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Abstract 

Two quite different forms of differential calculus exist that both have physical significance. The most 

simple version is quaternionic differential calculus. Maxwell based differential calculus is based on 

the equations that Maxwell and others have developed in order to describe electromagnetic 

phenomena. Both approaches can be represented by four-component “fields” and four-component 

differential operators. Both approaches result in a dedicated non-homogeneous second order partial 

differential equation. These equations differ and offer solutions that differ in details. 

Maxwell based differential calculus uses coordinate time t, where quaternionic differential calculus 

uses proper time τ. The consequence is that also the interpretation of speed differs between the two 

approaches. A more intriguing fact is that these differences involve a different space-progression 

model and different charges and currents. The impacts of these differences are not treated in this 

paper. 

By adding an extra Maxwell based differential equation the conformance between the two 

approaches increases significantly. 

The formulation of physics in Maxwell based differential calculus differs significantly from the 

formulation of physics in quaternionic differential calculus. It results in a different space-progression 

model. The choice between the two approaches influences the description of physical reality. 

However, the selected formulation does not affect physical reality. The description does not affect 

the described field. 

The conclusion of the paper is that depending on the type of investigated phenomena either the 

Maxwell based approach or the quaternionic approach fits better as a descriptor. The Maxwell based 

approach fits better for describing wave behavior. The quaternionic approach fits better for the 

description of the embedding process. 

Quaternionic differential calculus also fits better with the application of Hilbert spaces in quantum 

physics than Maxwell based differential calculus does. However, Maxwell based differential calculus 

is the general trend in current physical theories. 
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1 Introduction 
In this paper the quaternionic differential equations are compared to Maxwell based differential 

equations [1][2].  

In order to ease the comparison of the two approaches, we apply four-component “fields” and four-

component operators. The parameter space is represented in a similar way by a similar but flat four-

component “field”. 

We start with a four-component differentiable “field” 𝜑 and we also define the corresponding four-

component differential operator 𝛻. This nabla operator is applicable in situations in which the 

continuity of the field is not too violently disrupted. We tolerate point-like artefacts that manifest as 

sources, drains, charges or transient embedding locations.  

The four-component approach is sometimes implemented with the help of spinors and 

corresponding matrices. Here we could, but will not apply that methodology. The method confuses 

more than that it elucidates the situation. Instead, we consider the scalar part as a separate part and 

we apply base vectors {𝒊, 𝒋, 𝒌} rather than the corresponding Pauli matrices [3]. For the same reason 

we do not apply Clifford algebra, Jordan algebra or Grassmann algebra. 

The investigated approaches both start with a basic “field” 𝜑. Gravitation concerns applications 

where this “field” 𝜑 is always and everywhere present. This kind of field is suited as continuum for 

embedding discrete objects. It is also suited as long range transport medium for carriers of 

information and energy. Electromagnetic theory concerns applications where the existence of the 

“field” 𝜑 is determined by a set of charges in the form of nearby point-like artifacts. These two kinds 

of basic fields are related, but that is subject of another paper [4]. 

Double differentiation results in a non-homogeneous second order partial differential equation that 

reveals how the basic “field” 𝜑 can be deformed or vibrated and how the artifacts control the 

behavior and the existence of the field. This second order partial differential equation differs 

between the two approaches. 

The investigated field 𝜑 exists independent of the fact which kind of functions and parameter spaces 

are used to describe it. The investigated subject is the continuum eigenspace of an operator that 

resides in a non-separable quaternionic Hilbert space. 

2 Notation 
Italic font face without subscript indicates four-component “fields” or four-component operators. 

Bold italic font face indicates 3D vectors and vector functions or 3D operators.  

The four-component “fields” consist of a combination of a scalar field and a field of 3D vectors. 

 

𝜑 = {𝜑0,𝜑1,𝜑2,𝜑3} = {𝜑0,𝝋} = {𝜑0, 𝒊 𝜑1 + 𝒋 𝜑2+𝒌 𝜑3} 

 

Both approaches start with a basic “field” 𝜑. A set of related “fields” is derived from this basic “field”.  

Both approaches use the 3D nabla operator 𝜵. 

(1) 
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𝜵 = {
𝜕

𝜕𝑥
,
𝜕

𝜕𝑦
,
𝜕

𝜕𝑧
} = 𝒊

𝜕

𝜕𝑥
+ 𝒋

𝜕

𝜕𝑦
+ 𝒌

𝜕

𝜕𝑧
  

This vector operator can be applied when the deformations of the subjected fields are not too 

violent.  

 

𝛻 = {𝛻0,𝛻1,𝛻2,𝛻3} = {𝛻0,𝜵} 

 

For example, the four-component “field” 𝜙 is defined as: 

 

𝜙 = {𝜑0,𝝋} = 𝛻𝜑 = {𝛻𝜑0,𝛻𝝋} 

 

The four-component differential operator differs between the two approaches. Quaternionic 

differential calculus uses proper time 𝜏 and partial derivative 𝛻0 = 𝛻𝜏 =
𝜕

𝜕𝜏
 and Maxwell based 

differential calculus uses coordinate time 𝑡 and partial derivative 𝛻0 = 𝛻𝑡 =
𝜕

𝜕𝑡
.  

We suppose that  𝛻0 commutes with 𝜵. 

3 Parameter spaces 
The parameter space is represented by a four-component flat “field”: 

 

{𝑥0, 𝒊 𝑥1 + 𝒋 𝑥2+𝒌 𝑥3} = {𝑥0, 𝒙 + 𝒚 + 𝒛}; 𝑥0 = 𝜏 or 𝑥0 = 𝑡   

 

Infinitesimal coordinate time steps ∆𝑡 and infinitesimal proper time ∆𝜏 steps are related by: 

 

Coordinate time step vector = proper time step vector + spatial step vector 

 

Or in Pythagoras format: 

 

(∆𝑡)2  =  (∆𝜏)2 + (∆𝑥)2+(∆𝑦)2+(∆𝑧)2 

 

In the quaternionic model, the formula indicates that the coordinate time step corresponds to the 

step of a full quaternion, which is a superposition of a proper time step and a perpendicular pure 

spatial step. 

An infinitesimal spacetime step ∆𝑠 is usually presented as an infinitesimal proper time step ∆𝜏. 

(2) 

(3) 

(4) 

(1) 

(2) 

(3) 
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(∆𝑠)² =  (∆𝑡)² − (∆𝑥)² − (∆𝑦)² − (∆𝑧)²  

 

The signs on the right side form the Minkowski signature (+,−,−,−) .  

The quaternionic model offers a Euclidean signature (+,+,+,+) as is shown in formula (3). 

