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Abstract

The behaviour of Quark Gluon Plasma (QGP) as a dense fluid with very
low viscosity, exhibiting hydrodynamic flow and complete absorption of high
momentum probes, demands a paradigmatic shift in our view of QGP, vis-
a-vis the earlier held view of it being a gas of weakly interacting quarks and
gluons. This would have been a major setback for the quark gas model of
QGP, but for the discovery of a new empirical information. The study of the
v2 parameter of the elliptic flow as a function of KET , the transverse kine-
matic energy, displays evidence of scaling by nq, the number of constituent
quarks in baryons and mesons. This is an incontrovertible evidence of the
underling role of the quark degrees of freedom in establishing the elliptic
flow. So is the QGP a liquid of a gas? This is the new conundrum. Here
we provide a resolution of this puzzle through a consistent application of the
symmetry structure of the full SU(3)c group itself, rather than just its local
Lie group algebra.
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The experimental study of the Quark Gluon Plasma (QGP) at CERN
and BNL has been a story of grand success in the last two decades or so. On
the theoretical side there have been setbacks though. For example, the very
first idea that the QGP would be a gas of quarks, antiquarks and gluons, was
found not to be up to the mark.

”The success of the hydrodynamic model in describing the bulk of hadron-
ic production in Au + Au collisions at the RHIC has led to paradigmatic shift
in our view of the QGP; instead of behaving like a gas of weakly interacting
quarks and gluons, as naively expected on the basis of asymptotic freedom in
QCD, it’s collective properties rather reflect those of a ”perfect fluid” with
almost vanishing viscosity [1]. Actually it is the most perfect fluid created
in the laboratory. It is also highly opaque to colored probes, as indicated
by the observed large parton energy loss. Actually these two phenomena are
fundamentally related to each other, and complement each other to bring
about a strongly coupled plasma [2].

The above demolishes the free gas model of QGP. This would have been
the end of the gas model, but nay, like the Phoenix it rises again. This
is due to the new surprising result of the observation of the quark num-
ber scaling of the elliptic flow [3] ( interestingly this was discovered by the
appropriately named PHENIX Collaboration ). They studied how the el-
liptic flow parameter v2 depends upon the ”transverse kinematic energy”
KET =

√
m2 + pT 2−m. They found that v2(KET ) displayed two branches,

the upper one consisting of baryons and the lower one having only mesons.
Most importantly, they found a further scaling of both KET and v2(KET )
by nq, the number of constituent quarks. This is a very strong empirical
evidence for quark number scaling of the flow phenomenon. This point is
further strengthened by the observation that φ - meson, although more mas-
sive than the nucleon, still follows the curve for mesons, and not that of the
baryons. ”While it is tempting to conclude that the strict scaling accord-
ing to constituent quark content provides incontrovertible evidence for the
underlying role of the quark degrees of freedom in establishing the elliptic
flow, such a conclusion appears to be at odds with the observation of perfect
fluidity” [4].

So is the QGP a fluid or a gas? This is the new conundrum. In this paper
we present a resolution for this conundrum by studying the symmetry of the
full color group SU(3)c, rather than just relying upon the local Lie algebraic
structure only.
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It is believed that in QCD “transition from hadronic matter to the quark
gluon matter is a transition from local color confinement (on the scale of
1 fm) to global cloy confinement” [5]. It is not clear as to what maintains
long-range correlations implicit in global color-confinement, for example for
sizes as large as the quark stars [6]. To better understand the role of the
color degree of freedom we use the color projection technique which uses the
complete structure of the full SU(3)c group.

With the mathematical development of the consistent inclusion of in-
ternal symmetries in a statistical thermodynamical description of quantum
gases [7] the idea was applied to the color SU(3)c group [8,9]. Therein the
group theoretical projection technique was used to project out color-singlet
representation for a bulk system consisting of Quark Gluon Plasma at finite
temperature. The requirement of imposition of color-singletness for these
systems has been found to be of a great significance and work has been done
using this technique of color projection. Several interesting results were ob-
tained but perhaps the most significant was that if one were to compare a
color unprojected bulk QGP system with a color-singlet projected QGP sys-
tem then important finite size corrections are introduced [8,9]. These finite
size corrections arising from the imposition of color- singletness disappear as
the size and/or temperature of the system increases. This was taken to mean
that for large-sized QGP systems, which may have been relevant in the early
universe QCD phase transition scenarios one may automatically assume glob-
al color-singletness [5] of the system without any significant modifications.
This allowed for the possible existence of large size stable quark stars (which
were trivially assumed to be color-singlet [6] in the early universe QCD phase
transition. These scenarios continue to dominate the hadronization ideas in
the big bang models.

