs for each
outcome and each player correctly, but with.the assumption that these players
are rational in the same way: winning over their opponent; this may not be
true, e.g. when one player cares more-about securing that their opponent does
not win, rather than securing their own/win. Inwother words, when the play-
ers’ rationality is not symmetrically.the same,then they do not share the same
utility function and the true payoffs in'the game matrix may actually be quite
different.

A very classic example of such games, assumed to be symmetric when they
are actually asymmetric by nature, is the/Hostage Situation, described in ana-
lytical form by Table 10. If the two opponents are treated as similarly rational,
i.e., symmetric in terms of incentives and behavior, then the game is not much
different than the classic Chicken, where one must convince the other to swerve
first, in order to avoid the crash. This translates to either the authorities give
in to the assaulter’s demands or the assaulter eventually surrenders to the au-
thorities, both outcomes assumed to be equally rational, correspondingly, to
each player. However, if for some reason the assaulter is more determined than
initially presumed, preferring tofight to the death rather than surrendering and
ending up in jail, then thergame is inherently asymmetric and the payoff matrix
is quite different, as illustrated in Table 10. What the matrix shows is that
now Player-1, ite., the assaulter, has a dominant strategy of always choosing the
most aggressivesstance, no matter what the authorities choose to do. There is
no pure Minimax solution here, since there is no pure saddle-point (see payoffs
“3” and “2” in bold); however, there is now a single Nash equilibrium at (4,2),
i.e., aggressive assaulter and passive authorities - this is in fact the standard ap-
proachrinternationally in all hostage situations: the authorities start with trying
to establish a communication link and negotiate with the assaulter, rather than
choosing a rescue operation by direct action that could put the hostages in
danger.

As it is evident from the Hostage Situation game of Table 10, the authorities
are normally guided to a more passive and cooperative approach of negotiating
rather than using force, because the incentive is to protect the hostages at all
costs. This effectively translates to employing a utility function that includes
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Tab. 11: The typical setup of the Kamikaze game with two players. Player-1 is
the “kamikaze” and Player-2 is the defender.
Player-2
C D
¢ (23) (149
D (4%1) (3*2%)

Kamikaze

Player-1

a high priority on the hostages’ lives, higher than the immediate capture or
incapacitation of the assaulter. Hence, the rationality of Player-2 dictates a more
passive, cooperative stance. This changes drastically/if, during this evolution,
the lives of hostages are put in severe danger, e.g. when the assaulter poses a
very credible threat or actually harms a hostage.(assuming there are more). In
this case, the authorities should change stance'and employ the more aggressive
option, because this is now the optimal response.

Table 11 illustrates the Kamikaze game,which is actually a slightly modified
Hostage Situation game in terms of payoff matrix. The game is still asymmetric
and the only variation is the swapping of payoff values {2} and {1} for Player-
2 (marked in italics), which illustrates“the new fact that at this point it is
more harmful for the hostages to remain‘idle rather than using direct force to
rescue them, even if this too poses some danger to.them - again, this is exactly
the standard approach internationally in all hostage situations: the authorities
follow strict rules-of-engagement which state that,‘once it is established that the
lives of hostages is in clear andisevere danger, direct action is to be employed
immediately. The same setup emerges when the Kamikaze game is studied
according to its name: when one player (assaulter) is more concerned about
damaging the opponent (defender) rathersthan protecting itself, then there is
indeed a dominant strategy' of always choosing the most aggressive stance, no
matter what the defender chooses to do. Likewise, the defender is now forced to
choose between its two worst outcomes and naturally chooses the less damaging
one, i.e., direct counter-action rather than swerve. Here, the passive stance
is established as more damaging than all-out-conflict, exactly as in Hostage
Situation with a very ‘aggressive assaulter. In terms of game analysis, now
there is indeed a pure Minimaxsolution at (3,2), which is also the single Nash
equilibrium of the game. This explains why there is practically no other rational
(strategically optimal) way to defend against a murderous hostage-taker or a
desperate kamikaze than employing equally aggressive response.

The concepts described along the strategic analysis and “rationalization”
of the players in games like Hostage Situation and Kamikaze illustrate how a
seemingly.irrational course of actions can be easily explained and even classified
as rational'behavior, if the proper utility functions are employed. In other words,
if theutility of each and every player is defined correctly, then all players in any
gamencan be labeled as “rational” ones. This proposition is often referred to
as “rational irrationality” (valid/explainable behavior), rather than “irrational
rationality” (incomprehensible behavior) [27].
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Summary:

e Utility is the generalized cost/gain function of a player in a specific
game, depending on the outcomes but including any “hidden” regards
and side-effects.

e Given a specific utility function, a player’s incentives emerge naturally
as the rational behavior of the underlying payoff-optimization process.

e A player’s behavior may seem “irrational” if its utility function is in-
complete; given a properly defined utility function, a player’s behavior
can always be labeled as rational per se.

e Hostage Situation and Kamikaze are two examples of (asymmetric)
stand-off games where the notion of “rational irrationality” is fully
explained via proper definition of the corresponding utility functions
for the assaulter.

6 The frontier

This paper included only some of the most basic concepts of Game Theory,
including solution methods and representations of typical games of special in-
terest, like Chicken and Prisoner’s Dilemma-~However, these are only a scratch
on the surface of what lies beneathy-the rigorous mathematical theory and the
complex, some still unsolved, problems in this extremely interesting and useful
scientific area.

All the games and setups presented thus far was somewhat “too perfect”,
too simple compared to real=world.situations of conflict. There are few cases
where only two players are involved, their moves are full observable and their
incentives clear and consistent. In most conflicts, groups of players are spiraling
in alternating rounds/competing and cooperating, each knowing its own utility
function and very little'about the others’, while signaling, third-party credibility
assertions and continuous bargaining are common things. Is there really a way
Game Theory can‘address.all these aspects in the same clarity, mathematical
robustness and universality as is does with simple cases of zero-sum and nonzero-
sum games like the ones presented previously?

The short answer is “No”. Game Theory is the mathematical way to approach
some of the most complex problems the human mind has ever encountered. For
example, what are the prerequisites, the dynamics and the survivability of the
evolution of cooperation as a strategy, in human or animal societies? What is
the asymptotic behavior of such “cooperative” groups? Can they survive in an
environment of pure competition? These issues are addressed in other aspects
of the theory, namely the Evolutionary Stable Strategies (ESS), not analyzed in
this study. In short, ESS are patterns of behavior in games of pure competition
and/or possible cooperation, such as the Prisoner’s Dilemma, that not only may
emerge spontaneously but also survive as optimal strategies in iterative games.
Tit-for-Tat [1, 2] is such an example of ESS in iterated Prisoner’s Dilemma:
cooperation can emerge spontaneously given a set of conditions, primarily (a)
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players “start nicely”, (b) continue with reciprocity, (c¢) don’t know when the
game finishes. Although it seems simple enough, spontaneous cooperation in
conflict situations is one of the most intriguing and theoretically complex prob-
lems in Game Theory today.

In a slightly simpler scenario, a player may be involvedin a game with
another player, while at the same time its strategic choices are relevant to a
second game, with some other player. For example, a politician may be in a
“bargain” with voters, trying to gain their support by promising specific actions
if elected, while at the same time a second “bargain” may be taking place in
parallel with the party’s main policies and governmental plan if it comes to
power. If some of that politician’s promises are on conflict with the party’s main
lines, then as a player is involved in what is called a two-level game [39, 38].
This form of gaming was first proposed by Putnam in the late ’70s and it models
two-level or multi-level conflict situations in general, where the strategic choices
of a player affect two or more simultaneous games. The solution concepts and
equilibria are not much different than those of simple games, but now a strategy
is optimal and produces a stable outcome only if'it is such, simultaneously in all
these games.

Another very interesting aspect of gaming in general is the evolution of
strategies and each player’s behavior as each observes the others’ moves. In
single-step games, the Minimax solution (pure or. mixed) is the one that dic-
tates the optimal strategy for each player. The concept of iterative gaming is
much more general, since it includes-cases where the same players may face one
another in the same single-step games many times in the future. In this case,
Nash equilibria predict the most.probable outcomes with much better accuracy.
But the knowledge that there will be a “next round”, especially when players
alternate moves and one can observe the other before making its own (e.g. in
Chess), then the game analysis can expand'to two or more steps ahead. In prac-
tice, the player does not only take into account the strategic choices available
to the opponent(s) but also the “what if” combinations of moves-countermoves.
Hence, the corresponding game matrix includes these combinations of composite
states on the opponent(s) side and the payoffs are estimated accordingly. This
type of composite multi-step setup is often referred to as a metagame [46]. The
extended-form representation of metagames is more natural than the analytical
(matrix) form, but the identification of equilibria and solutions is somewhat less
straight-forward.

Some games involve elements of chance regarding the game’s state or partial
information regarding the observability of each player’s moves. In such games
of imperfectdinformation, modeling via a game matrix or a tree-graph can be
problematie, since many of the paths may be mutually exclusive and not just
alternative .choices. In the '60s, very early on in the history of Game Theory,
Harsanyi introduced the so-called Harsanyi transformation [21, 22, 28] for trans-
formingra game of incomplete information to an equivalent game of complete
but imperfect information. This may not seem much, but in reality there is a
very distinct and important difference between them. If a random event dic-
tates the exact structure and payoffs of the games, perhaps even the strategic
behavior of the players, then the analysis of such a game is inherently a very dif-
ficult task. On the other hand, the Harsanyi transformation models this random
event as a deterministic one, removing the element of chance and introducing
the notion of “hidden” information about it. In practice, this results in creating
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multiple variations of the game, one for each possible configuration, and treating
them separately. After they are individually analyzed, solutions and equilibria
are combined together within a probabilistic framework, introducing the more
generalized concept of Bayesian Nash equilibria [28].

In real-world conflict situations it is not uncommon that one. or some of the
players have a different knowledge or “view” of the game structure, its payoffs
and the other players’ preferences. This means that each player acts upon its
own payoff matrix, possibly very different in structure and values than the one
used by the other players. Of course, all players are involved in the same, single
game and the payoffs on each outcome is effectively a single one, despite each
player’s unique view of the game. This is extremely important if some of the
players have a more complete view of the game, i.el; when they address the
game as one of (almost) complete information, whileé some opponents address
it as one of incomplete information. These special types of conflict are often
referred to as hypergames [47, 4]. Introduced by Bennett and Dando in late
"70s and later revised in the ’00s by Vane and others, hypergames is a very
efficient way to describe games of asymmetric information between players by
employing different variations of the game matrix or tree-graph, according to
each player’s view. In practice, hypergames are treated the same way as simple
games, with each player deciding its strategic choices according to its own view
and, subsequently, combining the (partial) outcomes together.

Game Theory is a vast scientific and research area, based almost entirely on
Mathematics and some experimental.methods, with applications that vary from
simple board games and auctions/to. Evolutionary Psychology and Sociology-
Biology in group behavior of humans and animals. Although real-world situa-
tions reveal that sometimes its predictive value is limited, the robust theoretical
framework and solution conceptsprovide an extremely valuable set of tools that
clarifies the inner workings and dynamics of conflict situations.
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Summary:

e In accordance to Nash’s bargaining theorem, cooperation can emerge
spontaneously, even in competitive games, when a specific set of pre-
requisites are satisfied.

e FEwolutionary stable strategies (ESS) are patterns of behavior in games
of pure competition and/or possible cooperation that survive as opti-
mal strategies in iterative games.

e In two-level games, a player may be involved in a game with another
player, while at the same time its strategic choices are relevant to a
second game, with some other player.

o Metagames are multi-step game setups where the corresponding game
matrix includes combinations of “what if” composite states, regarding
the future strategic choices of the opponent(s).

e The Harsanyi transformation is used in games of incomplete infor-
mation, e.g. when the game structure and payoffs depend on some
random event, to transform it to an equivalent game of complete but
imperfect information.

e Hypergames is a very efficient way to describe games of asymmetric
information between players by employing different variations of the
game matrix or tree-graph, according to each player’s view.

e In general, Game Theory is a vast scientific and research area with
robust theoretical foundation that can be used as a predictive tool, as
well as (mostly) an extremely valuable approach to analyze conflict
situations.

Acknowledgement: ‘Thiswork is dedicated to John F. Nash, pioneer and
mathematical genius, who was killed earlier this month on May 23th 2015 in a
car accident along with his wife Alicia. His inspirational work and breakthrough
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Section 2: Collective decision efficiency and optimal voting
mechanisms

Summary:

A new game-theoretic approach for combining multiple classifiers is proposed. A
short introduction in basic Game Theory and coalitions illustrate the way any
collective decision scheme can be viewed as a competitive game of coalitions that are
formed naturally when players state their preferences. The winning conditions and the
voting power of each player are studied under the scope of Banzhaf and Shapley
numbers, as well and the collective competence of the group in terms of correct
collective decision. Coalitions and power indices are presented in relation to the
Condorcet criterion of optimality in voting systems, and weighted Borda count
models are asserted as a way to implement them in practice. A special case of
coalition games, the weighted majority games (WMG) are presented as a restricted
realization in dichotomy choice situations. As a result, the weighted majority rules
(WMR), an extended version of the simple majority rules, are asserted as the
theoretically optimal and complete solution to this type of coalition gaming.
Subsequently, a generalized version of WMRs is suggested as the means to design a
voting system that is optimal in the sense of both the correct classification criterion
and the Condorcet efficiency criterion. In the scope of Pattern Recognition, a
generalized risk-based approach is proposed as the framework upon which any
classifier combination scheme can be applied. A new fully adaptive version of WMRs
is proposed as a statistically invariant way of adjusting the design process of the
optimal WMR to the arbitrary non-symmetrical properties of the underlying feature
space. SVM theory is associated with properties and conclusions that emerge from the
game-theoretic approach of the classification in general, while the theoretical and
practical implications of employing SVM experts in WMR combination schemes are
briefly discussed. Finally, a summary of the most important issues for further research
is presented. This report is a compact introduction to the theoretical material upon
which a new expert fusion model can be designed.
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Part I - Theoretical Background

1.1 Preface

The ultimate goal of any pattern recognition system is to achieve the best possible classification
performance for the specific problem at hand. This objective has led to the development of
sophisticated algorithms and classification models in a way that best captures and enhances the
underlying structure of the input space. As the complexity and intercorrelation between the classes
increases, more robust and efficient classifiers have to be employed in order to provide adequate
adaptability and generalization. However, the sensitivity and specificity of each classifier model can
prove efficient in one case and inefficient in another, thus there is no clear indication of one single
classifier design that can be considered as a universal pattern recognition solver.

Recent studies have focused in the possibility of taking advantage of this complementary performance
of various classifier designs, in order to produce combination.schemes for optimal fusion of multiple
classifiers. Specifically, each classifier is considered as a'trained expert that participates along with
others in a “committee”, which produces a collective decision according to some well-specified rule.
The most common combination rules include the mintule, the max rule, the median rule, the majority
voting rule, the averaging rule, etc.

It has been proven that all these combination rules,are specialirealizations of two basic combinations
schemes, namely the product rule and the sum rule [01]" The product rule essentially combines the
classifiers’ estimations on a-posteriori probabilities in(a way that is consistent with the classic
probability theory on independent events. When the classifiers are considered independent, i.e., when
the decision of each classifier is not affected in any way by the corresponding decision made by all the
other classifiers, then the join probability of the combined result can be calculated as a product of all
the individual probabilities. Although the‘product rule is based on solid theoretical background,
specifically the Bayes theory, it has provided only moderate results in practice in pattern recognition
problems. One reason is that, in practice, well-trained classifiers tend to produce similar predictions,
therefore the hypothesis on independent decisions is not established, although the classifiers produce
their estimations separately. The other reason for poor performance is the fact that, when the
combined output of all the experts is based:on a product of their individual estimations, one single
severe error or poor training on onewexpert could drive the whole group into similarly poor
performance.

In contrast, the sum rule utilizes the individual experts’ estimation in some additive form. All the
popular combination rules; including the majority voting, the median and the weighted averaging rules,
can be derived from the generic sum rule. It has been proven both theoretically and experimentally
that these sum-based rules outperform the product rule in terms of minimum classification error
(MCE) and error sensitivity. The reason for this enhanced performance in comparison to the product
rule is the fact that the sum form of these rules effectively nullifies any single outliner estimations that
may be produced by a poor classifier. This means that any single severe error has only minimal effect
on the final combined estimation. Therefore, any combination scheme that utilizes a sum-based rule
when calculating the experts’ collective decision is relatively resilient to individual expert errors and
this property of resiliency is increased as the number of combined experts increases.

The exact theoretical analysis of any of these combination schemes has proven noticeably cumbersome
and complex over the years. Recent studies have established some general properties on total error
magnitude and sensitivity, but only under strict preconditions on number of classes and their
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distributions [02]. For K classes, current rules cannot guarantee an increase of overall performance for
the combined decision when each expert exhibits accuracy only at p=1/K. On the contrary, averaging
rules usually establish increase in performance when each expert exhibits accuracy at least p>0.5.
Much work has been conducted experimentally for identifying whether the most important factor for
the final performance of such a combination scheme depends more on the exact form of the
combination rule or the diversity of the experts themselves. Ensemble design methods, such as
ADAbDoost, Random Forests and Arcing [12], focus exactly on enhancing the experts’ diversity, either
by means of amplifying the classification training process in areas close to.the decision boundary, or
by employing dataset splitting algorithms for improving the independency criterion. However,
conceptualizing and quantifying diversity between classifier outputs is very challenging and it is
usually based on experimental results, rather than a solid theoretical basis. As a result, most
combination schemes employ optimization heuristics when designing the exact form and parameters
of such a combination rule, e.g. calculating the optimal weights in aweighted averaging model [04].