4 Definition of the differential 
Locally, the deformation of the “field” 𝜑 is supposed to be sufficiently moderate, such that the 

nabla operator 𝛻 can be applied.  

In the two approaches, the differentiations {𝜙0, 𝝓} = {𝛻0, 𝜵}{𝜑0, 𝝋} have different definitions.  

We do not go further than double differentiation. This double differentiation results in a non-

homogeneous second order partial differential equation. In the two approaches, the non-

homogeneous second order partial differential equations have a different format. In the Maxwell 

based approach this equation it is known as wave equation. 

5 Mathematical facts 

5.1 Quaternions  
Quaternions are a combination of a real scalar 𝑎0 and a 3D vector 𝒂, which forms the imaginary part. 

Quaternionic number systems are division rings. This means that every non-zero element has an 

inverse. Hilbert spaces can only cope with number systems that are division rings. Quaternionic 

number systems form the most elaborate division rings. 

Continuous quaternionic functions represent skew fields. Quaternionic differential calculus uses 

proper time 𝜏 as progression parameter. For that reason all quaternionic differential equations are 

inherently Lorentz invariant. 

Due to their four dimensions quaternionic number systems exist in 16 symmetry flavors that only 

differ in their discrete symmetry sets [1][4]. 

 

𝑎 ≡ 𝑎0 + 𝒂 

The quaternionic conjugate is defined as: 

𝑎∗ ≡ 𝑎0 − 𝒂 

The norm is defined as: 

|𝑎| ≡ √𝑎∗𝑎 

The norm of a quaternionic function φ is defined as 

‖𝜑‖ ≡ √∫𝜑∗𝜑 𝑑𝑉
𝑉

 

 

The quaternionic product is defined as: 

(4) 

(1) 

(2) 

(3) 

(4) 
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𝑐 = 𝑎𝑏 = 𝑎0𝑏0 + 𝑎0𝒃 + 𝑏0𝒂 − 〈𝒂, 𝒃〉 ± 𝒂 × 𝒃 

The ± sign indicates the freedom of choice between a left handed and a right handed external vector 

product. This indicates that quaternionic number systems exist in several versions. 

5.2 Special differential equations 
In the next equations, 𝛼 is a real or complex valued scalar function. 𝒂 is a vector function. Both 

equation sets use the nabla operator: 

 

𝜵 ≡  {
𝜕

𝜕𝑥
,
𝜕

𝜕𝑦
,
𝜕

𝜕𝑧
} ≡ +𝒊

𝜕

𝜕𝑥
+ 𝒋

𝜕

𝜕𝑦
+ 𝒌

𝜕

𝜕𝑧
 

 

The following formulas are just mathematical facts that generally hold for vector differential calculus: 

 

〈𝜵, 𝜵𝒂〉 ≡ 〈𝜵, 𝜵〉𝒂 

 

〈𝜵, 𝜵𝛼〉 ≡ 〈𝜵, 𝜵〉𝛼 

 

𝜵 × 𝜵𝛼 = 𝟎 

 

〈𝜵, 𝜵 × 𝒂〉 = 0 

 

〈𝜵 × 𝜵, 𝒂〉 = 𝟎 

 

𝜵 × (𝜵 × 𝒂) =  𝜵〈𝜵, 𝒂〉 − 〈𝜵, 𝜵〉𝒂  

 

𝜵 × (𝜵 × 𝜵𝛼) =  𝜵〈𝜵, 𝜵𝛼〉 − 〈𝜵, 𝜵〉𝜵𝛼 

 

6 Quaternionic differential calculus 
The quaternionic nabla is defined by: 

𝛻 ≡  {
𝜕

𝜕𝜏
,
𝜕

𝜕𝑥
,
𝜕

𝜕𝑦
,
𝜕

𝜕𝑧
} ≡

𝜕

𝜕𝜏
+ 𝒊

𝜕

𝜕𝑥
+ 𝒋

𝜕

𝜕𝑦
+ 𝒌

𝜕

𝜕𝑧
= 𝛻0 + 𝜵 

𝛻∗ = 𝛻0 − 𝜵 

 

In quaternionic differential calculus the differential can be defined as a product. 

(5) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8 

(1) 

(2) 
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𝜙 = 𝛻𝜑 ≡ (∇0 + 𝛁)(𝜑0 + 𝝋) = 𝛻0𝜑0 − 〈𝜵,𝝋〉 + 𝜵𝜑0 + 𝛻0𝝋 ± 𝜵 × 𝝋 

 

𝜙0 = 𝛻0𝜑0 − 〈𝜵,𝝋〉 

𝝓 = 𝜵𝜑0 + 𝛻0𝝋 ± 𝜵 × 𝝋 

 

The second derivative delivers a non-homogeneous equation: 

 

𝜁 = 𝛻∗𝜙 = 𝛻∗𝛻𝜑 = (∇0 − 𝛁)(∇0 + 𝛁)(𝜑0 + 𝝋) 

 

= {𝛻0𝛻0 + 〈𝜵, 𝜵〉}𝜑 =
𝜕2𝜑

𝜕𝜏2
+

𝜕2𝜑

𝜕𝑥2
+

𝜕2𝜑

𝜕𝑦2
+

𝜕2𝜑

𝜕𝑧2
 

 

𝜁0 = 𝛻0𝜙0 − 〈𝜵,𝝓〉 

𝜻 = 𝜵𝜙0 + 𝛻0𝝓 ± 𝜵 × 𝝓 

 

Notice that: 

𝛻0𝜙 = 𝛻0𝛻0𝜑0 − 𝛻0〈𝜵,𝝋〉 + 𝛻0𝜵𝜑0 + 𝛻0𝛻0𝝋 ± 𝛻0𝜵 × 𝝋 

−𝜵𝜙 = −𝜵𝛻0𝜑0 + 𝜵〈𝜵,𝝋〉 + 〈𝜵, 𝜵〉𝜑0 + 𝛻0〈𝜵,𝝋〉 ∓ 𝛻0𝜵 × 𝝋 − 𝜵 × (𝜵 × 𝝋) 

= −𝜵𝛻0𝜑0 + 〈𝜵, 𝜵〉𝜑0 + 𝛻0〈𝜵,𝝋〉 ∓ 𝛻0𝜵 × 𝝋 + 〈𝜵, 𝜵〉𝝋 

 

𝜌0 = 〈𝜵,𝝓〉 = 〈𝜵, 𝜵〉𝜑0 

𝝆 = 𝜵𝜙0 ± 𝜵 × 𝝓 = 〈𝜵, 𝜵〉𝝋 

 

The gauge transformation 𝜑 → 𝜑 + 𝜒, where 𝛻∗𝜒 = 0, does not change 𝜙 in 𝜙 = 𝛻𝜑. 

