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Abstract: 

 In this article, we propose a new model of dark matter. According to this new model, 

dark matter is a substance, that is a new physical element not constituted of classical particles,   

called dark substance and filling the Universe. Assuming some very simple physical 

properties to this dark substance, we theoretically justify the flat rotation curve of galaxies and 

the baryonic Tully-Fisher’s law. Then we give a Physical Interpretation of the CMB Rest 

Frame (CRF). This new Interpretation of the CRF permits also a new interpretation of the 

Cosmological time. Moreover it is in agreement with the Standard Cosmological Model 

(SCM) on many points. For instance it assumes the validity of the Special and General 

Relativity. Then using these new interpretations of dark matter and of the CRF, we are led to 

propose a new model of Universe, flat and finite, that is not predicted by the SCM. Despite of 

this we will see that a first mathematical model of our Physical Interpretation of the CRF, that 

is based on the equations of the General Relativity as the SCM, leads to an observable 

Universe with the same theoretical astrophysical predictions as the SCM. We will see that a 

2
nd

 mathematical model, much simpler, has nonetheless theoretical astrophysical predictions 

that are in agreement with astronomical observations. 

 We will then study the theoretical consequences of those 2 models.   
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1.INTRODUCTION 

 

 In this article, we propose that a new physical element, called dark substance, 

constitutes the dark matter. According to our model, this dark substance fills all the Universe 

and has physical properties close to the physical properties of an ideal gas. We then show that 

it is possible, using those properties, to justify theoretically the flat rotation curve that is 

observed for some galaxies. If moreover we assume simple thermal properties to this dark 

substance, we see that we can justify theoretically the baryonic Tully-Fisher’s law, despite the 

great specificity of this law. We recall that up to date, neither the flat rotation curve of 

galaxies nor the baryonic Tully-Fisher law have been justified theoretically in a satisfying 

way. It is true that a simple density of dark matter (in 1/r
2
) permitting to obtain this flat 

rotation curve has already been proposed, but this expression of density (in 1/r
2
) has not been 

theoretically justified. A theory called MOND theory 
(1)

 proposes also a theoretical 

justification of the flat rotation curve, but it is contrary to Newton’s attraction law (which is 

difficultly acceptable) and moreover it is contradicted by some astronomical observations.   

 We also know that the CMB (Cosmic Microwave Background) Rest Frame (CRF), has 

not physical interpretation, concerning its nature and its main physical properties, in the 

Standard Cosmological Model (SCM). In this article, we are going to give a Physical 

Interpretation of the CRF, which permits new definitions of Cosmological variables (in 

particular the Cosmological time and Cosmological distances), that are in agreement with 

their definitions in the SCM. This will lead to propose a new model of Universe, flat and 

finite, that is not predicted by the SCM. Nonetheless, our Physical Interpretation of the CRF 

assumes the validity of Special and General Relativity as the SCM. This Physical 

Interpretation of the CRF proposes 2 mathematical models of expansion of the Universe. The 
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1
st
 model is as the SCM based on the equations of General Relativity. We then show that in 

this 1
st
 model the observable Universe is identical to the observable Universe predicted by the 

SCM (Provided that some conditions be verfied). Indeed in this 1
st
 mathematical model, 

Cosmological distances and Hubble’s constant ,  have the same mathematical expression as in 

the SCM. 

  The 2
nd

 mathematical model of our Interpretation of the CRF is not based on the 

equations of the SCM but is much simpler. Despite of this, its theoretical astrophysical 

predictions (In particular Hubble’s law and Cosmological distances) are in agreement with 

astronomical observations. Moreover this 2
nd

 model solves the enigma of the dark energy. 

 We remind that for many astrophysicists and physicists, the enigmas in the SCM, in 

particular the enigmas concerning dark matter and dark energy, make necessary a new 

paradigm for the SCM 
(2)

. Our article proposes such a new paradigm. 

 In this article we will express the main physical properties of the dark substance and 

the CRF in some Postulates, divided in points a),b)..  

 In our model of dark substance and in our Physical Interpretation of the CRF, we will 

keep all the points of the SCM, except the points of the SCM that are not compatible with our 

Postulates or that become useless because of them.   

 

2. DARK SUBSTANCE-CMB REST FRAME 

 

2.1 Physical properties of the dark substance. 
 

 As we have seen in 1.INTRODUCTION, we admit the Postulate 1 expressing the 

physical properties of the dark substance: 

Postulate 1: 

a)A substance, called dark substance, fills all the Universe. 

b)This substance does not interact with photons crossing it. 

c)This substance has a mass and verifies the law of ideal gas: 

An element of dark substance with a mass m, a volume V, a pressure P and a temperature T 

verifies, k0 being a constant: 

PV=k0mT 

 

We have 2 remarks consequences of this Postulate1: 

-Firstly despite of its name, the dark substance is not really dark but transparent. Indeed, 

because of the preceding Postulate 1b) it does not interact with photons crossing it. 

-Secondly because of the Postulate 1a), what is usually called “vacuum” is not empty in 

reality: It is full of dark substance.   

 

2.2 Flat rotation curves of galaxies.  

 
 Using the fact that the dark substance behaves as an ideal gas (Postulate 1c), we are 

going to show that a spherical concentration of dark substance in thermodynamic and 

gravitational equilibrium can constitute the dark matter in a galaxy with a flat rotation curve. 

 According to Postulate 1c) an element of dark substance with a mass m, a volume V, a 

pressure P and a temperature T verifies the law, k0 being a constant:   

 

 PV=k0mT (1) 

 

Which means, setting k1=k0T : 
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 PV=k1m (2) 

 

Or equivalently, ρ being the mass density of the element: 

 

 P=k1ρ  (3a) 

 

We then emit the natural hypothesis that a galaxy can be modeled as a concentration of 

dark substance with a spherical symmetry, at an homogeneous temperature T. 

We then consider the spherical surface S(r) (resp. the spherical surface S(r+dr)) that is 

the spherical surface with a radius r (resp. r+dr) and whose the center is the center O of the 

galaxy. S(O,r) is the sphere full of dark substance with a radius r and the center O. 
 

 

 
Figure 1:The spherical concentration of dark substance 

 

The mass M(r) of the sphere S(O,r)is given by: 
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We then consider the following equation (4) of equilibrium of forces on an element dark 

substance with a surface dS, a width dr, situated between the 2 spheres S(O,r) and S(r+dr): 
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Eliminating dS, we obtain the equation: 
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And using the equation (3), we obtain the equation: 
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We then verify that the density of the dark substance ρ(r) satisfying the preceding equation of 

equilibrium is:  
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(A density of dark matter expressed as in Equation (7) has already been proposed in 

order to explain the flat rotation curve of spiral galaxies, but it has not been justified 

theoretically. Here we a theoretical justification of this expression (7), consequence of the 

model of dark substance as an ideal gas, Postulate 1)  

  

The constant k2 is given by, G being the Universal attraction gravitational constant:  
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Using the preceding equation (7), we obtain that the mass M(r) of the sphere S(O,r) is given 

by the equation:  

rkdxxxrM

r

2

0

2
)(4)( == ∫ ρπ  (9) 

 

 We then obtain, neglecting the mass of stars in the galaxy, that the velocity v(r) of a 

star of a galaxy situated at a distance r from the center O of the galaxy is given by 

v(r)
2
/r=GM(r)/r

2  
and consequently : 

 

 v(r)
2
=Gk2=2k1=2k0T  (10) 

 

So we obtain in the previous equation (10) that the velocity of a star in a galaxy is 

independent of its distance to the center O of the galaxy. 

 

 2.3 Baryonic Tully-Fisher’s law. 
 

2.3.1 Recall. 

 

Tully and Fisher realized some observations on spiral galaxies with a flat rotation 

curve. They obtained that the luminosity L of such a spiral galaxy is proportional to the 4
th

 

power of the velocity v of stars in this galaxy. So we have the Tully-Fisher’s law for spiral 

galaxies, K1 being a constant: 

 

 L=K1v
4
  (11) 

 

But in the case studied by Tully and Fisher, the baryonic mass M of a spiral galaxy is 

usually proportional to its luminosity L. So we have also the law for such a spiral galaxy, K2 

being a constant: 
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 M=K2v
4
 (12) 

 

This 2
nd

 form of Tully-Fisher’s law is known as the baryonic Tully-Fisher’s law. 

