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Abstract.

In 1980 F. Wattenberg constructed the Dedekind completion*Rq4 of the
Robinson

non-archimedean field *R and established basic algebraic properties of *Rq4 [6].

In 1985 H. Gonshor established further fundamental properties of *Rq4 [7].In [4]
an

construction of summation of countable sequence of Wattenberg numbers is
proposed

and corresponding basic properties of such summation is considered. In this
paper the

important applications of the Dedekind completion*R4 in transcendental number
theory is

considered. Given any analytic function of one complex variable

feQzz%,...], we

investigate the arithmetic nature of the values of f(z) at transcendental points
e".,n e N.

Main results are: (i) the both numbers e + 7 and e x = are irrational, (ii) number
e are

transcendental.
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1.Introduction.
In 1873 French mathematician, Charles Hermite, proved that e is



transcendental. Coming as it did 100 years after Euler had established the
significance of e, this meant that the issue of transcendence was one
mathematicians could not afford to ignore.Within 10 years of Hermite’s
breakthrough,his techniques had been extended by Lindemann and used to add =
to the list of known transcendental numbers. Mathematician then tried to prove that
other numbers such as e + 7 and e x 7 are transcendental too,but these questions
were too difficult and so no further examples emerged till today’s time. The
transcendence of e” has been proved in1929 by A.O.Gel’fond.

Conjecture 1. The both numbers e + 7 and e x & are irrational?

Conjecture 2. The numbers ¢ and r are algebraically independent?

However, the same question with ¢ and = has been answered:

Theorem.(Nesterenko, 1996 [1]) The numbers ¢* and = are algebraically

independent.

Throughout of 20-th century,a typical question: is whether f(a) is a
transcendental number for each algebraic number a has been investigated and
answered many authors.Modern result in the case of entire functions satisfying a
linear differential equation provides the strongest results, related with Siegel’'s
E-functions [1],[2],ref [1] contains references to the subject before 1998, including
Siegel E and G functions.

Theorem.(Siegel C.L.) Suppose that A € Q, 4 = —1,-2,...,a * 0.
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Then ¢, (a) is a transcendental number for each algebraic number a = 0.
Let /'be an analytic function of one complex variable f € Q[z].

Conjecture 3.Is whether f(«) is an irrational number for given

transcendental number a.

Conjecture 4.1s whether f{a) is a transcendental number for given

transcendental number a.

In this paper we investigate the arithmetic nature of the values of f{(z) at
transcendental

points e”,n € N.

Definition 1.1. Let g(x) : R — R be any real analytic function such that

galx) = Za,,x”,|x| <rVnla, € Q]. (1.2)
n=0

We will call any function given by Eq.(1.2) Q-analytic function and denoted by
ga(x).



Definition 1.2.[3],[4]. Arbitrary transcendental number z € R is called

#-transcendental number over field Q, if there does not exist Q-analytic function

ga(x) such that gq(z) = 0,i.e. for every Q-analytic function gq(x) the

inequality go(z) # 0 is satisfies.

Definition 1.3.[3],[4].Arbitrary transcendental number z is called
w-transcendental

number over field Q,if z is not #-transcendental number over field Q,i.e.there

exist Q-analytic function gq(x) such that gq(z) = 0.

Example. Number 7 is transcendental but number 7 is not

#-transcendental number over field Q as

(1) function sinx is a Q-analytic and

(2) sin(%) - lie.

2n+1 _2n+1
T r’ r’ -D™"'rm

- + - +o+ +...= 0.
22331 2351 277 221 2n + 1))

-1+

Main results are.

Theorem 1.1.[3],[4].Number ¢ is #-transcendental over field Q.

From theorem 1.1 immediately follows.

Theorem 1.2.[3],[4]. The both numbers ¢ + 7 and e — = are irrational.
Theorem 1.3.For any & € Q number e¢ is #-transcendental over field Q.
From theorem 1.3 immediately follows.

Theorem 1.2.[3],[4]. The both numbers e x = and e~! x r are irrational.

2. Preliminaries.Short outline of Dedekind
hyperreals and Gonshor idempotent theory

Let R be the set of real numbers and *R a nonstandard model of R [5]. *R is not
Dedekind complete.For example, u(0) = {x € "R|x ~ 0} and R are bounded

subsets of *R which have no suprema or infima in *R.Possible completion of the
field *R can be constructed by Dedekind sections [6],[7]. In [6] Wattenberg
constructed the Dedekind completion of a nonstandard model of the real numbers
and applied the construction to obtain certain kinds of special measures on the set
of integers. Thus was established that the Dedekind completion *R4 of the field *R
is a structure of interest not for its own sake only and we establish further important
applications here. Important concept was introduced by Gonshor [7] is that of the

(1.3)



absorption number of an element a €*R4 which, roughly speaking, measures the
degree to which the cancellation law a+ b = a+ ¢ = b = ¢ fails for a.

2.1 The Dedekind hyperreals *Rq4

Definition 2.1. Let *R be a nonstandard model of R [5] and P(*R) the power set
of *R.

A Dedekind hyperreal a € *R4 is ordered pair

{U,V} € P(*R) x P(*R) satisfied the next conditions:

1.3xPx e UNy e 1).2.UNV =3.3.Vx(x € U = Fy(y € VAx <y)).

4 Vx(xeVe=3yyeVAx<y).b. VxVyx<y=xeUVyel).

Designation 2.1. Let {U,V} = a € *Rq4. We designate in this paper

U 2 cut_(a),V £ cut.(a)

a = {cut_(a),cut (o)}

Designation 2.2. Let o € *R.We designate in this paper

a® 2 cut_(a),as = cut (a)

a = {a”,as}

Remark 2.1. The monad of a € *R itis the set: {x € "R|x ~ a} is denoted by

p(a).
Supremum of u(0) is denoted by £4. Supremum of R is denoted by Aq4.Note
that [6]

ga="(-0,0]U p(0),

Aq = U[*(—oo,n)].

neN

Let 4 be a subset of *R is bounded above then sup(4) exists in *Rq4 [6].
Example 2.1. (i) Aq = sup(R.) € *Rq\*R, (i) ea = sup( u(0)) € *Ra\*R.
Remark 2.2. Unfortunately the set *R4 inherits some but by no means all
of the algebraic structure on *R.For example,*R4 is not a group with
respect to addition since if x ++r, y denotes the addition in *R4 then:



€4 +*R, €4 = €4 +*r, 0k, = €4. ThUS *R4 is not even a ring but pseudo-ring only.
Definition 2.2 We define:

1.The additive identity (zero cut) 0-g,, often denoted by 0% or simply 0 is
0w, 2 {xe Rlx<0m}p.

2.The multiplicative identity 1-g,, often denoted by 17 or simply 1 is

lg, 2 {xe "Rlx <= lu}.

Given two Dedekind hyperreal numbers o € *R4 and € *Rq4 we define:
3. Addition a ++z, B of « and f often denoted by a + S is

a+p = {x+y|x €Ea,yec ﬂ}.

It is easy to see that a ++&, 0-r, = a for all a € *Rq.

It is easy to see that o ++r, f is again a cutin *R and a ++z, B = f +r, .
Another fundamental property of cut addition is associativity:

(a TRy B) TRy Y = 0 Ry (ﬁ"'*[Rd 7).

This follows from the corresponding property of *R.

4.The opposite —x, o of a, often denoted by (-a)* or simply by —a, is
—q 2 {x e "R| —x ¢ a,—x is not the least element of *R\a}

5.We say that the cut a is positive if 0¥ < a or negative if a < 0%

The absolute value of a,denoted |a|,is |a| £ a,if a > 0 and |a| £ —a,ifa <0
6.If a, B > 0 then multiplication a x-z,  of « and p often denoted a x f is
axp = {z € 'Rlz=xxyforsomex e a,y € fwithx,y > 0}.
Ingeneral,ax f=0ifa=0o0rf =0,
axf=lalx|p|ifa>0,>00ra<0,p<0,
axfz—(a|-|p])ifa>0,8<0,0ra<0,p>0.

7. The cut order enjoys on *R4 the standard additional properties of:

(i) transitivity:a <<y =a<y.

(if) trichotomy: eizer a < ,B < a or a = p but only one of the three

(iii) translation: a < f = a +, ¥y < f+r, V-

2.2 The Wattenberg embeding *R into *Rg4

Definition 2.3.[6]. Wattenberg hyperreal or #-hyperreal is a nonepty subset a &
*R such that:

(i) Foreveryae aand b < a, b € a.

(ii) a + J,a + *R.

(iii) @ has no greatest element.

Definition 2.4.[6].In paper [6] Wattenberg embed *R into *R4 by following way:

if « € *R the corresponding element, a”, of *Rq is

a* = {xe Rl|x<a} 2.1)
Remark 2.3.[6]. In paper [6] Wattenberg note that: condition (iii) above is



included only to avoid nonuniqueness. Without it * would be represented by both
a*and a* U {a}.

Remark 2.4.[7]. However in paper [7] H. Gonshor pointed out that the definition
(2.1) in Wattenberg paper [6] is technically incorrect. Note that Wattenberg [6]
defines —a in general by

—az{ae *[R|—a¢a}. (2.2)
If a € *Rq i.e. *R4\a has no mininum, then there is no any problem with definitions
(2.1) and (2.2). However if « = a" for some a € *R, i.e. a* = {x € "R|x < a} then
according to the latter definition (2.2)

—af = {xe *[R|x§—a} (2.3)
whereas the definition of *R4 requires that:
—a* = {x € *IR|x < —a}, (2.4)

but this is a contradiction.

Remark 2.5.Note that in the usual treatment of Dedekind cuts for the ordinary
real numbers both of the latter sets are regarded as equivalent so that no serious
problem arises [7].

Remark 2.6.H.Gonshor [7] defines —a* by

—a* = {xe "R|3b[b>an-b ¢ al}, (2.5)

Definition 2.5. (Wattenberg embeding) We embed *R into *R4 of the following
way: (i) if & € *R, the corresponding element a” of *R4 is

a* £ {xe "Rx <= a} (2.6)
and
—a#={ae *[R|—a¢a}u{a}. (2.7)
or in the equivalent wayi,i.e. if @ € *R the corresponding element a4 of *Rq4 is
as = {x e Rx ., > a} (2.8)
Thus if a € *R then a* = 4|B where

A4={xe Rx<wzap,B={ye Ry.,>a} (2.9)

Such embeding *R into *R4 Such embeding we will name Wattenberg embeding
and to designate by *R A *Rq



Lemma 2.1.[6].

(i) Addition (o ++g, o) is commutative and associative in*Rq.

(if) Va € *Rq : o+, O+g, = a.

(iii) Vo, B € *R : o ++g, p* = (a ++& B)".

Remark 2.7. Notice, here again something is lost going from *R to *Rq4 since
a < B does

notimply a+a < B+asince 0 < g4 but0+ &4 = €4 + €4 = £4.

Lemma 2.2.[6].

(i) <-z, alinear ordering on *R4 often denoted <, which extends the usual
ordering on

*R.