6.1 Solutions of the quaternionic second order partial differential equation 
Solutions of the second order partial differential equation depend on start and boundary conditions. 

This second order partial differential equation only holds for moderate discontinuity conditions. 

 

𝛻∗𝛻𝜑 ≡ {𝛻0𝛻0 + 〈𝜵, 𝜵〉}𝜑 =
𝜕2𝜑

𝜕𝜏2
+

𝜕2𝜑

𝜕𝑥2
+

𝜕2𝜑

𝜕𝑦2
+

𝜕2𝜑

𝜕𝑧2
= 𝜁 

 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(1) 
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Apart from more detailed conditions the equation can be reduced to special forms. Examples are the 

Poisson equation, the screened Poisson equation and the homogeneous second order partial 

differential equation.  

 Poisson Equations 
In the screened Poisson equation the first term is reduced to multiplication with a real constant 𝜆: 

 

∇0∇0𝜑 = −𝜆2 𝜑 

 

{−𝜆2 + 〈𝜵, 𝜵〉}𝜑 = 𝜁 

 

The corresponding solution is superposition of screened Green’s functions. 

Green functions represent solutions for point sources. 

{−𝜆2 + 〈𝜵, 𝜵〉}𝐺(𝒓, 𝒓′) = 𝛿(𝒓 − 𝒓′) 

 

𝜑 = ∭𝐺(𝒓 − 𝒓′) 𝜁(𝒓′) 𝑑3𝒓 ′ 

 

In this case the Green’s function for spherical symmetric conditions (𝒓 = 𝟎) is: 

 

𝐺(𝑟) =
exp(−𝜆 𝑟)

𝑟
 

 

A zero value of 𝜆 offers the normal Poisson equation. 

If 𝜆 ≠ 0 then equation (1) has a solution 

 

𝜑 = 𝑎(𝒙) exp (±𝑖 𝜔 𝜏);  𝜆 = ±𝑖 𝜔 

 

𝜔 represents a parameter space wide clock frequency. 

 

 Coherent swarm of charges 
A coherent swarm of charges that can be described by a continuous quaternionic location density 

function represents a blurred Green’s function. For example, in case of an isotropic Gaussian 

distribution 𝜁0 the 𝑁 contributions of the swarm elements to the integral 𝜑 will on average equal 

𝔊(𝑟) = ERF(𝑟)/𝑟. 𝑁 𝔊(𝑟) represents the local potential. 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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 The homogeneous quaternionic second order partial differential equation 
Despite the fact that the equation is quite similar to a wave equation it does not support waves. 

Locally, this quaternionic second order partial differential equation is considered to act in a rather 

flat continuum 𝜑. 

 

∇∗∇𝜑 = ∇0∇0𝜑 + ⟨𝛁,𝛁⟩𝜑 = 0 

 

First we look at: 

 

∇∗∇𝜑0 = 0 

 

𝜑0 is a scalar function. For isotropic conditions in three participating dimensions equation (2) has 

three dimensional spherical wave fronts as one group of its solutions. 

By changing to polar coordinates it can be deduced that a general solution is given by: 

 

𝜑0(𝑟, 𝜏) =
𝑓0(𝒊𝑟 − 𝑐𝜏)

𝑟
=

𝑓0(𝒓 − 𝑐𝜏)

|𝒓|
 

 

where 𝑐 = ±1 and 𝒊 represents a base vector in radial direction. This solution describes a shape 

keeping front. 

In fact the parameter 𝒊𝑟 − 𝑐𝜏 of 𝑓0 can be considered as a complex number valued function. 

We use  

〈𝛻, 𝛻〉𝜑0 ≡
1

𝑟2
(

𝜕

𝜕𝑟
(𝑟2

𝜕𝜑0

𝜕𝑟
)) = −

𝑓′′(𝒊𝑟 − 𝑐𝜏)

𝑟
=

1

𝑐2

𝜕²𝜑0

𝜕𝜏²
 

 

Next we consider the vector function 𝝋 

 

∇∗∇𝝋 = 0 

 

Equation (5) has one dimensional wave fronts as one group of its solutions: 

 

𝝋(𝑧, 𝜏) = 𝒇(𝒊𝑧 − 𝑐𝜏) 

 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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Again the parameter 𝒊𝑧 − 𝑐𝜏 of 𝒇 can be interpreted as a complex number based function. Again the 

solution describes a shape keeping front, but this time the traveling front also keeps its amplitude. 

The imaginary 𝒊 represents a normalized base vector in the 𝑥, 𝑦 plane. Its orientation 𝜃 may be a 

function of 𝑧. 

That orientation determines the polarization of the one dimensional wave front. 

These solutions do not represent waves. Instead they represent moving fronts that keep their shape. 

 No dynamic waves 
A solution based on 

 

𝜑 = 𝑎(𝒙) exp (±𝑖 𝜔 𝜏) 

 

∇0∇0𝜑 = −𝜔2𝜑 

 

⟨𝛁, 𝛁⟩𝜑 =  𝜔2𝜑 

 

does not lead to dynamic spatial waves. Thus separation of variables does not work well for the 

quaternionic homogeneous second order partial differential equation. 

In order to show waves, a change to another parameter space is required. Instead of parameters 𝜏 

and x we might select parameter 𝑡 which is a function of 𝜏 and 𝒙. Taking 𝑡 = |𝑥| = |𝜏 + 𝒙| will do the 

job. This delivers a homogeneous (spherical) wave equation of the form: 

𝜕2𝑓

𝜕𝑡2
− ⟨𝛁, 𝛁⟩𝑓 = 0 

In contrast to equation (4) the equation 

𝜕2𝑓

𝜕𝑡2
+ ⟨𝛁, 𝛁⟩𝑓 = 0 

does not describe dynamic waves, but like equation (4) it can describe shape keeping fronts. 

  

(1) 

(2) 

(3) 

(4) 

(5 
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7 Maxwell based differential calculus 
We know that Maxwell based differential calculus supports a wave equation. As has been indicated 

above, the quaternionic second order partial differential equation is not suitable as a wave equation. 

For that reason, we introduce a new variable 𝑡, which replaces parameter 𝜏.  

We will take 𝑡 = |𝑥| = |𝜏 + 𝒙|.  

In Maxwell based differential calculus, the partial differential 
𝜕

𝜕𝑡
 replaces 

𝜕

𝜕𝜏
.  

The majority of the Maxwell based differential equations are quite similar to the quaternionic 

differential equations. The differences are very subtle. This fact can be very confusing.  