Recently, more generic approaches have been proposed for designing the combination stage of such
multi-classifier methods. Specifically, instead of employing a{ixed rule for combining the individual
outputs from the experts, a new fully functional expert node is introduced in the form of a meta-
classifier: using the outputs of all the previous K classifiers.as input,.it produces an arbitrary mapping
between the K-dim individual decision space into, the (final output space. This meta-classifier can
essentially be any linear or non-linear model that is usually trained in the same way any of the other K
classifiers is trained on the base data. Experimental results for models using neural networks and
meta-classification nodes have been proven very efficient innmany practical problems, justifying the
practical gain in introducing classifier combination schemes in cases where the complexity of a pattern
recognition problem requires the use of multiple; highly specialized experts [03].

Despite the fact that many practical solutions have been proposed and tested for combining multiple
classifiers, the core issues of the combination problem still remains:

(a) Is there a generic and simple way to describe current combination rules?

(b) Is there an optimal realization of this rule for combining multiple classifiers?

(c) If such an optimal rule exists, does it'‘cover the non-linear combination schemes too?

Before these questions can be answered, a brief introduction on special aspects on collective decision
theory has to be made first.

1.2 Rank and response combination from classifier confidence transformation

Any classifier combination scheme is restricted by the type and form of the individual participating
classification models; as their outputs must be compatible and suited for using them in the selected
combination rule/“Classifiers can be generally categorized into three types, according to their output
[04]:

* Type-I: the classifier produces a simple statement on class selection

= Type-II: the classifier produces a ranked list of decreasing preferability of each classes

=  Type-III : the classifier produces assignments of estimated probabilities for each class
Most combination schemes use Type-I or Type-III classifiers and most of them do not allow mixed

types. Nevertheless, it is possible to convert between these types in some cases, e.g. assigning simple
class selections (Type-I) for the maximum estimated probability (Type-III) or for the first preference in
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a ranked list (Type-II). In practice, Type-II classifiers are more generic than Type-I and Type-III
classifiers are more generic than Type-II, however it is possible to calculate posterior information
about the estimated probabilities for each class in Type-II classifiers by examining the produced
confusion matrix. In fact, many combination schemes that exploit the confusion matrix data have the
advantage of using already trained classifiers with known performance, instead of applying complete
re-training of all the K experts when optimizing the combination node [05].

The confusion matrix can be considered as an experimental estimation of each classifier’s performance
on the specific task at hand and it can be used as a measure of confidence related to the predictions
produced by this particular classifier. Specifically, the elements of the confusion matrix can be used
directly in a transformation model, where individual correct or incorrect counts can be rescaled and
mapped in a way that is consistent with a predetermined probabilistic model. Usually, such a
formulation includes a scaling or normalization function and an activation function that is consistent
with a specific type of confidence measure. The log-likelihood /(linear), the likelihood (exponential)
and sigmoid formulations have been proposed among others as candidate functions for confidence
transformation [04]. Essentially, this process ensures that/the.outputs of the individual classifiers are
consistent and compatible with each other and with the combination rule.

When using classifiers of Type-I], i.e., classification outputs that include a ranked list of preferences to
the available classes, simple counts in the form of a:confusion matrix are not possible. Instead, the
ranked lists have to be converted into a simple metric that defines the overall “preferability” of each
class, according to multiple classification outputs.\In other words, instead of counting the number of
times each class is selected as the best candidate in a simple class prediction (Type-I), a measure of
“desirability” is calculated by assigning desirability ¢points or “ranks” in every sorted list of
preferences and then summing them for each-class separately. This scheme is known as the Borda
count method of combining ranked lists of predictions; i.e., the outputs of Type-II classifiers. Usually,
the Borda count is calculated using ranks:equivalent to the position of each class index in a sorted list,
which means that in a N-class problem/the first rank position receives N-1 points, the second receives
N-2 points and the last position receives,0. It is possible to allow a weighted scheme when assigning
these ranking points, so that the distribution is.not uniform but arbitrary. In this case, the scheme is
called weighted Borda count or wBorda.

The Borda and the more generic:wBorda count methods are based on the presumption that the class
selection at the rank position (i+1) is the second most probable candidate when classifying at class
selection of rank (7). However,due to the absence of explicit probability estimations, it is not possible
to directly extract “closure” measurements between these two choices. The weights in such a
combination scheme can be designed in a way that produces this closure measurement in an
optimized way.

One obvious question is whether ranked list combination produces better results that simple majority
selections. Indeed, in many cases the simple class selection rule and the corresponding majority
selection for the final output produces different results than the one produced by Borda count [05].
However, in the case of weighted Borda count, if weights are assigned in a specific way that is
consistent with a required criterion, ie., the majority rule, then the same combination result can be
achieved. In the case of the majority rule, the weights that need to be assigned are w=1 for the first
rank position and w=0 for the rest of the ranks. In general, a weighting scheme can be applied in the
rank positions in a way that satisfies all the requirements needed by the typical combination rules, like
the sum rule and its specialized versions (min, max, median average, majority, trimmed means,
spread combiner). The product rule can also be applied in the same way [05].
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It has been proposed that the weights of the rank items can be variable and proportional to the
measured properties of each classifier performance. When probability estimations are available (Type-
III), like when using a neural network classifier, they can be used instead. In the more restricted case
of simple class selections (Type-I), it has been suggested that the confusion matrix itself can be used as
the basis for calculating ranked classifications, translating the a posteriori probabilities for each class
into ranked list of preferences [05]. In this case, the first assumption is that the behavior of each
classifier is known it is characterized by its confusion matrix, and second that this prior behavior is
representative of its future behavior. The second assumption is also applied for Type-II or Type-III
classifiers, i.e., even when the confusion matrix is of no importance-and its validity is increased

proportionally with the size of the datasets on which the classifiers are tested.

But why restrict the classifier combination scheme into a Type-I], i.e., ranked classifications? It is true
that the lack of explicit probability estimation from the classifier itself produces an inherent lack of
information about the classification itself. However, many /widely used classification models,
including Support Vector Machines (SVM), are inherently designed to produce simple class selections
as output. Furthermore, the use of simple class selections or ranked lists is required when a specific
weighting profile has to be applied uniformly throughout an entire “committee” of experts, like in
voting schemes. In other words, experts are weighted according to.their competence in an adaptive
way, but the calculation of these weights is not a subject each classifier's own performance. Instead,
these weights are the realization of a collective decision tule, like'in a wBorda scheme. This issue and
its implications will be discussed later on under the'scope on‘weighted majority rules (WMR).

1.3 Cascaded versus joint parameter optimization in combination schemes

There are three general groups of combination-rules that can be applied when creating a mixture of
experts: (i) the fixed rules, (ii) the trained- rules, and (iii) weighted combinations of confidence
transformation. The fixed rules group contains all.the typical rules discussed thus far, including the
product rule, the sum rule and its specialized “version, etc. Trained rules refer to the case of meta-
classifier nodes, where an arbitrary expert is trained experimentally upon the best way to combine the
outputs of K experts against a giventraining dataset. Finally, the third group refers to models that are
based on weighted order statistics, where a:weight is assigned for each rank of confidence measure,
rather than each classifier as in the case'of weighted combination of classifier outputs. An example of

this third group of combination rulesis'the Borda and, more specifically, the wBorda count models.

As mentioned earlier, the parameters of the combination rule itself, i.e., the weights in a weighted
average or in a wBorda count, are a subject of optimization against a specific criterion, normally the
minimum classification, error (MCE). Similarly, for trained rules, the meta-classifier is trained
according to the same optimality criterion. Since this combined classification process can be realized
as either two separate stages in a cascaded model or a unified modular architecture, the optimization
process can address each stage separately or jointly together. The latter case is often used for trained
rules, as the meta-classifier rule can be trained jointly together with the K classifiers of the first stage.

For linear trained rules, the optimal weights correspond to the relative confidence attributed to each
classifier, as in the fixed rules. However, an optimization process determines the best weighting
profile based on a specific training dataset, instead of using a pre-defined weighting profile as the
fixed rules suggest. For rules based on typical linear discriminant functions, the optimization process
can be realized as parameter estimation via regression or by applying any other formulation of typical
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linear classifier model. In the case of rules based on weighted order statistics, like the wBorda count, the
most commonly used method is also regression or some other linear optimization approach.

It is worth noticing that, as mentioned in the previous section, there is an inherent relationship
between applying a weighting profile to the classifiers themselves and applying a weighting profile to
the rank items that they produce as output. Classifiers with high accuracy rates, i.e,, a high confidence
value and a proportionally high weighting factor, will produce rank classifications where the first
(top) item, i.e., the one with the largest rank weight, is usually correct. Thisievident correlation will be
explained more clearly later on, within the context of “winning coalitions” and their realization in
weighted majority games (WMG).

While joint optimization of parameters should be able to provide more generic solutions, it is not yet
clear if the joint approach produces better results than the cascaded scheme. In fact, recent studies
have shown that the joint optimization does not improve the combination accuracy of the validation
data as compared to the two-stage strategy [04]. In most cases; a simple weighted averaging rule upon
trained classifiers produces the best results, even in problems of high complexity. This is attributed to
the fact that, regardless of the complexity of the initial input space, the classifiers transform it to a
highly restricted subspace with dimensionality equal to the number.of classes available. Therefore, it
is evident why optimized linear solutions, like the WMR:model,may be the answer to this problem,
especially when robust classifiers like SVM are considered.

1.4 Elements of Game Theory

In principle, the mathematical theory of games ‘and gaming was first developed as a model for
situations of conflict. Since the early 1940’s,.the work of John Von Neumann and Oskar Morgenstern
has provided a solid foundation for the most simple types of games, as well as analytical forms for
their solutions, with many applications to:Economies, Operations Research and Logistics. The “zero-
sum” games are able to model situations of conflict between two or more “players”, where one’s gain
is the other’s loss and vice versa. Furthermore,.if all players are full informed about their opponents’
decisions the game is called of “perfect information”. Such games are all board games like chess and it
has been proven that there is at least one optimal plan of decisions or “strategy” for each player, as
well as a “solution” to the game that comes naturally as a result of all players following their optimal
strategies. At the game’s solution; each player can guarantee that the maximum gain an opponent can
gain is kept under a specific minimal limit, defined only by this player’s own strategy. Von Neumann
and Morgenstern proved this assertion as a theorem called “Minimax” and in the simple case of two
opposing players the solution of the game can be calculated analytically as a solution of a 2x2 set of
linear equations. The consequences of the Minimax theorem have been thoroughly studied for many
years after its proof. As an example, it mathematically proves the assertion that all board games,
including the most complex ones like chess, have at least one solution, optimal for both players that
can be analytically calculated, at least in theory.

Although the Minimax theorem provided a solid base for solving many types of games, it is only
applicable in practice for the zero-sum type of games. In reality, it is common that in a conflict not all
players receive their opponents’ looses as their own gain and vice versa. In other words, it is very
common a specific combination of decisions between the players to result in a certain amount of
“loss” to one and a corresponding “gain”, not of equal magnitude, to another. In this case, the game is
called “nonzero-sum” and it requires a new set of rules for estimating optimal strategies and
solutions. As each player’s gains and losses are not directly related to the opponents’, the optimal
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solution is only based on the assertion that it should be the one that ensures that the player has “no
regrets” when choosing between possible decision options. This essentially means that, since each
player is now interested in his/her own gains and losses, the optimal solution should focus on
maximizing each player’s own “expectations” [11]. The Minimax property can still be applied in
principle when the single most “secure” option must be identified, but the solution of the game has
now a new meaning.

During the early 1950’s, John Nash has focused primarily on the problem of finding a set of
“equilibrium points” in nonzero-sum games, where the players eventually settle after a series of
competitive rounds of the game. In strict mathematical terms, these equilibrium points would not the
same in essence with the Minimax solutions, as they would come as a result of the players’
competitive behavior and not as an algebraic solution of the games” mathematical formulation. In 1957
Nash has successfully proved that indeed such equilibrium points exist in all nonzero-sum games”, in
a way that is analogous to the Minimax theorem assertion. However, although the Nash theorem
ensures that at least one such “Nash equilibrium” exists in‘all nonzero-sum games, there is no clear
indication on how the game’s solution can be analytically calculated at this point. In other words,
although a solution is known to exist, there is no closed formfor nonzero-sum games until today.

It should be noted that players participating in a nonzero-sum game may or may not have the same
options available as alternative course of action, or:the same set of options may lead to different
payoffs between the players. When players are fully exchangeable and their ordering in the game
makes not difference to the game setup and its solutions, the game is called “symmetrical”. Otherwise,
if exchanging players’ position does not yield a proportional exchange in their payoffs, then the game
is called “asymmetrical”. Naturally, symmetrical games'lead to Nash equilibrium points that appear

in pairs, as an exchange between players creates-its symmetrical counterpart.

But the Nash equilibrium points are not always the globally optimal option for the players. In fact, the
Nash equilibrium is optimal only when players are strictly competitive, i.e., when there is no chance
for a mutually agreed solution that benefits them more. These strictly competitive forms of games are
called “non-cooperative games”. The alternative .option, the one that allows communication and prior
arrangements between the players; is calleda “cooperative game” and it is generally a much more
complicated form of nonzero-sum gaming. Naturally, there is no option of having cooperative zero-
sum games, since the game structure itself-prohibits any other settlement between the players other
than the Minimax solution.

The problem of cooperative or possibly cooperative gaming is the most common form of conflict in
real life situations. Since nonzero-sum games have at least one equilibrium point when studied under
the strictly competitive form, Nash has extensively studied the cooperative option as an extension to
it. However, the possibility of finding and mutually adopting a solution that is better for both players
than the one suggested by the Nash equilibrium, essentially involves a set of behavioral rules
regarding the players’ stance and “mental” state, rather than strict optimality procedures [11]. Nash
named this process as “bargain” between the players, trying to mutually agree on one solution
between multiple candidates within a “bargaining set”. In practice, each player should enter a

bargaining procedure if there is a chance that a cooperative solution exists and it provides at least the

* Seminal works by C. Daskalakis & Ch. Papadimitriou in 2006-2007 and on have proved that, while Nash
equilibria exist, they may be unattainable and/ or practically impossible to calculate due to the inherent
algorithmic complexity of this problem; see e.g. “The Complexity of Computing a Nash Equilibrium”, 38th ACM
Symposium on Theory of Computing, STOC 2006.
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same gain as the best strictly competitive solution, i.e., the best Nash equilibrium. In this case, if such a
solution is agreed between the players, it is called “bargaining solution” of the game.

As mentioned earlier, each player acts upon the property of no regrets, i.e., follow the decisions that
maximize their own expectations. Nevertheless, the game setup itself provides means of improving
the final gain in an agreed solution. In some cases, the bargaining process may involve the option of
“threats”, that is a player may express the intention to follow a strategy that is particularly costly for
the opponent. Of course, the opponent can do the same, focusing on a similar “threat”. This procedure
is still a cooperative bargaining process, with the threshold of expectations raised for both players. The
result of such a process may be a mutually “deterring” solution, which in this case is called a
“threating solution”. Nash has formulated all these bargaining situations into a set of relatively logical
axioms, under which a solution (equilibrium) exists. As in the general'case of non-cooperative games,
Nash’s “bargaining theorem” does not provide analytical means of finding such solutions.

The notion of “bargaining sets” and “threat equilibrium” is often extended in special forms of games
that include iterative or recursive steps in gaming, either<in the form of multi-step analysis
(metagames) or focusing on the transitional aspects of the game (differential games). Modern research
is focused on methods that introduce probabilistic models into games of multiple realizations and/or

multiple stages [11].

1.5 Coalitions, Stable Sets and Indices of Power

Nash’s work on the “Nash equilibrium” and “bargaining theorem” provides the necessary means to
study n-person non-cooperative and cooperative games under a unifying point of view. Specifically, a
nonzero-sum game can be realized as a strictly competitive or a possibly cooperative form, according
to the game’s rules and restrictions. Therefore, the cooperative option can be viewed as a
generalization to the strictly competitive mode of gaming.

When players are allowed to cooperate in order toragree on a mutually beneficial solution of game,
they essentially choose one strategy over the others and bargain this option with all the others in order
to come to an agreement. For symmetrical games, this is like each player chooses to join a group of
other players with similar preference over their initial choice. Each of these groups is called a
“coalition” and it constitutes the:basic.module in this new type of gaming: the members of each
coalition act as cooperative players joined.together and at the same time each coalition competes over
the others in order to impose‘its own position and become the “winning coalition”. This setup is very
common when modeling/vVoting schemes, where the group that captures the relative majority of the
votes becomes the winner:

Coalition Theory is closely related to the classical Game Theory, especially the cooperating gaming
[11]. In essence, each player still tries to maximize its own expectations, not individually any more but
instead as part of a greater opposing term. Therefore, the individual gains and capabilities of each
player is now considered in close relation to the coalition this player belongs, as well as how its
individual decision to join or leave a coalition affects this coalition’s winning position. As in classic
nonzero-sum games, the notion of equilibrium points and solutions is considered under the scope of
dominating or not in the game at hand. Furthermore, the theoretical implications of having competing
coalitions of cooperative players is purely combinatorial in nature, thus making its analysis very
complex and cumbersome. There are also special cases of collective decision schemes where a single
player is allowed to “abstain” completely from the voting procedure, or prohibit a contrary outcome
of the group via a “veto” option.
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In order to study the properties of a single player participating in a game of coalitions, it is necessary
to analyze the wining conditions of each coalition. Usually each player is assigned a fixed value of
“importance” or “weight” when participating in this type of games and each coalition’s power is
measured as a sum over the individual weights of all players participating in this coalition. The
coalition that ends up with the highest value of power is the winning coalition. Therefore, it is clear
that, while each player’s power is related to its individual weight, this relation is not directly mapped
on how the participation in any arbitrary coalition may affect this coalition winning position. As this
process stands true for all possible coalitions that can be formed, this competitive type of “claiming”
over the available players by each coalition suggests that there @are.indeed configurations that
marginally favor the one or the other coalition, i.e., a set of “solutions”. The notion of solution in
coalition games is somewhat different from the one suggested for typical nonzero-sum games, as it
identifies minimal settings for coalitions that dominate all the others. In other words, they do not
identify points of maximal gain for a player or even a coalition, but equilibrium points that determine
which of the forming coalitions is the winning one. This type.of “solutions” in coalition games is
defined in close relation to “domination” and “stability” of such points and they are often referred to
as “the Core”. Von Neumann and Morgenstern have defined a somewhat more relaxed definition of
such conditions and the corresponding solutions are called “stable sets” [11]. It should be noted that,
in contrast to Nash’s theorems and the Minimax assertion of solutions, there is generally no guarantee
that solutions in the context of the Core and stable sets need to exist in an arbitrary coalition game.