(i) (@ <ry @)A (B <my ) = a+., B, o'+, B

(i) (@ <., @ )N (B<u, B) = at., B<., o+, B

(iv) *R is dense in *Rq4.That is if a <, P in *Rq4 there is an a € *R then

a<., a' <., P
(v) Suppose that 4 &£ *R4 is bounded above then sup4 =sup a = UaeA cut_(a)
acAd
exist in *Rg4.
(vi) Suppose that 4 < *Rq4 is bounded below then inf4 = inf a = UaeA cut.(a)

acAd
existin *Rgq.
Remark 2.8.Note that in general case inf4 = inf a + n cut_(a). In particular

acAd acA

the formula for inf4 given in [6] on the top of page 229 is not quite correct [7], see
Example 2.2. However by Lemma 2.2 (vi) this is no problem.
Example 2.2.[7].The formula inf4 =inf= ﬂ cut_(a) says

acd acAd
inf= {a
acA

3d(d > 0)|:a +de n cut_(a) J}
acAd

Let 4 be the set 4 = {a + d} where d runs through the set of all positive numbers in

*R,then inf4 = a = {x|x < a}. However ﬂ cut_(a) = {xlx < ab.

aeA

Lemma 2.3.[6].

(i) If & € *R then —g, (a*) = (- ).

(if) —ry(—rq @) = .

(iii) a <sg, B &= —r, B <*r, —*r, Q.

(iv) (—r,0) +., (— -y ﬁ) Siry T [Rd<(l+ ﬂ).

(V) Va € R : (— za) +.,, (=, B) = —m, (@ +w, B).
(VI) o+, (—*Rd a) <*R, O*Rd.

Proof.(v) By (iv): (-a)" + (-B) < —(a”* + p).
(1) Suppose now ¢ € —(a” + B) this means



(2) 3ci[c < ¢1 € —(a” + B)] and therefore

(3) —c1 ¢ (@ + p).

(4) Note that: —c—a ¢ B (since—c—a € Banda— (c—c;) € a” imply

—c1 =a-(c—c1)+(-c—a) € a’ + B but this is a contradiction)

(5) Thus —c — a € p and therefore c¢+a € —p.

(6) By similar reasoning one obtain: ¢; + a € —p.

(7) Note that: —a — (c¢1 — ¢) € a” and therefore

c=-a—-(ci—¢c)+(c1+a) € (—a)" + (-p).

Lemma 2.4.(i) Va € *R,Vf € *Rq,pu € *R,u > 0 : (—pa)* + (-u*B) = —u#(a* + B),

(i) Va € *R,Vp € *Rg,pu € *R,pu > 0 : (ua)” + pu*p = p*(a” + p).

Proof.(i) For u = 0 the statement is clear. Suppose now without loss of
generality

p > 0. By Lemma 2.3.(iv): (—ua)® + (—u*B) < —(ua® + u*B).

(1) Suppose ¢ € —u*(a” + B) and therefore £ € —(a” + B), but this means

7]
(2) 301[% < C—Hl € —(a* +ﬁ)} and therefore
(3) —C“—l ¢ (a" + p).

._C _ i _c _ _(c _ <1 #i
(4) Note that: T B (since TR pand a T )c€a imply
—% =a- % — %) + (—% - a) € a” + B but this is a contradiction)

(5) Thus —% —a € B and therefore ¢+ pa € —u*p.

(6) By similar reasoning one obtain: ¢ + ua € —u*p.

(7) Note that: —ua — (¢1 — ¢) € p*a” and therefore

¢ =—pa—(c1 =)+ (c1 + pa) € (—pa)” + (—u*B).

(if) Immediately follows from (i) by Lemma 2.3.

Definition 2.6.Suppose a € *Rq4. The absolute value of a written ||
is defined as follows:

o ifa *Rd Z O*[Rd
|| = ,
—*Ry O if a <+r, O+r,
Definition 2.7.Suppose a, f € *Rq4. The product a x-z, B, is defined
as follows: Case (1) o, f «r, > O+g, :

o Xz, f 2 (2.10)
{axn blO-n, <ty @ <y @) A (Ocny <y b <oy B)} U (* =0, "0)".

Case (2) a =g, O-r, V B =, O+, : @ x:g, f = O-g,.
Case (3) (a <*Ry4 O*Rd) Vv (ﬂ <*R4 O*Rd) \ (0{ <*Rq4 O*Rd /\ﬂ <*Rq O*Rd)

2.11)

o xRy ﬂ 2 |a| X Ry |ﬂ| iff o <*Rq O*Rd /\ﬂ <*Rq O*Rm
o X*Ry ﬁ 2 Ry (|a| X*Rg |ﬂ|) iff (0! <*Ry4 O*Rd) \% (ﬂ <Ry O*Rd)'



Lemma 2.5.[6]. (i) Va,b € *R : (a x-g b)" = a” x-x, b*.
(if) Multiplication (- x-g ) is associative and commutative:

(@ xry B) Xy ¥ = Xy (BXRy V), @ XoRy =P xRy Q.
(III) g, xRy @ = @; —1+r, X*r, @ = —*r, Q, where I, = (l*ug)#.

(iv) laf x-rq [B] = |B] x-rq |a].

(V)

[(@=0)AB=Z0)Ay 20)] = axw, (B+r,7) = axry B+er, @Xr, Y.

(vi)

! ! ! !
0-r, <Ry @ <Ry @,0Ry <Ry B <Ry f = A xXry f <y @ Xor, B

Lemma 2.6.Suppose u € *R and B,y € *Rq4. Then

[ 2 0) A (B2 0)] = u* xomy (B—m, 7) = 1 xomy f—omy 1t X, 7.

Proof. We choose now: (1) @ € *R such that: -y + a” > 0.
(2) Note that u* x (B —y) = u* x (B-y) + u*a® — p*a*.
Then from (2) by Lemma 2.4 .(ii) one obtain

) u* x (B-y) = u* x[(B-7v)+a"] - pn'a”. Therefore

(4) p* x (B—7y) = p' < [B+(a" —y)] - pla".

(5) Then from (4) by Lemma 2.5.(v) one obtain

(6) W' x (B—y) = p" x B+ p* x(a" —y) — p'a".

Then from (6) by Lemma 2.4 .(ii) one obtain

(T p* x (B—y) =p' xp+p’ xa* —p'y —pa® = p* x p—p'y.
Definition 2.8. Suppose a € *Rq,0 <z, o then o' is
defined as follows:

(i) O-r, <k, @ : & '"*a 2 inf{a""**|a € a},

(ii)o <g, 0:a "™ 2 g, (—wg, &) ",

Lemma 2.7.[6].

(i) Va € *R : (a*) "% =, (a"1*=)".
(i) (@) * =a.
(iii) 0-r, <r, @ <r, B = B <:g, @ .
(IV) [(O*Rd <Ry O!) A (O*Rd <Ry ﬂ)] =
= (a_l*“{‘d> XR, (ﬁ‘“%) <sj, (@ x+wr, 'B)_I*Rd
(V) Va € *R : a #x 0-x = (a¥) "% xug, (ﬂfl*“@d> = (a" xwg, B) ",
(Vi) o xg, @' <wg, 1:g,.
Lemma 2.8.[6]. Suppose thata € *R,a > 0,8,y € *Rq, > 0,y > 0.Then
a’ x«g, (B+wmwy, ) = a” xw, B+r, a® x-g, 7.
Theorem 2.1.Suppose that S is a non-empty subset of *Rq4 which is
bounded from above, i.e. sup(S) exist and suppose that

(2.12)

(2.13)

(2.14)

(2.15)



Ee*R,&E>0.Then

sup {&* x x} = &F x (sup {x}> = &% x (supS).

xeS xeS

Proof.Let B = supS. Then B is the smallest number such that, for any x € S,x
<B.LetT = {£* x x|x € S}.Since & > 0,E% x x < &% x B for any x € S.Hence T is
bounded above by é# x B.Hence T has a supremum Ct = s-supT. Now we have to
prove that Ct = ¥ x B == &% x (supS).Since & x B = £* x (supS) is an upper
bound for Tand C is the smallest upper bound for T,Ct < & x B.Now we repeat the
argument above with the roles of S and T reversed. We know that Cy is the
smallest number such that, for any y € T,y < Cr.Since &* > 0 it follows that
(E) 7 xy < (&) xCrforanyy e T.ButS ={(&*)"' xyly € T}.Hence (¢*)™' x Cr
is an upper bound for S.But B is a supremum for S.Hence B < (é#)‘1 x Ct and
&% x B < Ct.We have shown that Ct < & x B and also that é# x B < Cr. Thus
5# x B = Cfr.

2.3 Absorption numbers in *Rg.

One of standard ways of defining the completion of *R involves restricting
oneself to subsets, which have the following property Ve -03xrea Iyyea [y - x< g:|.
It is well known that in this case we obtain a field. In fact the proof is essentially the
same as the one used in the case of ordinary Dedekind cuts in the development of
the standard real numbers, ¢4,0f course, does not have the above property
because no infinitesimal works.This suggests the introduction of the concept of
absorption part ab.p. («) of a number «a for an element a of *R4 which, roughly
speaking, measures how much a departs from having the above property [7].

Definition 2.9.[7]. Suppose a € *Rq4,then

ab.p.(a) £ {d > 0|Vxyeu[x +d € a]}.

Example 2.5.

(i) Va € *R : ab.p.(a¢") = 0,

(ii) ab.p. (gq) = €a,

(III) ab.p. (—Sd) = &q,

(iv) Va € *R : ab.p.(a” + £4) = €4,

(V) Va € *R : ab.p.(a” —&q) = &q4.

Lemma 2.9.[7].

(i)c <ab.p.(¢)and 0 <d <c = d € ab.p.(a)

(i) c € ab.p.(a) and d € ab.p.(a¢) = c+d € ab.p.(a).

Remark 2.9. By Lemma 2.7 ab.p.(a) may be regarded as an

element of *R4 by adding on all negative elements of *Rq4 to ab.p. ().
Of course if the condition d > 0 in the definition of ab.p. (a) is deleted we
automatically get all the negative elements to be in ab.p. (a) since

x <y € a = x € a.The reason for our definition is that the real interest lies

(2.16)

(2.17)



in the non-negative numbers. A technicality occurs if ab.p. (a) = {0}. We
then identify ab.p. (a) with 0. [ab.p. (a¢) becomes {x|x < 0} which by our
early convention is not in *Rg4].

Remark 2.10. By Lemma 2.7(ii), ab.p. (a) is additive idempotent.
Lemma 2.10.[7].

(i) ab.p. (a) is the maximum element § € *Rq such thata + 8 = a.
(ii) ab.p.(a) < afora > 0.

(iii) If a is positive and idempotent then ab.p. (o) = a.

Lemma 2.11.[7]. Let o € *R4 satsify a > 0. Then the following are
equivalent. In what follows assume a,b > 0.

(i) o isidempotent,

(ii) a,bea=a+b € a,

(ili)a e a > 2a € a,

(iv) Vayenla € a > n+a € aj,

(V) a € a = re-a e a, forall finite r € *R.

Theorem 2.2.[7]. (—a) + o = —[ab.p.(a)].

Theorem 2.3.[7]. ab.p.(a + ) > ab.p.(a).

Theorem 2.4.[7].

a+p<a+y = -ab.p.(a)+p <.

(ia+pB=a+y = —[ab.p.(a)] + B = —[ab.p.(a)] + 7.