7.1 Maxwell-like equations 
We start from the quaternionic differential and use control switch 𝛼 = −1. 

𝜙 = 𝛻𝜑 = (𝛻𝑡 + 𝜵)(𝜑0 +  𝝋) = 𝛻𝜏𝜑0 − 〈𝜵,𝝋〉 + 𝜵𝜑0 + 𝛻𝜏𝝋 ± 𝜵 × 𝝋 

𝜙0 = −𝛼 𝛻𝜏𝜑0 − 〈𝜵,𝝋〉 

𝝓 = 𝜵𝜑0 + 𝛻𝜏𝝋 − 𝜵 × 𝝋 

 

We define new symbols: 

 

𝕰 ≡  −𝜵𝜑0 − 𝛻𝜏𝝋 

 

𝓑 ≡  𝜵 × 𝝋 

 

𝛻𝜏𝓑 = 𝜵 × 𝛻𝜏𝝋 = −𝜵 × 𝕰 

 

𝜵 × 𝓑 = 𝜵 × (𝜵 × 𝝋) = 𝜵〈𝜵,𝝋〉 − 〈𝜵, 𝜵〉𝝋 

 

𝛻𝜏𝕰 ≡  −𝛻𝜏𝜵𝜑0 − 𝛻𝜏𝛻𝜏𝝋 

 

〈𝜵, 𝕰〉 = −〈𝜵,𝜵〉𝜑0 − 𝛻𝜏〈𝜵,𝝋〉 

 

𝛻𝜏𝜙0 = −𝛼 𝛻𝜏𝛻𝜏𝜑0 − 𝛻𝜏〈𝜵,𝝋〉 

 

𝜵𝜙0 ≡ −𝛼 𝛻𝜏𝜵𝜑0 − 𝜵〈𝜵,𝝋〉 

 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 
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𝛻𝜏𝜙0 − 〈𝜵,𝕰〉 = −𝛼 𝛻𝜏𝛻𝜏𝜑0 − 𝛻𝜏〈𝜵,𝝋〉 + 〈𝜵, 𝜵〉𝜑0 + 𝛻𝜏〈𝜵,𝝋〉 

 

= (−𝛼 𝛻𝜏𝛻𝜏 + 〈𝜵, 𝜵〉)𝜑0 = 𝜉0 

 

−𝜵𝜙0 + 𝛼 𝛻𝜏𝕰 − 𝜵 × 𝓑 

 

= +𝛼 𝛻𝜏𝜵𝜑0 + 𝜵〈𝜵,𝝋〉 − 𝛼 𝛻𝜏𝜵𝜑0 − 𝛼 𝛻𝜏𝛻𝜏𝝋 − 𝜵〈𝜵,𝝋〉 + 〈𝜵, 𝜵〉𝝋 

 

= (− 𝛼 𝛻𝜏𝛻𝜏 + 〈𝜵, 𝜵〉)𝝋 = 𝝃 

 

𝝓 = − 𝕰 ∓ 𝓑 

 

(−𝛼 𝛻𝜏𝛻𝜏 + 〈𝜵, 𝜵〉)𝜑0 = −𝛼
𝜕2𝜑0

𝜕𝜏2
+

𝜕2𝜑0

𝜕𝑥2
+

𝜕2𝜑0

𝜕𝑦2
+

𝜕2𝜑0

𝜕𝑧2
= 𝜁0 

= 𝛻𝜏𝜙0 + 〈𝜵,𝕰〉 

 

(−𝛼 𝛻𝜏𝛻𝜏 + 〈𝜵, 𝜵〉)𝝋 = −𝛼
𝜕2𝝋

𝜕𝜏2
+

𝜕2𝝋

𝜕𝑥2
+

𝜕2𝝋

𝜕𝑦2
+

𝜕2𝝋

𝜕𝑧2
= 𝜻 

= −𝜵𝜙0 + 𝛼 𝛻𝜏𝕰 − 𝜵 × 𝓑 

 

−𝛼
𝜕2𝜑

𝜕𝜏2
+

𝜕2𝜑

𝜕𝑥2
+

𝜕2𝜑

𝜕𝑦2
+

𝜕2𝜑

𝜕𝑧2
= 𝜁 = 𝛻∗𝛻𝜑 

 

With 𝛼 = −1, this corresponds to a Euclidean signature. 

7.2 Maxwell equations 
The Maxwell based formulas that are used here are taken from Bo Thidé; “Electromagnetic field 

theory”; second edition. 

We use these formulas without units. Thus 𝑐 = 1; 𝜀0 = 1; 𝜇 = 1. 

The Maxwell equations use coordinate time 𝑡. Just changing parameter 𝜏 into variable 𝑡, which is a 

function of 𝜏 and 𝒙, does not affect field 𝜑. It only changes the parameter space and the formulas 

that describe 𝜑. This means that 𝜑 still obeys all the quaternionic partial differential equations, 

including the second order partial differential equation! With other words, Maxwell equations just 

offer a different view on field 𝜑. We will use a selector 𝛼 that will distinguish pure quaternionic 

differential formulas (𝛼 = −1) from nearly equivalent Maxwell based differential formulas (𝛼 =

+1). 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 
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𝛻𝑡 stands for 
𝜕

𝜕𝑡
. In quaternionic parameter space, function 𝑡 plays the role of quaternionic distance 

|𝑥|, where: 

𝑡 = |𝑥| = |𝜏 + 𝒙| 

In Maxwell equations the symbol 𝑬 is usually used for the electrical field and symbol 𝑩 is usually 

used for the magnetic field. Here we use the special symbols 𝓔 and 𝓑 in order to indicate the more 

general usage. 

 

𝓔 ≡  −𝜵𝜑0 − 𝛻𝑡𝝋 

 

𝓑 ≡  𝜵 × 𝝋 

 

In order to support the comparison, we introduce 𝜘 as a new scalar field. This field is not subject of a 

regular Maxwell equation. 

 

𝜘 ≡ 𝛼 𝛻𝑡𝜑0 + 〈𝛁,𝝋〉 ⟺ −𝜙0 = 𝛼 𝛻𝜏𝜑0 + 〈𝛁,𝝋〉 

 

In EMFT the scalar field 𝜘 is taken as a gauge with 

𝛼 = 1; Lorentz gauge 

𝛼 = 0; Coulomb gauge 

 𝛼 = −1; Kirchhoff gauge.  

In Maxwell based differential calculus the scalar field 𝜘 is ignored or it is taken equal to zero. As will 

be shown, zeroing 𝜘 is not necessary for the derivation of the Maxwell based wave equation. 