 

The more recent observations of Mc Gaugh 
(3)

 show that the baryonic Tully-Fisher’s 

law (equation (12)) seems to be true for all galaxies with a flat rotation curve, including the 

galaxies with a luminosity not proportional to their baryonic mass.  

We are going to show that using the Postulate 1 and a Postulate 2 expressing very 

simple thermal properties of the dark substance, (in particular its thermal interaction with 

baryonic particles), we can justify this baryonic law of Tully-Fisher despite of its great 

specificity. 

 

2.3.2 Theory of quantified loss of calorific energy (by nuclei). 

 

 We saw in the previous equation (10) that according to our model of dark substance 

the square of the velocity of stars in a galaxy with a flat rotation curve is proportional to the 

temperature of the concentration of dark substance constituting this galaxy. So we need to 

determinate T: 

-A first possible idea is that the temperature T is the temperature of the CMB. But this is 

impossible because it would imply that all stars of all galaxies with a flat rotation curve be 

driven with the same velocity and we know that it is not the case. 

-A second possible idea is that in the considered galaxy, each baryon interacts with the dark 

substance constituting the galaxy, transmitting to it a calorific energy. We can expect that this 

thermal energy is then very low, but because of the expected very low density of the dark 

substance and of the considered times (we remind that the diameter of galaxies is if the order 

of 100000 light-years), it can lead to appreciable temperatures of dark substance.  A priori we 

could expect that this loss of calorific energy for each baryon (transmitted to the dark 

substance) depends on the temperature of this baryon and of the temperature T of the dark 

substance in which the baryon is immerged, but if it was the case, the total calorific loss for 

all baryons would be extremely difficult to calculate and moreover it should be very probable 

that we would then be unable to obtain the very simple baryonic Tully-Fisher’s law. 

 We are then led to make the simplest hypothesis defining the thermal transfer between 

dark substance and baryons, expressed in the following Postulate 2a) (Postulate 2 gives the 

thermal properties of the dark substance): 

 

Postulate 2a): 

-Each nucleus of atom in a galaxy is submitted to a loss of calorific energy, transmitted to the 

dark substance in which it is immerged. 

-This thermal transfer depends only on the number n of nucleons constituting the nucleus (So 

it is independent of the temperature of the nucleus). So if p is the thermal power dissipated by 

the nucleus, it exists a constant p0 (thermal power dissipated by nucleon) such that: 

 

 p=np0    (13)         

 

According to the equation (13), the total thermal power transmitted by all the atoms of a 

galaxy towards the spherical concentration of dark matter constituting the galaxy is 

proportional to the total number of nucleons of the galaxy and consequently to the baryonic 

mass of this galaxy. So if m0 is the mass of one nucleon, M being the baryonic mass of the 

galaxy, we obtain according to the equation (13) that the total thermal power Pr received by 
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the spherical concentration of dark substance constituting the galaxy from all the atoms is 

given by the following equation, K3 being the constant p0/m0: 

 

Pr=(M/m0)p0=K3M  (14) 

 

Concerning the preceding Postulate 2a): 

-It is possible (but not compulsory) that it be true only for atoms whose temperature is 

superior to the temperature T of the concentration of dark substance.  

-It permits to obtain the very simple Equation (14). We will see that this equation is essential 

in order to obtain the baryonic Tully-Fisher’s law. 

 

2.3.3 Obtainment of the baryonic Tully-Fisher’s law. 

 

 In agreement with the previous model of galaxy (Section 2.2), we model a galaxy with 

a flat rotation curve as a spherical concentration of dark substance, at a temperature T and 

surrounded itself by a medium constituted of dark substance (called “intergalactic dark 

substance”) at a temperature T0  and with a density ρ0. 

 In order to obtain the radius R of the concentration of dark substance constituting the 

galaxy, it is natural to make the hypothesis of the continuity of ρ(r): R is the radius for which 

the density ρ(r) of the concentration of dark substance is equal to ρ0. So we have the equation: 

 

ρ(R)=ρ0   (15) 

 

Consequently we have according to the equations (7) and (8): 
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So we obtain that the radius R of the concentration of dark substance constituting the 

galaxy is given approximately by the equation: 
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The constant K4 being given by : 
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We can then consider that the sphere with a radius R of dark substance constituting the 

galaxy at the temperature T is in thermal interaction with the medium constituted of 

intergalactic dark substance at the temperature T0 surrounding it. The simplest and more 

natural thermal transfer is the classical convective transfer. We admit this in the Postulate 2b): 

 

Postulate 2b): 
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The thermal interaction between the spherical concentration of dark substance 

constituting the galaxy (at the temperature T) and the surrounding intergalactic dark substance 

(at the temperature T0) can be modeled as a classical convective thermal transfer. 

 

We know that if φ is the thermal flow of thermal energy on the borders of the spherical 

concentration of dark substance with a radius R, Pl being the total power lost by the spherical 

concentration of dark substance constituting the galaxy is given by the equation:    

 

Pl=4πR2φ    (20) 

 

But we know that according to the definition a convective thermal transfer between a 

medium at a temperature T and a medium at a temperature T0 and according to the previous 

Postulate 2b) the flow φ between the 2 media is  given by the expression, h being a constant 

depending only on ρ0: 

 

φ=h(T-T0)   (21)   

 

Consequently the total power lost by the concentration of dark substance is: 

 

Pl=4πR2
h(T-T0)  (22)  

 

We can consider that at the equilibrium, the total thermal power Pr received by the 

spherical concentration of dark substance constituting the galaxy is equal to the thermal power 

Pl lost by this spherical concentration. Consequently according to the equations (14) and (22), 

(M being the baryonic mass of the galaxy), we have: 

 

K3M=4πR2
h(T-T0)  (23)  

 

Using then the equation (18) : 

 

K3M=4πK4
2
hT(T-T0)  (24) 

 

Making the approximation T0<<T  : 
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Consequently we obtain the expression of T, defining the constant K5 :  
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And then according to the equation (10) : 
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So we finally obtain : 

 

M=K6v
4
   (28b) 

     

 The constant K6 being defined by: 
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So we obtain the baryonic Tully-Fisher’s law (12), with K2=K6. It is natural to assume 

that h depends on ρ0. The simplest expression of h is h=C1ρ0, C1 being a constant. With this 

relation, K6 is independent of ρ0, and we can use the baryonic Tully-Fisher’s law in order to 

define candles used to evaluate distances in the Universe.  

 

2.4 Temperature of the intergalactic dark substance. 

 

 We introduced the temperature T0 of the intergalactic dark substance. We could make 

the hypothesis that this temperature is the temperature of the CMB but we remind that in 

order to get the baryonic Tully-Fisher’s law we supposed T0<<T (T temperature of the 

spherical concentration of dark substance constituting galaxy). Consequently the previous 

hypothesis would lead to very high temperatures of spherical concentrations of dark substance 

constituting galaxies.   

 So we can be in the following cases: 

a)The temperature T0 of the intergalactic dark substance (equation (21) is far less than the 

temperature of the CMB.  

b)Baryons can emit thermal power towards dark substance as assumed in the Postulate 2a) 

even if their temperature is inferior to the one of dark substance. 

 We remind that according to the Postulate 1b), the dark substance does not interact 

with photons and in particular with the photons of the CMB. Consequently dark substance 

does not receive radiated energy.   

 

2.5 Form of the Universe 

 

If the Universe was completely isotropic, we could expect by symmetry that the 

thermal flow through a great surface be nil. Consequently the temperature of the dark 

substance inside a great sphere S of the Universe (For instance with a radius of 1 billion 

years) should increase and probably tend to a uniform temperature of dark substance inside 

the sphere S, because the thermal flow on S would be nil. We know that it is not possible in 

our model of dark substance because in this model spherical concentrations of dark substance 

constituting galaxies have not the same temperature (Because the velocity of stars is not 
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always the same in all galaxies and we know that the temperature of the spherical 

concentration of dark substance is proportional to she squared velocities of stars inside this 

concentration (Equation (10)) and moreover because we admitted that the temperature T0 of 

the intergalactic dark substance is by far inferior to the temperature  of the spherical 

concentrations of dark substance constituting galaxies. So an infinite or finite isotropic 

Universe would contradict our model of dark substance. 