Theorem 2.5.[7].Suppose «, 8 € *Rq4,then

(i) ab.p.(-a) = ab.p.(a),

(ii) ab.p. (a + p) = max{ab.p.(a),ab.p.(B)}

Theorem 2.6.[7]. Assume S > 0. If « absorbs —f then a absorbs .
Theorem 2.7.[7]. Let 0 < a € *Rq4. Then the following are equivalent
(i) o is an idempotent,

(i) () + (-a) = —a,

(iii) (—a) + @ = —a.

(iv) Let A; and A, be two positive idempotents such that A, > A;.
Then Ar + (—A1) = Aj.

2.4 Gonshor types of o with given ab.p. (a).

Among elements of a € *R4 such that ab.p.(a¢) = A one can
distinguish two many different types following [7].

Definition 2.10.[7].Assume A > 0.

(i) « € *Rq hastype 1 if Ix(x € a)Vy[x+y € a = y € A],

(ii) @ € *Rq has type 2 if Vx(x € a)Iy(y ¢ A)[x+y € al,i.e.
a € *Rq has type 2 iff a does not have type 1.

(iii) o € *Rq has type 1A if Ix(x ¢ a)Vy[x—y ¢ a = y € A],
(iv)a € *Rq has type 2A if Vx(x ¢ a)Fy(y ¢ a)[x—y ¢ a].

2.5 Robinson Part Rp{a} of absorption number
o € (—Aq4,Ad)



Theorem 2.8.[6].Suppose a € (—Aq,Aq). Then there is a unique
standard x € R, called Wattenberg standard part of @ and denoted by Wst(a),
such that:

(i) (*x)" € [a@ —€a,a + €4].

(if) a <z, B implies Wst(a) < Wst(f).

(iii) The map Wst(-) : *Rq4 — R is continuous.

(iv) Wst(a + ) = Wst(a) + Wst(f).

(v) Wst(a x ) = Wst(a) x Wst(f).

(vi) Wst(—a) = -Wst(a).

(vii) Wst(a™!) = [Wst(a)] ' ifa ¢ [~£q,€4].

Theorem 2.9.[7].

(i) a € *Rq has type 1 iff —a has type 1A,

(if) @ € *R4 cannot have type 1 and type 1A simultaneously.

(iii) Suppose ab.p.(a) = A > 0. Then a has type 1 iff o has the form

a” + A for some a € *R.

(iv) Suppose ab.p.(a) = -A,A > 0.a € *Rq4 has type 1A iff a has the form
a’ + (-A) for some a € *R.

(v) If ab.p.(a) > ab.p.(p) then o + p has type 1 iff a has type 1.

(vi) If ab.p.(a) = ab.p.(B) then a + B has type 2 iff either a or

has type 2.

Proof (iii) Let o = a + A. Then ab.p.(a¢) = A.Since A > 0,a € a+A

(we chose d € Asuchthat0 < dandwriteaas (a—d) +d).

It is clear that a works to show that o has type 1.

Conversely, suppose « has type 1 and choose a € « such that:

Vyla+y € a = y € A].Then we claim that: @ = a + A.

By definition of ab.p. (a) certainly a + A < a. On the other hand by choice
of a,every element of a has the form a + d with d € A.

Choosed' € Asuchthatd' >d, thena+d=[a-(d'-d)]+d ea+A.

Hence a < a + A. Therefore o = a + A.
Examples. (i) ¢4 has type 1 and therefore —¢4 has type 1A. Note that also
—¢gq4 has type 2. (ii) Suppose ¢ ~ 0,¢ € *R. Then &¢* x ¢4 has type 1 and
therefore —s* x ¢4 has type 1A.
(if) Suppose a € *Rgy,ab.p.(a) = &4 > 0, i.e. a has type 1 and therefore
by Theorem 2.9 a has the form (*a)” + &4 for some unique a €

R,a = Wst(a). Then, we
define unique Robinson part Rp[«a] of absorption number a by formula

{ Rp{a} = ("a)",

Rp{a} = (*Wst(a))". (.18)

(if) Suppose a € *Rgy,ab.p.(a) = —¢4, i.€. a has type 1A and therefore by

Theorem 2.9 a
has the form (*a)” — &4 for some unique a € R,a = Wst(a). Then we define



unique
Robinson part Rp[a] of absorption number a by formula

A rx \H#
{ Wp{a) 2 (‘a)" 0.19)

Rp{a} = ("Wst(a))".
(iii) Suppose a € *Rg4,ab.p.(a) = A,A > 0 and « has type 1A, i.e. a has the form
a® + A for
some a € *R.Then, we define Robinson part Rp<{a} of absorption number « by
formula

Rp{a} £ a”. (2.20)
(iv) Suppose a € *Rg,ab.p.(a) = -A,A > 0 and « has type 1A, i.e. a has the
form a* + (-A) for some a € *R.Then, we define Robinson part Rp{a} of

absorption
number « by formula

Rp{a} 2 a*. (2.21)

Remark 2.11. Note that in general case,i.e. if a ¢ (—A4,Aq) Robinson part
Rp{a} of

absorption number « is not unique.

Remark 2.12. Suppose a € *Rq and a € (-Aq4,Aq) has type lor type 1A.Then
by definitions

above one obtain the representation

a = Rpsa} + ab.p.(a). (2.22)

2.6 The pseudo-ring of Wattenberg hyperintegers *Z4

Lemma 2.12. [6].Suppose that a € *Rq4. Then the following two conditions on «
are equivalent:

(i)a = sup{v#|<v € *Z> A< a)},

(i) a = inf{vﬂ(v € *Z> A (a < v#)}.

Definition 2.11.[6].If « satisfies the conditions mentioned above « is said to be
the Wattenberg hyperinteger. The set of all Wattenberg hyperintegers is denoted
by *Zaq.

Lemma 2.13. [6]. Suppose a,ff € *Z4. Then

(I) a+p e *Zy.

(i) —a € *Z4.

(i) a x B € *Z4.

The set of all positive Wattenberg hyperintegers is called the Wattenberg
hypernaturals and is denoted by *Nj.

Definition 2.12.Suppose that (i) A € *N,v € *Zq, (i) 2 = A*,% = v¥ and (jii) A|v.

If 2 € *Ng and ¥ € *Z4 satisfies these conditions is said 7 is divisible by 1 and
that is denoted byA*|v*.

Definition 2.13.Suppose that (i) a € *Z4 and (ii) there exist A* € *Ng such that



(N a= sup{v#|<v € *Z> AAV) A (v < a)} or

(2) a = inf{v¥|(v e "Z) A(AV) A (@ <v¥)}.

If o satisfies the conditions mentioned above is said « is divisible by 1* and that
is denoted byA#|a.

Theorem 2.10. (i) Let p €*N, M(p)<e*N, be a prime hypernaturals such that (i)
p / M(p). Let a € *Z4 be a Wattenberg hypernatural such that (i) pla. Then

|M(p)* +a| > 1. (2.19)

(ii) o € *Zq4 has type 1 iff —a has type 1A,

(iii) @ € *Z4 cannot have type 1 and type 1A simultaneously.

(iv) Suppose a € *Z4,ab.p.(a) = A > 0. Then «a has type 1 iff a has the form

a® + Aforsomea € a,a € *7Z.

(v) Suppose a € *Zq4, ab.p.(a) = -A,A > 0.a € *Rq4 has type 1A iff a has the
form

a’ + (-A) forsome a € a,a € *7Z.

(vi) Suppose a € *Z4. If ab.p.(a) > ab.p.(pB) then a + p has type 1 iff ¢ has type

(vii) Suppose a € *Z4.If ab.p. (a) = ab.p.(f) then a + B has type 2 iff either a or

has type 2.

Proof. (i) Immediately follows from definitions (2.12)-(2.13).

(iv) Leta = a+ A. Then ab.p.(a) = A.Since A > 0,aca+A

(we chose d € Asuchthat0 < dandwriteaas (a—d) +d).

It is clear that a works to show that a has type 1.

Conversely, suppose a has type 1 and choose a € «a such that:

Vyla+y € a = y € A]l.Then we claim that: @ = a + A.

By definition of ab.p. (a) certainly a + A < a. On the other hand by choice
of a,every element of a has the form a + d with d € A.

Choose d' € Asuchthatd' >d, thena+d=[a-(d'-d)]+d ea+A.

Hence a < a + A. Therefore a = a + A.

2.7 The integer part Int. p(a) of Wattenberg hyperreals
o € *[Rd
Definition 2.14. Suppose a € *Rq4,a > 0. Then, we define Int.p(a) = [a] € *Ng
by formula

[a] 2 sup{v#|<v € *N> N a)}. (2.20)
Obviously there are two possibilities:
1. Asset {v*|(v e "N) A(v" < a)} has no greatest element. In this case valid
only the
Property I: [a] =«
since [a] < a implies Ja € *R such that [a] < a* < a. But then [¢”] < a which
implies [a*] + 1 < a contradicting [a] < a* < [a"] + 1.



2. Aset {v*|(v e 'N) A(v' < a)} has a greatest element, v € *N.In this case

valid the
Property Il: [a] = v
and obviouslyv = [a] < a < [a]+1 =v+ 1.
Definition 2.15. Suppose a € *R4. Then, we define Int.p(a) € *Z4 by formula

Int.p(a) = { la}fora = 0 2.21)

[a] for a < 0.

Note that obviously: Int.p(—a) = —Int.p(a).

2.8 External sum of the countable infinite series in *R4

This subsection contains key definitions and properties of summ of countable
sequence of Wattenberg hyperreals.
Definition 2.16.[4]. Let {s,,} ", be an countable sequence s, : N - R.such that

n=1

(i) Vn(s, > 0) or (ii) Vn(s, < 0) or

0 0 0 S

(iii) {Snpoy = {Snl}nleNl U {Snz}nzeNz’vnl(nl € Nl)[snl > 0],
/N /N /N

Vl’lz(l’lz S Nz)[snz < 0],N = Nj; UNa.

Then external sum (#-sum)

#EXt — Zsﬁ of the corresponding

neN

countable sequence *s, : N > *R is defined by
( i) Vn(s,>0):

#Ext-Zsﬁ 2 sup {Z(*Sn)#}a

neN keN n<k

(ii) Vn(s, <0) :

#Ext—Zsﬁ 2 inf {Zsﬁ} =—sup {Z(!*sn\)#}, (2.22)
keN keN

neN n<k n<k

A

(lll) Vl’ll(l’ll € N])[Sn] > 0],
Vnz(l’lz S Nz)[snz < 0],N =N UN> :

#Ext-Zsﬁ 2 #Ext- Z sk + #Ext- Z sho.

neN

AN A
n1€N1 HZENZ

\
Theorem 2.11.(i) Let {s,} ", be an countable sequence s, : N - R such that
Vn(n € N)[s, > 0], D" s, = n < o and infinite series )~ s, absolutely converges

to nin R.Then

#Ext-Zsﬁ 2 sup {Z(*sn)#} = (*n)*—¢gq € "Ry, (2.23)

neN keN n<k



(i) Let {s,}~, be an countable sequence s, : N - R such that
Vn(n € N)[s, < 0], 2. s. =1 >—o and infinite series) " s, absolutely
converges to n in R. Then

HExt-) sk = 1nf {Z(*sn) } = (*n)*+ea e "Ry, (2.24)

neN n<k

(iii) Let {s,}"~_, be an countable sequence s, : N - R such that (1)
N\
{Sn}fl = {Snl}nleNl U {SWZ}nzeNz’vnl(nl € Nl)[snl > 0] V”Z(HZ € NZ) sny < 0],

N=N1UNzand(2) ZS,,, =1 <OO,ZS,,2 =12 > —0. Then

AN AN
}’lIENl anNQ

HExt- Y sk & #Ext- Y sh +#Ext- D sho= () + (') —ea € "R, (2.25)

eN N N
n I’llENl anNz

Proof.