The notion of the Core and stable sets in coalition.gaming is of vital importance when trying to
identify the winning conditions and the relative power of.each individual player in affecting the
outcome of the game. The observation that a player’s weight in a weighted system may not intuitively
correspond to its voting “power” goes back’ at'least to Shapley and Shubik (1954). For example, a
specific weight distribution to the players may make.them relatively equivalent in terms of voting
power or, while only a slight variation of the weights may render some of them completely irrelevant
on determining the winning coalition [06]. Shapley and Shubik (1954) and later Banzhaf and Coleman
(1965, 1971) suggested a set of well-defined equations for calculating the relative power of each player,
as well as each forming coalitions as a.whole [11]. The “Shapley index of power” is based on the
calculation of the actual contribution of each player entering a coalition, in terms of improving the
coalition’s gain and winning position. Similarly, the “Banzhaf index of power” calculates how an
individual player’s decision to join or leave a coalition results in a winning or loosing position for this
coalition, accordingly. Both indexes are, basically means of translating each player’s individual
importance or weight within“the coalition game into a quantitative measure of power in terms of
determining the winner. While both indices include combinatorial realizations, the Banzhaf index is
usually easier to calculate;.as it is based on the sum of “shifts” on the winning condition a player can
incur [07]. Furthermore, its importance in coalition games will be made clearer later on, where the
Banzhaf index will come as a direct result when calculating the derivatives of a weighted majority

game.

1.6 Collective competence and the Condorcet criterion

The transformation of cooperative n-person games into coalition games essentially brings the general
problem closer to a voting scheme. Each player casts a vote related to its own choice or strategy, thus
constituting him/her as a member of a coalition of players with similar choices. The coalition that
gains more votes becomes the winner.
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Condorcet (1785) was the first to address the problem of how to design and evaluate an efficient
voting system, in terms of fairness among the people that participating in the voting process, as well
as the optimal outcome for the winner(s). This first attempt to create a probabilistic model of a voting
body is known today as the “Condorcet Jury Theorem”. In essence, this theorem says that if each of
the voting individuals is somewhat more likely than not to make the “better” choice between some
pair of alternative options, and if each individual makes its own choice independently from all the
others, then the probability that the group majority is “correct” is greater than the individual
probabilities of the voters. Moreover, this probability of correct choice by.the group increases as the
number of independent voters increases [07]. In practice, this means, that if each voter decides
independently and performs marginally higher than 50%, then a grouprof such voters is guaranteed to
perform better than each of the participating individuals. This.assertion has been used in Social
sciences for decades as a proof that decentralized decision making,like in a group of juries in a court,
performs better than centralized expertise, i.e., a sole judge.

The Condorcet Jury Theorem and its implications have been used as one guideline for estimating the
efficiency of any voting system and decision making in general. The study of effects like diversely
informed voters or situations of conflicting interests have provided several aspects of possible
applications in social and economical models. In the context of collective decision-making via voting
schemes, the theorem provides a mean to test the “fairness” and effectiveness of such a system, as it
usually constitutes the outcome that yields the best possible degree of consensus among the voting
participants. Specifically, the interest is focused on:how aggregate competence of the whole voting
group, measured by the probability of making a correct collective decision, depends on the defining
properties of the decision-making process itself, such as different coalition sizes, team setups and
possible overlapping memberships. Under this context, the coalition games are studied by applying
quantitative measures on “collective competence” and.optimal distribution of power, e.g. tools like
the Banzhaf or Shapley indices of power.»The degree of consistency of such a voting scheme on
establishing the pair-wise winner(s), as.the Condorcet Jury Theorem indicates, is often referred to as
the “Condorcet criterion”. This criterion is not the only possible measure of collective competence in a
voting scheme, but as it will be explained in the next section, it is very generic and it is directly linked

to optimal wBorda models.

1.7 Optimal scoring rules and.Condorcet efficiency

Let us consider a typical voting situation where an n-person voting group is required to cast their
votes regarding a set of M classes, not as simple class selections but rather in the more general sense of
ranking all the available options in a list of strict preference by each of the voters. Clearly there is a
fixed set of possible ranking permutations and each voter essentially chooses one of them as his/her
vote. The problem is to decide upon the exact combination procedure for these votes, in order to
produce a result that.exhibits the highest possible degree of consensus between the voters, not only in
the first place as in simple majority rules, but throughout the final sorted list. One of the more widely
accepted criteria for choosing the exact permutation that best reflects the cumulative will of the voting
group is the Condorcet criterion [07]. As it is based exclusively on pair-wise comparisons between the
voting options, i.e., every possible pair of subsequent classes in a sorted list, a system that exhibits a
high degree of consistency with the Condorcet criterion should provide an aggregate ranking result
that represents the best consensus solution. The degree in which such a voting scheme maximizes the
consistency with the Condorcet criterion is often called “Condorcet efficiency” of the system.
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It is clear that voting systems as the one described above fit the specifications of a wBorda scheme, as
an optimized wBorda should also be able to produce an aggregate ranking consistent with the
cumulative will of the complete voting group. Therefore, the next obvious question is whether there is
a way to design such a wBorda voting scheme that maximizes the Condorcet criterion. The direct
answer is that this problem is classified as NP-complete by nature, which means that due to its
combinatorial nature it is not possible to be solved with algorithms of polynomial complexity. In fact,
this is the reason why simple realizations of the weighting profile or even a simple majority rule is
often applied in practice, in order to keep such a system simple and widely accepted by the voting
group [06].

Using the notion of Condorcet efficiency of a voting system, the real problem can be focused on the
exact scoring rules, often called “weighted scoring rules”, than must'be applied on each rank of the
vote, in order to produce a result that maximizes this criterion: Two scoring systems are particularly
worth noting in this context: the plurality voting, where only the top-position rank is awarded with
one point (w=1) and all the other positions with nothing (w=0), and the classic Borda count, where the
top-position rank receives maximum points (w=1), the bottom-position rank the minimum (w=0) and

all intermediate positions a value proportional to the exact rank [08]:

Under the scope of weighted scoring rules and the more general theory of weighted order statistics, it
has been proven theoretically that for three classes.and n-person voting group, the scheme that
maximizes the probability that any pair-wise contestiin the final ranked list will be consistent with the
pairwise majority rule, is in fact the Borda count' model. This.means that if the system should sort the
list of winners in a way that is consistent with the pairwise'majority rule, then the Borda count scheme
can accomplish this. Similarly, if the majority criterion is instead replaced with the more generic
Condorcet criterion, a specific wBorda model-with non-uniform weighting profile is the optimal
solution in this case [08]. This diversity between thetwo optimized scoring rules comes from the fact
that the Condorcet criterion suggests a stricter rule.of optimality than the simple majority and this is
why the existence of a Condorcet winner is not always guaranteed [05]. In [08], a geometrical
realization of the wBorda design process has'been suggested and results have shown that for three
candidate classes the middle-position rank has.to be assigned with a weight value of less than zero,
i.e., different than the classic Borda rule, in-order to obtain maximum Condorcet efficiency. Current
theoretical results are not sufficient'to support.any generic statement regarding the design properties
of such optimal schemes. Furthermore,.the high degree of complexity prohibits the analytical
theoretical study of such systems, in order to produce generic constructive methods for wBorda of
maximum Condorcet efficiency.

1.8 Majority functions and Banzhaf numbers

Let us now focus.in the case of dichotomous choice situations where there are only two candidate
classes to vote for. This is clearly a simpler problem in terms of pattern recognition, since an input has
to be classified in either one of the two available choices, “true” or “false”, “positive” or “negative”,
“benign” or “malignant”. As there are only two available class choices, the Borda count, which is used
when class rankings are considered, reduces to the simple class selection scheme and the resulting

majority rule that is used in practice.

Dichotomy choice situations have been the center of many analytical probabilistic studies within the
scope of voting systems, primarily because of the simplicity of the probabilistic formulations of such
models. A dichotomy choice can be easily modeled as a binomial distribution and the combined result
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in a n-player voting game becomes a product of the corresponding “skill” probabilities of the
individual players. Then, a combined decision rule can be formulated according to the aggregate
choice that is supported by the largest combined probability, i.e., the choice that corresponds to the
maximum degree of consensus among the players. These decision rules are called “majority
functions” and in the special case where all players and classes are accompanied with the same
weight, the simple majority rule emerges as a natural result.

In terms of coalition games, the simple majority functions are modeled in"a,way which is much more
trivial than the generic wBorda scheme that was presented in previously. Again, if special voting
situations like abstains and veto are not allowed, the choice of either one of the two available classes
automatically assigns every participating player into one of the two'possible coalitions. Classes may or
may not be weighted with the same “value” or “importance”, while'the players themselves may be
accompanied with a weight or “reliability” value too. In any /case, if a linear rule is applied to
accumulate and combine all individual choices in order to make a final collective estimation, a
weighted majority rule emerges. The threshold of the majority decision may also be altered in a way
that requires not only relative majority, but a majority valae higher than a specific decision threshold.
In practice, this means that a bias may be used in the weighted majority function in order to ensure

that the final majority outcome is valid only if it attainsia specific confidence level.

The analysis of the majority functions is often restricted to the non-weighted case, as they are much
easier to analyze within the scope of classic probabilistic theory. In fact, this special case of majority
functions can be easily related to the Banzhaf power index [07]. Specifically, if the collective efficiency
is to be calculated as a function of the individual “skill”. probabilities of the players, the partial
derivatives of the majority functions against, these probabilities are calculated. These derivatives
essentially estimate the number of “shifts”ithat‘a player with a specific skill probability can cause in
the winning position of any winning coalition, i.e., it-is exactly what the Banzhaf power index stands
for. This assertion can be extended for the weighted majority functions as well, in a slightly more
complex probabilistic form. Based in this very important conclusion, it is possible to translate many of
the properties of coalition games into,properties that are directly linked with each player’s skill.

The first and extremely important,conclusion from studying the Banzhaf numbers as the derivatives
of a majority function is the fact that the maximum of these derivatives should point to the
configuration where maximum-Banzhaf power occurs for all the voting players. Indeed, it can be
easily proven that maximum’'Banzhaf values correspond to individual skill probabilities close to 0.5
for all voting players. That is;.the vote of'each voting member reaches its maximum “value” when all
players have the same average skill for making correct estimations. Interestingly enough, that is
exactly what the Condoreet Jury Theorem suggests in a more generic way. An electorate system with
high Banzhaf number corresponds to a high level of collective competence, which in turn is obtained
for a high level of “democracy” in the sense of an equitable distribution of decisional power among
the voters [07]. As high Banzhaf numbers indicate a high degree of democracy among the voting
members, the decentralized option for making collective decisions is, again, asserted as the optimal
way - this time in a more strict mathematical statement. This is perhaps a sufficient justification for
using ensembles of independent experts with only moderate efficiency, rather than one single expert
of the very high efficiency.

But what about the distribution of power within the voting group itself? Using the same formulation
of Banzhaf numbers as derivatives of the corresponding majority functions, Berg [07] and Taylor and
Zwicker [06] have stated some very interesting results regarding the optimal structure and
distribution of voting power of such a system. Specifically, it has been proven that in any non-
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weighted majority function, the sub-division of the players into teams that subsequently take part in a
second-stage indirect voting scheme results in a loss of individual decisional power, in terms of how a
single player can affect the final result with his/her vote [07]. This essentially means that it is better to
have KxN voters in one voting group than to split them into K teams of N/K members each for voting
via K representatives. Boland (1989) has proved that although the Condorcet Jury Theorem also stands
true for indirect voting systems, splitting a voting group into teams essentially lowers the majority
threshold necessary for a coalition to become a winning one, thus reducing the probability for a
collectively correct decision [07]. This implies that for the same overall voting group size and
individual skill probabilities p>0.5, an indirect voting scheme always has less reliability than a
corresponding direct system, which in turn favors combination, methods with the least possible
integration stages. This effect is more evident for systems that employ a relatively large number of
voters, rather than small-sized systems where this difference is expected to be minimal [07].

In terms of team sizes versus number of teams, Boland (1989) has also proved that in an indirect
system, a large number of small teams are collectively more effective than a small number of large
teams. In the extreme case where each team includes only one voter, the indirect system becomes
direct, i.e,, with no representatives, which is the strictly more efficient voting structure as noted
earlier. Special studies have been carried out for situations of teams:with unequal number of members
or for overlapping memberships. Again, as in the case of:single voting players, it has been proven that
the collectively more efficient choice is splitting_the voters into teams of equal size and distinct
memberships, i.e., in way that favors equal distribution of voting power in every case [07].

The overlapping membership case can be viewed as a situation where some of the players are allowed
to participate in more than one representative team, in ‘other words to affect the final outcome with
more than one votes. This is essentially ‘equivalent-to having an increased reliability or weight
assigned to these players. As mentioned earlier, the weighted majority functions are a generalized
version of the ones that have been studied withinuthis scope. As it turns out, the collective decision
efficiency may benefit from such an overlapping membership, i.e., a weighted voting scheme, only
when the players with multiple votes exhibit ‘a skill probability higher than a specific threshold. This
higher than the average skill level P of the restof the voting players threshold and it depends on this
average skill level P and the total number of N voters, but not on the number of K teams [07]. This
conclusion favors the application of weighted versus non-weighted majority functions in theory, but it
does not specify an optimal way to find out which players to favor, in other words how to calculate
these weights. This issue will be addressed later on within the context of weighted majority games
(WMQG). Generally speaking, analyses in terms of voting games and distribution of power are not
common in the literature ‘'on the Condorcet Jury Theorem. Austen-Smith and Banks (1996), as well as
Berg [07], stress the importance of a game-theoretic approach to collective decision making,.

1.9 Weighted Majority Games and Weighted Majority Rules

In most cases, majority functions that are employed in practice very simplistic when it comes to
weighting distribution profile or they imply a completely uniform weight distribution. However, a
specific weighting profile usually produces better results, provided that is simple enough to be
applied in practice and attain a consensus in accepting it as “fair” by the voters. Taylor and Zwicker
(1991) have defined a voting system as “trade robust” if an arbitrary series of trades among several
winning coalitions can never simultaneously render them losing [06]. Furthermore, they prove that a
voting system is trade robust if and only if it is weighted. This means that, if appropriate weights are
applied, at least one winning coalition can benefit from this procedure.
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As an example, institutional policies usually apply a non-uniform voting scheme when it comes to
collective board decisions. This is often referred to as the “inner cabinet rule”. In a hospital, senior
staff members may attain increased voting power or the chairman may hold the right of a tie-breaking
vote. It has been proven both in theory and in practice that such schemes are more efficient than
simple majority rules or any restricted versions of them like trimmed means.

Nitzan and Paroush (1982) have studied the problem of optimal weighted majority rules (WMR)
extensively and they have proved that they are indeed the optimal decision rules for a group of
decision makers in dichotomous choice situations [09]. This proof was later (2001) extended by Ben-
Yashar and Paroush, from dichotomous to polychotomous choice situations [13]; hence, the optimality
of the WMR formulation has been proven theoretically for any n-label voting task.

A WMR is in fact a realization of a weighted majority game (WMG), where a group of players with
arbitrary skill levels form coalitions of similar interests but different estimations. The WMGs are a
well-known subgroup of coalition games where there are only two possible coalitions, each related to
one of the two class options available. In this form of gaming, there is no need of class ranking
schemes as in wBorda, thus the classification problem reduces to the optimal design of a combination
rule between two extreme options. These optimal combination rules are similarly called WMR and the
proof that they are linear in nature limits the problem to'the estimation of an optimal (non-negative)

weighting profile for the voters.

The weight optimization procedure has been applied experimentally in trained or other types of
combination rules, but analytical solutions for the weights«s not commonly used. However, Shapley
and Grofman (1984) have established that an analytical solution for the weighting profile exists and it
is indeed related to the individual player competencies.or skill levels [09]. Specifically, if decision
independency is assumed for the participating players, the optimal weights in a WMR scheme can be
calculated as the log-odds of their respective skill {probabilities, i.e., Wi=log(Oi)=log(Pi/(1-Pi)).
Interestingly enough, this is exactly the solution found. by analytical Bayesian-based approaches in the
context of decision fusion of independent experts [12]. The optimality assertion regarding the WMR,
together with an analytical solution for.the optimal weighting profile, provides an extremely powerful
tool for designing theoretically optimal‘collective decision rules. Usually, the winning coalition in a
WMR is the one that accumulates the relative weighted majority, which is more than half the sum of
weights. If a bias is also applied as a confidence threshold, then the simple weighted majority rule
becomes the “cogent” weighted majority.rule. In this case, a region of “stalemate” or “no-decision” is

created and the existence of awinning coalition in a WMR is not guaranteed.

There is an equivalence relation on the WMRs, whereby two WMRs are equivalent if they produce the
same decision function,i.e;; the same outcome for each decision profile produced by the participating
players. Therefore, from all the possible realizations of a WMR of a given dimension, it is possible to
identify a closed set of unique WMRs that are able to produce all the possible combination outcomes
with a normalized version of the weights [09]. As an example of such closed set of solutions, the
unique WMRs for n=4 voting players are: 51={1,0,0,0}, 52={2,1,1,1} and S3={1,1,1,0}. The S1 and S3
solutions clearly implement the restricted majority rules with odd number of voters, while S2
implements a simple majority rule with a tie-breaking option for one of the players. It can be proven
that all other realizations of 4-player WMRs can be mapped into one of these three unique WMRs.