Nonetheless with our model of dark substance, it is much easier to define a finite 

Universe than in the SCM. Indeed we can consider that the Universe is a sphere (We could 

have chosen any other finite convex volume, but the spherical volume is by far the most 

attractive) constituted of dark substance surrounded by a medium called “nothingness” that is 

not constituted of dark substance. This was not possible in the SCM that admitted the 

Cosmological Principle according to which the Universe was isotropic observed from any 

point and also that did not interpreted dark matter as the dark substance that we introduced. 

Nonetheless we will see that according to our Physical Interpretation of the CRF, the 

observable Universe remains isotropic if it is observed sufficiently far from its borders (Not 

compulsory from its center).  

In the case in which Universe is a sphere (or any finite convex volume with a finite 

surface) constituted of dark substance, we avoid the previous problem concerning the 

temperature of the intergalactic dark substance. Indeed, we can assume, generalizing the 

Postulate 2b), that at the borders of the Universe, there is a convective thermal transfer. This 

new kind of thermal transfer is modeled as a convective transfer between a medium 

constituted of intergalactic dark substance at a temperature T0 and a medium at a temperature 

equal to 0 (The nothingness). Then the thermal flow lost by the Universe is, hn being a 

variable or a constant:  

 

φ=hn(T0-0)=hnT0    (28d) 

 

M being the baryonic mass of the Universe assumed to remain approximately 

constant, we obtain from equation (14) that the equation of thermal equilibrium is: 

 

K3M = 4πRE(t)
2
 φ =4πRE(t)

2
 hnT0(t)   (29a) 

  

 So we see that if the Universe increases from a factor f, according to the equation 

(29a), if hn is a constant (independent of the density of the intergalactic dark substance), the 

temperature T0(t) of the intergalactic dark substance diminishes from a factor f
2
. If we had 

supposed that hn=C2ρ0, ρ0 being the mass density of the intergalactic dark substance and C2 

being a constant, it is very easy to obtain that if the Universe increases from a factor f, then T 

also increases by a factor f which is impossible.   

 We also remark that the hypothesis of an infinite Universe, or a finite Universe 

without borders, that are models proposed by the SCM, seems to be impossible to be 

conceived by the human spirit, which is not the case with the previous finite spherical 

Universe, full of dark substance (or any finite convex volume with a finite surface). 

 

2.6 Physical Interpretation of the CRF. 

  

2.6.1 The 2 models of the Physical Interpretation of the CRF. 

 

We remind that the CMB presents a Doppler effect that is canceled in a frame called 

for this reason the CMB Rest Frame (CRF). But this CRF has none physical interpretation in 

the SCM. We are going to give here a Physical Interpretation of the CRF, which permits to 
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obtain a new model of Universe, that is spherical as in the preceding section 2.5. This new 

Physical Interpretation of the CRF is in agreement with the SCM in many points, in particular 

it admits Special and General Relativity. Also it permits to define Cosmological variables 

(Cosmological time, Cosmological distances, Hubble Constant) in a more precise way than in 

the SCM but nonetheless in a way that is in agreement with their definition in the SCM. Our 

Physical Interpretation of the CRF proposes 2 mathematical models of expansion of the 

Universe. (Because we will see that the Universe is in expansion in our Physical Interpretation 

of the CRF as it is in the SCM). The 1
st
 mathematical model is based on General Relativity as 

the SCM. We will see that according to this 1
st
 model the mathematical expressions of 

Cosmological variables are identical to their expression in the SCM. The 2
nd

 mathematical 

model is incomparably simpler, but nonetheless its theoretical predictions are in agreement 

with observation. 

Concerning the physical properties of the CRF: 

-Firstly it is natural that in each point of the Universe (and not only on the earth), we can 

define a CRF. We then can suppose that all CRF have parallel corresponding axis. 

-Secondly we can think that the CRF permits to define very easily the Cosmological time, 

identified to the age of the Universe. The simplest definition of the Cosmological time would 

be that the time of the CRF (meaning the time given by the clocks at rest in the CRF) be 

precisely the Cosmological time. And we will see that this hypothesis is in agreement with  

observations. For instance we will see that its validity is illustrated by a very simple 

observation concerning the inertial frame linked to the sun. 

-Thirdly we know that according to Special Relativity (We remind that we admit it as in the 

SCM) the velocity of a photon relative to the CRF in which it is situated is equal to c in norm. 

Moreover according to Special Relativity its velocity considered as a vector c keeps itself in 

this CRF. We will call local velocity this velocity c. An attractive hypothesis would be that 

the local velocity of the photon keeps itself the photon traveling in all the Universe. We will 

see that this hypothesis involves theoretical predictions that are in agreement with 

observation. In particular we will see that it permits to justify very simply the effect of the 

expansion of the Universe on the lengths of wave of photons and on the distances between 2 

photons following one another. (This effect is also predicted by the SCM) .          

 So we express the preceding hypothesis in the following Postulate 3: 

 

Postulate 3: 

a)At each point of the Universe, we can define a CRF. We will assume that all CRF have 

parallel corresponding axis. 

b)The Cosmological time (identified with the age of the Universe) is the time of all the CRF. 

c)The local velocity of a photon, meaning measured in the CRF in which it is situated, keeps 

itself, the photon traveling in all the Universe.  

 

 We could think that the CRF are defined only after the apparition of the CMB, 

meaning at a very low Cosmological time but not at a Cosmological time equal to 0. In reality 

we will see in the Postulate 4 that in reality the RRC are defined since the beginning of the 

Universe. But CMB is presently the only way for detecting the CRF. This can be considered 

as a consequence of Special Relativity. 

 

 Because of the Postulate 3b), and since we know that the inertial frame RS linked to 

the sun is driven with a velocity vS<<c relative to the local CRF, the time of this frame RS is 

very close to the time of the CRF, that is the Cosmological time, which is an agreement with 

observation. So the Postulate 3b) justifies that the time of RS can be identified to the 

Cosmological time which was not at all evident. In fact we can assume that all galaxies of the 
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Universe have a local velocity negligible (relative to c) relative to the local CRF and that 

consequently the time given by the inertial frame linked to any star of any galaxy is very close 

to the Cosmological time.       

 

 We know need to define all the CRF. Each CRF has an origin and by analogy with the 

SCM, we can expect that if A(t) and B(t) are 2 origins of any 2 CRF (t Cosmological time), 

then the distance A(t)B(t) increases by the factor of expansion of the Universe 1+z. Moreover 

this factor 1+z must also exist, as in the SCM in our Physical Interpretation of the CRF.  

 

We saw in the previous section 2.5 that we could expect that the Universe had a finite 

convex volume with a finite surface, and we will assume in what follows that the Universe is 

a sphere (centre O), full of dark substance, surrounded but what we called “nothingness”. We 

remind nonetheless that what follows can be generalized if the Universe is a finite convex 

volume with a finite surface filled of dark substance and surrounded by what we called “the 

nothingness”. 

In order to define completely the CRF, we introduce a new kind of frame, called 

Cosmological frame, having its origin in O, centre of the sphere. This Cosmological frame RC 

will be used in order to define Cosmological variables. In particular the time of this 

Referential RC is the Cosmological time of the CRF. Moreover we will assume that the axis of 

RC are parallel to the corresponding axis of the CRF and that locally they give the same 

distances as the CRF. Nonetheless, the Cosmological frame RC permits to measure distances 

between any 2 points of the Universe contrary to CRF that permit to measure only local 

distances. We will call primary Cosmological distance (in RC) the distances measured in RC. 

We will see that we can express all the classical Cosmological variables (For instance the 

comoving distances, the angular distance, the light- travel distance..) as a function of distances 

measured in RC (That we called primary Cosmological distances) and of the time of RC 

(Cosmological time). 