 

𝛻𝑡𝓑 = 𝜵 × 𝛻𝑡𝝋 = −𝜵 × 𝓔 

 

𝜵 × 𝓑 = 𝜵 × (𝜵 × 𝝋) = 𝜵〈𝜵,𝝋〉 − 〈𝜵, 𝜵〉𝝋 

 

𝛻𝑡𝓔 ≡  −𝛻𝑡𝜵𝜑0 − 𝛻𝑡𝛻𝑡𝝋 

 

〈𝜵, 𝓔〉 = −〈𝜵, 𝜵〉𝜑0 − 𝛻𝑡〈𝜵,𝝋〉 

 

𝛻𝑡𝜘 = 𝛼𝛻𝑡𝛻𝑡𝜑0 + 𝛻𝑡〈𝜵,𝝋〉 ⟺ 𝛻𝜏𝜙0 = −𝛼 𝛻𝜏𝛻𝜏𝜑0 − 𝛻𝜏〈𝛁,𝝋〉 

 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 
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𝜵𝜘 ≡ 𝛼𝛻𝑡𝜵𝜑0 + 𝜵〈𝜵,𝝋〉 ⟺ 𝜵𝜙0 = −𝛼 𝛻𝜏𝜵𝜑0 − 𝜵〈𝛁,𝝋〉 

 

𝛻𝑡𝜘 + 〈𝜵, 𝓔〉 = 𝛼𝛻𝑡𝛻𝑡𝜑0 + 𝛻𝑡〈𝜵,𝝋〉 − 〈𝜵, 𝜵〉𝜑0 − 𝛻𝑡〈𝜵,𝝋〉 

 

= 𝛼𝛻𝑡𝛻𝑡𝜑0 − 〈𝜵, 𝜵〉𝜑0 = (𝛼𝛻𝑡𝛻𝑡 − 〈𝜵, 𝜵〉)𝜑0 

 

−𝜵𝜘 − 𝛼 𝛻𝑡𝓔 + 𝜵 × 𝓑 

 

= −𝛼𝛻𝑡𝜵𝜑0 − 𝜵〈𝜵,𝝋〉 + 𝛼𝛻𝑡𝜵𝜑0 + 𝛼𝛻𝑡𝛻𝑡𝝋 + 𝜵〈𝜵,𝝋〉 − 〈𝜵, 𝜵〉𝝋 

 

= 𝛼𝛻𝑡𝛻𝑡𝝋 − 〈𝜵, 𝜵〉𝝋 

 

In quaternionic differential calculus 𝛼 = −1 and 𝜙0 = −𝜘. If in Maxwell based differential calculus 

the Lorentz gauge 𝛼 = 1 is applied, then the Maxwell based wave functions result: 

 

(𝛼 𝛻𝑡𝛻𝑡 − 〈𝜵, 𝜵〉)𝜑0 = 𝜌0 =  𝛻𝑡𝜘 + 〈𝜵, 𝓔〉  ⟺ 𝛻𝜏𝜙0 + 〈𝜵,𝕰〉 

 

𝛼 
𝜕2𝜑0

𝜕𝑡2
−

𝜕2𝜑0

𝜕𝑥2
−

𝜕2𝜑0

𝜕𝑦2
−

𝜕2𝜑0

𝜕𝑧2
= 𝜌0 

 

(𝛼 𝛻𝑡𝛻𝑡 − 〈𝜵, 𝜵〉)𝝋 = 𝑱 = 𝜵 × 𝓑 −𝛼 𝛻𝑡𝓔 − 𝜵𝜘 ⟺ 𝜵𝜙0 − 𝛼 𝛻𝜏𝕰 + 𝜵 ×  𝓑 

 

𝛼 
𝜕2𝝋

𝜕𝑡2
−

𝜕2𝝋

𝜕𝑥2
−

𝜕2𝝋

𝜕𝑦2
−

𝜕2𝝋

𝜕𝑧2
= 𝑱 

 

This corresponds to the Minkowski signature. 

 

{𝜌0, 𝑱} ⟺ {𝛻𝑡𝜘 − 〈𝜵, 𝓔〉, −𝜵𝜘 + 𝜵 × 𝓑 − 𝛼 𝛻𝜏𝓔} 

 

= {𝛻𝑡𝜘,−𝜵𝜘} + {〈𝜵, 𝓔〉, 𝜵 × 𝓑 −𝛼 𝛻𝜏𝓔 } 

 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 
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Notice that we did not need to take 𝜘 = 0, which is used in the gauge. Adding equation (3) as an 

extra Maxwell equation would bring Maxwell equations more in conformance with the equations of 

quaternionic differential calculus. 

Notice the difference of the Minkowski signature of these equations with the Euclidean signature of 

the wave function of quaternionic differential calculus. This difference is enforced by the selection of 

the value of 𝛼. 

 Poisson equations 
The Poisson equations for the Maxwell based differential calculus are similar to the Poisson 

equations for the quaternionic differential calculus. 

 

𝜕2𝜑0

𝜕𝑥2
+

𝜕2𝜑0

𝜕𝑦2
+

𝜕2𝜑0

𝜕𝑧2
= −𝜌0 = − 𝛻𝑡𝜘 − 〈𝜵, 𝓔〉 

 

𝜕2𝝋

𝜕𝑥2
+

𝜕2𝝋

𝜕𝑦2
+

𝜕2𝝋

𝜕𝑧2
= −𝑱 = 𝜵𝜘 + 𝛼𝛻𝑡𝓔 − 𝜵 × 𝓑 

 

 The screened Poisson equation 
The screened Poisson equation runs: 

 

⟨𝛁, 𝛁⟩𝜒 − 𝜆2𝜒 =  𝜌 

 

In Maxwell based differential calculus this corresponds to: 

 

∇𝑡∇𝑡 𝜒 = 𝜆2 𝜒 

 

A solution of this equation is 

 

𝜒 = 𝑎(𝒙) exp (± 𝜆 𝑡) 

 

This differs significantly from the quaternionic differential calculus version. 

 The Maxwell-Huygens homogeneous wave equation 
In Maxell format the homogeneous wave equation uses coordinate time 𝑡. It runs as: 

𝜕2𝜑0

𝜕𝑡2
−

𝜕2𝜑0

𝜕𝑥2
−

𝜕2𝜑0

𝜕𝑦2
−

𝜕2𝜑0

𝜕𝑧2
= 0 

(1) 

(2) 

(3) 

(4) 

(5) 

(1) 
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Papers on Huygens principle work with the homogeneous version of this formula or it uses the 

version with polar coordinates. 