The calculation of such a set of WMRs is cumbersome and it is generally an NP-complete problem.
However, there have been analytical studies for WMRs of dimension up to seven players. For
example, in the set of all 84 WMGs between five players, only 7 of them are not transformations of
others. Von Neuman and Morgenstern (1944) identified the 21 unique WMGs for six players, while
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Isbel (1959) and Fishburn and Gehrlien (1977) identified the 135 unique WMGs for seven players.
Karotkin (1994) coded a special algorithm to identify the WMRs or the WMGs for any group size and
proposed a graph-based method for illustrating the decision-based “closeness” of such WMRs in a
three-dimensional space, called the “network of WMR” [09]. Using directed edges, the network of
WMR can identify the node that is optimal for a given set of players’ skill probabilities profile, i.e., the
WMG solution that is in fact the one that the log-odds calculates for the corresponding weights. The
practical use of such a graph-based representation of WMRs is that it can suggest optimal
substitutions of the theoretically optimal WMR with best sub-optimal simplified realization [10]. This
is extremely important in real life problems where simple collective decision rules with

straightforward application are needed.

1.10 Weighted Majority Rules and Condorcet efficiency

The efficiency of a WMR is defined as the likelihood that it will resolve in the correct choice, given the
skill probabilities of the participating voters. These likelihood functions are quite difficult to calculate
in practice due to the fact that the number of possible decision profilesis a combinatorial enumeration
problem. As a result, it is also difficult to compare relative efficiencies between different WMRs.
However, since a WMR is proved to be the optimal structure in the sense of collective decision
competence, the corresponding weighting profile that isioptimalfor a given set of skill probabilities of
the participating voters should be the actual realization of“the theoretically most efficient voting
scheme.

As mentioned earlier, in the case of multiple class options where class rankings are necessary, it is
possible to find a wBorda scheme that maximizes the.Condorcet efficiency of such a voting system,
although this problem is generally NP-complete. When this setup is reduced into the dichotomous
choice situation where there are only two classes available, this model becomes the theoretically
optimal formulation of the WMRs. However, in this case there is an analytical solution for the optimal
weighting profile that is not NP-complete, although the complete enumeration of all the unique
WMRs that can be implemented in practice is.of -that complexity. As a result, the next question is at
what degree a WMR can be viewed as an optimal solution to a WMG in the Condorcet sense.

To answer this question, the notion of “bias” or “confidence threshold” in a WMR has to be reviewed
under a new perspective. In.wBorda schemes, each class ranking position is scored with a specific
weight and the corresponding scoring, rule is considered optimal in the Condorcet sense if it
maximizes the Condorcet. criterion. Similarly, in the case of two class problem, the simple choice
between the one or the other choice essentially implies a similar preference ranking regarding the
classes. Therefore, both the first (proposed) class choice and the second (rejected) class choice can be
assigned with a scoring value, i.e.,, a weight, that can be incorporated into the standard WMR
formulation. These "scoring values are not a subject of the players” skill probabilities, since the
efficiency of each.player affects only the corresponding weight it receives within the WMR function,
not the scoring result of selecting or rejecting a class. In a sense, the scoring of class selection or
rejection adds a weighting scheme in the second dimension of the WMRs, that of the classes.

Using this new more generalized formulation of WMRs, it can be easily proven through linear
transformations that this class scoring essentially produces a “positive” or “negative” bias to the
accumulated result of the standard WMR. Therefore, a decision threshold can be shifted towards the
one or the other class accordingly, based not only on which exactly of the players selected it but also
the mere (weighted) count of the times it was proposed or rejected by all the players. If all players’
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votes are weighted exactly the same, then this new scheme is a two-class realization of a wBorda count
model. But the wBorda model has been already proven as adequate for providing an optimal voting
realization in the Condorcet sense. In fact, adding a bias to both classes according to their selection
count is mathematically equivalent to setting the WMR decision threshold at a value other than half
the sum of the weights, i.e.,, “biased” towards one of the classes. Not surprisingly, this new
generalized version of the WMR can also be considered adequate for implementing voting schemes
that maximize the Condorcet criterion, i.e., the exhaustive pair-wise ranking contest between the

coalitions.

The assertion that WMRs are optimal realization of combinations schemes in dichotomy choice
situations has some extremely significant implications in the way the WMRs can be used as a unified
template model for creating optimal collective decision systems. These linear formulations of WMGs
are optimal in the MCE sense but additionally they can be designed to be optimal in the Condorcet
sense. Dichotomy choice situations are simple enough so that a Condorcet winner, that is the overall
top-ranked class, is also the majority winner, which is simple the class that received the most votes. If
weights are applied to the players, then the simple majority rule becomes a weighted one. If scores are
also applied in the “support” or “reject” options (ranks) of the classifications, then a two-class wBorda
count model can be realized in a way that maximizes the Condorcet criterion. In practice, this second
case is equivalent to imposing a collective decision threshold other than half the sum of the weights.
While the players’” optimal weighting profile in the WMR solves the problem of how to combine their
individual decisions in an MCE-optimal way, the'class scoring provides the means the design the
voting system in a way that is also optimal in the Condorcet:sense. The conditions under which these

two properties can be satisfied simultaneouslyremains an open issue.
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Part II - Applications to Pattern Recognitionf

2.1 Basic framework

In part-I of this report it was suggested that classifiers providing “hard” decisions, or other types of
classifiers with translated output to a set of distinct choices, can be used as the basis of a general
combination procedure for providing a collective decision system. Furthermore, it was described how
this model can be effectively fused into a game-theoretic approach of the combination problem that
finally leads to coalition games and collective decision theory. This section describes how these
models can be realized and implemented as practical systems within the scope of Pattern Recognition.

In order to combine classifier outputs in an optimized way, first it is necessary to convert their
posterior accuracy probabilities into quantitative measures ‘of evidence regarding their past
performance. For classifiers of “hard” decisions, the confusion matrix is a very descriptive and
perhaps the most practical way to do this. Specifically, the confusion matrix itself can be translated
into class rankings and conditional probabilities estimations, as it was suggested earlier. Furthermore,
the use of the confusion matrix is completely compatible with any extension that introduces the notion
of “risk” into the classification process.

Decision-critical applications, like in medical diagnostics; requiresstrict distinction between the various
cases of correct and incorrect predictions. This means that a specific weight is assigned for every such
classification case, in the form of a positive “gain” for correct predictions or a negative “loss” for
misclassifications. When combined with the corresponding posteriori probabilities of the classifier, it
is possible to calculate the expected statistical “risk”, i.e.; the average gain or loss that this particular
classifier can produce. If the classifier is trained from the start by applying optimization criteria based
on risk factors, rather than simply the classification accuracy, then the process is a “risk-based” rather
than “error-based” training of the classifier:Not all classifier architectures are fit to be implemented as
risk-based models, primarily due to.the.fact that the‘introduction of risk factors within the feedback
process of the training may result in severe ‘instability and failure. However, the notion of risk
embodies a much more generalized viewpoint of the classification problem and it is very important in

real-world applications.

Using risk-based models for the classifiers, the game-theoretic approach of collective decision systems
becomes much more comprehensible: The efficiency of each participating “player” is now measured
not simply in a sense of absolute accuracy but in the scope of average “gain” in each run of the game.
Therefore, every combination scheme also embodies the same notion of maximizing the collective
“gain” or, equivalently, minimizing the collective “loss”, by employing an optimal combination rule.
This risk-based approach is also valid for a coalition’s winning stance against the others, as well as the

expected payoff from the whole game, since a winning coalition’s gain coincides with the overall gain

T Comments in this section are subject of own study and experimental verification, conducted during the author’s PhD work,
2001-2008 and on. Almost all of the proposed items have been addressed, experimentally tested and subsequently published in
various conference, journal and open-access papers. For detailed description of the theoretical and practical aspects of applying
these ideas in the context of novel classifier combination architectures, see e.g. [14-16]:

® “A Game-Theoretic Approach to Weighted Majority Voting for Combining SVM Classifiers”, Harris Georgiou, Michael
Mavroforakis, Sergios Theodoridis. Int. Conf. on ANN (ICANN), 10-13 September 2006 @ Athens, Greece. Ref: S.Kollias et al.
(Eds): ICANN 2006, Part I, LNCS 4131, pp. 284-292, 2006.

o “A game-theoretic framework for classifier ensembles using weighted majority voting with local accuracy estimates”, H.
Georgiou, M. Mavroforakis, arXiv.org preprint (en)(arXiv:1302.0540v1 [cs.LG]).

o “Algorithms for Image Analysis and Combination of Pattern Classifiers with Application to Medical Diagnosis”, H. Georgiou,
PhD thesis summary (en)(arXiv:0910.3348v1 [cs.CV]).
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of the collective decision rule. Therefore, the formulation of this type of gaming under the scope of
WMGs and the corresponding WMRs comes very naturally.

Since the WMR have been proven as the optimal combination rules in dichotomy choice situations, it
is very interesting to examine the conditions under which these optimality assertions stand true for
trained classifiers in the place of players. It is expected that, as these classifiers are more or less
dependent with each other due to similar architectures or training datasets, the design of optimal
WMRs for combining them can not be realized in completely closed form:Instead, the calculation of
the exact weighting profile requires the exploitation of various statistical and structural properties of
the feature space, as well as the correlation of input patterns and classes. Most ensemble techniques
exploit these properties by enhancing classification regions of special interest, like points close to the
decision boundary. This issue has been noted earlier within the scope of voting systems, specifically in
relation to the diversity between the experts. In practice, many ensemble methods that employ
maximization of diversity essentially increase the degree of independency between the participants.
Since an increased level of independency provides the means for a collectively efficient decision, it is
not surprising to see that the results from the Pattern Recognition viewpoint coincide with the ones
inferenced by the game-theoretic approach, where Banzhaf and Shapley indices of power can be

considered as measures of diversity among the participants:

2.2 Adaptive realizations of WMRs

As it was mentioned previously, assumptions of complete independency between the classes and their
corresponding coalitions in WMGs, as well as between the.experts are never completely true. Thus, it
is necessary to enhance the combination process in a.sense that takes into account these types of
correlations. Tresp and Taniguchi (1996) have suggested-that a combination scheme which uses a fixed
or a weighted majority rule should exploit the properties of the statistical distributions of the classes at
hand. Using a Gaussian approximation, they have shown how the efficiency of such a combination
rule can be improved if the mean and variance of each class are used when calculating the parameters
(weights) of the combination rule. However, the standard WMR approach for optimal combination of
experts does not include such an.adaptive scheme. Furthermore, the variance-based weighting
method of Tresp and Taniguchi impose further assumptions and restrictions to the distributions of the

classes, which can be non-Gaussian in general.

Instead of employing a fixed statistical approximation for the complete class distribution, a new fully
adaptive approach can be designed on a lower level. Specifically, since the distribution of each class,
i.e., the topological couplings between the individual training samples of the class, affects the exact
weighting profile of the classifiers that is optimal in some error-based or risk-based criterion, then a
topological measure of “closure” between any arbitrary pair of samples should be used instead of the
statistical approximation of their distribution. In other words, instead of checking how well an
unclassified sample fits the statistical distribution of the one or the other class, it should be checked
under a criterion that measures how close it is with the identified members of each class, preferably
with the most representative ones. As in the case of the variance-based method, this measure should
be used as a quantitative guideline regarding the degree of “responsibility” that each class manifests
over this particular point in the feature space. In terms of classification, it is a statistical method of
measuring how much a class is accountable for this new sample, but in a more invariant way than that
of using Gaussian approximations for the class’ distributions.
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When this fully adaptive version is adopted within the scope of the WMRs, each classifier’s posterior
probability or “skill”, already known from the training process, can be adjusted according to how
“far” or “close” an unclassified sample lies with respect to the already known members of this class.
From a clearly topological point of view, this is a way to minimize the “structural risk” of the
classification problem by introducing a bias or “preference” towards the class that seems to be more
responsible for this region of the feature space. Although this is what each of the participating
classifiers does on its own, this adaptation process essentially adjusts the process of evaluating the
optimal WMR to the non-symmetrical structural properties of the feature.space. Therefore, it is also
expected that the weighting profile calculated for the WMR design would be optimal, not in a global

but rather in a more local sense.

2.3 A link with the theory of SVM

SVM architectures provide the necessary foundations for a'theoretical sound framework of optimal
classifiers. The use of special form of kernel functions essentially makes them equivalent almost to any
type of linear and non-linear pattern classification model. But the solid theoretical background of this
type of classifiers makes them ideal in situations where their performance and consistency is required
for studying collective decision rules.

The linear form of the WMRs makes the combination process very simple, not only in terms of
calculating the final outcome of the group decision, but also in the scope of statistical properties of this
decision rule in relation to each classifier's own properties. SVM theory states that the structure of the
SVM classifier permits the linear transformation:of a number of kernel functions into one combined
linear form. Furthermore, if each of the kernel functions is well-defined under the typical constraints
for SVM kernels, then their linear combination is also a well-defined SVM kernel function. This
assertion is of extreme importance when viewed. under the perspective of WMGs and WMRs. In
essence, if all participating classifiers are’assumed to .be SVM realizations, then the optimal WMR itself
defines a new compound SVM kernel,‘i.e., an SVM meta-classifier.

This conclusion is an adequate justification on why such a combination rule does not need to be more
complex than a linear transformation of each expert’s assessment: if every expert is of adequate skill
and acts independently from the others. This means that such an expert can moderately efficient in the
complete feature space or, alternatively, well-adapted to only a part of the complete feature space. In
the first case, the WMR is optimal in the global sense in a way that combines the group of experts in
the most promising manner, while the second case corresponds to the fully adaptive WMR realization
that was proposed in the previous section.

It should be noted cthat, although SVM classifiers are generally design for “hard” decision
classifications in dichotomy choice problems, it is not difficult to design a set of SVM classifiers that
are “specialized” invone of N>2 classes if the problem requires it - this is essentially the one-versus-all
classification mode:when applying binary pattern classifiers in multi-class tasks. Furthermore, their
internal structure that is based on support vectors, i.e.,, class members that primarily define the
classification outcome, is well-suited for the design of robust topological measures of “closure”
between a class and a new unclassified sample, based on distance transformations from the support
vectors of each candidate class. In this sense, even a two-class problem that is solved by a single SVM
classifier can be viewed as a coalition game in the form of WMG, solved by an optimal WMR with
weights and bias proportional to the class” distribution characteristics, and an SVM kernel function
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that effectively transforms the original non-linear feature space to a linear space of higher dimension
that can be solved by this WMR.

2.4 Conclusion and further work

The material presented briefly in part-I of this report clearly define a solid background for a game-
theoretic approach to the problem of classifier combination in its general form. A set of theoretic
formalizations lead to some very intuitive and simple solutions to this problem in the general sense,
especially in dichotomy choice situations.

An extension of these theories to the area of Pattern Recognition can be easily inferenced. Specifically,
there are three main issues of special interest:

1. The introduction of a theoretically solid model for using transformations of posterior
probabilities of the classifiers, e.g. by the confusion matrices, in combination with
the general framework of risk minimization, either.in a‘post-training sense or within
the training process itself (risk-based training).

2. The formulation of a complete and fully adaptive realization of the WMR model that
incorporates the non-symmetrical properties of the underlying feature space, when
calculating the optimal weighting profile for the combination rule.

3. The study of theoretical and practical implications.of introducing SVM classifier
architectures as voting players in a WMG, primarily in the scope of completeness
and optimality of such a solution in the general sense:

A study that addresses all these three issues,should first focus on the theoretical aspects and formal
definitions of any new models and algorithms, and subsequently conduct experimental tests on well-
known classification problems where comparative results are available for other typical classifier
combination schemes. Based in the theoretical assessment presented in this study, it is expected that
such a game-theoretic approach of collective decision, along with the application of SVM classifiers,
will produce results of at least the same degree of success as the best ensemble methods available
today.
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Section 3: A Game-Theoretic Approach to Weighted Majority Voting
for Combining SVM Classifiers
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A new approach from the game-theoretic point of view is proposed for the problem of
optimally combining classifiers in dichotomous choice situations. The analysis of
weighted majority voting under the viewpoint of coalition gaming, leads to the
existence of analytical solutions to optimal weights for the classifiers based on their
prior competencies. The general framework of weighted majority rules (WMR) is
tested against common rank-based and simple majority models, as well as two soft-
output averaging rules. Experimental results with combined support vector machine
(SVM) classifiers on benchmark classification tasks have proven that WMR,
employing the theoretically optimal solution for combination weights proposed in this
work, outperformed all the other rank-based, simple majority and soft-output
averaging methods. It also provides a very generic and theoretically well-defined
framework for all hard-output (voting) combination schemes between any type of
classifier architecture.
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Abstract. A new approach from the game-theoretic point of view is proposed
for the problem of optimally combining classifiers.in dichotemous choice situa-
tions. The analysis of weighted majority voting under the viewpoint of coalition
gaming, leads to the existence of analyticalsolutions'to. optimal weights for the
classifiers based on their prior competencies. The general framework of
weighted majority rules (WMR) is tested.against common rank-based and sim-
ple majority models, as well as twa soft-outputraveraging rules. Experimental
results with combined support vector machine (SVM) classifiers on benchmark
classification tasks have proven that WMR, employing the theoretically optimal
solution for combination weights‘proposed in this‘work, outperformed all the
other rank-based, simple majority=and soft-output averaging methods. It also
provides a very generic and theoretically well-defined framework for all hard-
output (voting) combination‘schemes between any type of classifier architec-
ture.