     

So we assume that the Universe is a sphere with a centre O, full of dark substance, and 

in expansion. Let RE(t) be the radius of this sphere , t being the Cosmological time. In analogy 

with the SCM, we assume that RE(t)=RE(t0)(1+z), 1+z being the factor of expansion of the 

Universe between t0 and t. We will see further how we can get 1+z. 

 

We are now going to define very important and particular points of the frame RC, 

called comoving points of the swelling sphere.  

   

We assume that P(t) is any point belonging to the border of the swelling sphere, t 

being the Cosmological time, with OP(t) (O is the centre of the swelling sphere) remaining in 

the same direction u, fixed vector RC. 

A comoving point A(t) of the swelling  sphere is defined by : 

 

-A(t) remains on the segment [O,P(t)] 

-OA(t)=aOP(t), a being a constant belonging to [0,1]. (28f) 

 

So in particular O and P(t) are comoving points of the swelling sphere. Moreover if 

A(t) and B(t) are 2 comoving points of the swelling sphere, belonging both to a radius 

[O,P(t)], and if t1 and t2 are 2 ages of the Universe, if 1+z=OP(t2)/OP(t1)), (Here 1+z is the 

factor of expansion between t1 and t2) then we have the 2 relations: 

  

A(t2)B(t2)=(1+z)A(t1)B(t1)  (28g)  
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And : 

 

 [A(t2),B(t2)]//[A(t1),B(t1)]  (28h) 

 

(We classically note, P,Q being 2 points of RC, PQ is the distance between P and Q 

measured in RC, [P,Q] is the segment with extremities P and Q, (P,Q) is the straight line 

containing P and Q) 

 

Using Thales theorem we obtain the 2 previous relation (28g) (28h) A(t) and B(t) 

being any comoving points of the swelling sphere (not compulsory belonging both to the 

same radius [O,P(t)]). 

So we see that the comoving points of the swelling sphere verify the expected relations 

between the origins of the CRF (Meaning that the distance between them increases by the 

factor of expansion of the Universe.) 

 

 

  
 

   Figure 2:The model of the swelling sphere of the Universe. 

 

Consequently the comoving points of the swelling sphere previously defined permit to 

complete the definition of the CRF, in the Postulate 4: 

 

Postulate 4: 

The origins of the CRF are the comoving points that we defined previously. 

 

 Now we need to express the factor of expansion 1+z as a function of the Cosmological 

time. We propose 2 models. 

 According to our 1
st
 model, 1+z is obtained as it is obtained in the SCM: We apply  

locally the equations of General Relativity, assuming that the densities of dark substance, 

baryonic matter and dark energy own identical values to their values in the SCM and are 

homogeneous in all the Universe. A priori, we cannot apply the equations of General 

Relativity as in the SCM in a zone close to the borders of the Universe because we have no 

RE(t)=RE(t0)(1+z) 
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more isotropy of density in this zone. But we will assume that the dimensions of this zone are 

very small relative to the radius of the swelling sphere. Moreover, we will see that according 

to our model, in many cases this zone cannot be observed. And consequently in this 1
st
 model, 

if the previous zone is sufficiently small, the factor of expansion 1+z used in the expression of 

RE(t) and to define the comoving points of the swelling sphere remains identical to its 

expression in the SCM. We will see that this equality involves that our 1
st
 model of our 

Physical Interpretation of the CRF predicts Cosmological distances and a Hubble Constant 

that are mathematically equal to those predicted by the SCM.  

 

 Nonetheless, a priori, it is possible that the factor of expansion 1+z be not obtained by 

the equations of General Relativity. It is possible that as for the (local) velocity of light, the 

Cosmological velocity of the borders of the Universe relative to RC (defined by 

VE(t)=d(RE(t))/dt, t Cosmological time) be as simplest as possible, meaning that it is equal to 

a constant C. There is no reason for which C should be equal or inferior to the velocity of 

light c because C is not the local velocity (defined in Postulate 3) of a photon or of a particle. 

So in our 2
nd

 model, we assume that the Cosmological velocity of the borders of the Universe 

is equal to a constant C. We will see that we can give an inferior limit to this constant C. And 

we will also see that despite of this great simplicity, the predictions of this 2
nd

 mathematical 

model are in agreement with all astronomical observations. Then if P(t) is a point of the 

border of the sphere OP(t)=Ct. And we have a very simple expression of 1+z: Between t0 and 

t, 1+z=t/t0.  

 We saw that the SCM needed the existence of a mysterious dark energy, and it is also 

the case for our 1
st
 model. But we see that in the 2

nd
 model this enigma is solved because it 

does not need the existence of a dark energy. And this is a very attractive point of this 2
nd

 

model. This 2
nd

 model is also clearly the simplest mathematical model of expansion of the 

Universe that can exist. 

 

2.6.2 The theoretical consequences of our Physical Interpretation of the CRF. 

 

 As a consequence of our Physical Interpretation of the CRF, we can prove that as it 

was also the case in the MSC, if 2 photons ph1 and ph2 move in the same direction on a 

straight line towards the point O origin of RC (We will see further that this remains true 

replacing O by any comoving point O’ of the swelling sphere), then between 2 Cosmological 

times t1 and t2, the distance in RC between the 2 photons and the length of wave of each 

photon increase by the factor of expansion 1+z between t1 and t2 . 

 

 Indeed let us consider 2 photons defined as previously. So they have an identical local 

velocity c (with a direction being the direction of the straight line). We take the following 

notations: At the Cosmological time t ph1 is in the point ph1(t) of RC, and ph2 is in the point 

ph2(t). Let us suppose that for a given Cosmological time t, ph1(t) coincides with a comoving 

point A1(t) and ph2(t) with a comoving point A2(t). Let 1+dz the factor of expansion of the 

swelling sphere between t and t+dt. Then we have according to the property (28g) of 

comoving points: 

A1(t+dt)A2(t+dt)=(1+dz)A1(t)A2(t)=(1+dz)ph1(t)ph2(t). 

Moreover, the local velocity of photons being equal to c: 

A1(t+dt)ph1(t+dt)=A2(t+dt)(ph2(t+dt)=cdt 

And consequently (It is evident on a figure): 

ph1(t+dt)ph2(t+dt)=A1(t+dt)A2(t+dt)=(1+dz)(ph1(t)ph2(t) 
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 We can show in an analogous way that if we suppose only that ph1 and ph2 own the 

same local velocity (as a vector), and are not compulsory moving on a straight line towards O, 

then the primary Cosmological distance between ph1(t) and ph2(t) is increased by the factor 

of expansion 1+z and moreover (ph1(t1),ph2(t1))//(ph1(t2),ph2(t2)) 

 

 We remark that in any commoving point of the swelling sphere O’(t) we can define a 

Cosmological frame RC’ whose the axis are parallel to the corresponding axis of RC and 

defining the same Cosmological variables as RC (primary Cosmological distance at a given 

Cosmological time t and Cosmological time).  

 Then if A(t) is any commoving point of the swelling sphere defined previously, t1 and 

t2 being 2 Cosmological times, according to the properties of commoving points (28g)(28h), if 

1+z is the factor of expansion of the Universe between t1 and t2: 

O’(t2)A(t2)=(1+z)O’(t1)A(t1) et (O’(t2),A(t2))//(O’(t1),A(t1)) 

And consequently (O’(t1),A(t1)) et (O’(t2),A(t2) ) are in the same direction u. 

Consequently the properties (28f), replacing RC by RC’ and O by O’, remain valid, P(t) being 

still a point of the border of the sphere. (But here O’(t)P(t) is no more equal to RE(t) nor 

constant). Consequently the expressions of Cosmological distances and Hubble’s constant are 

obtained in RC’ exactly the same way as in RC. 

  

So we see how we can define in a complete analogous way comoving points of any 

finite convex volume with a finite surface, using a Cosmological Referential whose the origin 

is any point of this volume.   

