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Abstract 

 

The No-communication Theorem has been seen as the bar to communication by quantum state 

collapse. The essence of this theory is the procedure of taking the partial trace on an entangled, hence 

inseparable multi-particle system. This mathematical procedure applied unthinkingly, strikes out the 

off-diagonal elements from the ensemble density matrix and renders the reduced trace matrix 

representative of a mixed state. Decoherence theory is able to justify this mathematical procedure and 

we review it to show: the partial trace results for both unitary and non-unitary processes (hence 

measurement) on one, several or all particles of the ensemble; and that a unitary process keeps 

interference terms in the trace reduced matrix. 

 

1. Introduction 

 

Cornwall[1] introduced a scheme for 

communication by collapse of a joint wavefunction 

of a two particle entangled system. It followed on 

from the well known Bell thought experiment[2] 

and Aspect’s coincidence counting experiment[3]. 

The original motivation for this topic dates to 

Schrodinger’s thoughts on the extension of 

quantum mechanics to multi-particle systems and 

Bohr’s interpretation of the wavefunction[4]. 

Einstein, Podolsky and Rosen expressed concerns 

that wavefunction collapse of entangled systems 

was in abeyance of Relativity[5].  

 

One could argue, for a single particle from a 

spherical source, that conservation of probability 

alone would be enough to challenge Relativity[1]; 

this is beyond the scope of this paper but the author 

is currently investigating ways to use a single 

particle source and path entanglement to affect his 

communication scheme[6]. The discussion is 

timely in the centenary year of General Relativity, 

as the belief that information cannot be sent faster-

than-light appears to be straining at the leash[7], we 

aim to show using standard quantum theory that 

something has to break. The author has already 

provided a framework for metrology with faster-

than-light signals[1, 8, 9]. 

 

There are several descriptions of the process of 

wavefunction collapse but the only one that appeals 

to Objective Reality and what actually occurs in the 

laboratory, is Decoherence Theory[10, 11]. Thus 

we shall use it to elucidate the flaw in the “No-

communication Theorem”[12-14]. Let us first 

consider how a state vector is extended for multi-

particle systems: 
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Here, for example, two photons in the diagonal 

basis are combined into one vector spanning both 

Hilbert spaces by the tensor product[10]. Such a 

system we call factorisable or separable and we’d 

expect no operation performed on subsystem 1 or 2 

to affect the other. For instance, if system 1 is 

projected into the horizontal or vertical states, we’d 

factorise as, 

 

( ) ( )1 2 2 1 2 2  H H V or V H V⊗ + ⊗ +  

 

This leaves the other system unaffected. 

 

However when a system is prepared subject to 

some conservation rule (in the following example 

with polarisation, the conservation of angular 

momentum and energy[15]), the possibilities for 

the product space are curtailed, giving the Bell 

States for instance. We might write, 

 

1 2 1 2
0 0H H V V+ + ±  

 

and realise that this cannot be factored, leading to 

the inescapable conclusion that a measurement on 

system will affect the other. However, with 

wavefunction collapse being a strictly 

indeterminate process[16, 17], projection into a 

state would not lead to certainty of that state (there 

is only certainty with repeated measurements if the 

state is not given sufficient time to evolve, the so-

called “Quantum Zeno” principle), thus any 

communication scheme by distant measurement 

would seem to be thwarted by the randomness 

inherent in quantum measurement but a posteriori, 
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we could discern correlations by pooling 

experimental results[3] and comparing local and 

distant measurement events. 

 

Let us now use the density matrix formalism and 

write the tensor product of our (for example) two 

particles system and the environment. The 

environment also will include the measurement 

apparatus, but we write before measurement: 

 

 
total

start start e eρ ψ ψ= = ⊗  eqn. 2 

 

Our two component system is entangled and can’t 

be separated, let each particle have n states, 
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To consider our two particle entangled system in 

isolation, we take the reduced trace which is 

defined as: 

 ( )A B AB
trρ ρ=  eqn. 4 

 

For a two component system with any two vectors 

(the extension to more is obvious), we take the 

partial trace as: 
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Returning to our entangled system and the 

environment, this can be traced out thus: 
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2. Joint Unitary Evolution 

 

Our entangled system can evolve in isolation 

subject to unitary operators acting on each particle 

U1 and U2 respectively: 
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In particular, with reference to the entangled 

communication scheme of Cornwall[1], U2 is 

“Bob’s” interferometer apparatus and it can 

distinguish the pure entangled state of the 

entangled system.  

Indeed, considering the expansion of ψ into its 

constituent basis, the transition probability can be 

written: 
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  eqn. 7 

 

This clearly shows interference terms and thus a 

combination of diagonal and off-diagonal elements 

in the density matrix.  

 

3. Interaction with the Environment, Measurement 

and the Partial Trace 

 

As the experiment ends, the entangled system 

begins to interact with the environment (that 

includes the measurement apparatus): 
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The partial trace is taken again to isolate our two 

particle system: 
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Once again we can compute the probability of 

transition but given the circumstance of interaction 

with the environment: 
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Comparing eqn. 10 to eqn. 7 we see the lack of 

interference terms and so quantum superpositions 

have given way to classical probabilities, when the 

system interacts with the environment. We note too 

that in eqn. 9, although the original system was 

entangled, that the diagonal density matrix 
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indicates that our two particle system is now 

separable – that is, not entangled.  

