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Abstract. The Callen-Welton formula (fluctuation-dissipation theorem) of voltage and current noise of a 
resistance are the sum of Nyquist's classical Johnson noise equations and a (quantum) zero-point term with 
power density spectrum proportional to frequency and independent of temperature. At zero temperature, the 
classical Nyquist term vanishes however the zero-point term produces non-zero noise voltage and current. 
We show that the claim of zero-point noise directly contradicts to the Fermi-Dirac distribution, which 
defines the thermodynamics of electrons according to quantum-statistical physics. As a consequence, the 
Johnson noise must be zero at zero temperature, which is in accordance with Nyquist's original formula. 
Further investigation shows that Callen-Welton disregarded the Pauli principle during calculating the 
transition probabilities and, in this way, they produced the zero-point noise artifact. 
 
 
1. Introduction: The Johnson noise and the second law 
 
In this paper, we prove that the zero-point term in the Johnson noise of resistors is non-
existent. 
 
The Johnson (-Nyquist) noise [1,2] of resistors and impedances is a spontaneous voltage 
and current fluctuation due to the stochastic motion of charge carriers (electrons) in the 
conductor material at thermal equilibrium. The second law of thermodynamics requires 
that, in thermal equilibrium, the time average of the instantaneous power flow between 
two parallel resistors is zero: 
 

 Pa⇔b (t,T ) t
  =   0  ,        (1) 

 
where Pa⇔b (t,T )  is the instantaneous power flow between resistors Ra and Rb, see Figure 
1, and Equation 1 holds in any frequency band. 
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Figure 1. The second law of thermodynamics requires that the net power flow between resistors Ra and Rb 
is zero. This is provided by the functional form of the power density spectrum Su(f,T) of Johnson noise 
(represented by voltage generators in the figure), which is, at any frequency and temperature, proportional 
to the resistance.  
 
For a passive impedance Z( f )  in thermal equilibrium, this condition requires that the 
functional form of the noise voltage spectrum is: 
 
Su ( f ) = Re Z( f )[ ]Q( f ,T ) = R( f )Q( f ,T )  ,      (2) 
 
where R( f )  is the real part of the impedance and Q( f ,T )  is a universal function of 
frequency and temperature, which is independent from material properties, geometry or 
the way of electrical conductance  [1-3].  
 
Therefore, if we can prove that, in a given system at zero temperature the function 
Q( f ,0)  is zero, then this finding is a proof that Q( f ,0) = 0  in any system, that is, the 
Johnson noise is zero at zero temperature.	  
 
 
2. The Callen-Welton result for the Johnson noise 
 
In the rest of the paper, for the sake of simplicity of notation, we work with frequency-
independent resistances, however this does not limit the generality of our treatment 
because all the equations and conclusions remain valid if Re Z( f )[ ]  is substituted into R  
in these equations and considerations. 
 
The Callen-Welton derivation (fluctuation-dissipation theorem) [4] of Johnson noise 
results in the sum of the classical Johnson-Nyquist term and a zero-point term: 
 
Su ,q ( f ,T ) = 4Rhf N( f ,T )+ 0.5[ ]    →

f <<kT /h
   4kTR + 2hfR      (3) 

 
where Su ,q ( f ,T )  is the one-sided power density spectrum of the voltage noise on the 
resistor and h is the Planck constant. The Planck number N( f ,T ) , which already exists 
in Nyquist's result, is the mean number of hf  energy quanta in a linear harmonic 
oscillator with resonance frequency f , at temperature T : 
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N( f ,T ) = exp(hf / kT )−1[ ]−1   .       (4) 
 
For the classical physical range f << kT / h , the Plank number becomes 
N( f ,T ) ≅ kT / (hf ) , which results in the well-known 4kTR noise spectrum at low 
frequencies. In conclusion, the first term of the sum in Equation 3 is the classical physical 
(Nyquist) result [2] and the second term is its quantum correction (zero-point noise): 
 
Su ,ZP ( f ,0) = 2hfR  ,         (5) 
 
where the notation reflects that, at zero temperature, the classical term disappears because 
N( f ,0) = 0  while the quantum term, the zero-point noise spectrum, is claimed to exist 
even at zero Kelvin due to the zero-point energy.  
 
The Johnson current noise of the resistance follows from the theory of linear operations 
on the noise and Ohm's law: 
 
Si,q ( f ,T ) = 4Ghf N( f ,T )+ 0.5[ ]    →

f <<kT /h
   4kTG + 2hfG  ,    (6) 

 
where Si,q ( f ,T )  is the one-sided power density spectrum of the current noise of the short-
circuited the resistor, where the conductance  is given as G = 1/ R  (or, in the case of 
impedance, it is the real part of the admittance). Similarly to the voltage noise, the first 
term of the sum in Equation 6 is the classical physical (Nyquist) result [2] and the second 
term is its quantum correction (zero-point noise):  
Si,ZP ( f ,0) = 2hfG ,          (7) 
 
which is again claimed to exist independently from the temperature. 
 
 
3. Proof that the quantum zero-point term does not exist in the Johnson noise 
 
It follows from the considerations in Section 1, that to prove that the zero-point term does 
not exist under general conditions, it is enough to create a proof for a special case 
because that proof will imply that the zero-point noise is zero in any other system, 
otherwise the second law is violated. 
 