(i) Straightforward from definitions.

(i) Straightforward from definitions.

(iii) From Definition 2.16.(iii) and Eq.(2.23)-Eq.(2.24) by Theorem 2.7 .(iii) one
obtain

#Ext—Zsﬁ 2 #Ext- Z sh + #Ext- Z st o= (Cm)* —ea+ ((*772)# +sd> =

neN e A
nleN| anNz

=)+ (m)f —ea+ea =)'+ () —ea € "Ra
Theorem 2.12.Let {a,},_ be an countable sequence a, : N —» R such that
Vn(a, > 0) and infinite series Z:’:l a, absolutely converges in R.Let s= #Ext—Z al

neN

be external sum of the corresponding countable sequence {*a,}’ ,.Let {b,} , be
a countable sequence where b, = a, () is any rearrangement of terms of the
sequence {a,} . Then external sum ¢ = #Ext—Z b of the corresponding

neN

countable sequence {*b,}_ has the same value s as external sum of the
countable sequence {*a,},i.e. 0 = s —€4.

Theorem 2.13.(i) Let {a,}_, be an countable sequence a, : N - R4,such that
(1) Vn(a, > 0), (2) infinite serles Z a, absolutely converges to n + +w in R and

let #Ext—Z al be external sum of the correspondlng sequence {*a, ;" ;. Then for

neN

any ¢ € *R, the equality is satisfied

x| #Ext- Y a | = #Ext- Y " xa =
(et ) e o0

neN neN

n=1"

=t x (*n)" — ¢ x 4.

(i) Let {a, ", be an countable sequence a, : N - R, such that (1) Vn(a, < 0), (2)



infinite series > a, absolutely converges to  # —o in R and let #Ext-Y _ a}; be
neN

external sum of the corresponding sequence {*a,} . Then for any ¢ € *R, the
equality is satisfied:

ct x| #Ext- Y a’ | = #Ext- Y c* xal =
(o) = 3 .

neN neN

= x (*n)" - ¢ x gq.

(iii) Let {s,} _, be an countable sequence s, : N - R such that

(1) Lsnd ey = A5m b ey U ASna b menys V1 (11 € Np)[si, 2 0], Vna(n2 € N2 )[sq, < 0],
N =N; UN;,

(2) infinite series Z:’:l sn, absolutely converges to n; # +o in R,

(3) infinite series Zf;l su, absolutely converges to 1, # —o in R.

Then the equality is satisfied:

g
c? x (#Ext-Zsﬁ) =

neN
S = #Ext- Z c x s, + #Ext- Z ' xsh = (2.28)

A A
n1eN; n2eN;

= c* x ((*nl)# + (*nz)#> —c* x gq.

.
Proof.
(i) From Definition 2.16.(i) by Theorem 2.1, Theorem 2.11.(i) and Lemma (2.4)
(i) one obtain

#Ext- Zc# x all = c* x <#Ext- Zaﬁ) =

neN neN

= ¢ x ((*n)# - gd> = x (*n)" - ¢ x gq.

(i) Straightforward from Definition 2.16.(i) and Theorem 2.1,Theorem 2.11.(ii)
and Lemma (2.4) (ii) one obtain

<#Ext—2c# X aﬁ) = ¢ x <#Ext—2aﬁ> =

neN neN

=c" x <(*n)# + gd> =t x (*n)" + ¢ x gq.

(iii) By Theorem 2.11.(iii) and Lemma (2.4).(ii) one obtain



ot x <#Ext-ZSﬁ> = ¥ x ((*m)# + (*m2)" —8d> =

neN
=c" x ((*nl)# + (*172)#> —c" x gq.
But other side from (i) and (ii) follows

#Ext- Z ¢ x sk + #Ext- Z c’ xsh =
nle/N\l HZE/N\Q
—ctx ()t =t xea) + et x ()" + ¢ xgq =

x (Cn)'+ (n2)") — ¥ x eq.

Definition 2.17. Let {a,},_, be an countable sequence a, : N - R, such that
infinite

series Z:’zl a, absolutely converges in R to n # +o0. We assume now that:

(i) there exist m > 1 such that Vk > m : 3°F a, >, or

(ii) there exist m > 1 such that Vk > m : Z,’;l a, <m, or

(iii) there exist infinite sequence n;,i = 1,2,...such that

(@) Vi,m : 3" a, > nand infinite series > a,, absolutely converges in R to 7

and

(b) there exist infinite sequence n;,j = 1,2,...such that Vj,m : Zj"il an, < nand
infinite

series ij’il an, absolutely converges in R to 7.

Then: (i) external upper sum (#-upper sum) of the corresponding countable
sequence

*a, : N > R is defined by

-

(i)

4
#Ext-Y af £ inf {Z(*an)#},
keN

neN n<k
) (ii)

\
#Ext-D jaf, 2 inf {3 (an)"},
L keN -

(2.29)

ieN

(ii) external lower sum (#-lower sum) of the corresponding countable sequence
*a, : N>R
is defined by



()
A
#Ext-Zaff 2 sup {Z(*an)#},
< neN keN n<k (2 30)
(i
A
#Ext-Zaﬁj £ sup {Zj<k(*a,,j)#}.
L JjeN keN

Theorem 2.14. (1) Let {a,} _, be an countable sequence a, : N - R, such that

infinite

series Z:’:l a, absolutely converges in R to n # 0. We assume now that:

(i) there exist m > 1 such that Vk > m : Zﬁ=1 a, > n,or

(ii) there exist m > 1 such that Vk > m : Zzzl a, < m,or

(iii) there exist infinite sequence n;,i = 1,2,...such that

(a) Vi,m : Z;’; an, > n and infinite series Zzl a,, absolutely converges in R to n
and

(b) there exist infinite sequence #n;,j = 1,2,...such that Vj,m : Zj”il a,, < nand

infinite

and

series ij'il a,, absolutely converges in R to 7.
Then
( %
#Ext-Zaﬁ £ inf {Z(*an)#} = (*n)*+ea € Ry,
neN keN n<k
< \ (2.31)
#Ext—Zaﬁ 2 sup {Z(*an)#} = (*n)*-¢eq4 € Rq.
neN keN n<k
\
g %
#Ext- Y ah = inf {3 (Fan)'}y = (n)'+eae Rq,
ieN keN
< A (2.32)
#Ext-Zaﬁj £ sup {stk(*a,,j)#} = (*n)"—eq4 € Rq.
JjeN keN
\

Proof.(i),(ii),(iii) straightforward from definitions.
Theorem 2.15. (1) Let {a,},_, be an countable sequence a, : N - R, such that

infinite

series Z;il a, absolutely converges in R to n + +ow. We assume now that:
(i) there exist m > 1 such that Vk > m : Zﬁzl a, >, or
(ii) there exist m > 1 such that Vk > m : Z';Zl a, <mn, or

(iii) there exist infinite sequence n;,i = 1,2,...such that
(@) Vi,m : 3 " a, > nand infinite series )" a,, absolutely converges in R to 7



and

(b) there exist infinite sequence n;,j = 1,2,...such that Vj,m : Zj’il a, < nand
infinite

series Zj:l a,, absolutely converges in R to 7.

Then for any ¢ € *R, the equalities is satisfied

g
v v
#Ext—Zc# x al = c* x (#Ext—Zaﬁ) = x )+t xeqg e "Ry,

neN neN

< N N (2.33)
#Ext-Zc# x ah = c* x (#Ext-Zc**aﬁ) = " x(*'n)*—c* xeq € "Ry.
neN neN
\
and
(" v v
#Ext-Zc# xap = c"x (#Ext-Za}i) —c*x (*n)*+c* xeq € "Ry,
< iiN iiN (2 34)
#Ext-Zc# xay = cx <#Ext-2aﬁj> —c*x (*n)¥ —c* xeq € Rq.
JeN JeN
\
Proof. Copy the proof of the Theorem 2.13.
Theorem 2.16. (1) Let {a,},_, be an countable sequence a, : N - R, such that
infinite
series Z:’:l a, absolutely converges in R to n = 0. We assume now that:
(i) there exist m > 1 such that Vk > m : Zﬁzl a, >0, or
(i) there exist m > 1 such that Vk > m : Z:=1 a, <0, or
(iii) there exist infinite sequence n;,i = 1,2,...such that
(@) Vi,m : 3" a,, > 0 and infinite series 3" a,, absolutely converges in R to
n=20
and
(b) there exist infinite sequence n;,j = 1,2,...such that Vj,m : Zj"il an, < 0and
infinite
series ij’il an, absolutely converges in R to 7 = 0.
Then for any ¢ € *R, the equalities is satisfied
(" \ Vv
#Ext-Zc# x al = c* x (#Ext—Zaﬁ) = ¢*xgq € "Ry,
< neN neN (2 35)

neN neN

A A
#Ext—Zc# xal = c" x (#Ext—Zc**aﬁ) = —c*xgqe Ry
N
and



-
v v
#Ext- E c* xal =c*x (#Ext— E aﬁi> = c*xegq € Ry,

ieN ieN
< A A
#Ext-Zc# xay =cx (#Ext—Zaﬁ]) = —*xgq € Ry.
L JeN ieN

Proof. (1) From Eq.(2.31) we obtain

4 v
#Ext-Zan = +é&q,

neN

< A
#Ext—Za,, = —&q.

neN

.
From EQq.(2.37) by Theorem 2.1 we obtain directly

/
v v
#Ext—Zc# x al = c" x (#Ext-Zaﬁ) = ¢ x gq,

neN neN

A A
#Ext-Zc# x al = c* x (#Ext—Zc**aﬁ) = —c* xegq.

neN neN

\
(2) From Eq.(2.32) we obtain

(" v
#Ext- Z ay. = +&q,
ieN
< A
#Ext- Z affj = —&q.
JeN
\

From EQq.(2.39) by Theorem 2.1 we obtain directly

/
v v
#Ext—Zc# xah =c*x (#Ext—Zaﬁl) =c*xgq € Ry,

ieN ieN
< A A
#Ext—Zc# xay = c*x (#Ext-Zaﬁl) = —*xgq € Ry.
L JeN ieN

Remark 2.11. Note that we have proved Eq.(2.35) and Eq.(2.36) without any
reference to the Lemma 2.4.