 

Initially we spoke of the entangled system evolving 

through the tensor product of two unitary operators: 
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The decoherence analysis performed the evolution 

thus: 
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That is, both particles interacted with the 

environment over the 2n basis vectors of the joint 

state vector, which then collapsed into two 

separable systems. This is also equivalent to: 
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It is sufficient that only one measurement be 

performed – “Alice” can communicate to “Bob” 

via her measurement. Bob does a unitary transform 

with his interferometer and measures the resulting 

mixed state and not the pure, interfering, entangled 

state before her measurement. To see that this is so, 

that only one measurement is needed to 

decohere/de-entangle the two particle system, 

consider the tensor product of two state vectors (the 

coefficients have been left out) :- 

 

 

( ) ( )

( )

( )

1 2 1 2

1 1 1 2 1

1 2

... ...

        ...

        ...

        ...

n n

n

n n n n

+ + + ⊗ + + +

=

+ + +

+ +

+ + +

e e e f f f

e f e f e f

e f e f e f

eqn. 13 

 

Although the product has n
2
 terms, the density 

matrix in eqn. 8 has n
4
 terms, as does the 

interaction matrix i j , the form of each term 

|eifj> means that every term has a single state 

interaction term and indeed, in the case of an 

entangled system, this term eifj isn’t separable (i.e. 

ei or fj) and a measurement on one system is a 

measurement on the other system too. The end 

result is still the same: whether it is one or both 

entangled particles interacting, eqn. 9 shows the 

partial trace. 

4. The Flaw in the No-communication theorem 

 

Current wisdom believes that the act of taking the 

partial trace will leave both systems in a mixed 

state. Clearly from the proceeding analysis this 

isn’t so: 

 

� The scenario of unitary evolution and then 

the trace-out of the environment: eqn. 5, 

eqn. 6 and eqn. 7, allowed interference 

terms to be kept, 

 

� Whilst the scenario of interaction with the 

environment and trace-out of the 

environment: eqn. 8, eqn. 9 and eqn. 10 

didn’t.  

 

In other words: It is not the act of taking the partial 

trace that causes the mixed state and loss of 

interference but the interaction with the 

environment. This interaction, through the loss of 

the interference terms, is obviously non-unitary. A 

non-unitary operation is synonymous with 

measurement. 

 

5. Conclusion 

 

It has been proven in this paper by Decoherence 

Theory that unitary evolution preserves 

interference terms in the reduced density matrix. 

The No-communication argument[12-14] is simply 

flawed resting on this premise. 

 

We have argued before[1] that the pure and mixed 

states of an entangled system can be discerned by 

an interferometer, which itself has a unitary 

evolution operator. The issue isn’t really just a 

problem in multi-particle entangled systems but is 

applicable too, in its purest sense, to single particle 

wavefunction collapse and path entanglement[6]. 

 

Given Aspect et al[3] and Zbinden et al[7] results 

the most fundamental questions are being asked 

about Objective Reality. Faster-than-light 

signalling can find no bar in the No-communication 

theory, it is just wrong.  

 

One has to admit that the picture of reality 

presented by Relativity is on shaky ground when it 

comes to the transmission of mass-energy-less 

signals (pure quantum state information). True 

Science will apply Occam’s Razor to questions of 

multiple universes, observer manifested reality or 

even retro-causality. Nature abhors unnecessary 

artificial constructs and complication; we suggest 

that the scheme of dropping the retarded time terms 

in the Lorentz transform[1, 8, 9] (figure 7 from 

Cornwall[1] reproduced at the end of this paper) is 

the way to go. 
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Figure 7 reproduced from Cornwall[1]. 

  

The Lorentz transform: 

 

 

Describes the transformation between inertial frames for 

different observers of mass-energy phenomena. All 

information about the co-ordinates is sent as mass-energy too 

so inevitably our measurement of space and time is affected 

(a bit like kicking a soccer ball whilst the goal posts are 

moving!). 

 

This view point leads to the space-time construct, destruction 

of simultaneity in space and time (events A and B below) and 

the consideration of co-ordinate transformations as hyperbolic 

rotations in 4-space (hyperbolic ‘angle’ α in analogy to θ in 

3-space rotations).   

 

 

 

 

 

Thus we obtain the familiar space-time diagram: 

 

 

 

 

 

 

 

 

 

 

The terms in the Lorentz transform ∆x = γv∆t’ and 

∆t = γv∆x’/c
2
 can simply be understood as the delay in 

sending the information about the co-ordinates to the non-

primed frame. For instance if it takes the primed frame ∆t’ 

seconds to perform a measurement then the frame will have 

moved a distance v∆t’ which we correct back to the un-primed 

frame, γv∆t’ in addition to any other distance measurement. 

As regards the time: the frame will have moved v∆t’ once 

again so the light signal will require an extra v∆t’/c seconds to 

reach the source, now ∆t’ = ∆x’/c so the extra time is γv∆x’/c
2
 

in the un-primed frame. 

 

Sending information superluminally knocks out the terms 

∆x = γv∆t’ and ∆t = γv∆x’/c
2
 in the Lorentz transform giving 

the following transformation diagram: 
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Lorentz’s original view 