For isotropic conditions in three participating dimensions the general solution runs: 

𝜑0  = 𝑓(𝑟 − 𝑐𝑡)/𝑟, where 𝑐 = ±1; 𝑓 is real 

This follows from  

〈𝛻, 𝛻〉𝜑0 ≡
1

𝑟2
(

𝜕

𝜕𝑟
(𝑟2

𝜕𝜑0

𝜕𝑟
)) =

𝑓′′(𝑟 − 𝑐𝑡)

𝑟
=

1

𝑐2
𝜕²𝜑0/𝜕𝑡² 

In a single participating dimension the general solution runs: 

𝜑0  = 𝑓(𝑥 − 𝑐𝑡), where 𝑐 = ±1; 𝑓 is real 

7.3 Asymmetric tensor 
The Maxwell-based equation 

𝜙 ⟺ {𝜙0, 𝝓} ⟺ {𝛻0, 𝜵}{𝜑0, 𝝋} = {𝛻0, −𝜵}{𝐴0, 𝑨} 

𝝓 = −𝕰 ± 𝕭 

𝔈𝜈 ≡ −(
𝜕𝜑0

𝜕𝑥𝜈
+

𝜕𝜑𝜈

𝜕𝑡
) = −𝐹0𝜈 = 𝜕0𝐴𝜈 − 𝜕𝜈𝐴0; 𝜈 = 1. .3 

𝔅𝜇𝜈 = (𝜵 × 𝝋)𝜇𝜈 = (
𝜕𝜑𝜇

𝜕𝑥𝜈
−

𝜕𝜑𝜈

𝜕𝑥𝜇
) = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇; 𝜇 = 1. .3; 𝜈 = 1. .3;  

corresponds with the asymmetric tensor 𝐹𝜇𝜈  

𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 =

[
 
 
 
 
0 −𝔈𝑥 −𝔈𝑦 −𝔈𝑧

𝔈𝑥 0 ∓𝔅𝑧 ±𝔅𝑦

𝔈𝑦 ∓𝔅𝑧 0 ∓𝔅𝑥

𝔈𝑦 ±𝔅𝑦 ∓𝔅𝑥 0 ]
 
 
 
 

 

For the quaternionic differential calculus the same tensor can be generated. This tensor does not 

show the nature of the partial derivatives that are contained in the 𝔈𝜈 terms. The tensor hides the 

real parts of the differential. 

7.4 The space-progression model 
This paper supports two space progression models. Quaternions, quaternionic functions and 

quaternionic differential equations support parameter spaces that have an Euclidean signature and 

correspond to a metric tensor: 

 

𝑔𝜇𝜈 = [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

] 

Elements of this model can directly be stored as eigenvalues of operators that reside in quaternionic 

Hilbert spaces. 

(2) 

(3) 

(4) 

(1) 

(2) 

(3) 

(4) 

(5) 

(1) 
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The Maxwell based equations and the parameter space of these equations support a space-time 

model with Minkowski signature and correspond to a metric tensor: 

 

𝑔𝜇𝜈 = [

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

] 

 

Elements of this model must first be dismantled into their real components before they can be 

stored as eigenvalues of Hermitian operators that reside in real, complex or quaternionic Hilbert 

spaces 

The fact that the quaternionic field can be stored in the eigenspace of an operator that resides in a 

non-separable quaternionic Hilbert space and that after dismantling into real components the same 

can be done for a Maxwell based field means that the stored fields can represent one and the same 

object. It also means that both differential equation sets can investigate the same field and offer 

different views onto that field that reveal different aspects of the behavior of that field.  

It also means that both space-progression models represent different views of the same reality. 

8 Phenomena 
The two approaches are two different views of the same investigated field. Each view corresponds to 

a set of equations. These sets differ in the format of some of the equations and the equations differ 

in the selected scalar parameter. The actual behavior of the field and its features are not affected by 

the selected view. The two sets of equations might describe different aspects of the reaction of the 

field on discontinuities. Two fields might show different behavior if the type of artifacts that cause 

the discontinuities of the field differ. 

The used nabla operator can only be applied for simple discontinuities that can be represented by 

Dirac delta functions. The field response on such discontinuity is represented by a Green’s function. 

Three different kinds of these discontinuities can occur. 

 Oscillatory point-like discontinuities. This requires an oscillating trigger. 

 Persistent point-like discontinuities. These can still move around in the field. 

 Transient point-like discontinuities. These can still be grouped. These groups can move as a 

group. 

o The grouping can result in a coherent swarm 

o The grouping can result in a linear string 

The kind of discontinuities will influence the characteristics of the field. 

The definition of the quaternionic differential as  

 

𝜙 = 𝛻𝜑 

 

(2) 

(1) 
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defines this formula as a differential continuity equation. In fact the quaternionic second order 

partial differential equation represents the combination of two continuity equations 

 

𝜁 = 𝛻∗𝜙 

 

𝜙 = 𝛻𝜑 

 

𝜁 = 𝛻∗𝛻𝜑 

 

The phenomena are all solutions of the second order partial differential equation. 

Thus the discontinuities can be interpreted as sources, as drains, as oscillatory triggers, as charges or 

as transient embedding events. 

Examples are [5]: 

 Electric charges. These can be interpreted as persistent sources or drains. These objects may 

move around. 

 Elementary particles. Stochastic processes control the recurrent transient embedding of 

point-like artifacts that together form a coherent swarm and a hopping path. The swarm is 

characterized by a continuous location density distribution that conforms to the squared 

modulus of the wave function of the particle. 

 Linear strings of moving artifacts. The fronts that represent the Green’s functions of the 

artifacts move with constant speed along the path of the string and may rotate around the 

axis of the string. These strings may represent photons. 

8.1 Coupling equation 
The coupling equation represents a peculiar property of the quaternionic differential equation.  

We start with two normalized functions 𝜓 and 𝜑 and a normalizable function Φ = 𝑚 𝜑.  

Here 𝑚 is a fixed quaternion. Function 𝜑 can be adapted such that 𝑚 becomes a real number. 

 

‖𝜓‖ = ‖𝜑‖ = 1 

 

These normalized functions are supposed to be related by: 

 

Φ = 𝛻𝜓 = 𝑚 𝜑 

 

Φ = 𝛻𝜓 defines the differential equation. 

 

(2) 

(3) 

(4) 

(1) 

(2) 

(3) 
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𝛻𝜓 = Φ formulates a differential continuity equation. 

 

All quaternionic functions 𝜓 and 𝜓 that obey ‖𝜓‖ = ‖𝜑‖ = 1, will also obey the coupling 
equation.  