  

 We will see that according to our Physical Interpretation of the CRF we cannot 

observe all the Universe from O(t0) (or O’(t0), (t0 present age of the Universe), which was also 

the case in the SCM. Moreover the properties of RC’(t) involve that if O’(t0) is sufficiently far 

from the borders of the Universe, then according to our Physical Interpretation of the CRF the 

Universe observable from O’(t0) is identical to the Universe observable from O(t0). In 

particular in that case the Universe is isotropic observed from O’(t0), as it was observed from 

O. 

 It is possible to elaborate a complete physical theory of the CRF 
(4)

, but presently it is 

not possible to verify experimentally this theory and moreover the validity of the models 

exposed in this article is completely independent of this theory. 

 

2.7 Hubble’s law-Cosmological distances. 
 

 We keep the preceding model and notations. Let us suppose that a photon is emitted 

from a star S at a point Q(tE) of RC (Q(t) is a commoving point of the swelling sphere) and at 

a Cosmological time tE towards O(tE) origin of RC. We suppose that the photon reaches O(t0) 

at the present Cosmological time t0. We assume that between tE and t0 the factor of expansion 

of the Universe is 1+z0. 

 Between t and t+dt, we know that the photon covers the local distance cdt. 

Consequently between tE and t0 the sum of the local distances covered by the photon will be : 

 

DT=c(t0-tE)  (29a) 

 

 We will call this distance, which is completely identical to the light- travel distance in 

the SCM, by the same name. We can also call it time-back distance because it permits to 

obtain the Cosmological time between the emission and the reception of the photon.  
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 We will see further how in the 1
st
 model of our Physical Interpretation of the CRF  

Cosmological distances and Hubble’s Constant have the same mathematical expressions as 

their expressions in the SCM, and are also obtained the same way.       

 But in the 2
nd

 model we obtain very easily the Hubble’s Constant using the light-travel 

distance defined previously. 

 Indeed according to this 2
nd

 model: 

 

1+z0=(Ct0)/(CtE)=t0/(t0-DT/c)  (29b) 

 

When DT/ct0<<1 we obtain z0≈DT/ct0 and consequently the Hubble’s constant is equal 

to 1/t0. The preceding equation (29b) is very simple and can easily be verified. For instance 

taking t0=15 billion years, for z0=0.5,we obtain DT=5 billion light years and for z0=9 we 

obtain DT=13.5 billion years. These predicted values are in agreement with the usual admitted 

experimental values for the light-travel distance DT. 

We took a present Cosmological time (age of the Universe) equal to 15 billion years 

corresponding to a Hubble’s constant H=1/t0 approximately equal to 65 km/sMpc
-1

 despite 

that it is generally admitted that the Hubble’s constant H is approximately equal to 

72km/sMpc
-1

 corresponding to a time t0=1/H approximately equal to 13,5 billion years.  

Nonetheless many astrophysicists disagree with a Hubble’s constant approximately 

equal to 72 km/s Mpc
-1

 and find a Hubble’s constant approximately equal to 65km/sMpc
-1

, for 

instance Tammann and Reindl 
(5)

 in a very recent article (October 2012). There is also a 

second possibility: light-travel distance could be superior to present estimations by a factor of 

5% to 7%.  

 So it is very remarkable that according to the 2
nd

 model, the value of Hubble’s 

constant is very easily obtained and is equal to 1/t0, t0 present age of the Universe, in 

agreement with the observation. In the SCM (and in the 1
st
 model), the obtainment of 

Hubble’s constant was much more complicated and moreover it was not exactly equal to 1/t0.   

 

We then can define in our Physical Interpretation of the CRF Cosmological distances 

in a completely analogous way to their definition in the SCM: 

So we can express the light-travel distance as: 

∫=

0t

tE

T cdtD      (29c) 

The local distance covered by the photon between t and t+dt is, according to the 

Postulate 3 equal to cdt. This local distance, considered  as a distance between 2 commoving 

points of the swelling sphere, is increased by the factor of expansion of the Universe 1+z=t0/t 

between t and t0 (See equation (28g)). Of course we will assume that the star S remains 

coinciding with the commoving point Q(t). 

In complete analogy with the SCM, we will call comoving distance between O and S 

the primary Cosmological distance between Q(t0) and O(t0) (Meaning their distance measured 

in the Cosmological frame RC), which is the sum of all the local distances cdt covered by the 

photon, increased by the factor 1+z. Let DC be this distance:  

 

∫ +=

0

)1(

t

tE

C dtzcD      (29d) 

 

From this expression we define the luminosity-distance DL between O and S (at the 

Cosmological time t0) and the angular-distance DA between O and S in complete analogy 

with their definition in the SCM: 
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DL=(1+z0)DC 

 

DA=DC/(1+z0)   (29e)  

 

The distance DA appears to be the primary Cosmological distance (distance in RC) 

between Q(tE) and O(tE). In complete analogy with the SCM it permits to obtain some angles 

with a summit O in RC. 

The distance DL , in complete analogy with its definition in the SCM, appears to be 

obtained measuring the luminous flow of a supernova taking into account the effect of the 

expansion of the Universe on the lengths of wave of the photons and on the distances between 

2 photons (moving on the same axis). We saw in the section 2.6.2 that this effect, predicted by 

the SCM, was also true in the Physical Interpretation of the CRF. 

The mathematical expressions of the Cosmological distances (29c)(29d)(29e) are in 

agreement with their mathematical expression in the SCM, in which they are usually 

expressed as a function of the variable z. 

 

In the 1
st
 model of our Physical Interpretation, since 1+z has the same mathematical 

expression as in the SCM (as a function of the Cosmological time t) the final expression of 

those Cosmological distances as a function of z is identical to their final expression in the 

SCM. Consequently we also obtain an identical Hubble’s constant. 

 

In the 2
nd

 model, the expressions of Cosmological distances are much simpler. Using 

1+z=t0/t we obtain: 

 

∫ ∫=+=

0 0

0 )/()1(

t

tE

t

tE

C dtttcdtzcD  

 

So we obtain finally the expression of the comoving distance, using 1+z0=t0/tE: 

  

DC=ct0Log(t0/tE)=ct0Log(1+z0)    (29f) 

 

Here also this simple expression is in agreement with the usual admitted experimental 

values for the comoving distance. We remark that in our 2
nd

 model, according with the 

previous equations we have as in the SCM for z0<<1, DT≈DC≈DA≈DL≈cz0. 

 

We obtain easily that according to the 2
nd

 model, the Cosmological velocity of the 

borders of the sphere being constant and equal to C (in RC), then the Cosmological velocity of 

any comoving point of the swelling sphere is constant and inferior or equal to C (measured in 

RC, using that with our notations OA(t)=aRE(t) (equation (28f)). Let VQ be the Cosmological 

velocity of Q(t). Then consequently the distance in RC between O(t0) and Q(t0), that we called 

DC is also equal to VQt0. Consequently because of the previous equation (29f) we have: 

 

VQ=cLog(1+z0) 

 

We can interpret in our Physical Interpretation of the CMB the observation of the 

explosion of a supernova 
(6)

 the same way as in the SCM, taking into account the effect of the 

expansion of the Universe on the lengths of wave of photons and on distances between 
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photons moving on the same axis. We remind that we obtained this effect, that is also true in 

the SCM, in the section 2.6.2. 

 

2.8 Cosmological limits of the observable Universe. 

 

In our Physical Interpretation of the CRF we cannot, as it was also the case in the 

SCM, observe the Universe (observing the galaxies) before a given time tOU. This implies that 

observing the Universe from a comoving point O’(t0) (t0 present Cosmological time) 

sufficiently far from the borders of the Universe, the observable Universe is isotropic and also 

that in many cases, the borders of the Universe cannot be observed from O’(t0). Here we are 

going to see how we can obtain this time tOU in our Physical Interpretation of the CRF, and 

more precisely according to the 2
nd

 mathematical model, that is much simpler than the 

mathematical model of the SCM.  