Definition 2.18. (i) Let {a,},_, be an countable sequence a, : N - *Rq4, such
that

Vn(n>m > 0)[a, > 0] and Va(n < m - 1)|:(a,1 =al) A (a,, € *[R{>:|

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)



Then external countable upper sum (#-sum) of the countable sequence a, : N -
*Rq is defined by

m—1

A
#Ext- Z a, = Z a, + #Ext- Z ay

neN

(2.42)
#Ext-Za,, £ sup Zan.
n=m keN p—m

In particular if {a,}> = {ai}” , where Va € N[a, € "R] the external countable
upper sum (#-sum) of the countable sequence a, : N - *Rg4 is defined by

A m—1 0

#Ext- Zan = Zaﬁ + #Ext- Zafﬁ,
e (2.43)

#Ext-Zan = sup Zan

keN =

(ii) Let {a,} —, be an countable sequence a, : N - *Rq4, such that
Va(n > m > 0)[a, < 0] and Va(n <m—1)[(an = a}) A (an € "R) ] (2.44)

Then external countable lower sum (#-sum) of the countable sequence a, : N -
*Rq4 is defined by

\ m—1 e
#Ext- Z o, = Z o, + #HExt- Z o,
n=0 n=m

neN

#Ext-ian £ inf Zan.

keN =

(2.45)

In particular if {a,}, = {af}” , where Va € N[a, € 'R] the external countable
lower sum (#-sum) of the countable sequence a, : N - *Rg4 is defined by

v
#Ext-Zan Za +#Ext-Zan,

neN n=m

#Ext—Za,, £ inf Zan

keN =

(2.46)

Theorem 2.17. (i) Let {a,}, be an countable sequence a, : N - *Rq4, such
that valid the property (2.41). Then for any ¢ € *R. the equality is satisfied



A A
c x (#Ext-Zan> = #Ext-Zc# X0y =

neN neN

- . (2.47)
= Zc# x aft +#Ext-2c# x at.
n=0 n=m
(ii) Let {a,},_, be an countable sequence a, : N - *Ry4, such that valid the
property (2.44).
Then for any ¢ € *R, the equality is satisfied
V V
c? x (#Ext—Za,) = #Ext—Zc# X o, =
. neN ) neN (248)
= Zc# x alt +#Ext-2c# x af.
n=0 n=m
Proof. Immediately from Definition 2.18 by Theorem 2.1.
Definition 2.18. Let {z,}, = {a. + b.},_, be an countable sequence
zn = an +ib, : N - C such that infinite series )" z, absolutely converges in
C.Then external countable complex sum (#-sum) of the corresponding countable
sequence *z, : N - *C is defined by
#Ext- Zzﬁ = #Ext- Z al +1ix <#Ext- Z bﬁ),
neN neN neN
A A A
#Ext- ) zh = #Ext- ) af+i (#Ext- > bﬁ), (2.49)
neN neN neN
Vv Vv Vv
#EXt- Zzﬁ = #Ext- Z a +ix (#Ext— Z bﬁ).
neN neN neN

Note that any properties of this sum immediately follows from the properties of the
real external sum.

2.9 Gonshor transfer
Definition 2.19.[7]. Let [S], = {x[Ty(y € S)[x < y]}.
Note that [S], satisfies the usual axioms for a closure operator,i.e. if (i)

S+ @, + Jand
(if) S has no maximum, then [S], € *Rq.

Let fbe a continuous strictly increasing function in each variable from a subset
of R” into R. Specifically, we want the domain to be the cartesian product [ |, 4;,
where 4; = {x|x > a;} for some a; € R.By Robinson transfer f extends to a function
*f:* R" - *R from the corresponding subset of *R” into *R which is also strictly
increasing in each variable and continuous in the Q topology (i.e. € and 6 range



over arbitrary positive elements in *R).We now extend *f'to [*f],
[fla: Ri~> Ra.
Definition 2.20.[7]. Let a; € *Rq4, a; > a;, b; € *R, then

flalar,az,...,a,) = [{*ﬂbl,bz,...,bn)| a; < b; a,-}]d.
Theorem 2.17.[7]. If fand g are functions of one variable then
(e 2)]al@) = ([fa(a)) - (["gla(@)).

Theorem 2.18.[7].Let f'be a function of two variables. Then for any ¢ € *R and
ac*R
[*flq(a,a) = [*fb,c)|b € a,c < a].

Theorem 2.19.[7].Let fand g be any two terms obtained by compositions of

strictly
increasing continuous functions possibly containing parameters in *R. Then any
relation “f=*gor*f<*gvalid in *R extends to *Rq,i.e.

[flala) = ["glq(a) or [*fl4(a) < [*gl4(a).
Remark 2.12. For any function *f: * R" - *R we often write for short /* instead
of [*f1,-
Theorem 2.20.[7].(1) For any a,b € *R..
exp”(a” + b") = exp”(a”) exp”(b?),

(exp’(a®)” = exp’(b¥a’).

Forany a,f € *Rq,a, > 0
exp*(a + ) = exp”(a) exp”(B),
(exp*(@))” = exp*(Ba).
(2) Foranya,b € *R
(a)" = (a)"".

(3) For any aaﬁay € *Rd,a,ﬁ,y >0

(@b)’ = a’b
(4) Foranya € *R
In*(exp*(a®)) = a”,
exp”(In”(a")) = a*.
Note that we must always beware of the restriction in the domain when it comes
to multiplication

Theorem 2.21.[7].The map a — [exp],(a) maps the set of additive
idempotents onto the set of all multiplicative idempotents other than 0.

(2.50)

2.51)

(2.52)

(2.53)

(2.54)

(2.55)

(2.56)

(2.57)

(2.58)

(2.59)



3. The proof of the #-transcendence of the numbers
ek k e N.

In this section we will prove the #-transcendence of the numbers X, k € N.Key
idea of this proof are an reduction of the statement of ¢ is #-transcendental number
to equivalent statement in *Z4 by using pseudoring of Wattenberg hyperreals *Rq ©
*Z4 [6] and Gonshor idempotent theory [7]. We obtain this reduction by three steps,
see subsections 3.2.1-3.2.3.

3.1. The basic definitions of the Shidlovsky quantities

In this section we remaind the basic definitions of the Shidlovsky quantities
[8].Let My(n,p),Mi(n,p) and &i(n,p) be the Shidlovsky quantities:

T e [ — ...(x=n)]Pe™
Mo(np) — [| 21O dx # 0, (3.1)
H »-1)! }
T (x— D...(x—n)]Pe™
Mi(n.p) = et [| 21 de,k = 1,2,... (3.2)
{[ (-1 }
k
ex(n,p) = e"f[ S (G (1[3'_“1(’)‘!_ m]'e™ de,k — 1.2, (3.3)

0
where p € N this is any prime number.Using Eqs.(3.1)-(3.3.) by simple calculation
one obtain:
Mi(n,p) + gx(n,p) = ekMo(n,p) + 0,k = 1,2,.... (3.4)
and consequently
k _ Mi(n,p) + ex(n,p)
Mo(n,p) (3.5)
k=1.2,...

e

Lemma 3.1.[8]. Let p be a prime number. Then
Moy(n,p) = (-1)"(n!)? + p®,,0, € Z.
Proof. ([8], p.128) By simple calculation one obtains the equality

(n+1)xp

=1 (x -] = D" @)+ D cpaxt,

p=p+1

(3.6)
cu€Z,uy=pp+1,...,[(n+1)xp]-1,n>0,

where p is a prime. By using equality I'(u) = j:xﬂ‘le‘xdx = (u—1)!,where u € N,



from Eq.(3.1) and (3.6) one obtain

(" (n+1)xp
Motnp) = "y =B 3 e
< Hvel (3.7)
=ED"'"MY) +cepptcprplp+ 1) +...=
L =(-D"(n) +px0,,0, € Z.
Thus
Mo(n,p) = (-1)"(n") +p +O1(n,p),0,(n,p) € Z. (3.8)

Lemma 3.2.[8]. Let p be a prime number. Then My (n,p) =p - O2(n,p),
®Ox(n,p) e Z, k=1,2,...,n
Proof.([8], p.128) By subsitution x = k + u = dx = du from Eq.(3.3) one obtain

Mi(n,p) = I|: (u+k)pfl[(u+k— 1) ... xux...x(u+k—n)]Pe™ :|du

7 - (3.9)
k=12,...
By using equality
(n+1)xp
k)" Mu+k=1)x...xux.. x(u+k—n)]* = Z dyutt,
=~ (3.10)
dp€ ZLp=p,p+1,..,[(n+1)xp]-1,
and by subsitution Eq.(3.10) into RHS of the Eq.(3.9) one obtain
+90 (n4+1)xp
Mi(np) = — [ 3 dwwdu = p - ©:(n.p). (3.11)
p—1) 0 H=p+l
®a(n,p) € Z,k=1,2,... .
Lemma 3.3.[8]. (i) There exist sequences a(n),n € N and g(n),n € N such that
n-g(n) - [a@m)]"! (3.12)

lex(n,p)| < »-1) :

where sequences a(n),n € N and g(n),n € N does not depend on number p. (ii) For
anyn € N: gi(n,p) > 0ifp - o0.

Proof.([8], p.129) Obviously there exist sequences a(n),n € N and
g(n),k € N,n € Nsuch that a(n),n € Nand g(n),n € N does not depend on number

p



k(x—=1)...(x—=n)| <a®),0 <x<n (3.13)
and
|(x—=1)...(x —n)e™*| < g(n),0 <x <nk=12,...,n (3.14)

Substitution inequalities (3.13)-(3.14) into RHS of the Eq.(3.3) by simple calculation
gives

P 1 p-1
ex(n,p) < g(n) [@(”)1), jdx< ne g(’g_[f)(,”)] . (3.15)

Statement (i) follows from (3.15). Statement (ii) immediately follows from a
statement (ii).

Lemma 3.4.[8]. For any k£ < n and for any 6 such that 0 < 6 < 1 there existp € N
such that

Mk(l’l,p)
€k—m < 0. (316)

Proof.From Eq.(3.5) one obtain

v Mi(n,p) | _ lex(n,p)|

e Motnp) | = MoGnp) (3.17)
From Eq.(3.17) by using Lemma 3.3.(ii) one obtain (3.17).
Remark 3.1.We remind now the proof of the transcendence of e following

Shidlovsky proof is given in his book [8].
Theorem 3.1. The number ¢ is transcendental.
Proof.([8], pp.126-129) Suppose now that e is an algebraic number; then it

satisfies some relation of the form

ao+ Y _ are* =0, (3.18)
k=1
where ag,ai,...,a, € Z are an integers and where a, > 0.Having substituted RHS

of the Eq.(3.5) into Eq.(3.18) one obtain

~  Mi(n,p) + ex(n,p) Mi(n,p) e(np)
a0+kz;ak MoGnp) = ap +ZakMo(n,p) Za Mo(n.p) =0. (3.19)

From Eq.(3.19) one obtain

aoMo(n,p) + Z aiMi(n,p) + Z arer(n,p) = 0. (3.20)
k=1 k=1

We rewrite the Eq.(3.20) for short in the form



e

asMo(n,p) + Y aiM(n.p) + D ase(n,p) =
k=1 k=1

< = aMo(np) +En,p) + Y arsi(np) = 0, (3.21)
k=1

H(n,p) = Z aiMi(n,p).
k=1

\
We choose now the integers M, (n,p), M>(n,p),...,M,(n,p) such that:

M M- o> p|My(n,
piMi(n,p),pIM>(n,p),...,pIMx(n,p) (3.22)
where p > |ao|
and p f My(n,p). Note that p| Z(n,p). Thus one obtain
p I acMo(n,p) +E(n,p) (3.23)

and therefore

aoMo(n,p) + E(n,p) € Z,
where (3.24)
aoMo(n,p) + E(n,p) + 0.