Consider the simplest electron conductor system [5], a metal that does not become 
superconductor at zero temperature (in superconductors the Johnson noise is singular). 
Suppose our resistor is made of that. We short-circuit the resistor and measure the current 
in the loop. The current is the sum of the elementary currents  I(


k )  of occupied single 

electron states in the k-space:  
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I = I(


k )


k{ }
∑  ,          (8) 

 
where 

 


k{ }  denotes the set of wave vectors of the occupied states. At temperature T, the 

probability of state occupation versus the energy E of the state, is given by the Fermi-
Dirac distribution [5]: 
 

 

P(E,T ) = 1

1+ exp E − EF

kT
⎛
⎝

⎞
⎠

      ,       (9) 

 
where EF energy-parameter is the Fermi level. At absolute zero temperature, and zero 
electrical field, the occupation probability P satisfies: 
 

 
P(E,T = 0) =

1   for  E ≤ EF  
0  for  E > EF  

⎧
⎨
⎩

 ,       (10) 

 
that is, all the states are filled below EF energy and no states are filled beyond EF. In the 
k-space, this fact is visualized by the Fermi-surface, which is the surface given by the set 
of k vectors corresponding to EF. Due to the symmetry properties of the surface and 
according to Equation 8, the net current in the material is zero because for each positive 
occupied k value in any direction, there is an occupied negative k with the same absolute 
value, too [5]. At zero temperature and a non-zero electrical field in the negative direction 
along the x axis, the occupied states shift in the positive direction on the kx axis, 
representing an electrical current in the x direction [5]. 
 
It is obvious from this picture that nonzero electrical current, for example Johnson noise, 
requires breaking of the symmetry of the set of occupied states, such as the dashed circle 
shows in Figure 2 [5]. This cannot happen at zero temperature and zero electrical field 
because that would violate the zero-temperature limit of Fermi-Dirac distribution, see 
Equation 10.  
 
In conclusion, the material is totally "silent" at zero temperature and no Johnson noise 
can occur then. Consequently the zero-point term of Johnson noise claimed by the 
Callen-Welton formula (in Equations 3,5,6,7) does not exist. 

 



	   5	  

 
Figure 2. Illustration of the Fermi-surface at 2-dimensions (solid circle). At zero temperature and zero 
electrical field, electrons occupy all the states within the Fermi-sphere and no states outside of it are 
occupied. At non-zero current, the symmetry of the occupied states is broken.  

 
For the completeness of the picture, let use see how the classical term of Johnson noise is 
generated in Equations 4 and 6. The classical (Nyquist) term is also zero at zero 
temperature in accordance with Equation 4. However, at non-zero temperature the 
occupation probability is [5]: 
 

 
P(E,T > 0) =

1− ε(E,T )   for  E ≤ EF  
ε(E,T )        for  E > EF  

⎧
⎨
⎩

 ,     (11) 

 
where the ε(E,T )  probability ( 0 < ε ) characterizing the electron states that are 
"communicating" and take part in thermal motion (Nyquist noise term) , electronic 
specific heat, etc [5]. These are the carriers of the classical Johnson noise. 
 
 
4. Where is the error in the Callen-Welton derivation? 
 
The Callen-Welton derivation neglected the facts that the charge carriers are fermions 
thus they satisfy the Pauli-principle, which results in the Fermi-Dirac distribution [6]. The 
transition probabilities used by Callen-Welton do not depend on the occupation level of 
the state to which the transition occurs, which is the violation of the Pauli-principle [6]. 
 
This fundamental mistake produced the zero-point thermal noise artifact. 
 
 
5. How about the Koch-van_Harlingen-Clark experiment [7]? 
 
It is not our goal to explain how could the Josephson junction based frequency-selective, 
heterodyne detection experiments [7] lead to the seeming confirmation of the non-
existent zero-point Johnson noise. However, it is worthwhile to mention one such attempt 
by Kleen [8] who, following Heffner's approach [9], gave an estimate about the potential 
role of the time-energy uncertainty principle in frequency-selective, phase sensitive linear 
amplifiers. Kleen [8] got the linear frequency dependence and approximately the same 
values as Equation 5 and the experiments [7].  
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However, instead of Kleen, we quote here Heffner's results [9], which deduce the noise-
temperature TZP of frequency and phase selective linear amplifiers due to the uncertainty 
principle at zero thermodynamical temperature:  
 

TZP = hf / k

ln 2 −1/ A
1−1/ A

⎛
⎝

⎞
⎠

  .        (12) 

 
Equation 12 implies that at R source resistance, the equivalent input noise of the amplifier 
at zero temperature will be 
 

Su = 4kTZPR = 4R hf

ln 2 −1/ A
1−1/ A

⎛
⎝⎜

⎞
⎠⎟
= γ 4Rhf  ,     (13) 

 
where A is the amplification and the γ ≈ 0.5  value would result in the exact zero-point 
noise artifact of Equation 5.  
 
We evaluated Heffner's formula, see Table 1, and found that amplification A=1.19 yields 
the artifact value however a wide range of amplification gives similar data.  
 

Table 1. Various amplification and corresponding γ  values. 
A 1.1 1.19 2 10 
γ  0.40 0.50 0.91 1.34 

 
 
6. Conclusions 
 
The zero-point Johnson noise term in the fluctuation-dissipation theorem is incorrect and 
it is the result of neglecting the fermion nature of charge carriers in conductors including 
the Pauli-principle. The Fermi-Dirac statistics of charge carriers implies that there is no 
Johnson noise at zero temperature thus the zero-point noise is non-existent in the noise 
voltage and current of impedances. 
 
Additional work is needed to clarify the exact source of the experimental results, perhaps 
combined with experiments on impedances, and with direct detection instead of 
heterodyne detection. 
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