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Abstract – The holographic principle is extended to deal with a two dimensional universe. 

Applying it to a spherical shell, which radius is related to the cosmological constant, we find 

a characteristic time comparable to the age of the observable universe.  

 

1- Introduction 

 

   The cosmological constant problem has been the subject of a plenty of studies 

in the last times [1 to 5]. In reference [6] the time evolution of the universe 

world line, was compared with the growing of a polymer chain. 

   In four dimensions, Flory’s free energy [7,8] adapted to model an evolving 

universe reads 
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In (1) the first term corresponds to the monomer-monomer repulsion energy, 

and the second one gives the entropy contribution [9] with a temperature of the 

order of the unit. Besides this N is the number of monomers in the chain and  

is the Planck length given by 
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Taking the minimum of F4 relative to R, we get the radius of gyration R which 

is related to the cosmological constant problem [6] 

                                                  R = N
 1  2

 .                                                     (3) 

 

We also can write  

 

                                          R
2
 = (N)  = L .                                                  (4) 

 

In (4), L is the chain length which we identify with the radius of the observable 

universe. We must notice that, in obtaining (3) we have neglected a constant 

that we suppose to be of the order of the unit. 

 

2- Holographic Principle (HP) in two dimensions (2-D) 

 

   The HP is usually thought as the content of information present in a certain 

volume being represented by certain number of unit cells tiling (covering) its 

boundary. But in this work we want to extend the HP to a universe in two 

dimensions. Therefore let us consider a spherical surface of radius R, a bubble 

wall related to the cosmological constant problem. In order to apply the HP to 

this problem, we need to enumerate its basic statements, namely 

 . The total information content of a 2-D universe, in this case a spherical 

surface of radius R, can be registered in the perimeter of its maximum circle. 

.. The boundary of this spherical surface, here the perimeter of its maximum 

circle, contains at most a single degree of freedom per Planck length. 

These two postulates were adapted for the 2-D case, following McMahon [10]. 

   We fix interest in the surface of a sphere with radius R. According equation 

(3) this radius grows with N, and we look at an isothermal process described 

by a stationary variation of the free energy F. We have 
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                                               F = U -TS = 0.                                              (5) 

Putting 

 

                                                 U = hc  (2R),                                              (6A) 

 

                                      S = ½ (P  P0) = (𝜋 R)  ,                                       (6B) 

 

                                                h = h   = 2T,    (kB = 1).                              (6C) 

 

In (6A), U and S are variations of the internal energy and entropy, and P is 

the perimeter of the maximum circle. (6C) stems for the energy equipartition of 

a harmonic oscillator in 2-D. 

Inserting (6A), (6B) and (6C) in (5) and solving for , we obtain 

 

                                    = 𝜋 R
2
  (c) = 𝜋N(  c).                                       (7) 

 

We can also write  

 

                                               = 𝜋 L  c = 𝜋  H0.                                              (8) 

 

In order to obtain the second equality of (7) and (8), we have used relation (4). 

Besides this we notice that in (8) H0 is the Hubble’s constant and  is the age 

of the observable universe. From (7) we also see that it is equal to N𝜋 

times the Planck time.  
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   Finally we notice that, as can be verified in (6C), the “isothermal process” 

corresponds here to equal-time points at the surface of the “cosmological 

bubble” of radius R. 
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