𝛻𝜓 = 𝑚 𝜑 

  

(4) 

(5) 



20 
 

9 Quaternionic Hilbert spaces 
Separable Hilbert spaces are linear vector spaces in which an inner product is defined. This inner 

product relates each pair of Hilbert vectors. The value of that inner product must be a member of a 

division ring. Suitable division rings are real numbers, complex numbers and quaternions. This paper 

uses quaternionic Hilbert spaces [1]. 

Paul Dirac introduced the bra-ket notation that eases the formulation of Hilbert space habits [6]. 

〈𝑥|𝑦〉 = 〈𝑦|𝑥〉∗ 

〈𝑥 + 𝑦|𝑧〉 = 〈𝑥|𝑧〉 + 〈𝑦|𝑧〉 

〈𝛼𝑥|𝑦〉 = 𝛼 〈𝑥|𝑦〉 

〈𝑥|𝛼𝑦〉 = 〈𝑥|𝑦〉 𝛼∗ 

〈𝑥| is a bra vector. |𝑦〉 is a ket vector.  𝛼 is a quaternion. 

This paper considers Hilbert spaces as no more and no less than structured storage media for 

dynamic geometrical data that have an Euclidean signature. Quaternions are ideally suited for the 

storage of such data.  

The operators of separable Hilbert spaces have countable eigenspaces. Each infinite dimensional 

separable Hilbert space owns a Gelfand triple. The Gelfand triple embeds this separable Hilbert space 

and offers as an extra service operators that feature continuums as eigenspaces. In the 

corresponding subspaces the definition of dimension loses its sense. 

9.1 Representing continuums and continuous functions 
Operators map Hilbert vectors onto other Hilbert vectors. Via the inner product the operator 𝑇 may 

be linked to an adjoint operator 𝑇†.  

〈𝑇𝑥|𝑦〉 ≡ 〈𝑥|𝑇†𝑦〉 

〈𝑇𝑥|𝑦〉 = 〈𝑦|𝑇𝑥〉∗ = 〈𝑇†𝑦|𝑥〉∗ 

A linear quaternionic operator 𝑇, which owns an adjoint operator 𝑇† is normal when 

𝑇† 𝑇 =  𝑇 𝑇†  

𝑇0 = (𝑇 + 𝑇†)/2 is a self adjoint operator and 𝑻 = (𝑇 − 𝑇†)/2 is an imaginary normal operator. 

Self adjoint operators are also Hermitian operators. Imaginary normal operators are also anti-

Hermitian operators. 

By using what we will call reverse bra-ket notation, operators that reside in the Hilbert space and 

correspond to continuous functions, can easily be defined by starting from an orthonormal base of 

vectors. In this base the vectors are normalized and are mutually orthogonal. The vectors span a 

subspace of the Hilbert space. We will attach eigenvalues to these base vectors via the reverse bra-

ket notation. This works both in separable Hilbert spaces as well as in non-separable Hilbert spaces.  

Let {𝑞𝑖} be the set of rational quaternions in a selected quaternionic number system and let {|𝑞𝑖〉} be 

the set of corresponding base vectors. They are eigenvectors of a normal operator ℛ = |𝑞𝑖〉𝑞𝑖〈𝑞𝑖|. 

Here we enumerate the base vectors with index 𝑖. 

ℛ = |𝑞𝑖〉𝑞𝑖〈𝑞𝑖|  

(1) 

(2) 

(3) 

(4) 

(1) 

(2) 

(3) 

(4) 
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ℛ is the configuration parameter space operator. 

ℛ0 = (ℛ + ℛ†)/2 is a self-adjoint operator. Its eigenvalues can be used to arrange the order of the 

eigenvectors by enumerating them with the eigenvalues. The ordered eigenvalues can be interpreted 

as progression values. 

𝓡 = (ℛ − ℛ†)/2 is an imaginary operator. Its eigenvalues can also be used to order the 

eigenvectors. The eigenvalues can be interpreted as spatial values and can be ordered in several 

ways. 

 

Let 𝑓(𝑞) be a mostly continuous quaternionic function. Now the reverse bra-ket notation defines 

operator 𝑓 as: 

𝑓 = |𝑞𝑖〉𝑓(𝑞𝑖)〈𝑞𝑖|  

𝑓 defines a new operator that is based on function 𝑓(𝑞). Here we suppose that the target values of 𝑓 

belong to the same version of the quaternionic number system as its parameter space does. 

Operator 𝑓 has a countable set of discrete quaternionic eigenvalues. 

For this operator the reverse bra-ket notation is a shorthand for 

〈𝑥|𝑓 𝑦〉 = ∑〈𝑥|𝑞𝑖〉𝑓(𝑞𝑖)〈𝑞𝑖|𝑦〉

𝑖

 

 

In a non-separable Hilbert space, such as the Gelfand triple, the continuous function ℱ(𝑞) can be 

used to define an operator, which features a continuum eigenspace. 

 

ℱ = |𝑞〉ℱ(𝑞)〈𝑞|  

 

Via the continuous quaternionic function ℱ(𝑞), the operator ℱ defines a curved continuum ℱ. This 

operator and the continuum reside in the Gelfand triple, which is a non-separable Hilbert space. 

 

ℜ = |𝑞〉𝑞〈𝑞| 

 

The function ℱ(𝑞) uses the eigenspace of the reference operator ℜ as a flat parameter space that is 

spanned by a quaternionic number system {𝑞}. The continuum ℱ represents the target space of 

function ℱ(𝑞).  

Here we no longer enumerate the base vectors with index 𝑖. We just use the name of the parameter. 

If no conflict arises, then we will use the same symbol for the defining function, the defined operator 

and the continuum that is represented by the eigenspace. 

For the shorthand of the reverse bra-ket notation of operator ℱ the integral over 𝑞 replaces the 

summation over 𝑞𝑖. 

(5) 

(6) 

(7) 

(8) 
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〈𝑥|ℱ 𝑦〉 = ∫〈𝑥|𝑞〉ℱ(𝑞)〈𝑞|𝑦〉
𝑞

 𝑑𝑞 

 

Remember that quaternionic number systems exist in several versions, thus also the operators 𝑓 and 

ℱ exist in these versions. The same holds for the parameter space operators. When relevant, we will 

use superscripts in order to differentiate between these versions.  

Thus, operator 𝑓𝑥 = |𝑞𝑖
𝑥〉𝑓𝑥(𝑞𝑖

𝑥)〈𝑞𝑖
𝑥| is a specific version of operator 𝑓. Function 𝑓𝑥(𝑞𝑖

𝑥) uses 

parameter space ℛ𝑥.  