1 Introduction

1.1 Classifier Combination.and Game Theory

In the discipline of collective decision-making, a group of N experts with moderate
performance levels are combined in an optimal way, in order to produce a collective
decision that ‘is.better than the best estimate of each individual expert in the group.
According to the famous Condorcet Jury Theorem [1], if the experts’ individual deci-
sions are independent and their corresponding estimations are more likely to be cor-
rect than'incorrect (p.....>0.5), then an increase in the collective performance, as a
group, isnguaranteed when the individual estimations are combined. Moreover, this
increase.in performance continues to increase asymptotically as the size N of the
group increases.

In the case where each expert selects only one out of M available options, the col-
lective group decision can be estimated by the majority voting scheme, i.e., the choice



selected is the one gathering the majority of votes. When the simple majority rule is
employed, each of the N experts acts with the same common interest of reaching the
optimal collective decision. However, their individual choices place them in possibly
contradicting estimations, with each expert trying fo impose its decision to the others
and to the group. This is a typical competitive situation, which can'be modeled by the
well-studied theory of non-zero sum competitive gaming in classic Game Theory [2].
In reality, each subgroup of consentient experts essentially represents an opposing
assembly to all the other similar subgroups with different.consensus of choice. It is
clear that this second type of cooperative, instead of purely competitive (per expert),
gaming reflects the problem of collective decision-making in the most generic way.
Special sections of Game Theory, namely the Coalitions.and Stable Sets in coopera-
tive gaming [2], have studied the effects of introducing “weights” to the choice of
each expert according to their competencies, in order to optimize the final decision of
the group.

1.2 Weighted Majority Games and Weighted‘Majaority.Rules

The case of a dichotomous situation, where there are-only two symmetrical choices
for each expert (i.e., M=2) to vote for, then this restricted form is known as the
weighted majority game (WMG) [2]. It has been_proven by Nitzan and Paroush
(1982) [3] and Shapley and Grofman~(1984) [4], that the optimal decision rules, in
terms of collective performance, are the weighted majority rules (WMR); this is in
fact a different name for the well-known weighted majority voting schemes [5],
which are often used in pattern recognition for.combining hard-output classifiers. The
same assertion has also been verified by Ben-Yashar and Nitzan [6] as the optimal
aggregation rule for committees. under the scope of informative voting in Decision
Theory. Although there is.in fact an exponential number of such WMR for each
WMG, only a few of them can‘be proven to be well-defined or qualified combination
rules and even fewer can be proven to:be unique, i.e., not producing exactly the same
decision profile with others [7]. For example, in the 2*2 possible! voting games of five
experts, there are exactly 85 qualified WMR if only positive integer weights are per-
mitted, of which only.seven are unique in terms of their decision profile [7].

In this paper, the notion of modeling dichotomous choice situations for a group of
experts via the theory of WMG and WMR s for the first time applied for combining
hard-output classifiers. Under the conditional independence assumption, a closed
Sform solution for.the voting weights in the WMR formula exists and it is directly
linked to each expert’s competency. This optimal weight profile for the voting experts
is the log of the odds of their individual competencies [3], [4], [7], [8].

In this paper, this particular type of game-theoretic analytical solution for optimal
expert combinations in dichotomous choice situations is tested for the first time
against.other popular combination schemes. The possibility of having a weighted
voting.scheme that is based only on the prior capabilities of the experts in the group,
as well as on the theoretical assertion that this analytical solution is optimal, in terms

1 For five experts with two choices each there are 2°=32 decision profiles, each of which can be
generally mapped in any of the two possible outputs of the combination rule. See [7].



of collective competency (at least for all non-trained, i.e., iteratively optimized,
weights), is extremely attractive as an option of designing very simple yet effective
combination models for an arbitrary pool of classifiers.

2 Datasets and Methods

2.1 SVM Classifier Model

The SVM classifier was used as the base model for creating a pool of classifiers for
each combination scheme. Specifically, a geometric nearest point algorithm (NPA)
[9], based on the notion of reduced convex hulls (RCH) [10], was used for training a
standard SVM architecture with radial-basis function (RBF)-as the kernel of the non-
linear mapping. In previous studies [11] have shown experimental evidence that op-
timal combinations of SVM classifiers can be.achieved.through linear combination
rules, i.e., the same category of combination:rules examined in this study. In the two
averaging combination rules that use the.soft-output of the individual classifiers, the
distances from the decision boundary were used instead of the (thresholded) hard-
output of the SVM classifier, as they.are indicative of the corresponding classification
confidence [12], [13].

2.2 Datasets and Feature Grouping

In order to assess the performance of each.classifier combination method, a number
of publicly available test datasets [14], with’known single-classifier accuracy rates for
this specific SVM training ‘model,“were ‘used. These datasets are: 1) Diabetis, 2)
Flare-Solar, 3) German, 4) Heart and,5)-Waveform.

Each base dataset was.randomly-separated into a base training set and a validation
set of samples. In order.to make individually trained classifiers as “independent” as
possible, the method of training them in different subspaces was employed. As it has
been reported previously, e.g.4+[13], [15], this is an effective approach towards inde-
pendence among classifiers. To.this end, the training set was partitioned into K dis-
tinct segments of feature groupings, i.e., containing only some of the features (dimen-
sions) of the initial dataset. Each group of features was created in a way that satisfied
two constraints: (a) each group to be distinct, i.e., no feature is included in two or
more groups,-and (b) each group to contain a subset of features that can describe the
classification.task equally well as the other feature groups, i.e., employ a “fair” distri-
bution of the available features into K groups. Satisfaction of the second constraint
required+a method for ranking all the features in terms of discrimination power
against the two classes, as well as their statistical independency to all the other fea-
tures in the initial training set. Thus, the MANOVA method [16] was used to assign a
multivariate statistical significance value to each one of the features and then produce
a sorted list based on (the log of) this value.



In order to create a “fair” partitioning of this list into equally efficient segments,
features were selected in pairs from the top and bottom positions, putting the cur-
rently “best” and “worst” features in the same group. Furthermore, the efficiency of
each group was measured in terms of summing the log of the statistical significance
value, assigned by MANOVA, of all the features contained in this'group. The log was
employed in order to avoid excessive differences between the values assigned by
MANOVA, thus creating more even subset sums of these values. Essentially, every
such pair of features was assigned in groups sequentially, in a way that all groups
contained features with approximately equal sum of the log of the values assigned by
MANOVA. In other words, the MANOVA-sorted list of features was “folded” once
in the middle and then “cut” into K subsequent parts of equal sums of log-values, i.e.,
with every part exhibiting roughly the same sum of the dog of the statistical signifi-
cance values, accompanying each feature included/in this part.

Each one of these K distinct feature groups was-used for training an individual
SVM classifier. Thus, each of these K classifiers used a different, dimensionally re-
duced, version of the original (full) training set and therefore learns a totally different
classification task.

2.3 Classifier Combination Methods

Nine linear combination rules were ‘examined in this study. Specifically, five hard-
output combination methods were employed, namely three standard rank-based meth-
ods and two voting-based schemes..These rank-based rules are [8], [13]:

e minimum (“min”)

e maximum (“max’”)

e median (“median”)

The two majority rules, including the WMR model, are [8], [13]:
e simple majority:voting (“majority”)
e weighted majority voting, i-e.:

0, (= WD, - ®

where D; is the hard-output.of each of the K individual classifiers in the pool, w; is its
assigned weight and-O,,,, the weighted majority sum. The final hard-output decision
D, of the WMR is taken against a fixed threshold (7) that defines the decision
boundary for the combination rule [7], [8]:

wmr
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Specifically for the weighted majority voting scheme, three different methods for
calculating the weight profile were tested for comparative results:
e “direct” weighting profile for WMR (“wmr/direct”) [5], [8]:
W, = p[ ! pi = })[(9 = a)cnrrect | ;C) b (3)

i



e “odds” weighting profile for WMR (“wmr/odds”) [7], [8]:

W, = L v P = E(H = O orrect | }) ' (4)
1-p
o “logodds” weighting profile for WMR (“wmr/logodds’) [7], [8]:
©)
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where w; is the combination weight assigned for the i-th classifier, p; is its prior prob-
ability for correct classification, measured in the validation set, and @, e are the pre-
dicted class labels.

Additionally, two soft-output averaging models'were included, a non-weighted and
a weighted [8]:

e simple average (“average”)
e weighted average (“lsewavg™)

The weights in the weighted average rule were calculated as the optimal weighting
profile of the individual classifier outputs against the correct classification tag, in
terms of a least-squares error (LSE) minimization criterion [15]. Thus, this method
can be considered as an example of “trained” weighting rules of soft-output classifi-
ers. In contrast, the WMR approach.employs fixed analytical weighting profile and
hard-output classifications (votes) as input; that is, nofurther training is required.

3 Experiments and Results

The evaluation of the combination models-consisted of two phases, namely: (a) the
design and training of SVM:classifiers; trained in distinctly different subspaces, and
(b) the application of thevarious combination schemes to the outputs of the individ-
ual classifiers.

Each of the K classifiers was ‘separately trained and optimized, using a different
group of features from the full dataset, and subsequently evaluated using the corre-
sponding validation .set. This.training/validation cycle was applied three times, for
each of the five datasets, each time using a new random partitioning of the full dataset
into training and validation sets. The mean values and standard deviations of the
success rates of all the individual (3K) classifiers for each dataset, as well as the de-
tails about the.size and dimensionality of each (full) training and validation sets, are
presented in‘Table 1.

The K value, i.e., the number of feature groups for each dataset, was determined
experimentally in a way that each of the corresponding K training segments would be
adequate:to produce a well-trained SVM classifier. Thus, the German training set was
split'in' k=5 segments, while the Flare-Solar training set in K=4 segments.



Table 1. Single versus multiple classifier accuracy percentages per dataset and K values
(number of dataset partitions)

Dataset Train | Vali- | Data | Single classifier K Individual
set dat. Dim. accuracy value classifier

set mean acc%

diabetis 468 300 8 765+ 1.7 5 68.3+3.9
flare-solar | 666 400 9 67.6+1.8 4 55.7+ 3.6
german 700 300 20 76.4+2.1 5 68.9+1.8
heart 170 100 13 84.0+£3.3 5 743+23
waveform | 400 | 4600 21 90.1+04 5 81.1+1.2

The classification outputs of the pool of K classifiers fromeach training/validation
cycle were fed as input to all nine combination schemes, producing the corresponding
combined classification outputs. Since the output of each-of the K classifiers in the
pool was calculated based on the same (dimensionally ‘reduced) validation set, the
corresponding outputs and accuracy of the combination rules also refer to this valida-
tion set.

Table 2 illustrates the mean accuracy of .each «combination rule (each cell corre-
sponds to three training/validation cycles), as well.as the mean value and standard
deviation of the success rates of all nine combination rules, for each dataset and K
value employed.

Table 2. Mean accuracy percentages of all the nine:.combination rules, with optimized decision
threshold, per dataset and K values (number of feature groups and classifiers)

Combination Diabetis Flare-Solar German Heart Waveform
Rule K=5 K=4 K=5 K=5 K=5
average 71.67 66.08 70.67 85.33 88.12
Isewavg 76.11 65.58 71.56 85.00 86.79
min 68.56 55.92 70.67 69.00 72.98
max 69.11 60.42 67.33 76.67 85.95
median 69.00 58.33 69.78 80.00 81.17
majority 73.00 63.75 70.67 82.33 86.59
wmr/direct 74.00 66.58 70.67 82.33 86.59
wmr/odds 75.33 66.58 71.33 84.00 86.70
wmr/logodds 75.33 66.42 71.33 84.00 86.64
Mean 72.46 63.30 70.44 80.96 84.62
Stdev 2.99 4.06 1.28 5.25 4,77

In the sequel, the overall relative performance of each combination rule was de-
termined in terms of ranking position for each case, i.e., according to its correspond-
ing accuracy for each dataset and K value employed. Specifically, a weighted Borda
scheme (wBorda) [17] was employed to attribute 10 points to the top-ranked combi-



nation rule, 9 points to the second, and so on. In case of a “tie” where two combina-
tion rules exhibited exactly the same classification accuracy, both got the same
wBorda points for the specific ranking position. Using the results.from Table 3, re-
garding the accuracies, Table 4 illustrates the corresponding wBorda ranking points
of all nine combination rules, for each dataset and K value employed in this study.

Table 3. wBorda value of all combination rules, with optimized decision threshold, per dataset
and K values. Each cell value represents the ranking weight according to classification
accuracies, with 10 points for top position, 9 points for the second and so on. In cases of equal
accuracies, the same ranking weight was assigned to the corresponding combination rules

Combination | Diabetis | Flare-Solar| German Heart Waveform
Rule K=5 K=4 K=5 K=5 K=5

average 6 8 8 10 10
Isewavg 10 7 10 9 9
min 3 3 8 4 3
max 5 5 6 5 5
median 4 4 7 6 4
majority 7 6 8 7 6
wmr/direct 8 10 8 7 6
wmr/odds 9 10 9 8 8
wmr/logodds 9 9 9 8 7

Table 4. Overall evaluation of allsthe combination rules, with optimized decision threshold,
using the wBorda results for all datasets and K values available. The list is sorted according to
the wBorda sum and mean ranking position of each combination rule, from the best to the
worst combination rule

Combination wBorda wBorda  wBorda

Rule Sum Mean Stdev
Isewavg 45 9.0 1.22
wmr/odds 44 8.8 0.84
average 42 8.4 1.67
wmr/logodds 42 8.4 0.89
wmr/direct 39 7.8 1.48
majority 34 6.8 0.84
max 26 5.2 0.45
median 25 5.0 1.41
min 21 4.2 2.17

Table4 presents a summary of the results shown in Table 3, as well as the list of
all the combination rules sorted according to their sum of wBorda points, i.e., their
overall efficiency throughout the five original datasets. Tables 2 through 4 present the
performance and wBorda results for all the combination rules with optimized decision



threshold (T). The decision threshold employed by each combination rule was in
every case optimized against final accuracy, using a typical Newton-Raphson optimi-
zation algorithm [18].

4 Discussion

The results from Tables 3 and 4 clearly demonstrate the/superior performance of the
WMR model. Specifically, the all versions of the WMR model exhibited the best
performance amongst all the other hard-output combination rules. As expected, it has
been proven better than the simple majority voting, as well as all the other rank-based
methods (max, min, median). The “odds” weighting_profile has also been proven
marginally better than the “direct”- and the “logodds”-based profiles for designing the
optimal WMR formula.

Interestingly, the “odds”-based version of WMR ‘exhibited-better performance than
the simple averaging rule, e.g., a soft-output combination.model, losing only from the
weighted averaging rule with LSE-trained weights. Thus,;.the WMR model, especially
with the “odds” and “logodds™ weighting profiles, performs equally well or better
than simple soft-output averaging combination rules. All four weighted combination
rules, i.e., the three WMR and the LSE-trained weighted average, have been clearly
proven better than all the non-weighted.hard-output combination rules.

Table 4 also demonstrates the robustness and stability of the each combination
rule. For small values of standard deviation (less than unity) in the corresponding
wBorda mean ranks, the relative ranking position of a combination rule against the
others remains more or less the same. Thus, the maximum rule exhibits a consistently
lower ranking position than the“simple /majority rule, while the “odds”- and the
“logodds”-based versions of the' WMRmodels perform consistently better than the
simple majority and the three.rank-based rules. Furthermore, the “odds”- and the
“logodds”-based versions ©f WMR exhibit the same consistency and robustness as
the simple majority rule but with higher success rates.

With respect to the overall performance of the combination rules, results from Ta-
bles 1 and 2 demonstrate that in.all cases the best combination rules increased the
overall success rates.of the classifier pool, from +2% (German dataset) to +11%
(Flare-Solar dataset), in many cases very close to or equal to the corresponding refer-
ence performance level of the single SVM classifier results.

The ensemble of these classifiers clearly demonstrates that the combination of
multiple simpler models, each using a 1/K portion of the feature space of the dataset,
instead of a single classifier for the complete feature space, can be used to reduce the
overall training effort. Specifically for the SVM model, kernel evaluation employs
inner product between vectors, i.e., its complexity is directly proportional to the di-
mensionality (number of features) in the input vectors. If this feature space reduction,
from F to F/K features, results in a proportional increase in the complexity of the new
(reduced) input space in terms of new class distributions, then it is expected that the
training of each of the K SVM classifiers may be completed up to K times faster on
average. A similar approach has also been examined in other studies [11], using an
ensemble of SVM classifiers trained in small training sets, instead of one large train-



ing set for a single SVM classifier. Furthermore, there is evidence that such ensem-
bles of kernel machines are more stable than the equivalent kernel machines [11].
This reduction in training time, of course, has to be compared to the additional over-
head of calculating a combination rule for every output vector from the classifier
pool. Consequently, if the optimal design of this combination‘rule is simple (linear)
and efficient, and its weighting profile can be determined analytically with no need
for iterative weight optimization, the WMR approach could prove very prominent for
this role in classification tasks of high dimensionality and/or dataset sizes.

5 Conclusions

The game-theoretic modeling of combining classifiers in dichotomous choice prob-
lems leads to cooperative gaming approaches, specifically ‘coalition gaming in the
form of WMG. Theoretically optimal solutions for:this type of games are the WMR
schemes, often referred to as weighted majority wvoting. Under the conditional inde-
pendence assumption for the experts, there exists a closed solution for the optimal
weighting profiles for the WMR formula.