By using Lemma 3.4 for any ¢ such that 0 < 6 < 1 we can choose a prime number
p = p(0) such that:

D arei(np)| <8 Jal =€ < L. (3.25)
k=1 k=1
From (3.25) and Eq.(3.21) we obtain
aoMo(n,p) + E(n,p) +€ = 0. (3.26)

From (3.26) and Eq.(3.24) one obtain the contradiction.This contradiction finalized
the proof.

3.2 The proof of the #-transcendence of the numbers
ek k € N.  We will divide the proof into four parts

3.2.1. Part I.The Robinson transfer of the Shidlovsky
quantities Mo(n,p),Mi(n,p),er(n,p)

In this subsection we will replace using Robinson transfer the Shidlovsky
quantities My(n,p),Mi(n,p),er(n,p) by corresponding nonstandard quantities
*Mo(n,p), *Mi(n,p), *ex(n,p). The properties of the nonstandard quantities
*Mo(n,p), *Mi(n,p), *ex(n,p) one obtain directly from the properties of the standard
quantities My(n,p), Mi(n,p),er(n,p) using Robinson transfer principle [4],[5].

1.Using Robinson transfer principle [4],[5] from Eq.(3.8) one obtain directly



“Mo(n,p) = (-1)"(!))? +px "Oi(n,p),
*O1(n,p) € *Zw,n,p €*No. (3.27)
No 2 "NW.
From Eq.(3.11) using Robinson transfer principle one obtain Vk(k € N) :

*Mi(n,p) == p X e n, ,
K( *P) p < 2( P)> (3.28)
*O2(n,p) € Zo,k=1,2,...,k € N,n,p €*N.

Using Robinson transfer principle from inequality (3.15) one obtain Vk(k € N) :

n-("gmn)) - ([*a(m)]*")
(p-1)! ’ (3.29)
k=1,2,....,k e N,n,p €*N.,.

*er(n,p) <

Using Robinson transfer principle, from Eq.(3.5) one obtain Vk(k € N)

*ooky — (x \k _ *Mk(nop)+ (*gk(nop))
(%) = Ce) = “Mo(n, p) ’ (3.30)

k=1,2,....,k e Nn,p €*N,,.

Lemma 3.5. Let n € *N.,, then forany k € Nand for any § ~ 0,6 € "R there
exist p € *N, such that

*Mi(n,p)
*oh - V) | 5, 3.31
¢~ “Mo(n,p) 3.31)

Proof. From Eq.(3.30) we obtain Vi(k € N) :

*Mo(n,p) |*Mo(n,p)|’ (3.32)
ke Nn,p €*Ng.

From Eq.(3.32) and (3.29) we obtain (3.31).

*ek_ *Mk(n’p) _ ’*Sk(l'l,p)l

3.2.2. Part 11.The Wattenberg imbedding *(e*) into *R4

In this subsection we will replace by using Wattenberg imbedding [6] and
Gonshor transfer the nonstandard quantities *(e*) and the nonstandard Shidlovsky
quantities *My(n,p), *M;(n,p), *er(n,p) by corresponding Wattenberg quantities
(€M), *Mo(n,p))*, *Mi(n,p))*, (*ex(n,p))*. The properties of the Wattenberg
quantities *(eX)", (*Mo(n,p))*, *Mi(n,p))*, (*ex(n,p))* one obtain directly from the
properties of the corresponding nonstandard quantities
*(e"),*Mo(n,p), *Mi(n,p), *ex(n,p) using Gonshor transfer principle [4],[7].

1.By using Wattenberg imbedding *R & "Rq, from Eq.(3.30) one obtain



k _ * Mk(nap)]#+ [*Ek(n,p)]#
e =[] - [Mo(m,p)]” ’ (3.33)

k=1,2,...;k € Nyn,p €*N.

2 By using Wattenberg imbedding *R A "Rg4, and Gonshor transfer (see
subsection 2.9 Theorem 2.19) from Eq.(3.27) one obtain

[*Mo(n,p)]" = [(-1)"]" x [()P]" + p* x [*©1(n,p)]" =
= [ )< [(@)y)™ ] +p* x [r100p)", (3.34)
*O1(n,p) € *Zoo,d,n,p €*No.

3.By using Wattenberg imbedding *R &, (*R),from Eq.(3.28) one obtain

* #
[*Mk(nap)]# - p# X |: @2(]1,[))] 5
[*@2(n,p)]" € "Zua, (3.35)
k=1,2,....,k e N,n,p €*N,.

Lemma 3.6. Let n € *N.,, then forany k¥ € Nand forany § ~ 0,6 € "R there
exist p € *N, such that

* #
(ehyf - LMD 5 (3.36)
[*Mo(n,p)]
Proof. Inequality (3.36) immediately follows from inequality (3.31) by using
Wattenberg imbedding *R &, "R4 and Gonshor transfer.

3.2.3.Part lll.Reduction of the statement of e is
#-transcendental number to equivalent statement in *Z4

using Gonshor idempotent theory
To prove that e is #-transcendental number we must show that e is not

w-transcendental, i.e., there does not exist real Q-analytic function go(x) = Zanx”

with rational coefficients ay,ai,...,a,,...€ Q such that

(3.37)

Suppose that e is w-transcendental, i.e., there exist an Q-analytic function

ga(x) = D dx",with rational coefficients:
n=0



d() = m_09 1 = m_19 sUn m, ’ (338)
| do| >0,
such that the equality is satisfied:
C »
D dne" = 0.
< " (3.39)
Z|ak|e" + 0.
q n=0
In this subsection we obtain an reduction of the equality given by Eq.(3.39) to
equivalent equality given by Eq.(3.). The main things tools of such reduction that is
external countable sum defined in subsection 2.8.
Lemma 3.7.Let A<(k) and A. (k) be the sum correspondingly
g k1
A<(k) = do+ Y _ dne",
< o (3.40)
As(k) = D dne".
Q n=k+1
Then A.(k) + 0,k =1,2,...
Proof. Suppose there exist an k£ such that A. (k) = 0. Then from Eq.(3.39)
follows A<(k) = 0. Therefore by Theorem 3.1 one obtain the contradiction.
Remark 3.2.Note that from Eq.(3.39) follows that in generel case there exist an
sequence {m;}, such that
V(i € N)|:Zdne” < 0}
n=1
d
an (3.41)
do+ ) dne" =0,
n=1
N={1,2,...}
or there exist an sequence {mj}jio such that
4 m;
V(e N)|:Zdne” > o}
n=1
J wa”d (3.42)
do+ Y dne" =0,
n=1
N=<{1,2,...}




or both sequences {m;};, and {mj}jf'io such required above there exist.
Remark 3.3. We assume now for short but without loss of generelity that

Eq.(3.41) is satisfied. Then from Eq.(3.41) by using Definition 2.17 and Theorem
2.14 (see subsection 2.8) one obtain the equality [4]

A

(*do)" + |:#Ext-Z(*dn)# x (*e”)#:| = —&q.
neN

Remark 3.4.Let A%(k) and A% (k) be the upper external sum defined by

(" el

AL(k) = do+ D ("an)" x (e,

n=1

< A
AL(k) = #Ext- ) | dne".
neN
n=k+1
\
Note that from Eq.(3.43)-Eq.(3.44) follows that
AL(k) + AL(k) = —éa.

Remark 3.5. Assume that a, 8 € *Rq and ¢ *R. In this subsection we will write

for a short ab[a|g] iff B absorbs a,i.e. f+a = f.

Lemma 3.8. —ab[A%(k)|A%(K)],k=1,2,...

Proof.Suppose there exist an k € N such that ab[A%(k)|A%(k)]. Then from
Eq.(3.45) one obtain

Aﬁ(k) = —&q.

From Eq.(3.46) by Theorem 2.11 follows that A. (k) = 0 and therefore by Lemma
3.7 one obtain the contradiction.

Theorem 3.2.[4] The equality (3.43) is inconsistent.

Proof.Let us considered hypernatural number 3 € *N,, defined by countable

sequence
I = (mo,mo Xmy,...,moXmy X...Xmy,...)

From Eq.(3.43) and Eq.(3.47) one obtain

A
I x (*do)” + 3" x |:#Ext- D (fan)* x (*e”)#:| = —3" x 4.

neN

Remark 3.6.Note that from inequality (3.27) by Wattenberg transfer one obtain

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)



n’ - [g,(m)]* - [[a(m)]*" ]* , (3.49)
[(p- 1"
n e N,n,p €*Noo.

[*ea(n,p)]" <

Substitution Eq.(3.31) into Eq.(3.48) gives

p
A
Ih+ |:#Ext- Z (3.)" x (*e”)#:| _
neN\{0}
A \ (3.50)
Sh+ |:#Ext- 3 (S, x LAl f)] [*n(n,p)]" J -3 x gq,

neN [ M (Il p)]

L Jh 2 I« (*a,) . n e N, 38 = 3 x (*ao)”.

Multiplying Eq.(3.50) by Wattenberg hyperinteger (see subsection 2.5)
[*Mo(n,p)]* € *Z4 one obtain

34 x [*Mo(n,p)]* +#Ext—Z {@) x [*Mu(n,p)T* + 3} x [*ea(n,p)]*} =

neN\

= -3 x [*MO(nap)]# X &d.

(3.51)

By using inequality (3.49) for a given 6 € "R, § ~ 0 we will choose infinite prime
integer p €*N, such that:

V
#Ext- Y (30" x [Fex(m,p)]* < 3% x [*Mo(n,p)]* x 8% x g4 (3.52)
keN\{0}

Now using the inequality (3.49) we willing to choose prime hyper integer p €*N.,
and 6% = 6*(p) =~ 0 in the Eq.(3.51) for a given € € 'R,e = 0 such that:
3 x [*Mo(n,p)]" x 8*(p) = €. (3.53)
Hence from Eq.(3.52) and Eq.(3.53) we obtain
#Ext- Y (3a)" x [*ea(n,p)]" € —€* x eq. (3.54)

neN
Therefore from Eq.(3.51) and (3.54) by using definition (2.15) of the function
Int. p(a) given by Eq.(2.20)-Eq.(2.21) and corresponding basic property | (see
subsection 2.7) of the function Int.p(a) we obtain

.
Int.p(Sﬁ x [*Mo(n,p)] +#Ext-2 {3h x [*M,(n,p)]" + I} x [*sn(n,p)]#}> -

neN

A
Sg X [*Mo(n,p)]# + #Ext—Z {Sﬁ x [*Mn(n,p)]#} _ (355)
keN

= —Int.p(3* x [*Mo(n,p)]" x €a) = -F* x [*Mo(n,p)]" x &q.

.
From Eq.(3.55) using basic property | of the function Int.p(«) finally we obtain the



main equality

A
34 x Mo, p))* +#Ext- D (30" x ["Mu(n,p)1*} = 37 x [*"Mo(n,p)]* x £a.  (3.56)

neN

We will choose now infinite prime integer p in Eq.(3.56) p = pe*N. such that

P> max(|3%|,n".) (3.57)
Hence from Eq.(3.34) follows
p’ f [*Mo(n,p)]" (3.58)
Note that [*Mo(n,p)]" = 0%.Using (3.57) and (3.58) one obtain:
P’/ ["Mo(n,B)]" x (30)". (3.59)
Using Eq.(3.35) one obtain
P M. ()] k= 1,2,.... (3.60)

3.2.4.Part IV.The proof of the inconsistency of the main
equality (3.56)

In this subsection we wil prove that main equality (3.56) is inconsistent. This
proof based on the Theorem 2.10 (v), see subsection 2.6.