The orthogonality relation for the associated characters χ(p, q) of the (p,
q) multiplet of the group SU(3)c with the measure function ζ(φ, ψ) is∫

SU(3)c
dφ dψ ζ (φ, ψ)χ?(p, q) (φ, ψ)χ(p′, q′) (φ, ψ) = δp p′ δq q′ (1)

Let us now introduce the generating function ZG as

ZG(T, V, φ, ψ) =
∑
p,q

Z(p, q)

d(p, q)
χ(p, q)(φ, ψ) (2)

with
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Z(p, q) = tr(p,q)
[
exp

(
−βĤ0

)]
(3)

Z(p,q) is the canonical partition function. The many-particle states which
belong to a given multiplet (p, q) are used in the statistical trace with the
free hamiltonian Ĥ0, d(p, q) is its dimensionality and β is the inverse of
the temperature T. The projected partition function Z(p,q) can be obtained
by using the orthogonality relation for the characters. Hence the projected
partition function for any representation (p, q) is

Z(p, q) = d(p, q)
∫
SU(3)c

dφ dψ ζ (φ, ψ)χ?(p, q)(φ, ψ) ZG (T, V, φ, ψ) (4)

The characters of the different representations are as follows:

χ(1, 0) = exp(2iψ/3) + 2 exp(−iψ/3) cos(φ/2) (5)

χ(0, 1) = χ?(1, 0) (6)

χ(1, 1) = 2 + 2 [cosφ+ cos (φ/2 + ψ) + cos (−φ/2 + ψ)] (7)

χ(2, 2) = 2 + 2 [cosφ+ cos(3φ/2)cos(φ/2)] +

2 (1 + 2 cosφ) {cos (φ/2 + ψ) + cos (−φ/2 + ψ) + cos2ψ + (1/2) cosφ}(8)

The expressions of the generating function used in (4) is

ZG(T, V, φ, ψ) = tr
[
exp(−βĤ0 + iφÎz + iψŶ )

]
(9)

where Îz and Ŷ are the diagonal generators of the maximal abelian Cartan
subgroup of SU(3)c. Our plasma consists of light spin 1/2 (anti) quarks in the
(anti) triplet representation (0, 1) and (1, 0) respectively, and massless spin
one gluons in the octet representation (1,1). Note that the non-interacting
hamiltonian Ĥ0 is diagonal in the occupation-number representation. In the
same representation one can write the charge operators Îz and Ŷ as linear
combinations of particle-number operators. Hence ZG can be easily calcu-
lated in the occupation-number representation. With an imaginary ‘chem-
ical potential’ this is just like a grand canonical partition function for free
fermions and bosons. One obtains
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ZG
quark =

∏
q=l,m,n

∏
k

[1 + exp(−βεk − iαq)] [1 + exp(−βεk + iαq)] (10)

ZG
glue =

∏
g=µ,ν,ρ,σ

∏
k

[1− exp(−βεk + iαg)]
−1 [1− exp(−βεk − iαg)]−1 (11)

Here the single-particle energies are given as εk. For (1, 0), (0, 1) and (1,
1) multiplets, the eigenvalues of Îz and Ŷ gives the expression for different
angles as:

αl = (1/2)φ+ (1/3)ψ, αm = (−1/2)φ+ (1/3)ψ, αn = (−2/3)ψ (12)

αµ = αl − αm, αν = αm − αn, αρ = αl − αn, ασ = 0 (13)

We neglect the masses of the light quarks. At large volume the spectrum
of single particle becomes a quasi-continuous one and Σ...→ V/(2π)3

∫
d3p...

Then one gets

ZG(T, V, φ, ψ) = ZG
quark(T, V, φ, ψ) ZG

glue(T, V, φ, ψ) (14)

This then enables us to obtain the partition function for any represen-
tation ie. Z(p, q). One may thus obtain any thermodynamical quantity of
interest for a particular representation. For example the energy

E(p, q) = T 2 ∂

∂T
lnZ(p, q). (15)

Work was done earlier by several groups to impose color-singletness on the
system [8,9]. One believes that the main consequence of the color interaction
is to cause global color-confinement of quarks and gluons and this is auto-
matically taken care of by restricting the partition function to color-singlet
states [5]. One finds that

E(0, 0) = E0 + Ecorr (16)

where E0 was the unprojected energy (ie. with no color restriction what-
soever) given by

E0 = 3 aq V T 4 (17)
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with aq = (37 π2/90) and Ecorr was the correction introduced due to the
imposition of color-singletness. They found that [9] Ecorr was significant only
for the finite size i.e. when TV 1/3/h̄c was small ( < 2) and vanished when
TV 1/3/h̄c became large (> 2). ”One may call this ”phase transformation” of
the system... In nuclear collisions relatively small droplets will be formed,just
of the order R ∼ 2/T ∼ 2.5fm” [9]. This would mean that color-singletness
restriction only affects for these sizes while for large size and higher temper-
atures one need not perform explicit color projection calculation because the
consequent corrections are negligible therein [9]. But below we shall show
that this is not the whole story.

Next we projected out different representations like octet (1, 1), 27-plet
(2, 2) etc. on this QGP. Now the idea is that for ground state one knows
that the singlet state is bound and the higher representations are expelled
to infinite energies. Also for the ground states the role of the higher repre-
sentations may be significant and that is also quite well studied [10]. The
point to be emphasized is that the role of global color-singletness at high
temperatures is only an assumption and has never been explicitly demon-
strated even in a model calculations. Here we would like to study the basis
of this assumption and also the role, if any, of higher representations like
octet, 27-plet etc. Therefore we projected out different representations [11]
like octet (1,1). 27-plet (2,2) etc. for these QGP calculations. We shall study
the further significance of the same in this paper.