In this paper, experimental comparative results have shown that such simple com-
bination models for ensembles of classifiers can bexmore efficient than all typical
rank-based and simple majority schemes, as well as simple soft-output averaging
schemes in some cases. Although the-conditional independence assumption was mod-
erately satisfied by using distinct ‘partitions of ‘the feature space, results have shown
that the theoretical solution is still valid-to a considerable extent. Therefore, the WMR
can be asserted as a simple yet ‘effective option for combining almost any type of
classifier with others in an optimal-and theoretically well-defined framework.
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Abstract

In this paper, a novel approach for the optimal combination of binary classifiers is proposed. The
classifier combination problem is approached from a Game Theory perspective. The proposed
framework of adapted weighted majority rules (WMR)_is tested against common rank-based,
Bayesian and simple majority models, as well as two soft-output averaging rules. Experiments
with ensembles of Support Vector Machines (SVM), Ordinary Binary Tree Classifiers (OBTC)
and weighted k-nearest-neighbor (w/k-NN) models on benchmark datasets indicate that this new
adaptive WMR model, employing local accuracy estimators and the analytically computed
optimal weights outperform all the other simple combination rules:
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1. Introduction

Classifier combination is one of the most active areas. of research in the discipline of Pattern Recognition. The
challenging problem of designing optimal aggregation schemes for multi-classifier systems has been addressed
by a wide range of methodologies and.approaches.during the last decade [1]. However, few of them introduce a
framework of analytical solutions. ‘Instead,.most.of them employ either heuristics or iterative optimization
procedures.

In this paper, a novel-viewpoint is-proposed for the problem of optimally combining classifiers using
game-theoretic arguments. Specifically, the.problem of designing optimal ensembles of voting classifiers is
investigated within the context of Game Theory [2, 3], as an analogy to n-person games. A special type of
cooperative games, namely the coalition games, is introduced as the natural setting for formalizing the ensemble
design problem, within the'scope of Coalition Theory [2, 3] and the Weighted Majority Games (WMG) [2, 3].
This new formulation of the problem leads to the development of a theoretical framework of the weighted voting
schemes [1]. Furthermore;, this approach leads to optimal analytical solutions for the two core problems of: (a)
designing the aggregation-rule in an optimal way, and (b) assigning optimal voting weights in a voting ensemble
of experts. For the problem in (a), the theory of WMG states that the optimal voting aggregation rules in a fixed-
size ensemble for an arbitrary n-label classification task is the weighted majority rule (WMR) [2, 3, 4, 62]; while
for the problem in (b), the optimal voting weights in such WMR schemes are calculated analytically from the
experts’ competencies, under the conditional independence assumption [4, 5].

This particular type of game-theoretic analytical solution is extremely useful in the process of designing
optimal classifier ensembles. The use of simple linear combination models that employ single weights for each
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classifier, which, however, do not require iterative training/optimization, can provide the necessary means to
apply multi-classifier schemes in parallel implementations with on-line updating capabilities. In other words, the
classifiers can be trained independently and off-line, using any architecture and algorithm available, while the
aggregation scheme involves only direct (analytical) calculation of the voting weight of each classifier. Another
novelty of this paper refers to the notion of the expert’s competency, i.e., the prior estimation of the success rate
of each individual classifier, as it is required by the WMR optimal rule. The expert’s competency is extended to
include the posterior probabilities associated with each pattern. In practice, the voting weight of each classifier is
calculated analytically, in the sense of the WMR formulation, for every sample using the local accuracy
estimates (LAE).

This paper is organized as follows. Section 2 describes the core aspects of the classification task and its
realization under the concept of multi-classifier systems. Section 3 summarizes some basic concepts of Game
Theory and phrases the classifier combination task in game-theoretic terms. Section 4 describes the details
regarding the datasets and methods used. Section 5 presents the experiments and results. Section 6 is a discussion
on the results. Section 7 presents the conclusions.

2. Problem statement and current practices

2.1 Combining classifiers

The ultimate goal of any pattern recognition system is to design optimally a classifier while at the same time
attaining the best generalization performance, for the specific problem.at hand. However, even the “best”
classifier model can fail on points that other classifiers may.succeed-in predicting the correct label [6, 1]. Many
studies have focused on the possibility of exploiting this.complementary nature of the various classifiers, in order
to enhance the overall performance. Specifically, each classifier is considered as a trained expert that participates
along with others in a “committee”, which produces a collective ‘decision according to some well-specified rule.

In the discipline of collective decision-making, a group of N experts, each one with moderate
performance levels, are combined in order to producea collective decision that may be better than the estimate
of the best among the experts in the group. According to the famous Condorcet Jury Theorem [7], if the experts’
individual decisions are independent and their.corresponding estimates are more likely to be correct than
incorrect (Peorrec™0.5), then an increase in the collective performance, as a group, is guaranteed when the
individual estimations are combined. Moreover, this performance continues to grow asymptotically as the size N
of the group increases and under the independence assumption. This assertion has been the base for very active
experimental and theoretical research in the discipline of pattern recognition.

Over the last decade or so, a.wide range of different approaches have been studied to design
aggregations or ensembles of experts. These employ either a selection or a fusion scheme [1] to combine the
individual classifiers’ outputs into a final collective decision. The combining rules vary from very simple to
more sophisticated ones. Typical examples include simple averaging and fusion [8, 9], mixture of experts [10,
11], consensus or majority voting=[12], dynamic classifier selection [13], supra Bayesian methods [14, 15],
evidence-based [16, 17] or template-based [18]-decision models. Most of the methods employ weights upon each
member in the pool, essentially dictating‘a corresponding level of confidence to its individual decisions. Hence,
the design of such ensembles reduces to the problem of finding these optimal aggregation parameters, with the
goal of improving the final accuracy rates of the ensemble.

To comply with the/spirit of Condorcet’s theorem, a major research effort has been inserted in
designing the individual classifiers to be as independent as possible. More recent approaches, such as boosting
[19], bagging [20] and.random subspace models [21], employ different techniques to increase the level of
diversity, essentially bytraining individual classifiers in different subsets or subspaces of the original set of data.

This requirement can be implemented, in practice, by separating or splitting the original training
datasets into a new.set of distinct or partially overlapping realizations, with respect to: (a) the data samples, (b)
the dimensionality, or'(c) both. Random subspace methods, most commonly used in aggregation models like the
Random Forests [22], are typical examples of using dimensionally-reduced versions of the original data space.
Rotation Forests [23] is an example of using both different subsets and different subspaces simultaneously.

3. A game-theoretic approach to classifier combination
This section presents a brief overview of the basics of Game Theory, the main concepts of cooperative games
and Coalition Theory, as well as the formal definition of weighted majority games (WMG) and weighted

majority rules (WMR). Furthermore, the core problem of designing optimal weighted voting schemes for multi-
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classifier ensembles is introduced within the context of WMG and theoretical analytical solutions are presented
under the WMR formulation.

3.1 Elements of Game Theory

The mathematical theory of games and gaming was first developed as a model for situations of conflict. Since
the early 1940’s, the work of John Von Neumann and Oskar Morgenstern [24] has provided a solid foundation
for the most simple types of games, as well as analytical forms for their solutions, with many applications to
Economics, Operations Research and Logistics [2, 3]. Each opposing player in.a game has a set of possible
actions to choose from, in the form of pure (single choice) or mixed (random.combination) strategies. The set of
optimal strategies for all the players is called the solution to this game.

The zero-sum games are capable of modeling situations of conflict between two or more players, where
one’s gain is the other’s loss and vice versa. In reality, it is common that.in a conflict not all players receive their
opponents’ looses as their own gain and vice versa. In other words, it is:very common a specific combination of
decisions among the players to result in a certain amount of loss to one and a corresponding gain, not of equal
magnitude, to another. In this case, the game is called nonzero-sumsand it requires a new set of rules for
estimating optimal strategies and solutions.

During the early 1950’s, John Nash has focused primarily on.the problem of finding a set of equilibrium
points in nonzero-sum games, where the players eventually settle after a series of competitive rounds of the
game. In 1957 [25], Nash successfully proved that indeed such~equilibrium points exist in all nonzero-sum
games, defining what is now known as the Nash theorem or Nash solution to the bargaining problem [2, 3].
However, although the Nash theorem ensures that at least one such Nash equilibrium exists in all nonzero-sum
games, there is no clear indication on how the game’s solution can be.analytically calculated at this point. In
other words, although a solution is known to exist, there_is no closed form for nonzero-sum games until today.

The Nash equilibrium points are not always the.globally optimal option for the players. In fact, the Nash
equilibrium is optimal only when players are strictly competitive, i-e., when there is no chance for a mutually
agreed solution that benefits them more. These strictly competitive forms of games are called non-cooperative
games. The alternative option, the one that allows communication.and prior arrangements between the players, is
called a cooperative game and it is generally a much more complicated form of nonzero-sum gaming.

3.2 Cooperative games and coalition gaming

The problem of cooperative or possibly-cooperative gaming is the most common form of conflict in real life
situations. Since nonzero-sum games havevat least one equilibrium point, when studied under the strictly
competitive form, Nash has comprehensively studied the cooperative option as an extension to it. However, the
possibility of finding and mutually adopting a solution that is better for both players than the one suggested by
the Nash equilibrium, essentially involves a set of behavioral rules regarding the players’ stance and mental
state, rather than strict optimality procedures [2,.3]. Nash named this process as bargain between the players,
trying to mutually agree on one solution between multiple choices within a bargaining set. In practice, each
player should enter a bargaining procedure if there is a chance that a cooperative solution exists and it provides
at least the same gain as the beststrictly competitive solution, i.e., the best Nash equilibrium. In this case, if such
a solution is agreed between the players, it is called bargaining solution of the game. This new framework
provides the necessary means to study n-person non-cooperative and cooperative games under a unifying point
of view. Specifically, a nonzero-sum game can be realized as a strictly competitive or a possibly cooperative
form, according to the game’s rules and restrictions. Therefore, the cooperative option can be viewed as a
generalization to the strictly competitive mode of gaming.

When players are allowed to cooperate in order to agree on a mutually beneficial solution of game, they
essentially choose.one strategy over the others and bargain this option with all the others in order to come to an
agreement. For symmetrical games, i.e., when all players receive the same gains and losses when switching
places, this situation is like each player choosing to join a group of other players with similar preference over
their initial choice. Each of these groups is called a coalition and it constitutes the basic module in this new type
of gaming: the members of each coalition act as cooperative players joined together and at the same time each
coalition competes over the others in order to impose its own position and become the winning coalition. This
setup is very common when modeling voting schemes, where the group that captures the relative majority of the
votes becomes the winner.

Coalition Theory [2, 3] is closely related to the classical Game Theory and in particular the cooperative
gaming. In essence, each player still tries to maximize its own expectations, not individually any more but
instead as part of a greater opposing term. Therefore, the individual gains and capabilities of each player is now
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considered in close relation to the coalition this player belongs to, as well as how its individual decision to join
or leave a coalition affects this coalition’s winning position. The theoretical implications of having competing
coalitions of cooperative players, instead of single players, is purely combinatorial in nature, thus making its
analysis very complex and cumbersome. There are also special cases of collective decision schemes where a
single player is allowed to abstain completely from the voting procedure, or prohibit a contrary outcome of the
group via a veto option. Special sections of Game Theory, namely the coalition gaming and stable sets in
cooperative gaming [2, 3], have studied the effects of introducing “weights” to the choice of each expert
according to their competencies, in order to optimize the final decision of the group.

3.3 Classifier combination as a game-theoretic problem

The transformation of cooperative n-person games into coalition games essentially brings the general problem
into a voting situation. Each player casts a vote related to its own choice or strategy, thus constituting him/her as
a member of a coalition of players with similar choices. The coalition that gains more votes becomes the winner.
In the case where each player selects one out of M available options to cast its vote, the collective group decision
can be estimated simply by applying the majority voting scheme, i.e., the choice selected is the one gathering the
majority of votes. Each subgroup of consentient players essentially represents an opposing assembly to all the
other similar subgroups with different consensus of choice.

In the general case where a weight is assigned to each voter and there are n available choices to vote
for, this form is known in Game Theory as the weighted majority'game (WMG) [2, 3]. It has been proven by
Nitzan and Paroush (1982) [4] and Shapley and Grofman (1984) [5], that the optimal decision rules for these
WMG, in terms of collective performance, are the weighted majority rules (WMR). The same assertion has also
been verified independently by Ben-Yashar and Nitzan¢[26] as the ‘optimal aggregation rule for committees
under the scope of informative voting in Decision Theory. This result was later (2001) [62] extended from
dichotomous to polychotomous choice situations; hence the optimality. of the WMR formulation has been proven
theoretically for any n-label voting task. Furthermore, under the conditional independence assumption, a closed
form solution for the voting weights in the WMR formula exists and it is directly linked to each expert’s
competency. This optimal weight profile for the voting experts is the log of the odds (“‘log-odds™) of their
individual competencies [4, 5].

In this paper, the notion of modeling classification tasks for an ensemble of experts via the precise
game-theoretic formulation of WMG and WMR is for the-first time applied for combining hard-output (voting)
classifiers. Specifically, the design of the combination rule‘is treated as a standard WMG situation, with each
classifier participating in a simple coalition game, i.e., choosing the final decision based on the maximum votes
(sum of weights) casted. The voting weights.in this WIMR‘scheme are calculated in an analytical way using the
log-odds solution [27, 1]:

wlzlog(%} , p=P{f=w,..1 , i=1.K (1)

where w; is the combination’ weight assigned to the i-th classifier (player), pi is the respective estimated
probability for correct classification, measured in the validation set, 6 is the predicted class label and wcorrect 1S
the correct class label for x (either w; or w,), respectively.

Using this game-theoretic analytical solution, the WMR formula is used as the optimal voting
aggregation scheme, i.e.:

mer (X) = i VVI Di (X) (2)

where D is the hard-output of each of the K individual classifiers in the ensemble, w; is its assigned weight, Oumr
is the weighted majority sum.

In this study, the classification tasks where chosen to include only dichotomous choice situations, for
several reasons (explained later on). Hence, there are only two voting options available (M=2) and two class
labels to choose from (either w; or w,), which essentially simplifies the WMR formulation to a sign-assignment
problem:

Der (X) = Sign(C)wmr (X) _T) 3
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where Dy is the final decision of the ensemble against a fixed-valued decision threshold T, which is typically
half the range of values for Oy, [27, 1], i.€.:

T =%(m?x{Di}+ miin{Di}) Ji=1.K (4)

or simply T=1/2 when normalized weights w; are employed (sum of weights is unity).

Interestingly, although the optimality of this solution under certain conditions has been studied
theoretically in the context of many different disciplines, including decision theory.and automata theory [28, 29,
30], it is generally considered very limited in terms of optimality, since it does not take into account any
dependencies among the trained classifiers on an ensemble.

In this paper, two versions of this WMR-based weighting scheme with respect to the value of p; are
tested: (a) the “static” WMR, using the prior probabilities of correct classification (i.e. “global” competence),
and (b) the “adaptive” WMR, using the (estimated) posterior probabilities of correct classification (i.e. “local”
competence). In both cases, the success rates are calculated based on a‘validation set of samples, independently
of any training process and any training set used by the classifiers. In"this.new “adaptive” version of the WMR,
which essentially introduces the notion of local experts into this framework, the combination weights are
calculated so that they reflect the localized (conditional) competencies of the classifiers at each point, i.e.:

WI - log[IL] ? pi’ - ‘E {9 - wcorrecr | X} * 1= ]‘K (5)
- b

This procedure is presented in section 4.5.

4. Datasets and Methodology

4.1 Selection of benchmark datasets

In order to assess the performance of the various.classifier combination methods, publicly available benchmark
datasets were considered. Specifically, the Raetch [31, 32, 33] and the ELENA [34] dataset resources were
considered and, for the purposes of this study, only 2-class sets with real (non-artificial) data were initially
selected. The main reason for employing only dichotomous classification tasks is that multi-class problems
essentially add one more layer of complexity in some:classification models, especially SVM-based. In practice,
the simplification of the classification.task itself does not require any second-stage decision, e.g., one-versus-all
or pair-wise comparisons. Furthermore, when IM>2 choices are available in WMG setups, the corresponding
WMR decision requires one additional parameter.of non-trivial optimization [67], the majority threshold or
quota (q), instead of a simple comparison to the half-sum of the voting weights, as in Eq. (3) and (4). Since the
goal of this study is the comparative evaluation of combination rules, while keeping all the other factors as
simple as possible, using only 2-class benchmark datasets is a natural choice.

A group of 14 datasets were analyzed in terms of class separability and statistical significance of the
corresponding results. In_order to make individually trained classifiers as diverse as possible, the method of
training them in different subspaces was selected. Consequently, datasets of high dimensionality were preferred.
The quantitative criteria used for selecting the final datasets from this group included: (a) The inherent
dimensionality of the dataset, in order to be able to use a feature subspace method leading to at least five distinct
feature groups. (b) The Chernoff Bound and the corresponding Bhattacharyya Distance [6], as a commonly used
class separability measure, when Gaussian distributions are assumed for the classes. (c) Guyon’s error counting
approach [35] for estimating the minimum size of the test data set, based on the results of a leave-one-out [36]
error estimation from a simple OBTC model [37]. (d) The ELENA project’s proposal [38] for the minimum
number of samples necessary for the estimation of the probability density function (pdf) of a Gaussian
probability density, using a probability density kernel estimator, with less than 10% error. (e) The intrinsic
dimension was calculated in terms of the fractal dimension estimation method [39, 40] and compared to the real
number of distinct features of the dataset, in order to get a quantitative measure of the overall complexity of the
sample space and the degree of redundant information among the features. Based on these criteria, the final
group of the selected datasets included four candidates from the Raetch packages. These datasets are: 1)
Ringnorm, 2) Splice, 3) Twonorm, and 4) Waveform.
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4.2 Dataset split and subspace method

Each base dataset was randomly separated into a base training set and a test set of samples. Diversity among the
classifiers was introduced in the ensemble by training them in different subspaces. Random subspace methods
[21] have been successfully used in the past as the means to increase diversity among classifiers. However, in
these methods, the grouping of distinct features into subsets is conducted randomly and involves either distinct
or overlapping memberships of features in the various groups. In contrast, in this study a non-random subspace
procedure was implemented by using a feature ranking method and a subsequent.grouping into distinct subsets,
in order to achieve more or less equal discrimination power. A much simpler version of this method has been
used successfully in the past [41]. These approaches are generally referred.to as, “ranked” subspace methods,
since subsets of features are evaluated and ranked according to some specific statistical criterion, in order to
control the discrimination power and the robustness of each subspace in various classification or clustering
applications (see e.g. [62]).