Lemma 3.9.The equality (3.56) under conditions (3.59)-(3.60) is inconsistent.

Proof. Part (I) Let us rewrite Eq.(3.56) in the short form

['(n,p) +Z (n,p) = -A*(P) x &4, (3.61)

where
/

A
=N, ) = #Ext- ) {(30)" x [*Ma(n,$)]" },
< nz1 (3.62)

From (3.59)-(3.60) follows that

A# A
p / I'(n,p),
3.63
{ p'[Z'(n,p). 69

Remark 3.7.Note that =/(n,p) ¢ *R.Otherwise we obtain that
ab.p(I'(n,p) + Z(n,p)) = {J}. But other hand from Eq.(3.59) follows that
ab.p(I'(n,p) + = (n,p)) = A*(p) x €q4.But this is a contradiction.

Part (Il) Let X-(k,n, p), A (k,n, p), Ae(k1, k2, n,p) and
Xk, p,et), Ao (k,n, P, &), be the external sum correspondingly



k>1

Ki(k,n,p) = T(n,p) +Z{ [*M,(n,$)]"},

X (kn,p) = #Ext-2{~# M (n, )]},

neN
n>k+1

k
N#
< Aclkrka,m,p) = Y {3 x "M, (n,p)]"}, (3.64)
n=k
k>1
Re(kn,p,l) = T(n,p) + Z{ [*M,(n,)]" + 35 x [*&,(n,p)]"},
R (k,n,p, ) = #Exr—Z{ [*M,(n,$)]" + 3} x [*&4(n,p)]" },
n;]jl
&
Note that from Eq.(3.61) and Eq.(3.64) follows that
Xeton,p) + Ae(n,p) = — A*P) x £a. (3.65)

Lemma 3.10. Under conditions (3.59)-(3.60)
ﬁab[ZZ(k, n,p,c;

gﬁ)}kz 1.2.... (3.66)
and

~H
—|ab|:A§

P },k: 1,2,... (3.67)

Proof. First note that under conditions (3.59)-(3.60) one obtain

wc[Zi(k,n,ﬁ,gﬁ) & o} (3.68)

Suppose that there exist an k£ > 0 such that ab[Xz(k, n,p,&; p.€h) J.Then

from Eq.(3.65) one obtain
X (hnpe) = —A*(P) x a. (3.69)
From Eq.(3.69) by Theorem 2.17 one obtain

N & o# N & o#
_gd = [A (p)] X A>(kan>p38n) = [A (p)] X A>(kan>p38n) =

9 (3.70)
= A.(k,n,p).

Thus
—&a = AL(k,n,p). (3.71)

From Eq.(3.71) by Theorem 2.11 follows that A. (k) = 0 and therefore by Lemma
3.7 one obtain the contradiction. This contradiction finalized the proof of the Lemma
3.10.



Part (lll)
Remark 3.8.(i) Note that From Eq.(3.61) by Theorem 2.10 (v) follws that
>A(n,p) has the form

ZA(n,p) = q* + ab.p(Z"\(n,p)) =

~ (3.72)
= q" + (-A"(P) x €a),
where
N#
# A n) = n
q € 2 (nap) - A>(19n’p): (373)
q €*Z, andp|q.
(if) Substitution by Eq.(3.72) into Eq.(3.61) gives
[(n,p) +Z"(n,p) = T(m,p) + q* + (-A*(P) x €4) = —A*(P) % &4. (3.74)
Remark 3.9. Note that from (3.74) by definitions follows that
ab[(T'(n,p) + q")|(-A*(P) x £a) ]. (3.75)
Remark 3.10. Note that from (3.73) by construction of the Wattenberg integer
> (n,p) obviously follows that there exist some k,d € N such that
X(Lknp) < q < Ae(l.d,n,p)
< s by By — S\ Uy Iy s (376)
k+1 <d.
Therefore
F(n,p) +A<(1.kn.p) < T(0,p) +q* < T(n,p) + A-(1.d,n,p). (3.77)
Note that under conditions (3.59)-(3.60) and (3.73) obviously one obtain
0+ I(n.p) + K(Lkn.p) < T(P) + a4 TP +K(LdnP) £0. 5 oo
I'(n,p) +q"* = 0.
From Eq.(3.74) follows that
[(n,p) +q" + (“A*(P) x €4) = —A*(P) x &q. (3.79) Therefore
(A*(3)'[T(n,P) +q*] + (~¢a) = ~¢a. (3.80)

From (3.78) follows that
0+ (A @) "' T0,p) + KLk ) | < (W) '[T(m.B) +47] <
< W@ [ rmp) +KLdnp) | 50, G-81)

(A*($))'[T(n,p) +q*] 5 0.

Note that by Theorem 2.8 (see subsection 2.5) and formula (3.44) one otain



0+ Wst{(A#(ﬁ))_l[F(n,f)) +Zi(1,k,n,ii)}} — Wst (*ao)* + A%(1,kn,p) ],
Wst{(A#(ﬁ))_l[F(n,ﬁ) +Zi(l,d,n,ﬁ)}} — Wst[ (Cao)’ + AZ(1,dn,p)] g0, (3.82)
Wst{(A*()) "' [T(n,p) +q*]} # 0.
From Eq.(3.81)-Eq.(3.82) follows that
0+ Wst[ (*ao)” + AL(1,kn,p)] < Wst{(A*($))”'[T(n,p) +q*]} <
< Wst[ (*ao)* + A%(1,d,n,p) ] 5 0, (3.83)
Wst{ (A*(§)) ' [T(n,p) + q"]} 5 0.
Thus

—ab[ (A*(§))”'[[(n,p) +q*]|(~£a) ] (3.84)
and therefore

(A*(B)) ' [T(,p) +q*] + (=sa) # —&a. (3.85)
But this is a contradiction. This contradiction completed the proof of the Lemma
3.9.

Subsection 4 now under preparation

4.Generalized Lindemann-Weierstrass theorem

Theorem 4.1.[8] Assume that algebraic numbers S,,,..., Bi.,
kir>1,1=1,2,...,rforany 1 </ < rform a complete set of conjugates,

fi(z) € Z[z],degfi(z) = kil = 1,2,....r 4.1)
anda; € 2,1 =1,2,...,r,a0 + 0.Then Vr € N :
r k;
aop + Za/(r) Zeﬂk# + 0. (4.2)
=1 k=1
Let f(z) be a polinomial such that
/ r
£@) = [ ]£i@ = bo+biz+...4byz" =
=1
S ok (4.3)
= by, [ [T [ = Brdsbo 0,65 > 0N, = 357 k.
=1 k=1
.

Let Mo(N,,p),Miri(N,,p) and e, (N,,p) be the quantities [8]:



b(Nr Dp-1 zp‘lfrp(z)e‘zdz
MO(NV,p) = I _ | ’
N ]

where in (4.4) we integrate in complex plaine C along line [0,+x], see Pic.1.

. b%\:rfl)pflz”‘lﬁp(z)e‘zdz
Mk,l(Nr:p) :eﬂ,/ J (p_l)! )
B
where k = 1,...,k; and where in (4.5) we integrate in complex plain C along line with
initial point B, € C and which are parallel to real axis of the complex plain C,see
Pic.1.

Bri
PP 1 2 (Y ez
— ebr. Nr r
eii(Ny,p) = ePrl { G- D) ;
where k = 1,...,k; and where in (4.6) we integrate in complex plain C along contour

[0, Br.], see Pic.1.

‘)
.Bkz —l
0 — E
Pic.1.
From Eq.(4.3) one obtain
(Ny+1)p
b 2y = BT bz + D ez,

s=p+1

where by.by + 0,¢cs € Z,s = p,...,(N,—1)p — 1.Now from Eq.(4.4) and Eq.(4.7)
using formula

[(s) = J.(O)Ox‘“le*"dx =(s-1),s eN

one obtain
4 +00 N,+1) +00
b(Nr Dp-1 b[(; WN-+1)p c
My(N,,p) = ———+—— | z¢7le~dz + Z —s b sz =
-1 { = p-D! I
< (N—=1)p (S 1)'
(Nr Dp-17p - (Nr Dp-17p
b ol + ; e R
.

where byby + 0,C € Z.We choose now a prime p such that
p > max(|aol,bn,|bo|). Then from Eq.(4.8) follows that

(4.4)

(4.5)

(4.6)

4.7)

(4.8)



p [ aoMo(Nrp). (4.9)
From Eq.(4.3) and Eq.(4.5) one obtain

M) = 5y | { by 12’”[1_[1_[@& J}e”ﬁﬂdz, .10)

B j=1 i=1

where k = 1,...,k;,/ = 1,...,r.By change of variable integration z = u + 8, in RHS
of the Eq.(4.10) we obtain

—+00 r kj

My (N,,p) = (p—ll)' I Nkp 1(M+ﬁkl)p tupeu HH(Z+ﬁk,l_ﬂi,j)p du, (4.11)
0 =1 =l
]j#:l i*k

where k = 1,...,k;,l = 1,...,r.Let us rewrite now Eq.(4.11) in the following form
-

Mk,l(Nrap) =

< 7 r (4.12)
(p - 1)! .[ (bt by, fr)” wre | [ ][ ]wae+ b o= b i) | > '
0 i=1 ri=1
]j# i+k
.
Let ZA be aring of the all algebraic integers. Note that [8]

(Z[JZbNrﬂ,'JGZA,l’Z 1,...,kj,j= 1,...,1’. (413)

Let us rewrite now Eq.(4.12) in the following form

M (N,,p) = j‘(bNru+ak1)p tupeu HH(bN,u+ak1—al,,)pdu (4.14)

Jj=1 i=1
]i‘l i+k

- 1)'

where k = 1,...,k;,l = 1,...,r.From Eq.(4.14) one obtain

g r k; ©
0N
2 a) M) - | T
J (4.15)
D,(u) = Za;(r)Z(bN,u+ak1)plupe HH(bN,u+ak1—alJ)
\ o

The polinomial ®,(«) is a symmetric polinomial on any system A; of variables
011,027,...,0Fk,], where

A[ = {(11,1,(12,1,...,(11{1,1},1 = 1,...,1”.

ai,az,...,Q1 € ZA,Z = 1,...,7‘

(4.16)

It well known that @, (1) € Z[u] [8] and therefore



W+Dp

uP®,.(u) = Z csqu ey € 1. (4.17)
s=p+1
From Eq.(4.15) and Eq.(4.17) one obtain
( - al I uPe ™ ®,(u)
Zal(”) ZMkJ(Nr,P) = Wdu =
=1 k=1 0
< (Ny+l)p © (N+1)p (4' 18)
I sletdy = cHM:pC,CeZ.
—p+1 K p+l (p N 1)'

Therefore

r k;
E(N.p) = D air) D Mu(N.p) € Z,

= = (4.19)
PIEW,p).
Let Or < C be a circle wth the centre at point (0,0). We assume now that
Vk,I(Br; € Or). We will designate now
gri(r) =max |byf(z)e Pk,
PR 1 (4.20)
go(r) = max g, (r),g(r) =max |byzf.(z)|.
1<k<ky, 1<I<r |zZI<R
From Eq.(4.6) and Eq.(4.20) one obtain
b(Nr Dp-1 D= 1fp(Z)e_Z+ﬂk’]dZ
leci(Nr,p)| = O o1 <
, (4.21)
kil
1 -1 | r-ly go(”)gp '(MBri] _ golr)g” ' (1R
o f|bNﬂz)e b2 )]] ) R ey
where k= 1,...,k;,[ = 1,...,r.Note that
g R
-1 0if p > oo. (4.22)
From (4.22) follows that for any ¢ € [0,5] there exist a prime p such that
r k;
D i) D eNnp) = €) < 1. (4.23)
I=1 k=1
where k = 1,...,k;,l = 1,...,r.From Eq.(4.4)-Eq.(4.6) follows
eﬁk’f _ Mk,l(Nrap) + gk,l(Nrap) (424)

MO(NVap)
where k =1,....k;,[ = 1,...,r. Assume now that



r k;
ao + Z a(r) Z ePri =0,
=1 =1

Having substituted RHS of the Eq.(4.24) into Eq.(4.25) one obtain

.
- Miy(Nr,p) + €ii(Nrp)
ao+;a1k2=1: Mo(Np)
< : al
a +Za1(r) Z Ty L0 L ey <o
§

From Eq.(4.26) by using Eq.(4.19) one obtain

r ki
ao +E(N,,p) + Zaz(r) ng,l(Nr,p) =0

I=1 k=1

(4.25)

(4.26)

(4.27)

We willing to choose now a prime p € N such that p > max(|ao|,|bo|,|bw,|) and
€(p) < 1. Note that p|=(N,,p) and therefore from Eq.(4.19) and Eq.(4.27) one obtain

the contradiction. This contradiction completed the proof.