It is clear that in our Physical Interpretation of the CRF as in the SCM, the Universe 

cannot be observed before the end of the dark age, at a Cosmological time tD, because we 

admit as in the SCM that before tD light cannot propagate inside the Universe. Moreover, 

galaxies cannot be observed before the Cosmological time tG, that is the time of the 

apparitions of the first galaxies. It exist another limit in our Physical Interpretation of the 

CRF, that is due to the finitude of the Universe in this Interpretation. This is very clear in our 

2
nd

 model: 

According to the equation (29g), VQ being compulsory inferior to C, we have: 

 

C≥cLog(1+z0)   (29h) 

 

 Consequently, with the notations of the previous section: 

 

 t0/tE=1+z0=≤exp(C/c)  (29i) 

 

Which implies that the Universe cannot be observed in O(t0) before the time tI defined by: 

 tI=t0exp(-C/c)   (29j) 

 

 So in our Physical Interpretation of the CRF, tOU is the greatest time between tI, tG and 

tD. Moreover if tOU>tI, we cannot observe the borders of the Universe from O(t0).  

 We remark that the equation (29h) permits to give an inferior limit to the constant C of 

the 2
nd

 model: The fact that we have observed some redshift z equal to 10 implies that 

C>2,3c. If we take C=10c, we obtain tI of the order of 1million years. 

 The previous equations permit to obtain, according to the 2
nd

 model, the minimal 

distance in RC’ (Cosmological frame with an origin O’(t) defined in section 2.6.2) between 

O’(t0) and the borders of the Universe (at the Cosmological time t0)  for which the Universe 

appears to be isotropic observed from O’(t0) (Which means that the borders of the Universe 

cannot be observed from O’(t0)). 

 

2.9 The Cosmic Microwave Background. 

      

 In complete agreement with the SCM, we admit the apparition of a CMB at a 

Cosmological time very close to the Big-Bang (We admit as in the SCM that the Big Bang 

occurs at a Cosmological time equal to 0). Proceeding exactly as in the SCM, taking into 

account the effect of the expansion of the Universe on the lengths of wave of photons and on 

photons moving on the same axis (effect obtained in section 2.6.2) , we obtain in the Physical 

Interpretation of the CRF that if the CMB appears at a Cosmological time tiCMB corresponding 
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to a temperature TiCMB, then at an absolute time t superior to tiCMB, if the factor of expansion 

between tiCMB and t is 1+z, then the CMB at a Cosmological time t corresponds to a 

temperature TCMB(t)=TiCMB/(1+z). (This is obtained exactly the same way as in SCM, because 

we have in both Cosmological models that with the same notations the density of photons is 

divided by (1+z)
3
 and the lengths of wave of photons are increased by a factor (1+z)). And 

consequently our Physical Interpretation of the CRF is in agreement with the observation of 

the CMB corresponding to a great redshift z0 
(7)(8)

 .  

But now we have given a very complete physical interpretation of the CRF that did not 

exist in the SCM. In our Physical Interpretation of the CMB we interpret the interpretation of 

the anisotropies of the CMB as the SCM. 

     

It is important to know what happens to a photon reaching the borders of the spherical 

Universe. It could be absorbed but it is not the only possible hypothesis. The simplest 

hypothesis according which the photon is not absorbed, that we will admit in our Physical 

Interpretation of the CRF, would be that it be reflected, taking exactly the opposite of its local 

velocity (as a vector). With this last hypothesis we could expect to see reflected images of 

some galaxies. But there are several explanations to the fact that it is not the case: 

We keep the notations of the previous section 2.8, defining the limits of the 

Cosmological time before which it cannot be observed: 

We obtain easily that if tG>tI or tI<tD then we cannot observe the reflection of images 

of galaxies on the borders of the Universe. Indeed in the 1
st
 case the reflected images of 

galaxies reach O after t0 and in the 2
nd

 case the reflected photons are absorbed. 

 

2.10 Dipole contribution of the CMB. 

 

 We know that according to the SCM we have the following fluctuations of 

temperature of the CMB 
(7)

:  
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In the previous expression l=1 is the dipole contribution, corresponding to the motion 

of the earth relative to the CRF. In our Physical Interpretation of the CRF, we keep the 

previous expression, but then we can interpret the dipole contribution of this equation, which 

was not the case in the SCM. 

 

3.COMPLEMENTS 

  

 In the Part 2 of this article, we presented a new model of dark matter, called dark 

substance, and a Physical Interpretation of the CRF. In this Part 3, we study the consequences 

of these models, as for instance the motion of a spherical concentration of dark substance 

(constituting some galaxies with a flat rotation curve according to the preceding article), the 

thermal effects on the spherical concentration of dark substance due to this motion, and the 

effects of this motion on the mass and the velocity of this spherical concentration. We will see 

that it exists 2 kinds of radius in a galaxy, the 1
st
 one being the baryonic radius (visible) and 

the 2
nd

 one, called dark radius, being the radius of the spherical concentration of dark 

substance. We will give the mathematical expression of this dark radius as a function of the 

Cosmological time, and we will study a particular case, the case of the milky way at a 

Cosmological time equal to 5 billion years. We will also study the concentration of dark 
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substance around stars and planets, and we will make appear the existence of new kinds of 

galaxies. 

 

3.1 Motion of a galaxy inside the intergalactic dark substance. 

 

 We could think that a spherical concentration of dark substance constituting a galaxy, 

moving through the intergalactic dark substance, is submitted to some modifications of its  

mass and velocity because of this motion. 

 In fact, we have the 2 following properties for the concentration of dark substance: 

 

a) The moving spherical concentration keeps its mass. 

b) The moving spherical concentration keeps its velocity: It is not slowed down nor 

accelerated. 

 

 Indeed, let us consider a spherical concentration of dark substance constituting the 

dark matter of a galaxy (center O) driven with a local velocity V relative to the intergalactic 

dark substance (In fact we can assume that locally, the dark substance is at rest relative to the 

local CRF, and consequently V is also the local velocity (relative to the local CRF) of the 

spherical concentration of dark substance). Let us consider the disk whose the center is O, the 

radius is the radius of the spherical concentration, and that is perpendicular to the velocity V. 

Let S be the surface of the disk. Then in an interval of Cosmological time dt, we have the 2 

phenomena: 

 

c) A volume SVdt of dark substance is absorbed by the spherical concentration.(In front of the 

sphere). 

d) A volume SVdt is emitted by the spherical concentration (to the back of the sphere). 

 

Moreover we remark that according to our model the emitted and the absorbed dark 

substance have the same  density, that is the one of the intergalactic density. Consequently the 

emitted mass and the absorbed mass are equal, which implies that the spherical concentration 

keeps its mass (Property a)). Moreover we can assume that the emitted dark substance(in its 

final state) and the absorbed dark substance have the same local velocity (velocity of the 

surrounding intergalactic dark substance, which we can assume being equal to 0), and 

consequently the velocity of the spherical concentration is not modified (Property b) ). 

 

 We have a second possible justification: 

Let us suppose that the moving spherical concentration of dark substance lose a little 

more dark substance than it absorb. Let us suppose for instance that the total loss be δm. Then 

the equation of equilibrium (6) remaining the same, we can assume that the spherical 

concentration of dark substance will absorb also the missing mass δm, coming back to the 

equilibrium. Consequently the mass of the concentration of dark substance remains the same. 

Moreover we can assume as previously that lost dark substance (in its final state) and 

absorbed dark substance have the same velocity (velocity of the surrounding intergalactic 

dark substance). Consequently, this is a second and more general justification that the 

spherical concentration of dark substance is not accelerated nor slowed down. 

 

It is also possible that lost dark substance and absorbed dark substance have not 

exactly the same local velocity. Then the velocity of the traveling concentration of dark 

substance is slightly modified, but it is possible that this effect be completely negligible and 

that the velocity of this galaxy in its galaxy cluster as a function of the Cosmological time 
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remains constant. We remark also that it is very difficult to observe the evolution of the local 

velocity of a galaxy as a function of the Cosmological time. 

      

 

3.2 Baryonic and dark radius of a galaxy. 
 

We know that the galaxy Andromeda is approximately  at 2.5 billions year-light of our 

galaxy the milky way. We consider for instance the case of the milky way in order to study 

the 2 kinds of radius of a galaxy. We suppose that we are in the 2
nd

 mathematical model of the 

Physical Interpretation of the CRF (Section 2.6.1) because of its great simplicity. 