In this paper, the training set was partitioned into K distinct feature groups. Each group of features was
created in a way that satisfied three basic constraints: (a) each group to.be distinct, i.e., no feature is common in
any two groups, (b) all the features are used “as-is”, i.e., no projection or-other complex transformation is applied
(e.g. PCA), and (c) each feature group to represent approximately the.same class-discrimination potential. The
third constraint requires a method for ranking all the features in terms of discrimination power, against the two
classes, as well as their statistical independence with regard to the other features in the initial training set. The
MANOVA method [42] was used to assign a multivariate statistical significance value to each one of the
features and then produce a sorted list, based on (the log of) this value.

A “fair” partitioning of this sorted list of features into equally “accurate” groups, in terms of
classification results, was conducted by selecting features.in pairs from:the top and bottom positions, assigning
the currently “best” and “worst” features in the same_group. Furthermore, the efficiency of each group was
estimated in terms of summing the log of the statistical. significance. value, assigned by MANOVA, of all the
features contained in this group. The log was employed.in orderto avoid excessive differences between the
values assigned by MANOVA, thus creating more even subset sums of these values. Practically, every such pair
of features was assigned in groups sequentially, in“a'way that all.groups contained features with approximately
equal sum of the log of the values assigned by MANOVA.

Each one of these K distinct feature ‘groups was used for training one of the K classifiers in the
ensemble. As a result, the issue of the desired diversity between the classifiers of the ensemble is addressed
independently from the combination rules themselves, making their subsequent comparison easier and more
realistic. It should be noted, that the goal of-this study is not classifier independence or diversity, but rather to
evaluate the performance of the WMR and other combination rules, using weakly independent classifiers, i.e.,
without guaranteed diversity. In fact, the.introduction of a feature subspace method only creates some diversity,
which makes the evaluation of the ensembles more realistic.

4.3 Classifier models

Three, among the most popular, classifiers-models were selected to form committees of experts, in order to test
the various classifier combination schemes. Specifically, the Support Vector Machine (SVM) [43, 44], the
(weighted) k-nearest-neighbor (w/k-NN) [6] and the Decision Tree (DT) [45] classifiers were employed in this
study.

For the SVM architecture, a geometric nearest point algorithm (NPA) [46], based on the notion of
reduced convex hulls (RCH) [47], was used for training a standard SVM architecture with radial-basis function
(RBF) as the kernel of the non-linear mapping.

The tree-based classification models were selected as a very typical candidate of unstable classifiers,
already used successfully in other combination schemes. In their simplest form, each tree node contains a
threshold value that is'’compared to one of the input features and the result dictates which of two possible paths
to follow towards the next tree level. This type of decision trees is often referred to as Ordinary Binary
Classification Trees (OBCT) [6]. In this study, the classic Classification and Regression Tree (CART) algorithm
[45] was employed for designing soft-output (regression) and hard-output (classification) DT, used in
conjunction with soft- and hard-output combination rules, respectively. Three splitting criteria were tested
separately: (a) the Gini index of diversity, a typical choice in CART models that is similar to entropy, (b) the
twoing criterion, optimizing the criterion of splitting the contents of each node into two disjoint and mutually
exclusive subsets, and (c) the deviance criterion, which maximizes the variability (variance) reduction within
each of the two splits of the node. These three splitting criteria, which are some of the most commonly used
choices in typical OBCT models, were tested separately for completeness purposes.
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Finally, a modified version of the w/k-NN classifier was employed [48, 49, 50]. The typical k-NN
classifier architecture was enriched with the options of choosing distance functions other than the classic
Euclidean, employing a non-constant weighting function to the test samples around the center of the k-closure
neighborhood. In this study, the weighting functions were fixed (non-trained), symmetric around the center of
the k-neighborhood and scaled appropriately. In each case, the smallest weight value was assigned to the furthest
of the k neighbors and the largest weight value to the center of the k-neighborhood. In other words, the weighting
profile was either constant, in the case of the typical non-weighted k-NN implementation, or a constantly
decreasing function around the center of the k-neighborhood. The distance metrics implemented for this w/k-NN
classifier were the Euclidean, the city block, the Minkowski, the cosine, the correlation, the Mahalanobis, the
Chebychev, and the Hamming kernels [6]. The weighting metrics implemented for this w/k-NN classifier were
the constant (classic, no weighting), the linearly decreasing and the Gaussian profiles. The introduction of the
different distance functions and especially the option of employing weights to the k-neighbors according to their
distance from the center of the local test set, had little effect to the overall. performance of the w/k-NN classifier
but produced much more stable soft-output profiles, which were used subsequently for the calculation of local
accuracy estimates (see: section 4.5).

4.4 Combination rules

A total of eight combination rules were examined in this study. Specifically, four typical hard-output
combination methods were employed (namely one classic rank-based method and three voting-based schemes,
including the “static” and “adaptive” versions of WMR), two soft-output:averaging methods and two Bayesian-
based combination rules.

The standard maximum rule was employed as a typical rank-based method [1, 51]:

e maximum (“STD: maximum”):

O X)=a p = ?zlla}g {ma;lé {,uy}} = 0(x)] ({9(}() = a)j) (6)

i=1..

where: X is the current input sample to be classified, Oi(x).is output value by the i-th classifier for class label w;
given x, 6(x) is the predicted class label, {1, w>}.are the two class labels, K is the size of the ensemble, 4 is the
corresponding support value by the i-th classifier for class label w; given x, and p is the selected support value.

It should be noted that two other typical rank-based combination rules are equivalent to the maximum
and the simple majority rules, respectively;uin case of dichotomous choice classification [1]. Specifically, the
class labels selected by the minimum rule [51] are the'same to the ones selected by the corresponding maximum
rule that uses the same support values..Similarly, the.class labels selected by the median rule [51] are the same to
the ones selected by the corresponding simple majority rule that uses the same support values.

o simple majority voting (“STD: simple. majority”) [1, 52]:

00y 0 =YD, )
D, (X) =sign (0, (x)-T) (®)

where D; is the hard-output of each of the K individual classifiers in the ensemble, On,; is the majority sum. The
final hard-output decision Dy, Of the simple majority rule is calculated against a fixed-valued decision threshold
T, which is typically half the range of values for Op,;j [1]:

T =%(m?x{Di}+ miin{Di}) Ji=1.K (9)

which is the same to the one employed for WMR (in Eq.4) but with w;=1/K for the simple majority rule.
Additionally, two soft-output averaging models were included, a non-weighted and a weighted one [1]:
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e simple average (“STD: simple average”):

Oavg (X) = ivvlol (X) ' VVI = }{( (10)

o weighted average (“STD: LSE-weighted average”):

Olsewavg (X) = Z V’\\IIOI (X) (11)

where Oi(X), Oayg(X) and Oiewavg(X) are the soft-output value of the single classifier (ensemble member), the
simple averaging rule and the weighted average rule, respectively. For the simple average rule, all weights are
equal, i.e., wi=1/K. The vector W is the optimal one for the weighted average rule, estimated by a linear
regression formula on the individual classifier outputs, against the correct classification tag, in terms of a least-
squares error (LSE) minimization criterion [53, 1]. Thus, this method can be considered as an example of a
“trained” linear weighting rule of soft-output classifiers. In contrast, the WMR approach employs fixed analytical
optimal weighting profile and hard-output classifications (votes) as input, with no need for further training.

Finally, two Bayesian-based combination rules were employed as a very efficient and simple
implementation of non-weighted schemes, which exploit information about local accuracy estimates.
Specifically, the method of Dynamic Classifier Selection based on Local' Accuracy (DCS-LA) [13, 54, 55] was
employed as a typical example of a local accuracy-based ‘non-weighted.combination rule, using the notion of
overall local accuracy [13]. Two different variants of this model (DCS-LA variants) were implemented:

o employing the full Bayes rule for the conditional.probabilities (“STD: DCS-LA (with priors)”):
Qe =D, ()i p, =max{p} ,p,=F{0=0,,. |5} -L{0=a,,..} (12)
e or, using only the local accuracy estimate itself (“STD: DCS-LA (no priors)”):

Obayes(x):Ds(X):ps:ga)é{px} JPIZIDA{Gza)correcz|X} (13)

The final decision in these types of DCS-LA models is dictated by the expert with the highest
conditional probability of success, i.e.; highest “confidence”. As a result, the model implemented in this study is
essentially a direct implementation/of the standard Bayes decision theory that is based on maximizing the
likelihood of “correct” classification.for the currentiinput data x. It should be noted that, although the Bayes rule
includes division by the pdf against the input data x, this factor is irrelevant here since the model is applied to a
specific input sample and therefore the corresponding pdf value is always equal to unity.

For all the soft-output combination rules (simple and LSE-weighted averaging, DCS-LA models), the
final decision is calculated .against a fixed threshold value similarly to the majority voting rules, which is
typically half the range of.values for the specific combination rule, i.e.:

D,mor (X) = sign (mebR xX)-T ) (14)

T= Y (max{O}+min{O}] ,i=1.K (15)

where O; is the soft-output of each of the K individual classifiers in the ensemble, Ocomir is the soft-output of the
combination rule and D¢,mpr is the final class decision (thresholded value).
Table 1 summarizes all the eight combination rules used in this study.
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Table 1: Overview of the eight combination rules used in this study.

Non-weighted Weighted

Static or Rank-based simple average LSE-weighted average
maximum WMR (static) logodds
majority

Adaptive (using posteriors) Bayesian (DCS-LA) no priors WMR (adaptive) logodds

Bayesian (DCS-LA) with priors

4.5 Local accuracy estimates method

To compute the local accuracy estimates, as required by the DCS-LA method, as well as the modification of the
WMR as pointed out in section 3.3, the “overall” local accuracy method was adopted [13, 55]. To this end, we
chose to estimate the error pdf directly by employing a non-parametric density-based method, by means of
histogram approximation [6]. For one-dimensional probability functions, the histogram method has been proven
more efficient than direct interpolation through isotonic regression functions [56]. In order to avoid non-
uniformities in the distribution of the classifiers’ soft-output'values, the use.of dynamic bin width allocation [57]
was employed instead of equal bin width. This method ensures.that every bin contains roughly the same number
of samples, i.e., the width of the histogram bins is adjusted appropriately, in order to produce uniform resolution
and smoothness of the histogram curve throughout the entire range of values.

In this study, the local accuracy estimation of-each classifier was based on the corresponding error pdf,
approximated via the histogram method with dynamic bin width‘allocation. The complete process includes five
distinct steps: (a) Each classifier in the ensemble is.designed based on a training set of samples and subsequently
evaluated on a different set of test samples. (b) The soft-output-values of the classifier are then distributed
uniformly into bins of dynamic width. (c) The corresponding-localized error probability estimation is calculated
for every bin in terms of error frequency ratio (errors.versus total samples in bin). (d) After the calculation of the
error pdf value in each bin, the bin values are interpolated with a piecewise cubic Hermite spline, chosen for its
shape-preserving properties [58, 59], in order to.produce‘the final, continuous, error pdf estimator. (€) The local
accuracy estimate, i.e., the “success” pdf, for each specific classifier is calculated by one minus its corresponding
error pdf (interpolated) value for a given input sample-x; i.e.:

Plo=w,, |x}= N e% " b7 2 0,(x) > b (16)
LAE : PI {6 = wcorrecf ‘ X} = I_me (B {9 = a)error | X}) > blm = Oi(x) > bim+l (17)

where O;(x) is the i-th classifier’s output, N;™ is the number of output values from the i-th classifier in (dynamic)
histogram bin m, Ne;™ is the number of incorrect classifications committed by the i-th classifier in bin m, b"™ and
b,"** are the boundaries of bin m for the i-th classifier, and H," is the piecewise cubic Hermite spline for the error
pdf in bin m for the i-th-classifier.

Results from" all single-classifier tests have shown that the local accuracy estimation based on the
dynamic-width histogram method produced very robust and accurate results for all classifiers, even for the
OBTC, which is the 'most unstable of the three base classifiers used in this study. Figure 1 illustrates a real
example of the procedure. The plot in (a) illustrates the fixed-width histogram (counts per fixed-width bin) of the
SVM kernel output values against correct (green/high) and incorrect (red/low) classifications, for the single-
classifier configuration in the “splice” dataset. The plot in (b) illustrates the resulting dynamic-width normalized
histogram (dots) and the corresponding local accuracy estimator (interpolated dynamic-width bins) function,
which calculates the estimated posterior probability of successful (blue/high) and incorrect (red/low)
classification with regard to the current SVM kernel output.
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Figure 1: Example«of the local accuracy estimation method. Green (high/lighter) and red (low/darker)
portions of the bars in the fixed-width histogram in plot (a) represent number of correct and incorrect
classifications, respectively, with regard to the classifier’s output value. The marked points in plot (b)
correspond to the new bin centers of the dynamic-width histogram for the “success” pdf, while the
interpolation curve represents the analytical local accuracy estimator function for correct
(blue/high/darker curve) and incorrect (red/low/lighter curve) classification, with regard to the
classifier’s output value. The results are for the single SVM classifier on the “splice” dataset.
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5. Experiments and Results

The experimentation phase of this study involved three consecutive stages: (a) the characterization of all datasets
based on single classifier tests, (b) the training of ensembles based on different choices of datasets, number and
type of base classifiers, and (c) the comparative evaluation of all the classifier combination rules.

5.1 Datasets and classifiers characterization

In the preliminary analysis stage, every dataset/classifier combination involved:five training realizations, each
one employing training and parameter optimization according to each classifier'model. For the SVM classifier,
the optimization included the x soft margin parameter of the NPA-RCH training algorithm [46, 47], as well as
the epsilon parameter (convergence accuracy). Furthermore, the Radial Basis Function (RBF) kernel [44] with
optimized sigma (o) value was used in the final choice of the SVM classifiers’ structure. For the OBTC, each
setup included a classification and a regression tree, both trained on the same data and both using the same
splitting criterion (one of: Gini, twoing or deviance). In all cases, the OBTC models were optimized against the
exact choice of the splitting function and they all employed a minimum limiting threshold of ten samples per
splitting node during training/pruning phases [1, 6]. Finally, for the w/k-NN classifier, the optimization included
the best choice for distance function (Euclidean or other), the k-size parameter and the weighting function
(constant or other).

Tables 2 and 3 illustrate all the dataset/classifier/combinations and the corresponding best-accuracy
configurations for the full feature sets (i.e., no feature selection/optimization), which were used as the base for
creating and evaluating the corresponding ensembles in the subsequent:stage of the experiments.

Table 2: Dataset specifications and single-classifier (reference) accuracies (%). Mean and standard deviation
values are based on five training realizations-with full feature set.

Dataset Training set  Testing set Dataset SVM OBTC w/k-NN
size size Dimension accuracy accuracy accuracy
ringnorn 400 7000 20 97.66+0.22 80.78+241 77.00+1.83
splice 1000 2175 60 85.29+1.08 92.98+0.97 77.88+2.09
twonorm 400 7000 20 97.70+0.15 7656+1.63 97.85+1.52
waveform 400 4600 21 90.10+0.40 8091+165 89.85+1.50

Table 3: Single-classifier best configurations against datasets, based on five training realizations.

Dataset best SVM.configuration best OBTC configuration  best w/k-NN configuration

ringnorn kernel: RBF (o=5) splt.func=twoing dist.func=Euclidean
1=0.016 splt.limit=10 k-size=1
epsilon=5.e-4 weight.func=none

splice kernel: RBF (0=42) splt.func=deviance dist.func=Euclidean
1=0.036 splt.limit=10 k-size=15

epsilon=5.e-4 weight.func=Gaussian
twonorm kernel: RBF (¢=100) splt.func=deviance dist.func=Euclidean
1=0.008 splt.limit=10 k-size=17
epsilon=5.e-4 weight.func=linear
waveform kernel: RBF (6=20) splt.func=Gini dist.func=Euclidean
1=0.020 splt.limit=10 k-size=21
epsilon=5.e-4 weight.func=none

Ref: arxiv.org/??? (Feb. 2013)

pg. 11-21



H. Georgiou, M. Mavroforakis — ‘A game-theoretic framework for classifier ensembles using weighted majority voting with local accuracy estimates’

5.2 Classifier ensembles training

Using the best-configuration results obtained from the previous experimentation stage, two different base
ensemble designs were employed in the second stage. Specifically, the feature subspace method was used to
create dataset splits for K=5 and K=7 feature subsets, with the application of MANOVA as the feature ranking
method for the complete (original) datasets. Each of these K-splits setups was applied to create ensembles with
five or seven classifiers, each employing one of the three base types of classifiers (SVM, OBTC, w/k-NN).
Subsequently, for each one of these ensemble setups, ten random realizations of-training and testing subsets of
the dataset were created, using the training/testing ratio also used for the corresponding single-classifier cases
(see: Table 2). This procedure was employed in the same way for all four base datasets, for ensembles of five or
seven (same type) classifiers.

For the training of the classifiers in any given ensemble setup,.the model parameters used were the
same with the ones calculated in the corresponding single-classifier case-during the first experimentation phase.
The main reason for not employing a full optimization procedure in‘this second stage was the fact that the
subsequent comparison of the different combination rules was based in:their relative differences in performance
between them and not with the corresponding single classifier model (using the full feature set). Moreover, this
procedure of optimizing every individual classifier in the ensemble would result in the increase of the total
processing time with no actual benefit to the purposes of this particular study, since the goal here is to test the
efficiency and robustness of the various combination rules in ensembles of weak or sub-optimally trained
classifiers.