5.Generalized Lindemann-Weierstrass theorem

Theorem 5.1.[4] Assume that algebraic numbers Bi,,..., Bk, ki > 1,1 =

forany /= 1,2,..., form a complete set of conjugates,

fi(z) € Z]z],degfi(z) = ki,l = 1,2,...

and q;(r) e Q,/l =1,2,...,a0 € Qao + 0,r = 1,2,... .We assume now that

Z Z|a1(r)| Z|eﬁk’| < oo,

r=1 [=1

Then

ao + ZZa;(r) Zeﬂk’ + 0.

r=1 [=1

We will divide the proof into three parts

Part |. The Robinson transfer
Let f.(z) € *Z[z],z € *C,r = 1,2,... be a polinomial such that

1,2,...,

(5.1)

(5.2)

(5.3)



e

@) =[] /@) = bo+ biz+..+byz" =
=1

roh 5.4
9 - by, [ [T ]G CBr)).bo # 0,bn, >0, G4
=1 k=1

L N, =3 (ki) € NyreN.

Let *My(N,,p), *M;(N,,p) and *&i;(N,,p) be the quantities:

*(+0) bl(VN_l)p_lzp,lfp(Z)efde
0 (p-D! ’ o)

N,p € *Nw,

“Mo(N,p) =

where in (5.5) we integrate in nonstandard complex plaine *C along line
*[0,+x],see Pic.1.

*(+0)

*Miy(N,,p) = (*e'Pr)
*Bri
N, e N,p € *Noo,

bj(\]f\r/"_l )p_lzp‘lfrp (z)e~dz

(p-1)! ’ (5.6)

where k = 1,...,*k; and where in (5.6) we integrate in nonstandard complex plain
*C along line with initial point *B;; € *C and which are parallel to real axis of the
complex plain *C, see Pic.1.

*Bri
SRl LR (Y2
* N}"; = * *ﬂk’I N" b

N, e N,p € *Nw,
where k = 1,...,*k; and where in (5.7) we integrate in nonstandard complex plain
*C along contour *[0, B«,/], see Pic.1.

1.Using Robinson transfer principle [4],[5],[6] from Eq.(5.5) and Eq.(4.8) one
obtain directly
Vr(r € N)[ "Mo(N.p) = by, 'bf +pC], (5.8)

where by.by + 0,C € *Z,.\We choose now a prime p € *N, such that

p > max(laol, b, |bo| ).

b =sup {by,}

reN

(5.9)

2.Using Robinson transfer principle from Eq.(5.6) and Eq.(4.19) one obtain

directly



r k;
Vr(r € N)[*E(Nr,p) = Z(*a,(r))Z(*Mk,,(Nr,p)) —pC e *zw]. (5.10)
=1 k=1

and therefore
Vr(r € N)[p|*EW,,p)]. (5.11)
3.Using Robinson transfer principle from Eq.(5.7) and Eq.(4.21) one obtain

directly
P
Vr(r e N) :
*Bri
SRl 2 (Y ez
* ) — * *ﬂ, N, ’
[*eri(Nr,p)| = |(Fe PH) .([ O <
< “Brs e (O B (5.12)
—L— [ [ (e ) [[by ot ()| dz < EUDE DL EK
—1)! N N4 r < EEEY
(=D ¢ @-1)!
_ &g (N(R)
. B (p-1)! ’
where k = 1,...,k;,1 = 1,...,r.Note that Ve(e €* R)[e = 0], there exist p = p(¢)
go(g* ' (") (*R) J
Vr(r e N <el 513
( )[ (p-1)! (5.13)

4. From (5.13) follows that for any € € [0,6] there exist an infinite prime p € *N,

such that

r k;
Vr(r e N)[Z(*ag(r)) D (“eri(N:,p)) = €(p) < 1} (5.14)
=1 k=1

where k=1,... .k, l=1,...,r.
5. From Eq.(5.5)-Eq.(5.7) we obtain

e B Mii(Nrp) + CerNep))
Yr(r e N)|: e Pri = Mo, p) :|, (5.15)

where k= 1,....k,l=1,...,r.

Part I1.The Wattenberg imbedding *e ™ into *Rq

1.By using Wattenberg imbedding *R & "Rq4, and Gonshor transfer (see
subsection 2.8 Theorem 2.17) from Eq.(5.8) one obtain



Vr(r e N) :
CMoV-p)* = (B 'BE) 4 pPC” =
= 3T )" 1 prC”,
N £ CNABY, 2 Chr)bG 2 (bo)*.

~

where b, bf + 0%,C" € *Z4.We choose now an infinite prime p*e *Ng such that

p* > max<|a0| ( (b)) 16§ |>
C(B) = s i)

reN

2 By using Wattenberg imbedding *R &, "Rq4, and Gonshor transfer from
Eq.(5.10) one obtain directly

Vr(r e N) :
r k;
CEW-.p)" = D (Car)?) D (MuW.,p)* = p'C" e "Z4
=1 k=1

and therefore
vr(r € N)[p*|(*E(N..p))" .

3.By using Wattenberg imbedding *R A "Rg4,and Gonshor transfer from
Eq.(5.14) one obtain directly

Vr(r e N) :
r k;
S (Caltr)?) D Cennp)’ = @) < 1.
=1 k=1

4 By using Wattenberg imbedding *R &, "Rg4,and Gonshor transfer from
Eq.(5.15) one obtain directly

Vr(reN) :

* # * # * #
el & [ ] - LR )

M

wherek=1,...,k,[=1,...,r.

Remark 5.1 Note that in this subsection we often write for a short «” instead

(*a)*,a € R. For example we will be to write
Vr(r e N) :

eﬁz»/ _ W,](Nr,p)#+ 8z,l(Nrsp)
Mg(NVap)

instead Eq.(5.21).

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

(5.21")



Part Ill.

Assumption 5.1. Assume that algebraic numbers over field Q : B1,,..., Bk,
ki >1,1=1,2,..., forany [ = 1,2,..., form a complete set of conjugates,
fi1(z) € Z[z],degfi(z) = kil = . (5.22)
[=1,2,...,a0 € Qao +0,r =1,2,... .
Note that from Assumption 5.1 follows that algebraic numbers over *Qq :

L2 OB LB 2 CBr) s k= 1,0=1,2,..., forany I = 1,2,..., form a
complete set of conjugates,
fi@) 2 Cfi2)" € "Zalz),degff(z) = kil = 1,2,... (5.23)
l=12,..;r=1,2,....
Assumption 5.2. We assume now that there exist an sequence

. c]l(’”) _
a(r) = —ml(r) eQ,/=1,2,. =1,2,... (5.24)
and an rational number
do = 1) (5.25)
mo(r)
such that
ZZ|a;(r)| Z|eﬁk1| < 0. (5.26)
r=1 I[=1
and

do +ZZa;(r)Zeﬁ“ = 0. (5.27)

r=1 I=1

Assumption 5.3. We assume now for a short but without loss of generality that
the all numbers B1,,..., Bk ki > 1,/ =1,2,... are real.
We devide now infinite series in LHS of Eq.(5.27) into two parts

ZZCI!(F) Zeﬁkl - ZZal(F) Zeﬁkl — ZZ‘”(V) Zeﬂk/

=1 I=] A=1 I=1] p=1 I=1

ZZ“Z(”)Zeﬁ"’ >0, (5.28)

A=1 I=1

ru

Z Z a,(r) Z ePri > 0,

=1 I=1

{ray ULruy =N
Therefore from Eq.(5.25)-Eq.(5.26) by Theorem



we obtain

© k o TIu k
al +#Ext- Z at(r) ZI el —#Ext- YY" af(r) 2 ePli = 0. (5.29)
k=1 k=1

A=1 =1 u=1 I=1

Having substituted Eq.(5.21) into Eq.(5.26) gives

/

Y ki o T ki
ah+#Ex- 33t ()Y el — - 30 St Y efls =
A=1 [=1 k=1 pu=1 [=1 k=1
o 1y ki M (N # #
o - Vap) + 8kl(Nl’>p)
< ay + #Ext- Z Z aj(r) Z Lt : - (5.30)
=1 -1 P MG(N:.p)
o Tu ki M (N # #
. »P)" + € (N, p)
—#EXt- aj(r) bl : = 0.
,z;,z; 1 kZ; M(N,.p)
.
Let 3% € *Ng,3 € *N be an Wattenberg prime number such that

VINr(Lr € Q)[m}(r)|3*] and m{(r)|3* (5.31)
By Theorem

from Eq.(5.30)-Eq.(5.31) we obtain

/

S YoM N p) + el (N,
Sh+#EXt Y Y S D i A‘}Z; £is(NruP)
2 =1 =1 =1 o(N-,p) (5.32)
#Ext i}fzﬂq#( )i W,I(Nr,p)#+ Sz,z(Nr,P) 0 '
—#Ext- 3i(r = 0.
L =1 I=1 k=1 Mg(Nr»P)
where
<H#
35 = e = S0 ¢ g, (5.33)
my(r)
and
~<H#
() = Stat(r) = %1(”) e Za. (5.34)
mj(r)
By Theorem

from Eq.(5.32) we obtain



0 ra

ki
SEMYN,p) + #Ext- Y D" 31 D[ M N p) + &l (Np) ] -

=1 [=1 k=1

o TIu ki
—HExt- > S10r) D[ M)’ + el (Np)] = 0.

p=1 I=1 k=1

(5.35)

~

We rewrite now Eq.(5.35) in the form

e

0 r k; 7,
IEMY(N,,p) + HExt- Z{ S0 DML (N )+ D SH) ez,,(Nr,p)} -
=1 k=1 =1

! (5.36)

ra r

o0 k] A
~ HExt- Z{; SHEG ;W,J(an)# EDIRHG) ez,,(Nr,p)} = 0.

u=1 = I=1
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