Let us look at octet, 27-plet etc. projection. We take µ = 0 case with 2
flavors. We plot in Fig. 1

Deff
(p, q) = E(p, q)/E0 = 1 + Ecorr

(p, q)/E0 (18)

Now puzzle arises when we look at the octet and the 27-plet representa-
tions. We note that for small values of TV 1/3/h̄c the octet and the 27-plet
energies shoot up. Thus for our µ = 0 case there is a clear distinction be-
tween the global color singlet states and the global color octet and 27-plet
states. As the octet and the 27-plet states have moved to infinity, these
are inaccessible to the ground states and where the global color singlet state
dominates. It turns out that this is independent of the number, 0-, 2- or
3-flavors [11]. The fact that the global color singlet state gets favored over
the color octet and 27-plet etc. representations, at low temperatures and/or
small sizes, supports the global color symmetry concept.
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But at higher values of TV 1/3/h̄c all, unprojected, singlet, octet and 27-
plet states become degenerate. There is nothing to distinguish one from
the other. Clearly one would expect that the higher representations like,
(3,3) representation of dimension 64, (4,4) representation of dimension 125
and (5,5) representation of dimension 216 etc. would behave similarly - i.e.
blowing up for small values of TV 1/3/h̄c and merging with the others for
higher values of TV 1/3/h̄c. We may extrapolate to the infinite dimensional
self-conjugate representation and the same conclusion would hold.

Thus we conclude that all states, unprojected, color singlet, 27-plet, 64-
plet, all the way to the infinite dimensional color projected representations
for µ = 0 case for QGP, are degenerate for higher values of TV 1/3/h̄c. There
is nothing that distinguishes one state from the other. What does it mean?

The answer is that this is providing us with an infinite dimensional Hilbert
space. If color singlet state is the minimal invariant state then this one is the
maximal color projected state. One can add nothing to it and one cannot
take anything away from it. Thus it is an invariant of the SU(3)c group.

Hence what we find is that this infinite dimensional color projected state
is what QPG exists in. This holds uniformly for each and every point of QGP.
Thus QGP forms fully homogeneous and isotropic system in color space. The
situation is similar to the homogeneity and isotropy of the real 3-dimensional
space in cosmology. Thus in this QGP only two forms of motion are possible
- uniform expansion or uniform contraction. This is so as, if any other motion
were to occur, then some part of QGP would look different from the other
regions and that is forbidden by the color isotropy and homogeneity of the
system. This gives us our perfect fluid!

Now about the complete absorption of the high momentum partons.
Clearly as being infinite dimensional color space, any colored entity can-
not pass through it and is dissolved in it. Thus complete absorption of color
in this fluid shall occur.

Hence the above is the ”perfect fluid” state of the QGP. This also absorbs
any color as well. This solves one part of the QGP conundrum. How about
the other part.

For this we look at the mathematical nature of the of the character of
a particular representation χ(p, q) of the group SU(3)c. It is an important
mathematical property of character of a particular representation, that once
constructed it forgets as to what and how many microscopic entities created
it. ”The important property of the definition (of group character) for the
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invariant group function is that it is independent of the microscopic structure
of the states, which transform under the irreducible representation (p,q), i.e.
it does not matter of how many particles the multiplet is made up”. [4].

Thus we build up the color singlet state ( for small values of TV 1/3/h̄c
) from point like current quarks, antiquarks and gluons, as these are what
contribute to it as 3 ⊗ 3̄ = 1 + .... and 8 ⊗ 8 = 1 + ... But for higher
values of TV 1/3/h̄c, it is degenerate with octet, 27-plet, 64-plet and all the
representations right up to infinity. Clearly all these will contribute to the
colors singlet state existing there. Now the quarks which give 3 ⊗ 3̄ = 1 +
.. are current quarks no more. This, as all the infinity of color states would
contribute to fatten this point like current quark as say, 3 ⊗ (27⊗ 27) →
3⊗ (1 + ..)→ 3. This is now a quasi-particle or a constituent quark.

Now as the temperature of the QGP drops, all the highly colored repre-
sentations 264-plet, 125-plet, 64-plet, 27-plet and octet, go out of contention
by disappearing to infinite energies. Only color singlet state, now made up
of constituent quarks, moves down to manifest as physical hadrons.

Now this has only constituent quarks and no gluons left in it. Therefor
when this leads to creation of baryon-antibaryons and mesons, it will be
pure constituent quark property of these hadrons and quark scaling ( as seen
by the PHENIX group [3] ) shall occur. Thus we explain this mysterious
property of the QGP as well.

Thus this model is able to explain the QGP conundrum of whether it is
a liquid or a gas. The explanation arises due to a consistent application of
the global aspect of the full color group SU(3)c.
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Figure 1: Deff (see text) for the color representations singlet, octet and
27-plet (with two flavors) as a function of TV 1/3/h̄c
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