Table 4 illustrates the mean and standard deviation values of average and maximum (in parentheses)
accuracy rates of ensemble members, for different choices of datasets, K-splits and base classifiers.

Table 4: Average classifier group accuracies (%) for all datasets and splits, against all the ensemble members
in ten training realizations. The numbers enclosed in parentheses indicate the mean of the maximum-
accuracy members in each corresponding ensemble, i.e., the average over only the top members across
the ten training realizations.

Classifiers
Dataset K-splits SVM OBTC w/k-NN
. 77.63+2.13 77.42+0.69 73.64 +£0.55
) (81.10 + 1.05) (79.29 + 0.68) (74.85 £ 0.52)
ringnorm
; 72:89+1.04 74.30+1.04 69.65 + 0.43
(80.53 £.1.73) (78.21 + 1.25) (73.43 £ 0.91)
. 66.80+0.98 72.57 +£0.46 67.33+0.78
i (78.94 + 0.50) (88.39 £ 0.33) (80.84 £ 0.71)
splice
P ’ 63.19+1.30 68.70 £ 0.48 66.04 £ 0.34
(77.17 £ 1.37) (82.49 + 0.49) (80.32 £ 0.41)
> 81.11+0.11 73.82+1.30 79.87+£0.16
(84.11 £ 0.14) (75.34 £ 0.93) (82.72 £ 0.34)
twonorm
. 76.83+0.65 71.78+0.44 75.73+0.20
(82.09 + 0.65) (75.26 + 0.76) (80.40 £ 0.51)
. 75.72+1.28 78.18 £0.63 79.92 +£0.48
(79.26 + 0.59) (79.57 £ 0.62) (81.43 £ 0.53)
waveform
. 70.25+1.09 76.65+0.49 77.64+0.38
(78.54 + 1.03) (79.40 + 0.46) (80.85 + 0.45)
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With respect to the dataset split process employed in this study, Table 4 demonstrates that the non-
random (MANOVA ranking) feature subspace method produced more or less balanced ensembles, as the
standard deviation on the mean and maximum single-member accuracies remained very low in all cases,
regardless of the type of base classifier employed.

5.3 Testing of combination rules in the ensembles

In each training/testing cycle, the classification outputs from the pool of K classifiers were fed as input to each of
the eight combination schemes (discussed in section 4.4) investigated in this study,.producing the corresponding
combined classification outputs of the ensemble.

It should be noted that the half-range decision threshold was used in all combination rules, i.e., no
analytical optimization was conducted for T. This choice is justified by the results from previous studies [e.g.,
41, 1], which support the assertion that the optimized T value rarely lies far from the half-range value.
Furthermore, in the case of combination rules that employ local accuracy.estimates (i.e., a pdf approximation),
information about the shape and properties of the decision boundary of each classifier is already encoded
partially in the (estimated) conditional probability of “correct” classification, and is used either directly (in the
case of DCS-LA) or indirectly (in the weights of WMR).

In the sequel, the overall relative performance of each.combination rule was determined in terms of
ranking position for each case, i.e., according to its corresponding improvement over the mean group accuracy,
for each dataset and K value employed. Specifically, a weighted Borda or w/Borda count method [60] was
employed to attribute ten points to the top-ranked combination rule (first:on the list of eight rules), nine points to
the second (second on the list of eight rules), and so on. In case of a “tie”where two combination rules exhibited
exactly the same performance, both got the same w/Borda.points for the specific ranking position. The Borda
and w/Borda count methods are often used in cases when an overall evaluation of classifiers or ensembles is
required over a wide range of different configurations, datasets and average “grouped” performances, i.e., when
direct aggregation of individual “group” success rates is not valid.in‘terms of statistical context. In this study, as
the average accuracies of all the models are more or less compact within-datasets but very different across-
datasets (very different classification tasks), their relative ranking is much more informative than mean and
standard deviation calculations of actual accuracy rates.

Table 5 illustrates the wBorda rankings.of each (combination rule, as well as the mean increase in
accuracy (each cell corresponds to the average over ten training/testing realizations) over the mean accuracy of
the individual members in the ensemble of SVM classifiers, for each dataset and K-split value employed.
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Table 5: SVM ensemble results for all combination rules, datasets and K-splits. Improvements on average
group accuracy (%) are presented in decimal numbers, while wBorda ranking values are presented as

integers. The underlined wBorda values indicate top-ranking positions (10 points). All accuracy
improvements were calculated as the difference of accuracy rates between the ensemble and the

corresponding single-classifier configuration. Negative values indicate deterioration in performance.
The combination rules are presented sorted against the SUM column, which represents the total sum of

wBorda points assigned to each combination rule over all datasets and K-splits.

ringnorm splice twonorm waveform
SUM  MEAN  STDEV
K=5 K=7 K=5 K=7 K=5 K=7 K=5 K=7
STD: DCS-LA (no priors) 8 8 10 10 9 6 9 10 70 8.75 1.39
16.96 2025 1969 2204 1455 17.28 806 12.87 16.46 453
WMR: logodds (adaptive) 7 6 8 8 8 10 10 9 66 8.25 1.39
1611 1811 1768 2006 1422 1880 .867 128 15.81 3.75
STD: DCS-LA (w/priors) 9 9 9 9 9 5 4 3 57 7.13 2.64
17.27 2043 1917 2189 1455 17.22 -33L.. 4.25 13.93 8.83
STD: simple average 10 10 4 4 10 4 7 8 57 7.13 2.80
17.64 2162 776 611 1520 1582 (797 1168 11.73 5.87
STD: LSE-w/average 6 5 7 6 7 7 8 7 53 6.63 0.92
1481 1558 1646 19.04 21376 17497 7.98 1121 14.54 3.56
WMR: logodds (static) 4 4 6 7 7 9 6 5 48 6.00 1.69
1463 1362 1641 1947 1376 (1766 7.37  9.77 14.05 3.93
STD: simple majority 5 3 5 5 7 8 6 4 43 5.38 1.60
1481 1257 1228 1892 1376< 1764 737 734 12.46 3.55
STD: maximum 3 7 3 3 6 3 5 6 36 4.50 1.69
1441 1868 168 218 1210 164 607 10.16 7.82 7.21

The same approach was applied to.ensembles of OBTC and w/k-NN classifiers. Tables 6 and 7 illustrate

the wBorda rankings and mean accuracy improvements of OBTC and w/k-NN ensembles, accordingly.

Ref: arxiv.org/??? (Feb. 2013)

pg. 14-21



H. Georgiou, M. Mavroforakis — ‘A game-theoretic framework for classifier ensembles using weighted majority voting with local accuracy estimates’

Table 6: OBTC ensemble results for all combination rules, datasets and K-splits. The adverted notation is the
same as in Table 5.

ringnorm splice twonorm waveform
K=5 K=7 K=5 K=7 K=5 K=7 K=5 K=7
WMR: logodds (adaptive) 10 8 6 7 9 10 10 10 70 8.75 1.58

SUM MEAN STDEV

1425 1534 1893 2149 1500 1844 746  9.78 15.09 4.69
WMR: logodds (static) 9 7 8 8 8 8 9 9 66 8.25 0.71
1417 1488 1916 2158 1440 1784 7.10-% 9.23 14.76 4.86
STD: LSE-w/average 9 9 7 9 8 7 8 8 65 8.13 0.83
1417 1540 1898 2165 1440 1783 705  9.17 14.83 4.87
STD: simple majority 9 6 5 5 8 9 9 9 60 7.50 1.85
1417 1486 1514 1626 1440 1787 .70 9.3 13.63 3.62
STD: simple average 8 10 4 4 10 6 7 7 56 7.00 2.33
1351 1607 1214 1510 1532 1666 549  6.60 12.61 431
STD: DCS-LA (no priors) 7 4 10 10 7 4 6 6 54 6.75 2.31
923 11.00 20.67 2192 1334 1295 3.89 4.02 12.13 6.70
STD: DCS-LA (w/priors) 6 5 9 6 6 5 4 4 45 5.63 1.60
834 1118 2057 20.90__ 1333 12.99 =500 -6.71 9.45 10.40
STD: maximum 5 3 3 3 5 3 5 5 32 4.00 1.07
052 -148 813 925 /205 . -158 -137 -3.46 151 473

Table 7: w/k-NN ensemble results for all combination rules, datasets and K-splits. The adverted notation is
the same as in Table 5.

ringnorm splice twonorm waveform
K=5 K=7. K=5 'K=7 K=5 K=7 K=5 K=7

SUM MEAN  STDEV

WMR: logodds (adaptive) 8 8 8 7 10 10 10 10 71 8.88 1.25

1717 2076 1622 1903 1416 1808 6.98  9.12 15.19 4.85
STD: DCS-LA (no priors) 9 9 9 10 7 6 6 6 62 775 167
1968 /92141, 19.05 2149 948 1066 455  3.65 13.75 7.52
STD: DCS-LA (w/priors) 10 10 10 9 6 5 4 4 58 725 276
2000 2179 1930 2124 945 1064 751 -8.96 1074 1262
STD: LSE-w/average 7 5 5 5 9 8 9 9 57 713 1.89
1347 1699 1391 17.34 1408 1785 677 886 13.66 4.02
WMR: logodds (static) 7 6 4 4 9 9 8 8 55 6.88  2.03
1347 17.02 1378 1709 1408 1793 676 882 13.62 4.01
STD: simple average 6 4 7 8 8 7 7 7 54 6.75 1.28
303 -172 1541 1920 1282 1375 642  6.16 9.38 7.03
STD: simple majority 7 7 3 3 9 9 8 8 54 6.75 243
1347 1703 939 1273 1408 1793 676 882 1253 3.96
STD: maximum 5 3 6 6 6 3 5 5 39 4838 1.25
801 972 1529 1844 58 207 407 207 3.75 9.85
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Table 8 presents a summary of the wBorda rankings from Tables 5, 6 and 7. The list of all the
combination rules is sorted according to their sum of wBorda points, i.e., their overall efficiency throughout all
the base datasets (four) and K-splits (K=5, K=7). Additionally, based on the results from Tables 2 and 4 through
7, Table 9 presents a summary of the comparative performance of the best ensemble designs against the
corresponding best single-classifier performance, for all datasets.

Table 8: Overall evaluation of all the combination rules, using the wBorda results from all the experiments.
The wBorda sum, mean and standard deviation values for each combination‘rule were calculated across
all the datasets, K-splits and classifiers. The list is sorted according to the. wBorda sum (and mean)
ranking position of each combination rule, from the best to the worst combination rule.

Combination rule w/Borda SUM w/Borda MEAN, w/Borda STDEV
WMR: logodds (adaptive) 207 8.63 1.38
STD: LSE-w/average 175 729 1.40
STD: DCS-LA (no priors) 173 7.21 2.19
WMR: logodds (static) 169 7.04 1.78
STD: simple average 167 6.96 2.14
STD: DCS-LA (w/priors) 160 6.67 2.41
STD: simple majority 157 6.54 211
STD: maximum 107 4.46 1.35

Table 9: Overall evaluation of the best ensemble designs againstthe best single-classifier configurations, for
all datasets. The values in the rightmost column refer to.the difference between the accuracy (%) of the
best ensemble design and the corresponding best single-classifier accuracy for a specific dataset.

Dataset Best single- Best ensemble designs Best ensemble  Best accuracy
classifier accuracy difference

configuration

ringnorm 97.66 SVM: simple average, K=5 95.27 -2.39
(SVM) OBTC: WMR (adaptive) all, K=5 91.67
w/k-NN: DCS-LA (w/priors), K=5 93.64

splice 92.98 SVM: DCS-LA (no priors), K=5 86.49 +0.26
(OBTC) OBTC: DCS-LA (no priors), K=5 93.24
w/k-NN: DCS-LA (no priors), K=7 87.53

twonorm 97:85 SVM: simple average, K=5 96.31 -1.54
(Wik-NN) OBTC: WMR (adaptive), K=7 90.22
w/k-NN: WMR (adaptive) all, K=5 94.03

waveform 90.10 SVM: WMR (adaptive) all, K=5 84.39 -3.20
(SVM) OBTC: WMR (adaptive) all, K=7 86.43
w/k-NN: WMR (adaptive) all, K=5 86.90
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6. Discussion

The results from Table 8 clearly demonstrate the overall superior performance of the “adaptive” WMR model.
Both the “adaptive” and the “static” versions of the WMR model show improved performance compared to the
simple majority voting, as well as the maximum rule, for all three types of classifier ensembles (SVM, OBTC,
w/k-NN).

The “adaptive” version of WMR also exhibited better performance compared to the simple averaging
rule, as well as the weighted averaging rule using LSE-trained weights, i.eqs=both soft-output combination
models. Thus, the “adaptive” WMR model performs equally well or better than.simple soft-output averaging
combination rules.

With regard to weighted versus non-weighted combination rules, all three weighted combination rules,
i.e., the two WMR and the LSE-trained weighted average, have been clearly proven better than the non-weighted
hard-output combination rules (i.e., maximum and simple majority). Moreover, in the overall evaluation, the
“static” WMR outperformed the Bayesian-based combination rule using priors (“STD: DCS-LA (with priors)”).
This essentially means that the WMR model is a very effective way /of exploiting information about the
classifiers’ competencies, even when this information refers to global (i.e., prior) and not localized (i.e.,
posterior) probabilities. The overall performance of the WMR improved significantly when local accuracy
estimates was used in the “adaptive” version of the model, reaching-the top-ranking position over all the other
combination rules, including the best soft-output (“STD: LSE-weighted average™) and the best Bayesian-based
(“STD: DCS-LA (no priors)”) combination rules.

The w/Borda rankings from Tables 5 through 8 also.demonstrate the robustness and stability of the each
combination rule. For small values of standard deviation“(close to one).in the corresponding w/Borda mean
ranks, the relative ranking position of a combination rule against thetothers remains more or less the same. Thus,
the “static” version of the WMR exhibited a consistently-lower ranking position compared to the corresponding
“adaptive” WMR model in general. Likewise, the “adaptive” WIMR model is more stable than almost all the
other combination rules (except maximum), including the LSE-weighted average, which exhibits more or less
the same consistency and robustness as the “adaptive” WMR but with lower relative ranking.

In terms of the overall performance of the combination rules, results from Tables 5 through 7
demonstrate that in all cases the best combination rules increased the average success rates (Table 4) of the
classifier pool significantly, up to +22% (mainly.in the “ringnorm” and “splice” datasets), with larger relative
improvements as the size of the ensemble increased from five to seven members, for all the three types of base
classifiers. Furthermore, Table 9 shows that the performance of the best ensemble designs closely matched the
performance of the corresponding best single-classifier.configuration and even surpassed it (“splice” dataset).
Although the WMR rule was not always selected as the-best ensemble design, its overall performance and the
top-ranking positions in Table 8 clearly demonstrate'that it is inherently robust and consistently efficient.

The general behavior of almost.all the ensembles was consistent with the theoretical background and
experimentally verified the assertion ‘that combining even moderately independent experts results to the
improvement of their individual competencies [1]. Previous studies [61] have shown experimental evidence that
optimal combination of SVM classifiers can be.achieved through linear combination rules. Ensembles of SVM
or other type of robust classifiers,-as a combination of multiple simpler models, each using a 1/K portion
(subspace) of the feature space of the dataset instead of a single classifier of the same type for the complete
feature space, can be used to reduce the overall training effort significantly. In particular, for the SVM model
case, kernel evaluation employs inner product between vectors, i.e., its complexity is directly proportional to the
dimensionality (number of features) of the input vectors. Thus, feature space reduction, from F to F/K features,
results in significant decrease in the overall complexity during training. A similar approach has also been
examined in [61], where an ensemble of SVM classifiers has been used, trained with small training sets, instead
of a single SVM trained with one large training set. Furthermore, there is evidence that such ensembles of kernel
machines are more:stable than the equivalent kernel machine itself and that their model need not be more
complex than a simple linear combination of its member outputs [61], which is consistent with the theoretical
assertion of the WMR formulation as the optimal aggregation model for any n-label voting task (see section 2.3).
This reduction in training time, of course, has to be compared to the additional overhead of calculating a
combination rule for every output vector from the classifier pool, as well as the total training time of the K SVM
classifiers. This is one of the main reasons for preferring very simple, linear aggregation schemes with non-
trained weights, such as the WMR, for the design of robust classifier ensembles.

It should be noted that using simple linear combination models, including weights that do not require
iterative training, can be extremely useful in applications that require parallel and/or on-line updating. In the case
of WMR, the combination rule is fully parallelizable, even when using local accuracy estimates in the weighting
formula, since they are based on histogram calculations and not on iterative off-line optimization of the weights.
Furthermore, the updating of the histogram can also be realized on-line, simply by adding new evaluation results
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as the model runs on new input data (without any new re-training of classifiers), and only if needed, i.e., when
the new data invalidate the statistics of the previous histogram estimations.

7. Conclusions

In this paper, a game-theoretic framework for combining classifiers has been proposed. The adapted WMR has
been, for the first time, presented as an alternative approach to design simple and efficient ensembles of voting
classifiers, even when the conditional independence assumption is only moderately.satisfied via feature subspace
methods. Experimental comparative results have shown that such simple combination models for combining
classifiers can be more efficient than typical rank-based and simple majority.schemes, as well as simple soft-
output averaging schemes in some cases. Moreover, when the weighting profiles required in the WMR are
associated with the posterior (localized), instead of the prior (global), approximations of the classifiers’
accuracies, the resulting ensemble can outperform many commonly :used. combination methods of similar
complexity. The use of simple linear combination models that employ.analytically computed weights may
provide the necessary means to apply multi-expert classification schemes in parallel implementations with on-
line updating capabilities. Therefore, the WMR can be asserted as a simple, yet effective tool in the palette for
combining classifiers in an optimal, adaptive and theoretically well-defined framework.
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