We saw in the Section 2.2 that if r is the distance to the center O of a spherical 

concentration of dark substance constituting a galaxy, then the expression of the density of 

dark substance ρ(r) is given by, k3 being a constant (See section 2.2, equation (7) k3=k2/4π):     
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So we obtain, M(r) being the mass of the sphere having its center in O and a radius r (See 

equation (9)): 

 

M(r)=4πk3r  (32) 

 

Consequently, v being the velocity of a star at a distance r of O (see equation (10)): 
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We know also that if ρ0 is the local density of the intergalactic dark substance surrounding the 

spherical concentration of dark substance constituting the galaxy, then the radius R of this 

concentration of dark substance is given by the expression (See equation (15)): 
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Consequently: 
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We will call R the dark radius of the considered galaxy. 

So in a galaxy for which it exists a spherical concentration of dark substance with a 

density in 1/r
2
, we have 2 different kinds of radius: 

The 1
st
 kind of radius, called dark radius, is the radius of the spherical concentration 

of dark substance. The 2
nd

 kind of radius is the radius of the smallest sphere containing all the 

stars. We will call baryonic radius this second kind of radius. We remark that at a given time, 

the dark radius must be greater than the baryonic radius. 

 

Let ρ0(5) be the density of the intergalactic dark substance when the age of the 

universe (Cosmological time) was 5 billion years, and ρ0(15) this density at an age of 15 

billion years (meaning presently).  
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We know, with the model of the swelling sphere exposed in the Section 2.6.1  of this 

article, that if f=1+z is the factor of expansion of the universe between 5 and 15 billion years, 

assuming that: 

a)The total mass of the intergalactic dark substance remains approximately the same. 

b) The density of the intergalactic dark substance is the same in all the Universe. 

, and remarking that in our model the (finite) volume of the Universe increases by a factor f
3
 

between the Cosmological times 5 and 15 billion years, we obtain: 

  

 

ρ0(15)=ρ0(5)/f
3
 (37)  

 

Moreover according to the 2
nd

  model, f=15/5=3 (See Section 2.6.1). 

 

We note rB(15) the present baryonic radius of the milky way. We know that rB(15) is 

approximately equal to 50000 years light . If R(15) is the present dark radius of the milky 

way, let us suppose that R(15) is approximately 10 times greater than rB(15) (meaning 

approximately 500000 light-years): 

 

R(15)≈10rB(15) (38) 

 

Of course we ignore the real value of R(15),we can only know its minimal value (It 

must be superior to the baryonic radius). We are going to see that our hypothesis (38) leads to 

coherent results. Let rB(5) be the baryonic radius of the milky way when the age of the 

Universe was 5 billion years. Considering that the baryonic radius increases with time, we 

have the relation: 

 

rB(15)≥rB(5)  (39) 

 

We have seen and justified theoretically in the Section 2.3 of this article that according 

to the baryonic Tully-Fisher’s law the velocity of stars in a galaxy with a flat rotation curve 

depended only on the baryonic mass of this galaxy. Consequently if we suppose that between 

5 and 15 billion years, the baryonic mass of the galaxy remains approximately the same, the 

velocity v used in the equation (36) remains unchanged between 5 and 15 billion years. Using 

this equation (36) and the equation (37), taking f=3 and √(27)≈5, we obtain, R(5) being the 

dark radius of the milky way at an age of the Universe equal to 5 billion years: 

 

R(5)≈R(15)/5≈2rB(15) (40) 

 

Using the equations (39) and (40) we obtain that at an age of the Universe of 5 billion 

years, the dark radius was greater than the baryonic radius: 

 

rB(5)≤rB(15)≈R(5)/2≤R(5)  (41) 

 

We remark that the previous relation (41) would have also be valid for a galaxy with 

the same dark radius R’(15)=500000 light-years but with a baryonic radius r’B(15) twice 

greater than the radius of the milky way meaning 100000 light-years. (We just take r’B(15) ≈ 

100000 years light and replace the equation (38) by the equation: R’(15)≈5r’B(15)). Our 

model remains obviously valid if the final baryonic radius is reached after 5 billion years.  

 

3.3.Thermal transfer of a moving galaxy. 
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 We remark that the phenomenon of absorption and of emission of dark substance by a 

galaxy that we described in the Section 3.1 modifies the thermal equilibrium that we used in 

the Section 2.3 of this article in order to obtain the Tully-Fisher’s law. Indeed the absorbed 

dark substance (cold, because it is intergalactic dark substance) is not at the same temperature 

than the lost dark substance (hot, because it is the temperature of the spherical concentration 

of dark substance). 

Nonetheless we can consider that the previous phenomenon leads to a power ε(t) 
dissipated by the spherical concentration of dark substance.  ε(t) mainly depends on the  

radius of the moving spherical concentration, of its velocity relative to the local intergalactic 

dark substance, of the density of the intergalactic dark substance, and of the temperature of 

the concentration of dark substance. 

If we assume that ε(t) is negligible compared with the power emitted by the baryons of 

a galaxy towards the spherical concentration of dark substance (whose we supposed the 

existence in order to obtain the baryonic Tully-Fisher’s law, see Postulate 2a in section 2.3), 

then our thermal model used in order to get the Tully-Fisher’s law remains valid. We can a 

priori neglect ε(t) because in one second, the distance covered by the moving spherical 

concentration in one year (the local velocity of the spherical concentration of dark substance 

is assumed to be of the order of 300km/s (10
-3

c)), is very low relative to the dark radius of the 

considered galaxies (At least of the order of 100000 light-years).     

 

3.4.Concentration of dark substance around stars and planets. 
 

 It is natural to assume that because of gravitation, there is a concentration of dark 

substance around planets and stars. 

 Let us for instance consider a star S with a (baryonic) mass M. The same way as for 

galaxies with a flat rotation curve, we can assume that there is a concentration of dark 

substance around the star, in equilibrium at a given temperature T, and presenting a spherical 

symmetry. 

The equation of equilibrium is, for an element of dark substance situated at a distance r 

from O the centre of S, with a density ρ(r), a width dr, a surface dS , a pressure P(r),   

assuming that r is greater than the baryonic radius RB of the star S, neglecting the gravitational 

attraction due to the sphere of dark substance having r as radius : 

 

0
)(

)()(
2

=+−+
r

drdSrGM
dSrPdSdrrP

ρ
  (42) 

 

We remind (See Section 2.2, equation (2)) that we have P(r)=k1ρ(r) with k1=k0T, T 

temperature of the concentration of dark substance. 

So we obtain, solving easily the previous differential equation: 

 

)exp()(
1rk

GM
Kr =ρ   (43) 

Let ρ0 be the density of dark substance surrounding the concentration of dark 

substance around the star. Generally ρ0 is not the density of the intergalactic dark substance 

contrary to the galaxies that we studied. It is very often the local density of the spherical 

concentration of dark substance constituting the galaxy to which the star belongs. 

A first model is K=ρ0. Then we have: 
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r ρρ =    (44) 

This model leads to incoherencies (ρ(r) too great) 

 

A second possible model is the following one. Let RD be the radius of the 

concentration of dark substance around the star S. We can assume in the 2
nd

 model RD=RB, 

with ρ(RD)=ρ0. This defines the constant K. Then the equation (43) leads then to densities 

inferior to ρ0 for r>RD=RB. But this is acceptable as in the case of galaxies studied in Section 

2.3.3. Indeed we have seen in the Section 2.3.3 that RD being the dark radius of the galaxy, we 

had for r>RD a density of dark substance equal to ρ0 (density of the intergalactic dark 

substance surrounding the galaxy) despite that the equation (7) predicted a density ρ(r)<ρ0 for 

our choice of RD. We can then evaluate T, temperature of the spherical concentration of dark 

substance, the same way as for galaxies in the  Section 2.3, using the Postulate 2.  We obtain 

ρ(r) for r<RD=RB using a new equilibrium equation, in which we can consider only the 

attraction of the baryonic mass of the star. This second model can also be valid for some 

galaxies.  