Similarly, ℱ𝑥 = |𝑞𝑥〉ℱ𝑥(𝑞𝑥)〈𝑞𝑥| is a specific version of operator ℱ. Function ℱ𝑥(𝑞𝑥) and continuum 

ℱ𝑥 use parameter space ℜ𝑥. If the operator ℱ𝑥 that resides in the Gelfand triple ℋ uses the same 

defining function as the operator ℱ𝑥 that resides in the separable Hilbert space, then both operators 

belong to the same quaternionic ordering version. 

In general the dimension of a subspace loses its significance in the non-separable Hilbert space.  

The continuums that appear as eigenspaces in the non-separable Hilbert space ℋ can be considered 

as quaternionic functions that also have a representation in the corresponding infinite dimensional 

separable Hilbert space ℌ. Both representations use a flat parameter space ℜ𝑥 or ℛ𝑥 that is spanned 

by quaternions. ℛ𝑥 is spanned by rational quaternions. 

The parameter space operators will be treated as reference operators. The rational quaternionic 

eigenvalues {𝑞𝑖
𝑥} that occur as eigenvalues of the reference operator ℛ𝑥 in the separable Hilbert 

space map onto the rational quaternionic eigenvalues {𝑞𝑖
𝑥} that occur as subset of the quaternionic 

eigenvalues {𝑞𝑥} of the reference operator ℜ𝑥 in the Gelfand triple. In this way the reference 

operator ℛ𝑥 in the infinite dimensional separable Hilbert space ℌ relates directly to the reference 

operator ℜ𝑥, which resides in the Gelfand triple ℋ. 

All operators that reside in the Gelfand triple and are defined via a mostly continuous quaternionic 

function have a representation in the separable Hilbert space. 

9.2 Stochastic operators 
Stochastic operators do not get their data from a continuous quaternionic function. Instead a 

stochastic process delivers the eigenvalues. Again these eigenvalues are quaternions and the real 

parts of these quaternions can be interpreted as progression values. The generated eigenvalues are 

picked from a selected parameter space. 

Stochastic operators only act in a step-wise fashion. Their eigenspace is countable. Stochastic 

operators may act in a cyclic fashion. 

The mechanisms that control the stochastic operator can synchronize the progression values with 

the model wide progression that is set by a selected reference operator. These mechanisms and the 

stochastic processes are not part of the functionality of the Hilbert space. 

Characteristic for stochastic operators is that the imaginary parts of the eigenvalues are not smooth 

functions of the real values of those eigenvalues. 

(9) 
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 Density operators 
The eigenspace of a stochastic operator may be characterized by a continuous spatial density 

distribution. In that case the corresponding stochastic process must ensure that this continuous 

density distribution fits. The density distribution can be constructed afterwards or after each 

regeneration cycle. Constructing the density distribution involves a reordering of the imaginary parts 

of the produced eigenvalues. This act will usually randomize the real parts of those eigenvalues. A 

different operator can then use the continuous density distribution in order to generate its 

functionality. The old real parts of the eigenvalues may then reflect the reordering. The construction 

of the density distribution is a pure administrative action that is performed as an aftermath. The 

constructed density operator represents a continuous function and may reside both in the separable 

Hilbert space and in the Gelfand triple. The construction of the density function involves a selected 

parameter space. That parameter space need not be the same as the parameter space from which 

the stochastic process picked its eigenvalues. 
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9.3 Storing Maxwell based field components in Hilbert space 
As shown above it is easy to store quaternionic functions and their parameter spaces in a 

quaternionic non-separable Hilbert space. If the components of the Maxwell based function must be 

stored in the non-separable Hilbert space, then the function must first be dismantled into its real 

components. After that action these components can be stored in the eigenspaces of Hermitian 

operators. Physical theories usually use complex number based Hilbert spaces for this purpose. In 

that way at least the coordinate time part can stay coupled with one spatial dimension. This 

approach may generate problems when multiple spatial dimensions interact. That happens in the 

realm of elementary particles [5]. 

10 Conclusion 
Great similarities, but also essential differences exist between quaternionic differential equations 

and Maxwell based differential equations. In the quaternionic differential calculus the differential can 

be seen as a product between the four-component differential operator 𝛻 and the four-component 

field 𝜑. That simple interpretation is not possible in Maxwell based differential calculus. It is not 

possible to interpret the Maxwell field as a function of a parameter space that directly corresponds 

to a number system. In the Maxwell approach, the parameter space has a Minkowski signature and 

does not form a division ring. In quaternionic function theory the parameter space has a Euclidean 

signature. This shows in the structure of the second order partial differential equations of the two 

approaches. These equations have solutions that differ between the two approaches. However, the 

Poisson part of the two second order partial differential equations is similar. This does not hold for 

the screened Poisson equation. The corresponding Green’s functions are similar. Both homogeneous 

second order partial differential equations have solutions in the form of one dimensional and three 

dimensional fronts that keep their shape. The one dimensional fronts also keep their amplitude. 

Between the two approaches, these fronts have different mathematical representations. In 

applications, the fronts can act as carriers of information or energy. Only the Maxwell based version 

supports harmonic oscillations in the form of waves. 

This paper replaces in the Maxwell based differential calculus the usage of gauges by the 

introduction of an extra scalar field 𝜘. This results in the same form of the Maxwell based wave 

equation as the Lorentz gauge delivers, but the non-homogeneous equation applies different charge 

and current distributions. The impact of the difference in charges and currents is not treated here. 

The two approaches offer different views on the same basic field. These views reveal different 

phenomena of that basic field. They might also split basic fields in categories. One category reveals 

their properties with Maxwell based differential calculus and another category reveals their 

properties with quaternionic differential calculus. EM fields fit better in the first category. The field 

that describes our living space fits better in the second category. 

10.1 Extra 
Maxwell based differential calculus can be implemented with complex numbers. In that way it does 

not have to cope so intensively with non-commutative operators. As a consequence, gauges can be 

implemented easily.  

A disadvantage of Maxwell based differential calculus is that spacetime based dynamic geometric 

data must first be dismantled into real numbers or complex numbers before Hilbert spaces can 

handle them. 
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Quaternionic differential calculus must circumvent most gauges. On the other hand, the quaternionic 

approach offers compensating advantages. 

Hilbert spaces can directly cope with quaternions as eigenvalues of operators. This holds for separate 

quaternions and for quaternionic continuums [1][4].  

Since proper time is Lorentz invariant, all quaternionic differential equations are inherently Lorentz 

invariant. 

Due to the fact that quaternions form a number system with a non-commutative product, they can 

implement rotations:  

𝑐 = 𝑎 𝑏/𝑎 

In this way they can implement the functionality of gluons [4]. This is not possible with parameters of 

the Maxwell based “field”. 
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