In a third model, there is no concentration of dark substance around the star S, the dark 

substance around the star is identical to the surrounding dark substance. There is not an 

equation of equilibrium as the equation (42). In particular, in this case, the local density is 

ρ(r)=ρ0, there is no equation of equilibrium giving ρ(r) and the local temperature of the dark 

substance coinciding with the star is the temperature of the surrounding dark substance. As in 

the second model, this is justified if we find in the second model for r<RD=RB a density 

inferior to ρ0 model. There is also a second more general justification: We can admit that 

naturally the dark substance tends to be homogeneous in density and temperature. The fact 

(that we admitted in our Physical Interpretation of the CRF) that the intergalactic dark 

substance be homogeneous in density and temperature appears to be a consequence of this 

effect. Let us call homogenization effect this effect. (It existed, locally for a gas an we saw 

that dark substance have physical properties close to those of a gas).  We can consider that in 

the case of spherical concentrations with densities of dark substance in 1/r
2
 that we studied in 

Section 2.2, the gravitational effect canceled the homogenization effect for r<RD, but when 

r>RD it was the homogenization effect that canceled the gravitational effect. So it is natural to 

assume that in some case (galaxies or stars) the homogenization effect predominates and in 

that case we have ρ(r)=ρ0 for r<RB. 

 

Generalizing what precedes to the case of galaxies, we see 2 new kinds of galaxies, 

corresponding to the 2
nd

 or 3
rd

 previous case. In this 3
rd

  case we have some galaxies for which 

the density of dark substance is equal to ρ0, ρ0 being the density of the intergalactic dark 

substance or of the local concentration of dark substance in which they are immerged (In the 

case of galaxies satellite).  

 

 We can suppose that the galaxies that are satellites of the milky way, as for instance 

the Magellanic clouds, correspond to those new kinds of galaxies. We remind that those dwarf 

galaxies have a velocity close to the velocities of the stars of the milky way, and consequently 

this involves according to our Physical Interpretation of the CRF that the dark radius of the 

milky way is superior to the distance between those galaxies satellites and the center of the 

milky way, in agreement with our assumption in Section 3.2. We remind that some models 

without dark matter exist for those galaxies satellites 
(9)

 . 

  

3.5 Link between the CMB and the temperature of the intergalactic dark substance. 
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 In the Sections 2.5 and 2.6 , we have seen that according to our Physical Interpretation 

of the CRF, the Universe was a sphere filled of dark substance, surrounded by a medium 

called “nothingness”. We saw in the Section 2.5 that we could model a convective thermal 

transfer between this spherical Universe and the nothingness. The convective flow F was then 

in agreement with the expression F=hnT0(t), T0(t) being the temperature of the intergalactic 

dark substance at a Cosmological time t. It is easy to verify that it is impossible that we have a 

constant C2 such than hn=C2ρ0(t) contrary to the case in which we had also a convective 

transfer but between 2 mediums constituted  of dark substance in section 2.3. (Indeed in this 

case we would obtain that T0(t) increases). We saw in Section 2.5 that it is nonetheless 

possible that hn be constant, independent of the density of the intergalactic dark substance. 

Indeed in this case, because of the Postulate 2a) we have the equation of thermal equilibrium 

K3M=4πRE(t)
2
(hnT0(t)), with K3 constant (Equation (14)) , M baryonic mass of the Universe, 

RE(t) radius of the Universe at a Cosmological time t. We obtain that T0(t) evolutes in 

1/(1+z)
2
, (1+z) factor of expansion of the Universe. We admit as in the SCM that the 

apparition of the CMB in the Universe corresponds to a redshift z approximately equal to 

1500. If we admit that for this value of z, the temperature of the intergalactic dark substance 

was equal to the temperature of the CMB, we obtain that presently (with an age of the 

Universe of 15 billion years), the temperature of the intergalactic dark substance is 1500 times 

lower than the temperature of the CMB, which is an acceptable value, justifying our 

approximation in Section 2.3 expressing that the temperature of the intergalactic dark 

substance can be neglected in comparison with the temperature of spherical concentrations of 

dark substance (corresponding to galaxies with flat rotation curve, see Section 2.). 

 Moreover the hypothesis of the initial temperature of the CMB and the temperature of 

the intergalactic dark substance implies, because we assumed that the latter was homogeneous 

in all the Universe (see the homogenization effect in the previous section) , that the initial 

temperature of the CMB was also homogeneous in all the Universe. And so this hypothesis 

justifies the isotropy of the CMB observed from the CRF, without needing to introduce the 

phenomenon of inflation, as it was the case in the SCM.   

   

4.CONCLUSION  

 

 So in this article we proposed the existence of a dark substance whose physical 

properties are in agreement with observations connected to dark matter. In particular those 

physical properties, despite of their simplicity, permitted to us to justify theoretically the flat 

rotation curve observed for many galaxies and the baryonic Tully-Fisher’s law. In order to 

obtain those laws, we interpreted galaxies with a flat rotation curve as spherical 

concentrations of dark substance in thermal equilibrium. 

 We have also exposed a Physical Interpretation of the CMB Rest Frame (CRF). This 

Interpretation permitted to us to define in a simple and new way the Cosmological time, in 

agreement with all astronomical observations and with the definition of Cosmological time in 

the SCM. This Interpretation has also permitted to us to introduce a new kind of frame, called 

Cosmological frame, that is fundamental for the description of the Universe. Then using these 

new concepts, we proposed a new model of Universe, flat and finite, not proposed by the 

SCM. Despite of this difference we have seen that according to a 1
st
 mathematical model of 

expansion of the Universe ,based as the SCM on General Relativity, the observable Universe 

was identical to the one predicted by the SCM (in particular it is isotropic), provided that it be 

observed from a point sufficiently far from the borders of the Universe. We also have 

proposed a 2
nd

 mathematical model of expansion, much simpler than the mathematical model 

of the SCM, and we have seen that the theoretical predictions of this 2
nd

 were nonetheless in 
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agreement with astrophysical observations. Moreover this 2
nd

 mathematical model did not 

need a dark energy, contrary to the SCM. 

 In section 3 we studied the effects of the motion of a spherical concentration of dark 

substance on its velocity and its mass. We also studied the 2 kinds of radius for a galaxy, the 

dark radius and the baryonic radius. 

  

 So our exposed theory has many perspectives in experimental astrophysics. Indeed it 

is necessary to find observations permitting to confirm or infirm the theoretical models 

presented here. Concerning our model of dark substance, it is necessary for instance to verify 

if this model is compatible with the properties of dark matter observed in galaxy clusters. We 

remind that those observations contradicted MOND theory 
(1)

 .     

 Nonetheless we have seen that 2 very simple Postulates expressing the properties of 

dark substance permitted to obtain the very specific laws that are the flat rotation curve of 

some galaxies and the Tully-Fisher’s law. It would be very surprising that this be an effect of 

random. So we can really expect that our model of dark substance is valid. 

 Concerning the Physical Interpretation of the CRF, finding some observations 

permitting to compare our 1
st
 model and the SCM will be a greater challenge because we have 

seen that they both predicted the same observable Universe. It should be nonetheless possible 

to find astronomical observations permitting to compare the phenomenon used in our Physical 

Interpretation of the RRC to justify the isotropy of the CMB in our 1
st
 model (equality of the 

initial (Cosmological time tICMB) temperature of the CMB and the temperature of intergalactic 

dark substance (also Cosmological time tICMB), Section 3.5) and the corresponding 

phenomenon in the SCM (inflation) permitting to justify the observed isotropy of the CMB. 

 It should be easier to find astronomical observations permitting to compare the 

predictions of our 2
nd

 model with the predictions of the SCM because they are  

mathematically different. For instance we have seen that in our 2
nd

 model, the Hubble’s 

constant is precisely equal to 1/t0, t0 age of the Universe. In the same way Cosmological 

distances have not the same mathematical expression in our 2
nd

 model as in the SCM (See 

Section 2.7). 

 But a very attractive element in favor of the model of the Universe proposed by our 

Physical Interpretation of the CRF is that this model of Universe can be conceived by the 

human spirit, which was not the case for models of Universe proposed by the SCM that were 

either infinite or finite but without borders.  It is our model of dark substance that permitted to 

us to define easily such a Universe, flat and finite.  
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